You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

556 lines
18KB

  1. /*
  2. * VC-1 and WMV3 decoder - DSP functions
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/vc1dsp.c
  23. * VC-1 and WMV3 decoder
  24. *
  25. */
  26. #include "dsputil.h"
  27. /** Apply overlap transform to horizontal edge
  28. */
  29. static void vc1_v_overlap_c(uint8_t* src, int stride)
  30. {
  31. int i;
  32. int a, b, c, d;
  33. int d1, d2;
  34. int rnd = 1;
  35. for(i = 0; i < 8; i++) {
  36. a = src[-2*stride];
  37. b = src[-stride];
  38. c = src[0];
  39. d = src[stride];
  40. d1 = (a - d + 3 + rnd) >> 3;
  41. d2 = (a - d + b - c + 4 - rnd) >> 3;
  42. src[-2*stride] = a - d1;
  43. src[-stride] = av_clip_uint8(b - d2);
  44. src[0] = av_clip_uint8(c + d2);
  45. src[stride] = d + d1;
  46. src++;
  47. rnd = !rnd;
  48. }
  49. }
  50. /** Apply overlap transform to vertical edge
  51. */
  52. static void vc1_h_overlap_c(uint8_t* src, int stride)
  53. {
  54. int i;
  55. int a, b, c, d;
  56. int d1, d2;
  57. int rnd = 1;
  58. for(i = 0; i < 8; i++) {
  59. a = src[-2];
  60. b = src[-1];
  61. c = src[0];
  62. d = src[1];
  63. d1 = (a - d + 3 + rnd) >> 3;
  64. d2 = (a - d + b - c + 4 - rnd) >> 3;
  65. src[-2] = a - d1;
  66. src[-1] = av_clip_uint8(b - d2);
  67. src[0] = av_clip_uint8(c + d2);
  68. src[1] = d + d1;
  69. src += stride;
  70. rnd = !rnd;
  71. }
  72. }
  73. /**
  74. * VC-1 in-loop deblocking filter for one line
  75. * @param src source block type
  76. * @param stride block stride
  77. * @param pq block quantizer
  78. * @return whether other 3 pairs should be filtered or not
  79. * @see 8.6
  80. */
  81. static av_always_inline int vc1_filter_line(uint8_t* src, int stride, int pq){
  82. uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  83. int a0 = (2*(src[-2*stride] - src[ 1*stride]) - 5*(src[-1*stride] - src[ 0*stride]) + 4) >> 3;
  84. int a0_sign = a0 >> 31; /* Store sign */
  85. a0 = (a0 ^ a0_sign) - a0_sign; /* a0 = FFABS(a0); */
  86. if(a0 < pq){
  87. int a1 = FFABS((2*(src[-4*stride] - src[-1*stride]) - 5*(src[-3*stride] - src[-2*stride]) + 4) >> 3);
  88. int a2 = FFABS((2*(src[ 0*stride] - src[ 3*stride]) - 5*(src[ 1*stride] - src[ 2*stride]) + 4) >> 3);
  89. if(a1 < a0 || a2 < a0){
  90. int clip = src[-1*stride] - src[ 0*stride];
  91. int clip_sign = clip >> 31;
  92. clip = ((clip ^ clip_sign) - clip_sign)>>1;
  93. if(clip){
  94. int a3 = FFMIN(a1, a2);
  95. int d = 5 * (a3 - a0);
  96. int d_sign = (d >> 31);
  97. d = ((d ^ d_sign) - d_sign) >> 3;
  98. d_sign ^= a0_sign;
  99. if( d_sign ^ clip_sign )
  100. d = 0;
  101. else{
  102. d = FFMIN(d, clip);
  103. d = (d ^ d_sign) - d_sign; /* Restore sign */
  104. src[-1*stride] = cm[src[-1*stride] - d];
  105. src[ 0*stride] = cm[src[ 0*stride] + d];
  106. }
  107. return 1;
  108. }
  109. }
  110. }
  111. return 0;
  112. }
  113. /**
  114. * VC-1 in-loop deblocking filter
  115. * @param src source block type
  116. * @param step distance between horizontally adjacent elements
  117. * @param stride distance between vertically adjacent elements
  118. * @param len edge length to filter (4 or 8 pixels)
  119. * @param pq block quantizer
  120. * @see 8.6
  121. */
  122. static void vc1_loop_filter(uint8_t* src, int step, int stride, int len, int pq)
  123. {
  124. int i;
  125. int filt3;
  126. for(i = 0; i < len; i += 4){
  127. filt3 = vc1_filter_line(src + 2*step, stride, pq);
  128. if(filt3){
  129. vc1_filter_line(src + 0*step, stride, pq);
  130. vc1_filter_line(src + 1*step, stride, pq);
  131. vc1_filter_line(src + 3*step, stride, pq);
  132. }
  133. src += step * 4;
  134. }
  135. }
  136. /** Do inverse transform on 8x8 block
  137. */
  138. static void vc1_inv_trans_8x8_c(DCTELEM block[64])
  139. {
  140. int i;
  141. register int t1,t2,t3,t4,t5,t6,t7,t8;
  142. DCTELEM *src, *dst;
  143. src = block;
  144. dst = block;
  145. for(i = 0; i < 8; i++){
  146. t1 = 12 * (src[0] + src[4]) + 4;
  147. t2 = 12 * (src[0] - src[4]) + 4;
  148. t3 = 16 * src[2] + 6 * src[6];
  149. t4 = 6 * src[2] - 16 * src[6];
  150. t5 = t1 + t3;
  151. t6 = t2 + t4;
  152. t7 = t2 - t4;
  153. t8 = t1 - t3;
  154. t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7];
  155. t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7];
  156. t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7];
  157. t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7];
  158. dst[0] = (t5 + t1) >> 3;
  159. dst[1] = (t6 + t2) >> 3;
  160. dst[2] = (t7 + t3) >> 3;
  161. dst[3] = (t8 + t4) >> 3;
  162. dst[4] = (t8 - t4) >> 3;
  163. dst[5] = (t7 - t3) >> 3;
  164. dst[6] = (t6 - t2) >> 3;
  165. dst[7] = (t5 - t1) >> 3;
  166. src += 8;
  167. dst += 8;
  168. }
  169. src = block;
  170. dst = block;
  171. for(i = 0; i < 8; i++){
  172. t1 = 12 * (src[ 0] + src[32]) + 64;
  173. t2 = 12 * (src[ 0] - src[32]) + 64;
  174. t3 = 16 * src[16] + 6 * src[48];
  175. t4 = 6 * src[16] - 16 * src[48];
  176. t5 = t1 + t3;
  177. t6 = t2 + t4;
  178. t7 = t2 - t4;
  179. t8 = t1 - t3;
  180. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  181. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  182. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  183. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  184. dst[ 0] = (t5 + t1) >> 7;
  185. dst[ 8] = (t6 + t2) >> 7;
  186. dst[16] = (t7 + t3) >> 7;
  187. dst[24] = (t8 + t4) >> 7;
  188. dst[32] = (t8 - t4 + 1) >> 7;
  189. dst[40] = (t7 - t3 + 1) >> 7;
  190. dst[48] = (t6 - t2 + 1) >> 7;
  191. dst[56] = (t5 - t1 + 1) >> 7;
  192. src++;
  193. dst++;
  194. }
  195. }
  196. /** Do inverse transform on 8x4 part of block
  197. */
  198. static void vc1_inv_trans_8x4_c(uint8_t *dest, int linesize, DCTELEM *block)
  199. {
  200. int i;
  201. register int t1,t2,t3,t4,t5,t6,t7,t8;
  202. DCTELEM *src, *dst;
  203. const uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  204. src = block;
  205. dst = block;
  206. for(i = 0; i < 4; i++){
  207. t1 = 12 * (src[0] + src[4]) + 4;
  208. t2 = 12 * (src[0] - src[4]) + 4;
  209. t3 = 16 * src[2] + 6 * src[6];
  210. t4 = 6 * src[2] - 16 * src[6];
  211. t5 = t1 + t3;
  212. t6 = t2 + t4;
  213. t7 = t2 - t4;
  214. t8 = t1 - t3;
  215. t1 = 16 * src[1] + 15 * src[3] + 9 * src[5] + 4 * src[7];
  216. t2 = 15 * src[1] - 4 * src[3] - 16 * src[5] - 9 * src[7];
  217. t3 = 9 * src[1] - 16 * src[3] + 4 * src[5] + 15 * src[7];
  218. t4 = 4 * src[1] - 9 * src[3] + 15 * src[5] - 16 * src[7];
  219. dst[0] = (t5 + t1) >> 3;
  220. dst[1] = (t6 + t2) >> 3;
  221. dst[2] = (t7 + t3) >> 3;
  222. dst[3] = (t8 + t4) >> 3;
  223. dst[4] = (t8 - t4) >> 3;
  224. dst[5] = (t7 - t3) >> 3;
  225. dst[6] = (t6 - t2) >> 3;
  226. dst[7] = (t5 - t1) >> 3;
  227. src += 8;
  228. dst += 8;
  229. }
  230. src = block;
  231. for(i = 0; i < 8; i++){
  232. t1 = 17 * (src[ 0] + src[16]) + 64;
  233. t2 = 17 * (src[ 0] - src[16]) + 64;
  234. t3 = 22 * src[ 8] + 10 * src[24];
  235. t4 = 22 * src[24] - 10 * src[ 8];
  236. dest[0*linesize] = cm[dest[0*linesize] + ((t1 + t3) >> 7)];
  237. dest[1*linesize] = cm[dest[1*linesize] + ((t2 - t4) >> 7)];
  238. dest[2*linesize] = cm[dest[2*linesize] + ((t2 + t4) >> 7)];
  239. dest[3*linesize] = cm[dest[3*linesize] + ((t1 - t3) >> 7)];
  240. src ++;
  241. dest++;
  242. }
  243. }
  244. /** Do inverse transform on 4x8 parts of block
  245. */
  246. static void vc1_inv_trans_4x8_c(uint8_t *dest, int linesize, DCTELEM *block)
  247. {
  248. int i;
  249. register int t1,t2,t3,t4,t5,t6,t7,t8;
  250. DCTELEM *src, *dst;
  251. const uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  252. src = block;
  253. dst = block;
  254. for(i = 0; i < 8; i++){
  255. t1 = 17 * (src[0] + src[2]) + 4;
  256. t2 = 17 * (src[0] - src[2]) + 4;
  257. t3 = 22 * src[1] + 10 * src[3];
  258. t4 = 22 * src[3] - 10 * src[1];
  259. dst[0] = (t1 + t3) >> 3;
  260. dst[1] = (t2 - t4) >> 3;
  261. dst[2] = (t2 + t4) >> 3;
  262. dst[3] = (t1 - t3) >> 3;
  263. src += 8;
  264. dst += 8;
  265. }
  266. src = block;
  267. for(i = 0; i < 4; i++){
  268. t1 = 12 * (src[ 0] + src[32]) + 64;
  269. t2 = 12 * (src[ 0] - src[32]) + 64;
  270. t3 = 16 * src[16] + 6 * src[48];
  271. t4 = 6 * src[16] - 16 * src[48];
  272. t5 = t1 + t3;
  273. t6 = t2 + t4;
  274. t7 = t2 - t4;
  275. t8 = t1 - t3;
  276. t1 = 16 * src[ 8] + 15 * src[24] + 9 * src[40] + 4 * src[56];
  277. t2 = 15 * src[ 8] - 4 * src[24] - 16 * src[40] - 9 * src[56];
  278. t3 = 9 * src[ 8] - 16 * src[24] + 4 * src[40] + 15 * src[56];
  279. t4 = 4 * src[ 8] - 9 * src[24] + 15 * src[40] - 16 * src[56];
  280. dest[0*linesize] = cm[dest[0*linesize] + ((t5 + t1) >> 7)];
  281. dest[1*linesize] = cm[dest[1*linesize] + ((t6 + t2) >> 7)];
  282. dest[2*linesize] = cm[dest[2*linesize] + ((t7 + t3) >> 7)];
  283. dest[3*linesize] = cm[dest[3*linesize] + ((t8 + t4) >> 7)];
  284. dest[4*linesize] = cm[dest[4*linesize] + ((t8 - t4 + 1) >> 7)];
  285. dest[5*linesize] = cm[dest[5*linesize] + ((t7 - t3 + 1) >> 7)];
  286. dest[6*linesize] = cm[dest[6*linesize] + ((t6 - t2 + 1) >> 7)];
  287. dest[7*linesize] = cm[dest[7*linesize] + ((t5 - t1 + 1) >> 7)];
  288. src ++;
  289. dest++;
  290. }
  291. }
  292. /** Do inverse transform on 4x4 part of block
  293. */
  294. static void vc1_inv_trans_4x4_c(uint8_t *dest, int linesize, DCTELEM *block)
  295. {
  296. int i;
  297. register int t1,t2,t3,t4;
  298. DCTELEM *src, *dst;
  299. const uint8_t *cm = ff_cropTbl + MAX_NEG_CROP;
  300. src = block;
  301. dst = block;
  302. for(i = 0; i < 4; i++){
  303. t1 = 17 * (src[0] + src[2]) + 4;
  304. t2 = 17 * (src[0] - src[2]) + 4;
  305. t3 = 22 * src[1] + 10 * src[3];
  306. t4 = 22 * src[3] - 10 * src[1];
  307. dst[0] = (t1 + t3) >> 3;
  308. dst[1] = (t2 - t4) >> 3;
  309. dst[2] = (t2 + t4) >> 3;
  310. dst[3] = (t1 - t3) >> 3;
  311. src += 8;
  312. dst += 8;
  313. }
  314. src = block;
  315. for(i = 0; i < 4; i++){
  316. t1 = 17 * (src[ 0] + src[16]) + 64;
  317. t2 = 17 * (src[ 0] - src[16]) + 64;
  318. t3 = 22 * src[ 8] + 10 * src[24];
  319. t4 = 22 * src[24] - 10 * src[ 8];
  320. dest[0*linesize] = cm[dest[0*linesize] + ((t1 + t3) >> 7)];
  321. dest[1*linesize] = cm[dest[1*linesize] + ((t2 - t4) >> 7)];
  322. dest[2*linesize] = cm[dest[2*linesize] + ((t2 + t4) >> 7)];
  323. dest[3*linesize] = cm[dest[3*linesize] + ((t1 - t3) >> 7)];
  324. src ++;
  325. dest++;
  326. }
  327. }
  328. /* motion compensation functions */
  329. /** Filter in case of 2 filters */
  330. #define VC1_MSPEL_FILTER_16B(DIR, TYPE) \
  331. static av_always_inline int vc1_mspel_ ## DIR ## _filter_16bits(const TYPE *src, int stride, int mode) \
  332. { \
  333. switch(mode){ \
  334. case 0: /* no shift - should not occur */ \
  335. return 0; \
  336. case 1: /* 1/4 shift */ \
  337. return -4*src[-stride] + 53*src[0] + 18*src[stride] - 3*src[stride*2]; \
  338. case 2: /* 1/2 shift */ \
  339. return -src[-stride] + 9*src[0] + 9*src[stride] - src[stride*2]; \
  340. case 3: /* 3/4 shift */ \
  341. return -3*src[-stride] + 18*src[0] + 53*src[stride] - 4*src[stride*2]; \
  342. } \
  343. return 0; /* should not occur */ \
  344. }
  345. VC1_MSPEL_FILTER_16B(ver, uint8_t);
  346. VC1_MSPEL_FILTER_16B(hor, int16_t);
  347. /** Filter used to interpolate fractional pel values
  348. */
  349. static av_always_inline int vc1_mspel_filter(const uint8_t *src, int stride, int mode, int r)
  350. {
  351. switch(mode){
  352. case 0: //no shift
  353. return src[0];
  354. case 1: // 1/4 shift
  355. return (-4*src[-stride] + 53*src[0] + 18*src[stride] - 3*src[stride*2] + 32 - r) >> 6;
  356. case 2: // 1/2 shift
  357. return (-src[-stride] + 9*src[0] + 9*src[stride] - src[stride*2] + 8 - r) >> 4;
  358. case 3: // 3/4 shift
  359. return (-3*src[-stride] + 18*src[0] + 53*src[stride] - 4*src[stride*2] + 32 - r) >> 6;
  360. }
  361. return 0; //should not occur
  362. }
  363. /** Function used to do motion compensation with bicubic interpolation
  364. */
  365. #define VC1_MSPEL_MC(OP, OPNAME)\
  366. static void OPNAME ## vc1_mspel_mc(uint8_t *dst, const uint8_t *src, int stride, int hmode, int vmode, int rnd)\
  367. {\
  368. int i, j;\
  369. \
  370. if (vmode) { /* Horizontal filter to apply */\
  371. int r;\
  372. \
  373. if (hmode) { /* Vertical filter to apply, output to tmp */\
  374. static const int shift_value[] = { 0, 5, 1, 5 };\
  375. int shift = (shift_value[hmode]+shift_value[vmode])>>1;\
  376. int16_t tmp[11*8], *tptr = tmp;\
  377. \
  378. r = (1<<(shift-1)) + rnd-1;\
  379. \
  380. src -= 1;\
  381. for(j = 0; j < 8; j++) {\
  382. for(i = 0; i < 11; i++)\
  383. tptr[i] = (vc1_mspel_ver_filter_16bits(src + i, stride, vmode)+r)>>shift;\
  384. src += stride;\
  385. tptr += 11;\
  386. }\
  387. \
  388. r = 64-rnd;\
  389. tptr = tmp+1;\
  390. for(j = 0; j < 8; j++) {\
  391. for(i = 0; i < 8; i++)\
  392. OP(dst[i], (vc1_mspel_hor_filter_16bits(tptr + i, 1, hmode)+r)>>7);\
  393. dst += stride;\
  394. tptr += 11;\
  395. }\
  396. \
  397. return;\
  398. }\
  399. else { /* No horizontal filter, output 8 lines to dst */\
  400. r = 1-rnd;\
  401. \
  402. for(j = 0; j < 8; j++) {\
  403. for(i = 0; i < 8; i++)\
  404. OP(dst[i], vc1_mspel_filter(src + i, stride, vmode, r));\
  405. src += stride;\
  406. dst += stride;\
  407. }\
  408. return;\
  409. }\
  410. }\
  411. \
  412. /* Horizontal mode with no vertical mode */\
  413. for(j = 0; j < 8; j++) {\
  414. for(i = 0; i < 8; i++)\
  415. OP(dst[i], vc1_mspel_filter(src + i, 1, hmode, rnd));\
  416. dst += stride;\
  417. src += stride;\
  418. }\
  419. }
  420. #define op_put(a, b) a = av_clip_uint8(b)
  421. #define op_avg(a, b) a = (a + av_clip_uint8(b) + 1) >> 1
  422. VC1_MSPEL_MC(op_put, put_)
  423. VC1_MSPEL_MC(op_avg, avg_)
  424. /* pixel functions - really are entry points to vc1_mspel_mc */
  425. /* this one is defined in dsputil.c */
  426. void ff_put_vc1_mspel_mc00_c(uint8_t *dst, const uint8_t *src, int stride, int rnd);
  427. void ff_avg_vc1_mspel_mc00_c(uint8_t *dst, const uint8_t *src, int stride, int rnd);
  428. #define PUT_VC1_MSPEL(a, b)\
  429. static void put_vc1_mspel_mc ## a ## b ##_c(uint8_t *dst, const uint8_t *src, int stride, int rnd) { \
  430. put_vc1_mspel_mc(dst, src, stride, a, b, rnd); \
  431. }\
  432. static void avg_vc1_mspel_mc ## a ## b ##_c(uint8_t *dst, const uint8_t *src, int stride, int rnd) { \
  433. avg_vc1_mspel_mc(dst, src, stride, a, b, rnd); \
  434. }
  435. PUT_VC1_MSPEL(1, 0)
  436. PUT_VC1_MSPEL(2, 0)
  437. PUT_VC1_MSPEL(3, 0)
  438. PUT_VC1_MSPEL(0, 1)
  439. PUT_VC1_MSPEL(1, 1)
  440. PUT_VC1_MSPEL(2, 1)
  441. PUT_VC1_MSPEL(3, 1)
  442. PUT_VC1_MSPEL(0, 2)
  443. PUT_VC1_MSPEL(1, 2)
  444. PUT_VC1_MSPEL(2, 2)
  445. PUT_VC1_MSPEL(3, 2)
  446. PUT_VC1_MSPEL(0, 3)
  447. PUT_VC1_MSPEL(1, 3)
  448. PUT_VC1_MSPEL(2, 3)
  449. PUT_VC1_MSPEL(3, 3)
  450. void ff_vc1dsp_init(DSPContext* dsp, AVCodecContext *avctx) {
  451. dsp->vc1_inv_trans_8x8 = vc1_inv_trans_8x8_c;
  452. dsp->vc1_inv_trans_4x8 = vc1_inv_trans_4x8_c;
  453. dsp->vc1_inv_trans_8x4 = vc1_inv_trans_8x4_c;
  454. dsp->vc1_inv_trans_4x4 = vc1_inv_trans_4x4_c;
  455. dsp->vc1_h_overlap = vc1_h_overlap_c;
  456. dsp->vc1_v_overlap = vc1_v_overlap_c;
  457. dsp->vc1_loop_filter = vc1_loop_filter;
  458. dsp->put_vc1_mspel_pixels_tab[ 0] = ff_put_vc1_mspel_mc00_c;
  459. dsp->put_vc1_mspel_pixels_tab[ 1] = put_vc1_mspel_mc10_c;
  460. dsp->put_vc1_mspel_pixels_tab[ 2] = put_vc1_mspel_mc20_c;
  461. dsp->put_vc1_mspel_pixels_tab[ 3] = put_vc1_mspel_mc30_c;
  462. dsp->put_vc1_mspel_pixels_tab[ 4] = put_vc1_mspel_mc01_c;
  463. dsp->put_vc1_mspel_pixels_tab[ 5] = put_vc1_mspel_mc11_c;
  464. dsp->put_vc1_mspel_pixels_tab[ 6] = put_vc1_mspel_mc21_c;
  465. dsp->put_vc1_mspel_pixels_tab[ 7] = put_vc1_mspel_mc31_c;
  466. dsp->put_vc1_mspel_pixels_tab[ 8] = put_vc1_mspel_mc02_c;
  467. dsp->put_vc1_mspel_pixels_tab[ 9] = put_vc1_mspel_mc12_c;
  468. dsp->put_vc1_mspel_pixels_tab[10] = put_vc1_mspel_mc22_c;
  469. dsp->put_vc1_mspel_pixels_tab[11] = put_vc1_mspel_mc32_c;
  470. dsp->put_vc1_mspel_pixels_tab[12] = put_vc1_mspel_mc03_c;
  471. dsp->put_vc1_mspel_pixels_tab[13] = put_vc1_mspel_mc13_c;
  472. dsp->put_vc1_mspel_pixels_tab[14] = put_vc1_mspel_mc23_c;
  473. dsp->put_vc1_mspel_pixels_tab[15] = put_vc1_mspel_mc33_c;
  474. dsp->avg_vc1_mspel_pixels_tab[ 0] = ff_avg_vc1_mspel_mc00_c;
  475. dsp->avg_vc1_mspel_pixels_tab[ 1] = avg_vc1_mspel_mc10_c;
  476. dsp->avg_vc1_mspel_pixels_tab[ 2] = avg_vc1_mspel_mc20_c;
  477. dsp->avg_vc1_mspel_pixels_tab[ 3] = avg_vc1_mspel_mc30_c;
  478. dsp->avg_vc1_mspel_pixels_tab[ 4] = avg_vc1_mspel_mc01_c;
  479. dsp->avg_vc1_mspel_pixels_tab[ 5] = avg_vc1_mspel_mc11_c;
  480. dsp->avg_vc1_mspel_pixels_tab[ 6] = avg_vc1_mspel_mc21_c;
  481. dsp->avg_vc1_mspel_pixels_tab[ 7] = avg_vc1_mspel_mc31_c;
  482. dsp->avg_vc1_mspel_pixels_tab[ 8] = avg_vc1_mspel_mc02_c;
  483. dsp->avg_vc1_mspel_pixels_tab[ 9] = avg_vc1_mspel_mc12_c;
  484. dsp->avg_vc1_mspel_pixels_tab[10] = avg_vc1_mspel_mc22_c;
  485. dsp->avg_vc1_mspel_pixels_tab[11] = avg_vc1_mspel_mc32_c;
  486. dsp->avg_vc1_mspel_pixels_tab[12] = avg_vc1_mspel_mc03_c;
  487. dsp->avg_vc1_mspel_pixels_tab[13] = avg_vc1_mspel_mc13_c;
  488. dsp->avg_vc1_mspel_pixels_tab[14] = avg_vc1_mspel_mc23_c;
  489. dsp->avg_vc1_mspel_pixels_tab[15] = avg_vc1_mspel_mc33_c;
  490. }