You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

866 lines
30KB

  1. /*
  2. * VC3/DNxHD encoder
  3. * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
  4. *
  5. * VC-3 encoder funded by the British Broadcasting Corporation
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. //#define DEBUG
  24. #define RC_VARIANCE 1 // use variance or ssd for fast rc
  25. #include "avcodec.h"
  26. #include "dsputil.h"
  27. #include "mpegvideo.h"
  28. #include "dnxhdenc.h"
  29. int dct_quantize_c(MpegEncContext *s, DCTELEM *block, int n, int qscale, int *overflow);
  30. #define LAMBDA_FRAC_BITS 10
  31. static av_always_inline void dnxhd_get_pixels_8x4(DCTELEM *restrict block, const uint8_t *pixels, int line_size)
  32. {
  33. int i;
  34. for (i = 0; i < 4; i++) {
  35. block[0] = pixels[0]; block[1] = pixels[1];
  36. block[2] = pixels[2]; block[3] = pixels[3];
  37. block[4] = pixels[4]; block[5] = pixels[5];
  38. block[6] = pixels[6]; block[7] = pixels[7];
  39. pixels += line_size;
  40. block += 8;
  41. }
  42. memcpy(block , block- 8, sizeof(*block)*8);
  43. memcpy(block+ 8, block-16, sizeof(*block)*8);
  44. memcpy(block+16, block-24, sizeof(*block)*8);
  45. memcpy(block+24, block-32, sizeof(*block)*8);
  46. }
  47. static int dnxhd_init_vlc(DNXHDEncContext *ctx)
  48. {
  49. int i, j, level, run;
  50. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  51. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_codes, max_level*4*sizeof(*ctx->vlc_codes), fail);
  52. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->vlc_bits , max_level*4*sizeof(*ctx->vlc_bits ), fail);
  53. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_codes, 63*2 , fail);
  54. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->run_bits , 63 , fail);
  55. ctx->vlc_codes += max_level*2;
  56. ctx->vlc_bits += max_level*2;
  57. for (level = -max_level; level < max_level; level++) {
  58. for (run = 0; run < 2; run++) {
  59. int index = (level<<1)|run;
  60. int sign, offset = 0, alevel = level;
  61. MASK_ABS(sign, alevel);
  62. if (alevel > 64) {
  63. offset = (alevel-1)>>6;
  64. alevel -= offset<<6;
  65. }
  66. for (j = 0; j < 257; j++) {
  67. if (ctx->cid_table->ac_level[j] == alevel &&
  68. (!offset || (ctx->cid_table->ac_index_flag[j] && offset)) &&
  69. (!run || (ctx->cid_table->ac_run_flag [j] && run))) {
  70. assert(!ctx->vlc_codes[index]);
  71. if (alevel) {
  72. ctx->vlc_codes[index] = (ctx->cid_table->ac_codes[j]<<1)|(sign&1);
  73. ctx->vlc_bits [index] = ctx->cid_table->ac_bits[j]+1;
  74. } else {
  75. ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
  76. ctx->vlc_bits [index] = ctx->cid_table->ac_bits [j];
  77. }
  78. break;
  79. }
  80. }
  81. assert(!alevel || j < 257);
  82. if (offset) {
  83. ctx->vlc_codes[index] = (ctx->vlc_codes[index]<<ctx->cid_table->index_bits)|offset;
  84. ctx->vlc_bits [index]+= ctx->cid_table->index_bits;
  85. }
  86. }
  87. }
  88. for (i = 0; i < 62; i++) {
  89. int run = ctx->cid_table->run[i];
  90. assert(run < 63);
  91. ctx->run_codes[run] = ctx->cid_table->run_codes[i];
  92. ctx->run_bits [run] = ctx->cid_table->run_bits[i];
  93. }
  94. return 0;
  95. fail:
  96. return -1;
  97. }
  98. static int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
  99. {
  100. // init first elem to 1 to avoid div by 0 in convert_matrix
  101. uint16_t weight_matrix[64] = {1,}; // convert_matrix needs uint16_t*
  102. int qscale, i;
  103. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l, (ctx->m.avctx->qmax+1) * 64 * sizeof(int) , fail);
  104. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c, (ctx->m.avctx->qmax+1) * 64 * sizeof(int) , fail);
  105. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_l16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  106. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->qmatrix_c16, (ctx->m.avctx->qmax+1) * 64 * 2 * sizeof(uint16_t), fail);
  107. for (i = 1; i < 64; i++) {
  108. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  109. weight_matrix[j] = ctx->cid_table->luma_weight[i];
  110. }
  111. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_l, ctx->qmatrix_l16, weight_matrix,
  112. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  113. for (i = 1; i < 64; i++) {
  114. int j = ctx->m.dsp.idct_permutation[ff_zigzag_direct[i]];
  115. weight_matrix[j] = ctx->cid_table->chroma_weight[i];
  116. }
  117. ff_convert_matrix(&ctx->m.dsp, ctx->qmatrix_c, ctx->qmatrix_c16, weight_matrix,
  118. ctx->m.intra_quant_bias, 1, ctx->m.avctx->qmax, 1);
  119. for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
  120. for (i = 0; i < 64; i++) {
  121. ctx->qmatrix_l [qscale] [i] <<= 2; ctx->qmatrix_c [qscale] [i] <<= 2;
  122. ctx->qmatrix_l16[qscale][0][i] <<= 2; ctx->qmatrix_l16[qscale][1][i] <<= 2;
  123. ctx->qmatrix_c16[qscale][0][i] <<= 2; ctx->qmatrix_c16[qscale][1][i] <<= 2;
  124. }
  125. }
  126. return 0;
  127. fail:
  128. return -1;
  129. }
  130. static int dnxhd_init_rc(DNXHDEncContext *ctx)
  131. {
  132. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_rc, 8160*ctx->m.avctx->qmax*sizeof(RCEntry), fail);
  133. if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD)
  134. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_cmp, ctx->m.mb_num*sizeof(RCCMPEntry), fail);
  135. ctx->frame_bits = (ctx->cid_table->coding_unit_size - 640 - 4) * 8;
  136. ctx->qscale = 1;
  137. ctx->lambda = 2<<LAMBDA_FRAC_BITS; // qscale 2
  138. return 0;
  139. fail:
  140. return -1;
  141. }
  142. static int dnxhd_encode_init(AVCodecContext *avctx)
  143. {
  144. DNXHDEncContext *ctx = avctx->priv_data;
  145. int i, index;
  146. ctx->cid = ff_dnxhd_find_cid(avctx);
  147. if (!ctx->cid || avctx->pix_fmt != PIX_FMT_YUV422P) {
  148. av_log(avctx, AV_LOG_ERROR, "video parameters incompatible with DNxHD\n");
  149. return -1;
  150. }
  151. av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
  152. index = ff_dnxhd_get_cid_table(ctx->cid);
  153. ctx->cid_table = &ff_dnxhd_cid_table[index];
  154. ctx->m.avctx = avctx;
  155. ctx->m.mb_intra = 1;
  156. ctx->m.h263_aic = 1;
  157. ctx->get_pixels_8x4_sym = dnxhd_get_pixels_8x4;
  158. dsputil_init(&ctx->m.dsp, avctx);
  159. ff_dct_common_init(&ctx->m);
  160. #if HAVE_MMX
  161. ff_dnxhd_init_mmx(ctx);
  162. #endif
  163. if (!ctx->m.dct_quantize)
  164. ctx->m.dct_quantize = dct_quantize_c;
  165. ctx->m.mb_height = (avctx->height + 15) / 16;
  166. ctx->m.mb_width = (avctx->width + 15) / 16;
  167. if (avctx->flags & CODEC_FLAG_INTERLACED_DCT) {
  168. ctx->interlaced = 1;
  169. ctx->m.mb_height /= 2;
  170. }
  171. ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
  172. if (avctx->intra_quant_bias != FF_DEFAULT_QUANT_BIAS)
  173. ctx->m.intra_quant_bias = avctx->intra_quant_bias;
  174. if (dnxhd_init_qmat(ctx, ctx->m.intra_quant_bias, 0) < 0) // XXX tune lbias/cbias
  175. return -1;
  176. if (dnxhd_init_vlc(ctx) < 0)
  177. return -1;
  178. if (dnxhd_init_rc(ctx) < 0)
  179. return -1;
  180. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->slice_size, ctx->m.mb_height*sizeof(uint32_t), fail);
  181. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_bits, ctx->m.mb_num *sizeof(uint16_t), fail);
  182. FF_ALLOCZ_OR_GOTO(ctx->m.avctx, ctx->mb_qscale, ctx->m.mb_num *sizeof(uint8_t) , fail);
  183. ctx->frame.key_frame = 1;
  184. ctx->frame.pict_type = FF_I_TYPE;
  185. ctx->m.avctx->coded_frame = &ctx->frame;
  186. if (avctx->thread_count > MAX_THREADS || (avctx->thread_count > ctx->m.mb_height)) {
  187. av_log(avctx, AV_LOG_ERROR, "too many threads\n");
  188. return -1;
  189. }
  190. ctx->thread[0] = ctx;
  191. for (i = 1; i < avctx->thread_count; i++) {
  192. ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
  193. memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
  194. }
  195. for (i = 0; i < avctx->thread_count; i++) {
  196. ctx->thread[i]->m.start_mb_y = (ctx->m.mb_height*(i ) + avctx->thread_count/2) / avctx->thread_count;
  197. ctx->thread[i]->m.end_mb_y = (ctx->m.mb_height*(i+1) + avctx->thread_count/2) / avctx->thread_count;
  198. }
  199. return 0;
  200. fail: //for FF_ALLOCZ_OR_GOTO
  201. return -1;
  202. }
  203. static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
  204. {
  205. DNXHDEncContext *ctx = avctx->priv_data;
  206. const uint8_t header_prefix[5] = { 0x00,0x00,0x02,0x80,0x01 };
  207. memset(buf, 0, 640);
  208. memcpy(buf, header_prefix, 5);
  209. buf[5] = ctx->interlaced ? ctx->cur_field+2 : 0x01;
  210. buf[6] = 0x80; // crc flag off
  211. buf[7] = 0xa0; // reserved
  212. AV_WB16(buf + 0x18, avctx->height); // ALPF
  213. AV_WB16(buf + 0x1a, avctx->width); // SPL
  214. AV_WB16(buf + 0x1d, avctx->height); // NAL
  215. buf[0x21] = 0x38; // FIXME 8 bit per comp
  216. buf[0x22] = 0x88 + (ctx->frame.interlaced_frame<<2);
  217. AV_WB32(buf + 0x28, ctx->cid); // CID
  218. buf[0x2c] = ctx->interlaced ? 0 : 0x80;
  219. buf[0x5f] = 0x01; // UDL
  220. buf[0x167] = 0x02; // reserved
  221. AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
  222. buf[0x16d] = ctx->m.mb_height; // Ns
  223. buf[0x16f] = 0x10; // reserved
  224. ctx->msip = buf + 0x170;
  225. return 0;
  226. }
  227. static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
  228. {
  229. int nbits;
  230. if (diff < 0) {
  231. nbits = av_log2_16bit(-2*diff);
  232. diff--;
  233. } else {
  234. nbits = av_log2_16bit(2*diff);
  235. }
  236. put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
  237. (ctx->cid_table->dc_codes[nbits]<<nbits) + (diff & ((1 << nbits) - 1)));
  238. }
  239. static av_always_inline void dnxhd_encode_block(DNXHDEncContext *ctx, DCTELEM *block, int last_index, int n)
  240. {
  241. int last_non_zero = 0;
  242. int slevel, i, j;
  243. dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
  244. ctx->m.last_dc[n] = block[0];
  245. for (i = 1; i <= last_index; i++) {
  246. j = ctx->m.intra_scantable.permutated[i];
  247. slevel = block[j];
  248. if (slevel) {
  249. int run_level = i - last_non_zero - 1;
  250. int rlevel = (slevel<<1)|!!run_level;
  251. put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
  252. if (run_level)
  253. put_bits(&ctx->m.pb, ctx->run_bits[run_level], ctx->run_codes[run_level]);
  254. last_non_zero = i;
  255. }
  256. }
  257. put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
  258. }
  259. static av_always_inline void dnxhd_unquantize_c(DNXHDEncContext *ctx, DCTELEM *block, int n, int qscale, int last_index)
  260. {
  261. const uint8_t *weight_matrix;
  262. int level;
  263. int i;
  264. weight_matrix = (n&2) ? ctx->cid_table->chroma_weight : ctx->cid_table->luma_weight;
  265. for (i = 1; i <= last_index; i++) {
  266. int j = ctx->m.intra_scantable.permutated[i];
  267. level = block[j];
  268. if (level) {
  269. if (level < 0) {
  270. level = (1-2*level) * qscale * weight_matrix[i];
  271. if (weight_matrix[i] != 32)
  272. level += 32;
  273. level >>= 6;
  274. level = -level;
  275. } else {
  276. level = (2*level+1) * qscale * weight_matrix[i];
  277. if (weight_matrix[i] != 32)
  278. level += 32;
  279. level >>= 6;
  280. }
  281. block[j] = level;
  282. }
  283. }
  284. }
  285. static av_always_inline int dnxhd_ssd_block(DCTELEM *qblock, DCTELEM *block)
  286. {
  287. int score = 0;
  288. int i;
  289. for (i = 0; i < 64; i++)
  290. score += (block[i]-qblock[i])*(block[i]-qblock[i]);
  291. return score;
  292. }
  293. static av_always_inline int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, DCTELEM *block, int last_index)
  294. {
  295. int last_non_zero = 0;
  296. int bits = 0;
  297. int i, j, level;
  298. for (i = 1; i <= last_index; i++) {
  299. j = ctx->m.intra_scantable.permutated[i];
  300. level = block[j];
  301. if (level) {
  302. int run_level = i - last_non_zero - 1;
  303. bits += ctx->vlc_bits[(level<<1)|!!run_level]+ctx->run_bits[run_level];
  304. last_non_zero = i;
  305. }
  306. }
  307. return bits;
  308. }
  309. static av_always_inline void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
  310. {
  311. const uint8_t *ptr_y = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize) + (mb_x << 4);
  312. const uint8_t *ptr_u = ctx->thread[0]->src[1] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3);
  313. const uint8_t *ptr_v = ctx->thread[0]->src[2] + ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << 3);
  314. DSPContext *dsp = &ctx->m.dsp;
  315. dsp->get_pixels(ctx->blocks[0], ptr_y , ctx->m.linesize);
  316. dsp->get_pixels(ctx->blocks[1], ptr_y + 8, ctx->m.linesize);
  317. dsp->get_pixels(ctx->blocks[2], ptr_u , ctx->m.uvlinesize);
  318. dsp->get_pixels(ctx->blocks[3], ptr_v , ctx->m.uvlinesize);
  319. if (mb_y+1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
  320. if (ctx->interlaced) {
  321. ctx->get_pixels_8x4_sym(ctx->blocks[4], ptr_y + ctx->dct_y_offset , ctx->m.linesize);
  322. ctx->get_pixels_8x4_sym(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize);
  323. ctx->get_pixels_8x4_sym(ctx->blocks[6], ptr_u + ctx->dct_uv_offset , ctx->m.uvlinesize);
  324. ctx->get_pixels_8x4_sym(ctx->blocks[7], ptr_v + ctx->dct_uv_offset , ctx->m.uvlinesize);
  325. } else {
  326. dsp->clear_block(ctx->blocks[4]); dsp->clear_block(ctx->blocks[5]);
  327. dsp->clear_block(ctx->blocks[6]); dsp->clear_block(ctx->blocks[7]);
  328. }
  329. } else {
  330. dsp->get_pixels(ctx->blocks[4], ptr_y + ctx->dct_y_offset , ctx->m.linesize);
  331. dsp->get_pixels(ctx->blocks[5], ptr_y + ctx->dct_y_offset + 8, ctx->m.linesize);
  332. dsp->get_pixels(ctx->blocks[6], ptr_u + ctx->dct_uv_offset , ctx->m.uvlinesize);
  333. dsp->get_pixels(ctx->blocks[7], ptr_v + ctx->dct_uv_offset , ctx->m.uvlinesize);
  334. }
  335. }
  336. static av_always_inline int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
  337. {
  338. if (i&2) {
  339. ctx->m.q_intra_matrix16 = ctx->qmatrix_c16;
  340. ctx->m.q_intra_matrix = ctx->qmatrix_c;
  341. return 1 + (i&1);
  342. } else {
  343. ctx->m.q_intra_matrix16 = ctx->qmatrix_l16;
  344. ctx->m.q_intra_matrix = ctx->qmatrix_l;
  345. return 0;
  346. }
  347. }
  348. static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg)
  349. {
  350. DNXHDEncContext *ctx = *(void**)arg;
  351. int mb_y, mb_x;
  352. int qscale = ctx->thread[0]->qscale;
  353. for (mb_y = ctx->m.start_mb_y; mb_y < ctx->m.end_mb_y; mb_y++) {
  354. ctx->m.last_dc[0] =
  355. ctx->m.last_dc[1] =
  356. ctx->m.last_dc[2] = 1024;
  357. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  358. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  359. int ssd = 0;
  360. int ac_bits = 0;
  361. int dc_bits = 0;
  362. int i;
  363. dnxhd_get_blocks(ctx, mb_x, mb_y);
  364. for (i = 0; i < 8; i++) {
  365. DECLARE_ALIGNED_16(DCTELEM, block[64]);
  366. DCTELEM *src_block = ctx->blocks[i];
  367. int overflow, nbits, diff, last_index;
  368. int n = dnxhd_switch_matrix(ctx, i);
  369. memcpy(block, src_block, sizeof(block));
  370. last_index = ctx->m.dct_quantize((MpegEncContext*)ctx, block, i, qscale, &overflow);
  371. ac_bits += dnxhd_calc_ac_bits(ctx, block, last_index);
  372. diff = block[0] - ctx->m.last_dc[n];
  373. if (diff < 0) nbits = av_log2_16bit(-2*diff);
  374. else nbits = av_log2_16bit( 2*diff);
  375. dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
  376. ctx->m.last_dc[n] = block[0];
  377. if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
  378. dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
  379. ctx->m.dsp.idct(block);
  380. ssd += dnxhd_ssd_block(block, src_block);
  381. }
  382. }
  383. ctx->mb_rc[qscale][mb].ssd = ssd;
  384. ctx->mb_rc[qscale][mb].bits = ac_bits+dc_bits+12+8*ctx->vlc_bits[0];
  385. }
  386. }
  387. return 0;
  388. }
  389. static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg)
  390. {
  391. DNXHDEncContext *ctx = *(void**)arg;
  392. int mb_y, mb_x;
  393. for (mb_y = ctx->m.start_mb_y; mb_y < ctx->m.end_mb_y; mb_y++) {
  394. ctx->m.last_dc[0] =
  395. ctx->m.last_dc[1] =
  396. ctx->m.last_dc[2] = 1024;
  397. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  398. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  399. int qscale = ctx->mb_qscale[mb];
  400. int i;
  401. put_bits(&ctx->m.pb, 12, qscale<<1);
  402. dnxhd_get_blocks(ctx, mb_x, mb_y);
  403. for (i = 0; i < 8; i++) {
  404. DCTELEM *block = ctx->blocks[i];
  405. int last_index, overflow;
  406. int n = dnxhd_switch_matrix(ctx, i);
  407. last_index = ctx->m.dct_quantize((MpegEncContext*)ctx, block, i, qscale, &overflow);
  408. //START_TIMER;
  409. dnxhd_encode_block(ctx, block, last_index, n);
  410. //STOP_TIMER("encode_block");
  411. }
  412. }
  413. if (put_bits_count(&ctx->m.pb)&31)
  414. put_bits(&ctx->m.pb, 32-(put_bits_count(&ctx->m.pb)&31), 0);
  415. }
  416. flush_put_bits(&ctx->m.pb);
  417. return 0;
  418. }
  419. static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx, uint8_t *buf)
  420. {
  421. int mb_y, mb_x;
  422. int i, offset = 0;
  423. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  424. int thread_size = 0;
  425. for (mb_y = ctx->thread[i]->m.start_mb_y; mb_y < ctx->thread[i]->m.end_mb_y; mb_y++) {
  426. ctx->slice_size[mb_y] = 0;
  427. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  428. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  429. ctx->slice_size[mb_y] += ctx->mb_bits[mb];
  430. }
  431. ctx->slice_size[mb_y] = (ctx->slice_size[mb_y]+31)&~31;
  432. ctx->slice_size[mb_y] >>= 3;
  433. thread_size += ctx->slice_size[mb_y];
  434. }
  435. init_put_bits(&ctx->thread[i]->m.pb, buf + 640 + offset, thread_size);
  436. offset += thread_size;
  437. }
  438. }
  439. static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg)
  440. {
  441. DNXHDEncContext *ctx = *(void**)arg;
  442. int mb_y, mb_x;
  443. for (mb_y = ctx->m.start_mb_y; mb_y < ctx->m.end_mb_y; mb_y++) {
  444. for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
  445. unsigned mb = mb_y * ctx->m.mb_width + mb_x;
  446. uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y<<4) * ctx->m.linesize) + (mb_x<<4);
  447. int sum = ctx->m.dsp.pix_sum(pix, ctx->m.linesize);
  448. int varc = (ctx->m.dsp.pix_norm1(pix, ctx->m.linesize) - (((unsigned)(sum*sum))>>8)+128)>>8;
  449. ctx->mb_cmp[mb].value = varc;
  450. ctx->mb_cmp[mb].mb = mb;
  451. }
  452. }
  453. return 0;
  454. }
  455. static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
  456. {
  457. int lambda, up_step, down_step;
  458. int last_lower = INT_MAX, last_higher = 0;
  459. int x, y, q;
  460. for (q = 1; q < avctx->qmax; q++) {
  461. ctx->qscale = q;
  462. avctx->execute(avctx, dnxhd_calc_bits_thread, (void**)&ctx->thread[0], NULL, avctx->thread_count, sizeof(void*));
  463. }
  464. up_step = down_step = 2<<LAMBDA_FRAC_BITS;
  465. lambda = ctx->lambda;
  466. for (;;) {
  467. int bits = 0;
  468. int end = 0;
  469. if (lambda == last_higher) {
  470. lambda++;
  471. end = 1; // need to set final qscales/bits
  472. }
  473. for (y = 0; y < ctx->m.mb_height; y++) {
  474. for (x = 0; x < ctx->m.mb_width; x++) {
  475. unsigned min = UINT_MAX;
  476. int qscale = 1;
  477. int mb = y*ctx->m.mb_width+x;
  478. for (q = 1; q < avctx->qmax; q++) {
  479. unsigned score = ctx->mb_rc[q][mb].bits*lambda+(ctx->mb_rc[q][mb].ssd<<LAMBDA_FRAC_BITS);
  480. if (score < min) {
  481. min = score;
  482. qscale = q;
  483. }
  484. }
  485. bits += ctx->mb_rc[qscale][mb].bits;
  486. ctx->mb_qscale[mb] = qscale;
  487. ctx->mb_bits[mb] = ctx->mb_rc[qscale][mb].bits;
  488. }
  489. bits = (bits+31)&~31; // padding
  490. if (bits > ctx->frame_bits)
  491. break;
  492. }
  493. //dprintf(ctx->m.avctx, "lambda %d, up %u, down %u, bits %d, frame %d\n",
  494. // lambda, last_higher, last_lower, bits, ctx->frame_bits);
  495. if (end) {
  496. if (bits > ctx->frame_bits)
  497. return -1;
  498. break;
  499. }
  500. if (bits < ctx->frame_bits) {
  501. last_lower = FFMIN(lambda, last_lower);
  502. if (last_higher != 0)
  503. lambda = (lambda+last_higher)>>1;
  504. else
  505. lambda -= down_step;
  506. down_step *= 5; // XXX tune ?
  507. up_step = 1<<LAMBDA_FRAC_BITS;
  508. lambda = FFMAX(1, lambda);
  509. if (lambda == last_lower)
  510. break;
  511. } else {
  512. last_higher = FFMAX(lambda, last_higher);
  513. if (last_lower != INT_MAX)
  514. lambda = (lambda+last_lower)>>1;
  515. else
  516. lambda += up_step;
  517. up_step *= 5;
  518. down_step = 1<<LAMBDA_FRAC_BITS;
  519. }
  520. }
  521. //dprintf(ctx->m.avctx, "out lambda %d\n", lambda);
  522. ctx->lambda = lambda;
  523. return 0;
  524. }
  525. static int dnxhd_find_qscale(DNXHDEncContext *ctx)
  526. {
  527. int bits = 0;
  528. int up_step = 1;
  529. int down_step = 1;
  530. int last_higher = 0;
  531. int last_lower = INT_MAX;
  532. int qscale;
  533. int x, y;
  534. qscale = ctx->qscale;
  535. for (;;) {
  536. bits = 0;
  537. ctx->qscale = qscale;
  538. // XXX avoid recalculating bits
  539. ctx->m.avctx->execute(ctx->m.avctx, dnxhd_calc_bits_thread, (void**)&ctx->thread[0], NULL, ctx->m.avctx->thread_count, sizeof(void*));
  540. for (y = 0; y < ctx->m.mb_height; y++) {
  541. for (x = 0; x < ctx->m.mb_width; x++)
  542. bits += ctx->mb_rc[qscale][y*ctx->m.mb_width+x].bits;
  543. bits = (bits+31)&~31; // padding
  544. if (bits > ctx->frame_bits)
  545. break;
  546. }
  547. //dprintf(ctx->m.avctx, "%d, qscale %d, bits %d, frame %d, higher %d, lower %d\n",
  548. // ctx->m.avctx->frame_number, qscale, bits, ctx->frame_bits, last_higher, last_lower);
  549. if (bits < ctx->frame_bits) {
  550. if (qscale == 1)
  551. return 1;
  552. if (last_higher == qscale - 1) {
  553. qscale = last_higher;
  554. break;
  555. }
  556. last_lower = FFMIN(qscale, last_lower);
  557. if (last_higher != 0)
  558. qscale = (qscale+last_higher)>>1;
  559. else
  560. qscale -= down_step++;
  561. if (qscale < 1)
  562. qscale = 1;
  563. up_step = 1;
  564. } else {
  565. if (last_lower == qscale + 1)
  566. break;
  567. last_higher = FFMAX(qscale, last_higher);
  568. if (last_lower != INT_MAX)
  569. qscale = (qscale+last_lower)>>1;
  570. else
  571. qscale += up_step++;
  572. down_step = 1;
  573. if (qscale >= ctx->m.avctx->qmax)
  574. return -1;
  575. }
  576. }
  577. //dprintf(ctx->m.avctx, "out qscale %d\n", qscale);
  578. ctx->qscale = qscale;
  579. return 0;
  580. }
  581. #define BUCKET_BITS 8
  582. #define RADIX_PASSES 4
  583. #define NBUCKETS (1 << BUCKET_BITS)
  584. static inline int get_bucket(int value, int shift)
  585. {
  586. value >>= shift;
  587. value &= NBUCKETS - 1;
  588. return NBUCKETS - 1 - value;
  589. }
  590. static void radix_count(const RCCMPEntry *data, int size, int buckets[RADIX_PASSES][NBUCKETS])
  591. {
  592. int i, j;
  593. memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
  594. for (i = 0; i < size; i++) {
  595. int v = data[i].value;
  596. for (j = 0; j < RADIX_PASSES; j++) {
  597. buckets[j][get_bucket(v, 0)]++;
  598. v >>= BUCKET_BITS;
  599. }
  600. assert(!v);
  601. }
  602. for (j = 0; j < RADIX_PASSES; j++) {
  603. int offset = size;
  604. for (i = NBUCKETS - 1; i >= 0; i--)
  605. buckets[j][i] = offset -= buckets[j][i];
  606. assert(!buckets[j][0]);
  607. }
  608. }
  609. static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data, int size, int buckets[NBUCKETS], int pass)
  610. {
  611. int shift = pass * BUCKET_BITS;
  612. int i;
  613. for (i = 0; i < size; i++) {
  614. int v = get_bucket(data[i].value, shift);
  615. int pos = buckets[v]++;
  616. dst[pos] = data[i];
  617. }
  618. }
  619. static void radix_sort(RCCMPEntry *data, int size)
  620. {
  621. int buckets[RADIX_PASSES][NBUCKETS];
  622. RCCMPEntry *tmp = av_malloc(sizeof(*tmp) * size);
  623. radix_count(data, size, buckets);
  624. radix_sort_pass(tmp, data, size, buckets[0], 0);
  625. radix_sort_pass(data, tmp, size, buckets[1], 1);
  626. if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
  627. radix_sort_pass(tmp, data, size, buckets[2], 2);
  628. radix_sort_pass(data, tmp, size, buckets[3], 3);
  629. }
  630. av_free(tmp);
  631. }
  632. static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
  633. {
  634. int max_bits = 0;
  635. int ret, x, y;
  636. if ((ret = dnxhd_find_qscale(ctx)) < 0)
  637. return -1;
  638. for (y = 0; y < ctx->m.mb_height; y++) {
  639. for (x = 0; x < ctx->m.mb_width; x++) {
  640. int mb = y*ctx->m.mb_width+x;
  641. int delta_bits;
  642. ctx->mb_qscale[mb] = ctx->qscale;
  643. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale][mb].bits;
  644. max_bits += ctx->mb_rc[ctx->qscale][mb].bits;
  645. if (!RC_VARIANCE) {
  646. delta_bits = ctx->mb_rc[ctx->qscale][mb].bits-ctx->mb_rc[ctx->qscale+1][mb].bits;
  647. ctx->mb_cmp[mb].mb = mb;
  648. ctx->mb_cmp[mb].value = delta_bits ?
  649. ((ctx->mb_rc[ctx->qscale][mb].ssd-ctx->mb_rc[ctx->qscale+1][mb].ssd)*100)/delta_bits
  650. : INT_MIN; //avoid increasing qscale
  651. }
  652. }
  653. max_bits += 31; //worst padding
  654. }
  655. if (!ret) {
  656. if (RC_VARIANCE)
  657. avctx->execute(avctx, dnxhd_mb_var_thread, (void**)&ctx->thread[0], NULL, avctx->thread_count, sizeof(void*));
  658. radix_sort(ctx->mb_cmp, ctx->m.mb_num);
  659. for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
  660. int mb = ctx->mb_cmp[x].mb;
  661. max_bits -= ctx->mb_rc[ctx->qscale][mb].bits - ctx->mb_rc[ctx->qscale+1][mb].bits;
  662. ctx->mb_qscale[mb] = ctx->qscale+1;
  663. ctx->mb_bits[mb] = ctx->mb_rc[ctx->qscale+1][mb].bits;
  664. }
  665. }
  666. return 0;
  667. }
  668. static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
  669. {
  670. int i;
  671. for (i = 0; i < 3; i++) {
  672. ctx->frame.data[i] = frame->data[i];
  673. ctx->frame.linesize[i] = frame->linesize[i];
  674. }
  675. for (i = 0; i < ctx->m.avctx->thread_count; i++) {
  676. ctx->thread[i]->m.linesize = ctx->frame.linesize[0]<<ctx->interlaced;
  677. ctx->thread[i]->m.uvlinesize = ctx->frame.linesize[1]<<ctx->interlaced;
  678. ctx->thread[i]->dct_y_offset = ctx->m.linesize *8;
  679. ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
  680. }
  681. ctx->frame.interlaced_frame = frame->interlaced_frame;
  682. ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
  683. }
  684. static int dnxhd_encode_picture(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data)
  685. {
  686. DNXHDEncContext *ctx = avctx->priv_data;
  687. int first_field = 1;
  688. int offset, i, ret;
  689. if (buf_size < ctx->cid_table->frame_size) {
  690. av_log(avctx, AV_LOG_ERROR, "output buffer is too small to compress picture\n");
  691. return -1;
  692. }
  693. dnxhd_load_picture(ctx, data);
  694. encode_coding_unit:
  695. for (i = 0; i < 3; i++) {
  696. ctx->src[i] = ctx->frame.data[i];
  697. if (ctx->interlaced && ctx->cur_field)
  698. ctx->src[i] += ctx->frame.linesize[i];
  699. }
  700. dnxhd_write_header(avctx, buf);
  701. if (avctx->mb_decision == FF_MB_DECISION_RD)
  702. ret = dnxhd_encode_rdo(avctx, ctx);
  703. else
  704. ret = dnxhd_encode_fast(avctx, ctx);
  705. if (ret < 0) {
  706. av_log(avctx, AV_LOG_ERROR, "picture could not fit ratecontrol constraints\n");
  707. return -1;
  708. }
  709. dnxhd_setup_threads_slices(ctx, buf);
  710. offset = 0;
  711. for (i = 0; i < ctx->m.mb_height; i++) {
  712. AV_WB32(ctx->msip + i * 4, offset);
  713. offset += ctx->slice_size[i];
  714. assert(!(ctx->slice_size[i] & 3));
  715. }
  716. avctx->execute(avctx, dnxhd_encode_thread, (void**)&ctx->thread[0], NULL, avctx->thread_count, sizeof(void*));
  717. assert(640 + offset + 4 <= ctx->cid_table->coding_unit_size);
  718. memset(buf + 640 + offset, 0, ctx->cid_table->coding_unit_size - 4 - offset - 640);
  719. AV_WB32(buf + ctx->cid_table->coding_unit_size - 4, 0x600DC0DE); // EOF
  720. if (ctx->interlaced && first_field) {
  721. first_field = 0;
  722. ctx->cur_field ^= 1;
  723. buf += ctx->cid_table->coding_unit_size;
  724. buf_size -= ctx->cid_table->coding_unit_size;
  725. goto encode_coding_unit;
  726. }
  727. ctx->frame.quality = ctx->qscale*FF_QP2LAMBDA;
  728. return ctx->cid_table->frame_size;
  729. }
  730. static int dnxhd_encode_end(AVCodecContext *avctx)
  731. {
  732. DNXHDEncContext *ctx = avctx->priv_data;
  733. int max_level = 1<<(ctx->cid_table->bit_depth+2);
  734. int i;
  735. av_free(ctx->vlc_codes-max_level*2);
  736. av_free(ctx->vlc_bits -max_level*2);
  737. av_freep(&ctx->run_codes);
  738. av_freep(&ctx->run_bits);
  739. av_freep(&ctx->mb_bits);
  740. av_freep(&ctx->mb_qscale);
  741. av_freep(&ctx->mb_rc);
  742. av_freep(&ctx->mb_cmp);
  743. av_freep(&ctx->slice_size);
  744. av_freep(&ctx->qmatrix_c);
  745. av_freep(&ctx->qmatrix_l);
  746. av_freep(&ctx->qmatrix_c16);
  747. av_freep(&ctx->qmatrix_l16);
  748. for (i = 1; i < avctx->thread_count; i++)
  749. av_freep(&ctx->thread[i]);
  750. return 0;
  751. }
  752. AVCodec dnxhd_encoder = {
  753. "dnxhd",
  754. CODEC_TYPE_VIDEO,
  755. CODEC_ID_DNXHD,
  756. sizeof(DNXHDEncContext),
  757. dnxhd_encode_init,
  758. dnxhd_encode_picture,
  759. dnxhd_encode_end,
  760. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_YUV422P, PIX_FMT_NONE},
  761. .long_name = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
  762. };