You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

383 lines
13KB

  1. /*
  2. * Atrac 1 compatible decoder
  3. * Copyright (c) 2009 Maxim Poliakovski
  4. * Copyright (c) 2009 Benjamin Larsson
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/atrac1.c
  24. * Atrac 1 compatible decoder.
  25. * This decoder handles raw ATRAC1 data and probably SDDS data.
  26. */
  27. /* Many thanks to Tim Craig for all the help! */
  28. #include <math.h>
  29. #include <stddef.h>
  30. #include <stdio.h>
  31. #include "avcodec.h"
  32. #include "get_bits.h"
  33. #include "dsputil.h"
  34. #include "atrac.h"
  35. #include "atrac1data.h"
  36. #define AT1_MAX_BFU 52 ///< max number of block floating units in a sound unit
  37. #define AT1_SU_SIZE 212 ///< number of bytes in a sound unit
  38. #define AT1_SU_SAMPLES 512 ///< number of samples in a sound unit
  39. #define AT1_FRAME_SIZE AT1_SU_SIZE * 2
  40. #define AT1_SU_MAX_BITS AT1_SU_SIZE * 8
  41. #define AT1_MAX_CHANNELS 2
  42. #define AT1_QMF_BANDS 3
  43. #define IDX_LOW_BAND 0
  44. #define IDX_MID_BAND 1
  45. #define IDX_HIGH_BAND 2
  46. /**
  47. * Sound unit struct, one unit is used per channel
  48. */
  49. typedef struct {
  50. int log2_block_count[AT1_QMF_BANDS]; ///< log2 number of blocks in a band
  51. int num_bfus; ///< number of Block Floating Units
  52. float* spectrum[2];
  53. DECLARE_ALIGNED_16(float, spec1[AT1_SU_SAMPLES]); ///< mdct buffer
  54. DECLARE_ALIGNED_16(float, spec2[AT1_SU_SAMPLES]); ///< mdct buffer
  55. DECLARE_ALIGNED_16(float, fst_qmf_delay[46]); ///< delay line for the 1st stacked QMF filter
  56. DECLARE_ALIGNED_16(float, snd_qmf_delay[46]); ///< delay line for the 2nd stacked QMF filter
  57. DECLARE_ALIGNED_16(float, last_qmf_delay[256+23]); ///< delay line for the last stacked QMF filter
  58. } AT1SUCtx;
  59. /**
  60. * The atrac1 context, holds all needed parameters for decoding
  61. */
  62. typedef struct {
  63. AT1SUCtx SUs[AT1_MAX_CHANNELS]; ///< channel sound unit
  64. DECLARE_ALIGNED_16(float, spec[AT1_SU_SAMPLES]); ///< the mdct spectrum buffer
  65. DECLARE_ALIGNED_16(float, low[256]);
  66. DECLARE_ALIGNED_16(float, mid[256]);
  67. DECLARE_ALIGNED_16(float, high[512]);
  68. float* bands[3];
  69. DECLARE_ALIGNED_16(float, out_samples[AT1_MAX_CHANNELS][AT1_SU_SAMPLES]);
  70. FFTContext mdct_ctx[3];
  71. int channels;
  72. DSPContext dsp;
  73. } AT1Ctx;
  74. /** size of the transform in samples in the long mode for each QMF band */
  75. static const uint16_t samples_per_band[3] = {128, 128, 256};
  76. static const uint8_t mdct_long_nbits[3] = {7, 7, 8};
  77. static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
  78. int rev_spec)
  79. {
  80. FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)];
  81. int transf_size = 1 << nbits;
  82. if (rev_spec) {
  83. int i;
  84. for (i = 0; i < transf_size / 2; i++)
  85. FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
  86. }
  87. ff_imdct_half(mdct_context, out, spec);
  88. }
  89. static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
  90. {
  91. int band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
  92. unsigned int start_pos, ref_pos = 0, pos = 0;
  93. for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
  94. band_samples = samples_per_band[band_num];
  95. log2_block_count = su->log2_block_count[band_num];
  96. /* number of mdct blocks in the current QMF band: 1 - for long mode */
  97. /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
  98. num_blocks = 1 << log2_block_count;
  99. /* mdct block size in samples: 128 (long mode, low & mid bands), */
  100. /* 256 (long mode, high band) and 32 (short mode, all bands) */
  101. block_size = band_samples >> log2_block_count;
  102. /* calc transform size in bits according to the block_size_mode */
  103. nbits = mdct_long_nbits[band_num] - log2_block_count;
  104. if (nbits != 5 && nbits != 7 && nbits != 8)
  105. return -1;
  106. if (num_blocks == 1) {
  107. /* long blocks */
  108. at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos], nbits, band_num);
  109. pos += block_size; // move to the next mdct block in the spectrum
  110. /* overlap and window long blocks */
  111. q->dsp.vector_fmul_window(q->bands[band_num], &su->spectrum[1][ref_pos + band_samples - 16],
  112. &su->spectrum[0][ref_pos], ff_sine_32, 0, 16);
  113. memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float));
  114. } else {
  115. /* short blocks */
  116. float *prev_buf;
  117. start_pos = 0;
  118. prev_buf = &su->spectrum[1][ref_pos + band_samples - 16];
  119. for (; num_blocks != 0; num_blocks--) {
  120. at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], 5, band_num);
  121. /* overlap and window between short blocks */
  122. q->dsp.vector_fmul_window(&q->bands[band_num][start_pos], prev_buf,
  123. &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 0, 16);
  124. prev_buf = &su->spectrum[0][ref_pos+start_pos + 16];
  125. start_pos += 32; // use hardcoded block_size
  126. pos += 32;
  127. }
  128. }
  129. ref_pos += band_samples;
  130. }
  131. /* Swap buffers so the mdct overlap works */
  132. FFSWAP(float*, su->spectrum[0], su->spectrum[1]);
  133. return 0;
  134. }
  135. /**
  136. * Parse the block size mode byte
  137. */
  138. static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
  139. {
  140. int log2_block_count_tmp, i;
  141. for (i = 0; i < 2; i++) {
  142. /* low and mid band */
  143. log2_block_count_tmp = get_bits(gb, 2);
  144. if (log2_block_count_tmp & 1)
  145. return -1;
  146. log2_block_cnt[i] = 2 - log2_block_count_tmp;
  147. }
  148. /* high band */
  149. log2_block_count_tmp = get_bits(gb, 2);
  150. if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
  151. return -1;
  152. log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
  153. skip_bits(gb, 2);
  154. return 0;
  155. }
  156. static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
  157. float spec[AT1_SU_SAMPLES])
  158. {
  159. int bits_used, band_num, bfu_num, i;
  160. uint8_t idwls[AT1_MAX_BFU]; ///< the word length indexes for each BFU
  161. uint8_t idsfs[AT1_MAX_BFU]; ///< the scalefactor indexes for each BFU
  162. /* parse the info byte (2nd byte) telling how much BFUs were coded */
  163. su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
  164. /* calc number of consumed bits:
  165. num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
  166. + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
  167. bits_used = su->num_bfus * 10 + 32 +
  168. bfu_amount_tab2[get_bits(gb, 2)] +
  169. (bfu_amount_tab3[get_bits(gb, 3)] << 1);
  170. /* get word length index (idwl) for each BFU */
  171. for (i = 0; i < su->num_bfus; i++)
  172. idwls[i] = get_bits(gb, 4);
  173. /* get scalefactor index (idsf) for each BFU */
  174. for (i = 0; i < su->num_bfus; i++)
  175. idsfs[i] = get_bits(gb, 6);
  176. /* zero idwl/idsf for empty BFUs */
  177. for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
  178. idwls[i] = idsfs[i] = 0;
  179. /* read in the spectral data and reconstruct MDCT spectrum of this channel */
  180. for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
  181. for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) {
  182. int pos;
  183. int num_specs = specs_per_bfu[bfu_num];
  184. int word_len = !!idwls[bfu_num] + idwls[bfu_num];
  185. float scale_factor = sf_table[idsfs[bfu_num]];
  186. bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */
  187. /* check for bitstream overflow */
  188. if (bits_used > AT1_SU_MAX_BITS)
  189. return -1;
  190. /* get the position of the 1st spec according to the block size mode */
  191. pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];
  192. if (word_len) {
  193. float max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
  194. for (i = 0; i < num_specs; i++) {
  195. /* read in a quantized spec and convert it to
  196. * signed int and then inverse quantization
  197. */
  198. spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
  199. }
  200. } else { /* word_len = 0 -> empty BFU, zero all specs in the emty BFU */
  201. memset(&spec[pos], 0, num_specs * sizeof(float));
  202. }
  203. }
  204. }
  205. return 0;
  206. }
  207. void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
  208. {
  209. float temp[256];
  210. float iqmf_temp[512 + 46];
  211. /* combine low and middle bands */
  212. atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
  213. /* delay the signal of the high band by 23 samples */
  214. memcpy( su->last_qmf_delay, &su->last_qmf_delay[256], sizeof(float) * 23);
  215. memcpy(&su->last_qmf_delay[23], q->bands[2], sizeof(float) * 256);
  216. /* combine (low + middle) and high bands */
  217. atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
  218. }
  219. static int atrac1_decode_frame(AVCodecContext *avctx, void *data,
  220. int *data_size, AVPacket *avpkt)
  221. {
  222. const uint8_t *buf = avpkt->data;
  223. int buf_size = avpkt->size;
  224. AT1Ctx *q = avctx->priv_data;
  225. int ch, ret, i;
  226. GetBitContext gb;
  227. float* samples = data;
  228. if (buf_size < 212 * q->channels) {
  229. av_log(q,AV_LOG_ERROR,"Not enought data to decode!\n");
  230. return -1;
  231. }
  232. for (ch = 0; ch < q->channels; ch++) {
  233. AT1SUCtx* su = &q->SUs[ch];
  234. init_get_bits(&gb, &buf[212 * ch], 212 * 8);
  235. /* parse block_size_mode, 1st byte */
  236. ret = at1_parse_bsm(&gb, su->log2_block_count);
  237. if (ret < 0)
  238. return ret;
  239. ret = at1_unpack_dequant(&gb, su, q->spec);
  240. if (ret < 0)
  241. return ret;
  242. ret = at1_imdct_block(su, q);
  243. if (ret < 0)
  244. return ret;
  245. at1_subband_synthesis(q, su, q->out_samples[ch]);
  246. }
  247. /* round, convert to 16bit and interleave */
  248. if (q->channels == 1) {
  249. /* mono */
  250. q->dsp.vector_clipf(samples, q->out_samples[0], -32700.0 / (1 << 15),
  251. 32700.0 / (1 << 15), AT1_SU_SAMPLES);
  252. } else {
  253. /* stereo */
  254. for (i = 0; i < AT1_SU_SAMPLES; i++) {
  255. samples[i * 2] = av_clipf(q->out_samples[0][i],
  256. -32700.0 / (1 << 15),
  257. 32700.0 / (1 << 15));
  258. samples[i * 2 + 1] = av_clipf(q->out_samples[1][i],
  259. -32700.0 / (1 << 15),
  260. 32700.0 / (1 << 15));
  261. }
  262. }
  263. *data_size = q->channels * AT1_SU_SAMPLES * sizeof(*samples);
  264. return avctx->block_align;
  265. }
  266. static av_cold int atrac1_decode_init(AVCodecContext *avctx)
  267. {
  268. AT1Ctx *q = avctx->priv_data;
  269. avctx->sample_fmt = SAMPLE_FMT_FLT;
  270. q->channels = avctx->channels;
  271. /* Init the mdct transforms */
  272. ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15));
  273. ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15));
  274. ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15));
  275. ff_sine_window_init(ff_sine_32, 32);
  276. atrac_generate_tables();
  277. dsputil_init(&q->dsp, avctx);
  278. q->bands[0] = q->low;
  279. q->bands[1] = q->mid;
  280. q->bands[2] = q->high;
  281. /* Prepare the mdct overlap buffers */
  282. q->SUs[0].spectrum[0] = q->SUs[0].spec1;
  283. q->SUs[0].spectrum[1] = q->SUs[0].spec2;
  284. q->SUs[1].spectrum[0] = q->SUs[1].spec1;
  285. q->SUs[1].spectrum[1] = q->SUs[1].spec2;
  286. return 0;
  287. }
  288. static av_cold int atrac1_decode_end(AVCodecContext * avctx) {
  289. AT1Ctx *q = avctx->priv_data;
  290. ff_mdct_end(&q->mdct_ctx[0]);
  291. ff_mdct_end(&q->mdct_ctx[1]);
  292. ff_mdct_end(&q->mdct_ctx[2]);
  293. return 0;
  294. }
  295. AVCodec atrac1_decoder = {
  296. .name = "atrac1",
  297. .type = CODEC_TYPE_AUDIO,
  298. .id = CODEC_ID_ATRAC1,
  299. .priv_data_size = sizeof(AT1Ctx),
  300. .init = atrac1_decode_init,
  301. .close = atrac1_decode_end,
  302. .decode = atrac1_decode_frame,
  303. .long_name = NULL_IF_CONFIG_SMALL("Atrac 1 (Adaptive TRansform Acoustic Coding)"),
  304. };