You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

968 lines
32KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "internal.h"
  36. #include "wma.h"
  37. #undef NDEBUG
  38. #include <assert.h>
  39. #define EXPVLCBITS 8
  40. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  41. #define HGAINVLCBITS 9
  42. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  43. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  44. #ifdef TRACE
  45. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  46. {
  47. int i;
  48. tprintf(s->avctx, "%s[%d]:\n", name, n);
  49. for(i=0;i<n;i++) {
  50. if ((i & 7) == 0)
  51. tprintf(s->avctx, "%4d: ", i);
  52. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  53. if ((i & 7) == 7)
  54. tprintf(s->avctx, "\n");
  55. }
  56. if ((i & 7) != 0)
  57. tprintf(s->avctx, "\n");
  58. }
  59. #endif
  60. static int wma_decode_init(AVCodecContext * avctx)
  61. {
  62. WMACodecContext *s = avctx->priv_data;
  63. int i, flags2;
  64. uint8_t *extradata;
  65. s->avctx = avctx;
  66. /* extract flag infos */
  67. flags2 = 0;
  68. extradata = avctx->extradata;
  69. if (avctx->codec->id == AV_CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  70. flags2 = AV_RL16(extradata+2);
  71. } else if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  72. flags2 = AV_RL16(extradata+4);
  73. }
  74. s->use_exp_vlc = flags2 & 0x0001;
  75. s->use_bit_reservoir = flags2 & 0x0002;
  76. s->use_variable_block_len = flags2 & 0x0004;
  77. if(avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 8){
  78. if(AV_RL16(extradata+4)==0xd && s->use_variable_block_len){
  79. av_log(avctx, AV_LOG_WARNING, "Disabling use_variable_block_len, if this fails contact the ffmpeg developers and send us the file\n");
  80. s->use_variable_block_len= 0; // this fixes issue1503
  81. }
  82. }
  83. if(ff_wma_init(avctx, flags2)<0)
  84. return -1;
  85. /* init MDCT */
  86. for(i = 0; i < s->nb_block_sizes; i++)
  87. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0 / 32768.0);
  88. if (s->use_noise_coding) {
  89. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  90. ff_wma_hgain_huffbits, 1, 1,
  91. ff_wma_hgain_huffcodes, 2, 2, 0);
  92. }
  93. if (s->use_exp_vlc) {
  94. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), //FIXME move out of context
  95. ff_aac_scalefactor_bits, 1, 1,
  96. ff_aac_scalefactor_code, 4, 4, 0);
  97. } else {
  98. wma_lsp_to_curve_init(s, s->frame_len);
  99. }
  100. avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
  101. return 0;
  102. }
  103. /**
  104. * compute x^-0.25 with an exponent and mantissa table. We use linear
  105. * interpolation to reduce the mantissa table size at a small speed
  106. * expense (linear interpolation approximately doubles the number of
  107. * bits of precision).
  108. */
  109. static inline float pow_m1_4(WMACodecContext *s, float x)
  110. {
  111. union {
  112. float f;
  113. unsigned int v;
  114. } u, t;
  115. unsigned int e, m;
  116. float a, b;
  117. u.f = x;
  118. e = u.v >> 23;
  119. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  120. /* build interpolation scale: 1 <= t < 2. */
  121. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  122. a = s->lsp_pow_m_table1[m];
  123. b = s->lsp_pow_m_table2[m];
  124. return s->lsp_pow_e_table[e] * (a + b * t.f);
  125. }
  126. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  127. {
  128. float wdel, a, b;
  129. int i, e, m;
  130. wdel = M_PI / frame_len;
  131. for(i=0;i<frame_len;i++)
  132. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  133. /* tables for x^-0.25 computation */
  134. for(i=0;i<256;i++) {
  135. e = i - 126;
  136. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  137. }
  138. /* NOTE: these two tables are needed to avoid two operations in
  139. pow_m1_4 */
  140. b = 1.0;
  141. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  142. m = (1 << LSP_POW_BITS) + i;
  143. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  144. a = pow(a, -0.25);
  145. s->lsp_pow_m_table1[i] = 2 * a - b;
  146. s->lsp_pow_m_table2[i] = b - a;
  147. b = a;
  148. }
  149. }
  150. /**
  151. * NOTE: We use the same code as Vorbis here
  152. * @todo optimize it further with SSE/3Dnow
  153. */
  154. static void wma_lsp_to_curve(WMACodecContext *s,
  155. float *out, float *val_max_ptr,
  156. int n, float *lsp)
  157. {
  158. int i, j;
  159. float p, q, w, v, val_max;
  160. val_max = 0;
  161. for(i=0;i<n;i++) {
  162. p = 0.5f;
  163. q = 0.5f;
  164. w = s->lsp_cos_table[i];
  165. for(j=1;j<NB_LSP_COEFS;j+=2){
  166. q *= w - lsp[j - 1];
  167. p *= w - lsp[j];
  168. }
  169. p *= p * (2.0f - w);
  170. q *= q * (2.0f + w);
  171. v = p + q;
  172. v = pow_m1_4(s, v);
  173. if (v > val_max)
  174. val_max = v;
  175. out[i] = v;
  176. }
  177. *val_max_ptr = val_max;
  178. }
  179. /**
  180. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  181. */
  182. static void decode_exp_lsp(WMACodecContext *s, int ch)
  183. {
  184. float lsp_coefs[NB_LSP_COEFS];
  185. int val, i;
  186. for(i = 0; i < NB_LSP_COEFS; i++) {
  187. if (i == 0 || i >= 8)
  188. val = get_bits(&s->gb, 3);
  189. else
  190. val = get_bits(&s->gb, 4);
  191. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  192. }
  193. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  194. s->block_len, lsp_coefs);
  195. }
  196. /** pow(10, i / 16.0) for i in -60..95 */
  197. static const float pow_tab[] = {
  198. 1.7782794100389e-04, 2.0535250264571e-04,
  199. 2.3713737056617e-04, 2.7384196342644e-04,
  200. 3.1622776601684e-04, 3.6517412725484e-04,
  201. 4.2169650342858e-04, 4.8696752516586e-04,
  202. 5.6234132519035e-04, 6.4938163157621e-04,
  203. 7.4989420933246e-04, 8.6596432336006e-04,
  204. 1.0000000000000e-03, 1.1547819846895e-03,
  205. 1.3335214321633e-03, 1.5399265260595e-03,
  206. 1.7782794100389e-03, 2.0535250264571e-03,
  207. 2.3713737056617e-03, 2.7384196342644e-03,
  208. 3.1622776601684e-03, 3.6517412725484e-03,
  209. 4.2169650342858e-03, 4.8696752516586e-03,
  210. 5.6234132519035e-03, 6.4938163157621e-03,
  211. 7.4989420933246e-03, 8.6596432336006e-03,
  212. 1.0000000000000e-02, 1.1547819846895e-02,
  213. 1.3335214321633e-02, 1.5399265260595e-02,
  214. 1.7782794100389e-02, 2.0535250264571e-02,
  215. 2.3713737056617e-02, 2.7384196342644e-02,
  216. 3.1622776601684e-02, 3.6517412725484e-02,
  217. 4.2169650342858e-02, 4.8696752516586e-02,
  218. 5.6234132519035e-02, 6.4938163157621e-02,
  219. 7.4989420933246e-02, 8.6596432336007e-02,
  220. 1.0000000000000e-01, 1.1547819846895e-01,
  221. 1.3335214321633e-01, 1.5399265260595e-01,
  222. 1.7782794100389e-01, 2.0535250264571e-01,
  223. 2.3713737056617e-01, 2.7384196342644e-01,
  224. 3.1622776601684e-01, 3.6517412725484e-01,
  225. 4.2169650342858e-01, 4.8696752516586e-01,
  226. 5.6234132519035e-01, 6.4938163157621e-01,
  227. 7.4989420933246e-01, 8.6596432336007e-01,
  228. 1.0000000000000e+00, 1.1547819846895e+00,
  229. 1.3335214321633e+00, 1.5399265260595e+00,
  230. 1.7782794100389e+00, 2.0535250264571e+00,
  231. 2.3713737056617e+00, 2.7384196342644e+00,
  232. 3.1622776601684e+00, 3.6517412725484e+00,
  233. 4.2169650342858e+00, 4.8696752516586e+00,
  234. 5.6234132519035e+00, 6.4938163157621e+00,
  235. 7.4989420933246e+00, 8.6596432336007e+00,
  236. 1.0000000000000e+01, 1.1547819846895e+01,
  237. 1.3335214321633e+01, 1.5399265260595e+01,
  238. 1.7782794100389e+01, 2.0535250264571e+01,
  239. 2.3713737056617e+01, 2.7384196342644e+01,
  240. 3.1622776601684e+01, 3.6517412725484e+01,
  241. 4.2169650342858e+01, 4.8696752516586e+01,
  242. 5.6234132519035e+01, 6.4938163157621e+01,
  243. 7.4989420933246e+01, 8.6596432336007e+01,
  244. 1.0000000000000e+02, 1.1547819846895e+02,
  245. 1.3335214321633e+02, 1.5399265260595e+02,
  246. 1.7782794100389e+02, 2.0535250264571e+02,
  247. 2.3713737056617e+02, 2.7384196342644e+02,
  248. 3.1622776601684e+02, 3.6517412725484e+02,
  249. 4.2169650342858e+02, 4.8696752516586e+02,
  250. 5.6234132519035e+02, 6.4938163157621e+02,
  251. 7.4989420933246e+02, 8.6596432336007e+02,
  252. 1.0000000000000e+03, 1.1547819846895e+03,
  253. 1.3335214321633e+03, 1.5399265260595e+03,
  254. 1.7782794100389e+03, 2.0535250264571e+03,
  255. 2.3713737056617e+03, 2.7384196342644e+03,
  256. 3.1622776601684e+03, 3.6517412725484e+03,
  257. 4.2169650342858e+03, 4.8696752516586e+03,
  258. 5.6234132519035e+03, 6.4938163157621e+03,
  259. 7.4989420933246e+03, 8.6596432336007e+03,
  260. 1.0000000000000e+04, 1.1547819846895e+04,
  261. 1.3335214321633e+04, 1.5399265260595e+04,
  262. 1.7782794100389e+04, 2.0535250264571e+04,
  263. 2.3713737056617e+04, 2.7384196342644e+04,
  264. 3.1622776601684e+04, 3.6517412725484e+04,
  265. 4.2169650342858e+04, 4.8696752516586e+04,
  266. 5.6234132519035e+04, 6.4938163157621e+04,
  267. 7.4989420933246e+04, 8.6596432336007e+04,
  268. 1.0000000000000e+05, 1.1547819846895e+05,
  269. 1.3335214321633e+05, 1.5399265260595e+05,
  270. 1.7782794100389e+05, 2.0535250264571e+05,
  271. 2.3713737056617e+05, 2.7384196342644e+05,
  272. 3.1622776601684e+05, 3.6517412725484e+05,
  273. 4.2169650342858e+05, 4.8696752516586e+05,
  274. 5.6234132519035e+05, 6.4938163157621e+05,
  275. 7.4989420933246e+05, 8.6596432336007e+05,
  276. };
  277. /**
  278. * decode exponents coded with VLC codes
  279. */
  280. static int decode_exp_vlc(WMACodecContext *s, int ch)
  281. {
  282. int last_exp, n, code;
  283. const uint16_t *ptr;
  284. float v, max_scale;
  285. uint32_t *q, *q_end, iv;
  286. const float *ptab = pow_tab + 60;
  287. const uint32_t *iptab = (const uint32_t*)ptab;
  288. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  289. q = (uint32_t *)s->exponents[ch];
  290. q_end = q + s->block_len;
  291. max_scale = 0;
  292. if (s->version == 1) {
  293. last_exp = get_bits(&s->gb, 5) + 10;
  294. v = ptab[last_exp];
  295. iv = iptab[last_exp];
  296. max_scale = v;
  297. n = *ptr++;
  298. switch (n & 3) do {
  299. case 0: *q++ = iv;
  300. case 3: *q++ = iv;
  301. case 2: *q++ = iv;
  302. case 1: *q++ = iv;
  303. } while ((n -= 4) > 0);
  304. }else
  305. last_exp = 36;
  306. while (q < q_end) {
  307. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  308. if (code < 0){
  309. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  310. return -1;
  311. }
  312. /* NOTE: this offset is the same as MPEG4 AAC ! */
  313. last_exp += code - 60;
  314. if ((unsigned)last_exp + 60 >= FF_ARRAY_ELEMS(pow_tab)) {
  315. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  316. last_exp);
  317. return -1;
  318. }
  319. v = ptab[last_exp];
  320. iv = iptab[last_exp];
  321. if (v > max_scale)
  322. max_scale = v;
  323. n = *ptr++;
  324. switch (n & 3) do {
  325. case 0: *q++ = iv;
  326. case 3: *q++ = iv;
  327. case 2: *q++ = iv;
  328. case 1: *q++ = iv;
  329. } while ((n -= 4) > 0);
  330. }
  331. s->max_exponent[ch] = max_scale;
  332. return 0;
  333. }
  334. /**
  335. * Apply MDCT window and add into output.
  336. *
  337. * We ensure that when the windows overlap their squared sum
  338. * is always 1 (MDCT reconstruction rule).
  339. */
  340. static void wma_window(WMACodecContext *s, float *out)
  341. {
  342. float *in = s->output;
  343. int block_len, bsize, n;
  344. /* left part */
  345. if (s->block_len_bits <= s->prev_block_len_bits) {
  346. block_len = s->block_len;
  347. bsize = s->frame_len_bits - s->block_len_bits;
  348. s->fdsp.vector_fmul_add(out, in, s->windows[bsize],
  349. out, block_len);
  350. } else {
  351. block_len = 1 << s->prev_block_len_bits;
  352. n = (s->block_len - block_len) / 2;
  353. bsize = s->frame_len_bits - s->prev_block_len_bits;
  354. s->fdsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
  355. out+n, block_len);
  356. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  357. }
  358. out += s->block_len;
  359. in += s->block_len;
  360. /* right part */
  361. if (s->block_len_bits <= s->next_block_len_bits) {
  362. block_len = s->block_len;
  363. bsize = s->frame_len_bits - s->block_len_bits;
  364. s->fdsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  365. } else {
  366. block_len = 1 << s->next_block_len_bits;
  367. n = (s->block_len - block_len) / 2;
  368. bsize = s->frame_len_bits - s->next_block_len_bits;
  369. memcpy(out, in, n*sizeof(float));
  370. s->fdsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  371. memset(out+n+block_len, 0, n*sizeof(float));
  372. }
  373. }
  374. /**
  375. * @return 0 if OK. 1 if last block of frame. return -1 if
  376. * unrecorrable error.
  377. */
  378. static int wma_decode_block(WMACodecContext *s)
  379. {
  380. int n, v, a, ch, bsize;
  381. int coef_nb_bits, total_gain;
  382. int nb_coefs[MAX_CHANNELS];
  383. float mdct_norm;
  384. FFTContext *mdct;
  385. #ifdef TRACE
  386. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  387. #endif
  388. /* compute current block length */
  389. if (s->use_variable_block_len) {
  390. n = av_log2(s->nb_block_sizes - 1) + 1;
  391. if (s->reset_block_lengths) {
  392. s->reset_block_lengths = 0;
  393. v = get_bits(&s->gb, n);
  394. if (v >= s->nb_block_sizes){
  395. av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
  396. return -1;
  397. }
  398. s->prev_block_len_bits = s->frame_len_bits - v;
  399. v = get_bits(&s->gb, n);
  400. if (v >= s->nb_block_sizes){
  401. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
  402. return -1;
  403. }
  404. s->block_len_bits = s->frame_len_bits - v;
  405. } else {
  406. /* update block lengths */
  407. s->prev_block_len_bits = s->block_len_bits;
  408. s->block_len_bits = s->next_block_len_bits;
  409. }
  410. v = get_bits(&s->gb, n);
  411. if (v >= s->nb_block_sizes){
  412. av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
  413. return -1;
  414. }
  415. s->next_block_len_bits = s->frame_len_bits - v;
  416. } else {
  417. /* fixed block len */
  418. s->next_block_len_bits = s->frame_len_bits;
  419. s->prev_block_len_bits = s->frame_len_bits;
  420. s->block_len_bits = s->frame_len_bits;
  421. }
  422. if (s->frame_len_bits - s->block_len_bits >= s->nb_block_sizes){
  423. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits not initialized to a valid value\n");
  424. return -1;
  425. }
  426. /* now check if the block length is coherent with the frame length */
  427. s->block_len = 1 << s->block_len_bits;
  428. if ((s->block_pos + s->block_len) > s->frame_len){
  429. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  430. return -1;
  431. }
  432. if (s->avctx->channels == 2) {
  433. s->ms_stereo = get_bits1(&s->gb);
  434. }
  435. v = 0;
  436. for(ch = 0; ch < s->avctx->channels; ch++) {
  437. a = get_bits1(&s->gb);
  438. s->channel_coded[ch] = a;
  439. v |= a;
  440. }
  441. bsize = s->frame_len_bits - s->block_len_bits;
  442. /* if no channel coded, no need to go further */
  443. /* XXX: fix potential framing problems */
  444. if (!v)
  445. goto next;
  446. /* read total gain and extract corresponding number of bits for
  447. coef escape coding */
  448. total_gain = 1;
  449. for(;;) {
  450. a = get_bits(&s->gb, 7);
  451. total_gain += a;
  452. if (a != 127)
  453. break;
  454. }
  455. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  456. /* compute number of coefficients */
  457. n = s->coefs_end[bsize] - s->coefs_start;
  458. for(ch = 0; ch < s->avctx->channels; ch++)
  459. nb_coefs[ch] = n;
  460. /* complex coding */
  461. if (s->use_noise_coding) {
  462. for(ch = 0; ch < s->avctx->channels; ch++) {
  463. if (s->channel_coded[ch]) {
  464. int i, n, a;
  465. n = s->exponent_high_sizes[bsize];
  466. for(i=0;i<n;i++) {
  467. a = get_bits1(&s->gb);
  468. s->high_band_coded[ch][i] = a;
  469. /* if noise coding, the coefficients are not transmitted */
  470. if (a)
  471. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  472. }
  473. }
  474. }
  475. for(ch = 0; ch < s->avctx->channels; ch++) {
  476. if (s->channel_coded[ch]) {
  477. int i, n, val, code;
  478. n = s->exponent_high_sizes[bsize];
  479. val = (int)0x80000000;
  480. for(i=0;i<n;i++) {
  481. if (s->high_band_coded[ch][i]) {
  482. if (val == (int)0x80000000) {
  483. val = get_bits(&s->gb, 7) - 19;
  484. } else {
  485. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  486. if (code < 0){
  487. av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
  488. return -1;
  489. }
  490. val += code - 18;
  491. }
  492. s->high_band_values[ch][i] = val;
  493. }
  494. }
  495. }
  496. }
  497. }
  498. /* exponents can be reused in short blocks. */
  499. if ((s->block_len_bits == s->frame_len_bits) ||
  500. get_bits1(&s->gb)) {
  501. for(ch = 0; ch < s->avctx->channels; ch++) {
  502. if (s->channel_coded[ch]) {
  503. if (s->use_exp_vlc) {
  504. if (decode_exp_vlc(s, ch) < 0)
  505. return -1;
  506. } else {
  507. decode_exp_lsp(s, ch);
  508. }
  509. s->exponents_bsize[ch] = bsize;
  510. }
  511. }
  512. }
  513. /* parse spectral coefficients : just RLE encoding */
  514. for (ch = 0; ch < s->avctx->channels; ch++) {
  515. if (s->channel_coded[ch]) {
  516. int tindex;
  517. WMACoef* ptr = &s->coefs1[ch][0];
  518. /* special VLC tables are used for ms stereo because
  519. there is potentially less energy there */
  520. tindex = (ch == 1 && s->ms_stereo);
  521. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  522. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  523. s->level_table[tindex], s->run_table[tindex],
  524. 0, ptr, 0, nb_coefs[ch],
  525. s->block_len, s->frame_len_bits, coef_nb_bits);
  526. }
  527. if (s->version == 1 && s->avctx->channels >= 2) {
  528. align_get_bits(&s->gb);
  529. }
  530. }
  531. /* normalize */
  532. {
  533. int n4 = s->block_len / 2;
  534. mdct_norm = 1.0 / (float)n4;
  535. if (s->version == 1) {
  536. mdct_norm *= sqrt(n4);
  537. }
  538. }
  539. /* finally compute the MDCT coefficients */
  540. for (ch = 0; ch < s->avctx->channels; ch++) {
  541. if (s->channel_coded[ch]) {
  542. WMACoef *coefs1;
  543. float *coefs, *exponents, mult, mult1, noise;
  544. int i, j, n, n1, last_high_band, esize;
  545. float exp_power[HIGH_BAND_MAX_SIZE];
  546. coefs1 = s->coefs1[ch];
  547. exponents = s->exponents[ch];
  548. esize = s->exponents_bsize[ch];
  549. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  550. mult *= mdct_norm;
  551. coefs = s->coefs[ch];
  552. if (s->use_noise_coding) {
  553. mult1 = mult;
  554. /* very low freqs : noise */
  555. for(i = 0;i < s->coefs_start; i++) {
  556. *coefs++ = s->noise_table[s->noise_index] *
  557. exponents[i<<bsize>>esize] * mult1;
  558. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  559. }
  560. n1 = s->exponent_high_sizes[bsize];
  561. /* compute power of high bands */
  562. exponents = s->exponents[ch] +
  563. (s->high_band_start[bsize]<<bsize>>esize);
  564. last_high_band = 0; /* avoid warning */
  565. for(j=0;j<n1;j++) {
  566. n = s->exponent_high_bands[s->frame_len_bits -
  567. s->block_len_bits][j];
  568. if (s->high_band_coded[ch][j]) {
  569. float e2, v;
  570. e2 = 0;
  571. for(i = 0;i < n; i++) {
  572. v = exponents[i<<bsize>>esize];
  573. e2 += v * v;
  574. }
  575. exp_power[j] = e2 / n;
  576. last_high_band = j;
  577. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  578. }
  579. exponents += n<<bsize>>esize;
  580. }
  581. /* main freqs and high freqs */
  582. exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
  583. for(j=-1;j<n1;j++) {
  584. if (j < 0) {
  585. n = s->high_band_start[bsize] -
  586. s->coefs_start;
  587. } else {
  588. n = s->exponent_high_bands[s->frame_len_bits -
  589. s->block_len_bits][j];
  590. }
  591. if (j >= 0 && s->high_band_coded[ch][j]) {
  592. /* use noise with specified power */
  593. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  594. /* XXX: use a table */
  595. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  596. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  597. mult1 *= mdct_norm;
  598. for(i = 0;i < n; i++) {
  599. noise = s->noise_table[s->noise_index];
  600. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  601. *coefs++ = noise *
  602. exponents[i<<bsize>>esize] * mult1;
  603. }
  604. exponents += n<<bsize>>esize;
  605. } else {
  606. /* coded values + small noise */
  607. for(i = 0;i < n; i++) {
  608. noise = s->noise_table[s->noise_index];
  609. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  610. *coefs++ = ((*coefs1++) + noise) *
  611. exponents[i<<bsize>>esize] * mult;
  612. }
  613. exponents += n<<bsize>>esize;
  614. }
  615. }
  616. /* very high freqs : noise */
  617. n = s->block_len - s->coefs_end[bsize];
  618. mult1 = mult * exponents[((-1<<bsize))>>esize];
  619. for(i = 0; i < n; i++) {
  620. *coefs++ = s->noise_table[s->noise_index] * mult1;
  621. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  622. }
  623. } else {
  624. /* XXX: optimize more */
  625. for(i = 0;i < s->coefs_start; i++)
  626. *coefs++ = 0.0;
  627. n = nb_coefs[ch];
  628. for(i = 0;i < n; i++) {
  629. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  630. }
  631. n = s->block_len - s->coefs_end[bsize];
  632. for(i = 0;i < n; i++)
  633. *coefs++ = 0.0;
  634. }
  635. }
  636. }
  637. #ifdef TRACE
  638. for (ch = 0; ch < s->avctx->channels; ch++) {
  639. if (s->channel_coded[ch]) {
  640. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  641. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  642. }
  643. }
  644. #endif
  645. if (s->ms_stereo && s->channel_coded[1]) {
  646. /* nominal case for ms stereo: we do it before mdct */
  647. /* no need to optimize this case because it should almost
  648. never happen */
  649. if (!s->channel_coded[0]) {
  650. tprintf(s->avctx, "rare ms-stereo case happened\n");
  651. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  652. s->channel_coded[0] = 1;
  653. }
  654. s->fdsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  655. }
  656. next:
  657. mdct = &s->mdct_ctx[bsize];
  658. for (ch = 0; ch < s->avctx->channels; ch++) {
  659. int n4, index;
  660. n4 = s->block_len / 2;
  661. if(s->channel_coded[ch]){
  662. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  663. }else if(!(s->ms_stereo && ch==1))
  664. memset(s->output, 0, sizeof(s->output));
  665. /* multiply by the window and add in the frame */
  666. index = (s->frame_len / 2) + s->block_pos - n4;
  667. wma_window(s, &s->frame_out[ch][index]);
  668. }
  669. /* update block number */
  670. s->block_num++;
  671. s->block_pos += s->block_len;
  672. if (s->block_pos >= s->frame_len)
  673. return 1;
  674. else
  675. return 0;
  676. }
  677. /* decode a frame of frame_len samples */
  678. static int wma_decode_frame(WMACodecContext *s, float **samples,
  679. int samples_offset)
  680. {
  681. int ret, ch;
  682. #ifdef TRACE
  683. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  684. #endif
  685. /* read each block */
  686. s->block_num = 0;
  687. s->block_pos = 0;
  688. for(;;) {
  689. ret = wma_decode_block(s);
  690. if (ret < 0)
  691. return -1;
  692. if (ret)
  693. break;
  694. }
  695. for (ch = 0; ch < s->avctx->channels; ch++) {
  696. /* copy current block to output */
  697. memcpy(samples[ch] + samples_offset, s->frame_out[ch],
  698. s->frame_len * sizeof(*s->frame_out[ch]));
  699. /* prepare for next block */
  700. memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
  701. s->frame_len * sizeof(*s->frame_out[ch]));
  702. #ifdef TRACE
  703. dump_floats(s, "samples", 6, samples[ch] + samples_offset, s->frame_len);
  704. #endif
  705. }
  706. return 0;
  707. }
  708. static int wma_decode_superframe(AVCodecContext *avctx, void *data,
  709. int *got_frame_ptr, AVPacket *avpkt)
  710. {
  711. AVFrame *frame = data;
  712. const uint8_t *buf = avpkt->data;
  713. int buf_size = avpkt->size;
  714. WMACodecContext *s = avctx->priv_data;
  715. int nb_frames, bit_offset, i, pos, len, ret;
  716. uint8_t *q;
  717. float **samples;
  718. int samples_offset;
  719. tprintf(avctx, "***decode_superframe:\n");
  720. if(buf_size==0){
  721. s->last_superframe_len = 0;
  722. return 0;
  723. }
  724. if (buf_size < avctx->block_align) {
  725. av_log(avctx, AV_LOG_ERROR,
  726. "Input packet size too small (%d < %d)\n",
  727. buf_size, avctx->block_align);
  728. return AVERROR_INVALIDDATA;
  729. }
  730. if(avctx->block_align)
  731. buf_size = avctx->block_align;
  732. init_get_bits(&s->gb, buf, buf_size*8);
  733. if (s->use_bit_reservoir) {
  734. /* read super frame header */
  735. skip_bits(&s->gb, 4); /* super frame index */
  736. nb_frames = get_bits(&s->gb, 4) - (s->last_superframe_len <= 0);
  737. } else {
  738. nb_frames = 1;
  739. }
  740. /* get output buffer */
  741. frame->nb_samples = nb_frames * s->frame_len;
  742. if ((ret = ff_get_buffer(avctx, frame)) < 0) {
  743. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  744. return ret;
  745. }
  746. samples = (float **)frame->extended_data;
  747. samples_offset = 0;
  748. if (s->use_bit_reservoir) {
  749. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  750. if (bit_offset > get_bits_left(&s->gb)) {
  751. av_log(avctx, AV_LOG_ERROR,
  752. "Invalid last frame bit offset %d > buf size %d (%d)\n",
  753. bit_offset, get_bits_left(&s->gb), buf_size);
  754. goto fail;
  755. }
  756. if (s->last_superframe_len > 0) {
  757. /* add bit_offset bits to last frame */
  758. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  759. MAX_CODED_SUPERFRAME_SIZE)
  760. goto fail;
  761. q = s->last_superframe + s->last_superframe_len;
  762. len = bit_offset;
  763. while (len > 7) {
  764. *q++ = (get_bits)(&s->gb, 8);
  765. len -= 8;
  766. }
  767. if (len > 0) {
  768. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  769. }
  770. memset(q, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  771. /* XXX: bit_offset bits into last frame */
  772. init_get_bits(&s->gb, s->last_superframe, s->last_superframe_len * 8 + bit_offset);
  773. /* skip unused bits */
  774. if (s->last_bitoffset > 0)
  775. skip_bits(&s->gb, s->last_bitoffset);
  776. /* this frame is stored in the last superframe and in the
  777. current one */
  778. if (wma_decode_frame(s, samples, samples_offset) < 0)
  779. goto fail;
  780. samples_offset += s->frame_len;
  781. nb_frames--;
  782. }
  783. /* read each frame starting from bit_offset */
  784. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  785. if (pos >= MAX_CODED_SUPERFRAME_SIZE * 8 || pos > buf_size * 8)
  786. return AVERROR_INVALIDDATA;
  787. init_get_bits(&s->gb, buf + (pos >> 3), (buf_size - (pos >> 3))*8);
  788. len = pos & 7;
  789. if (len > 0)
  790. skip_bits(&s->gb, len);
  791. s->reset_block_lengths = 1;
  792. for(i=0;i<nb_frames;i++) {
  793. if (wma_decode_frame(s, samples, samples_offset) < 0)
  794. goto fail;
  795. samples_offset += s->frame_len;
  796. }
  797. /* we copy the end of the frame in the last frame buffer */
  798. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  799. s->last_bitoffset = pos & 7;
  800. pos >>= 3;
  801. len = buf_size - pos;
  802. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  803. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  804. goto fail;
  805. }
  806. s->last_superframe_len = len;
  807. memcpy(s->last_superframe, buf + pos, len);
  808. } else {
  809. /* single frame decode */
  810. if (wma_decode_frame(s, samples, samples_offset) < 0)
  811. goto fail;
  812. samples_offset += s->frame_len;
  813. }
  814. av_dlog(s->avctx, "%d %d %d %d outbytes:%td eaten:%d\n",
  815. s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len,
  816. (int8_t *)samples - (int8_t *)data, avctx->block_align);
  817. *got_frame_ptr = 1;
  818. return buf_size;
  819. fail:
  820. /* when error, we reset the bit reservoir */
  821. s->last_superframe_len = 0;
  822. return -1;
  823. }
  824. static av_cold void flush(AVCodecContext *avctx)
  825. {
  826. WMACodecContext *s = avctx->priv_data;
  827. s->last_bitoffset=
  828. s->last_superframe_len= 0;
  829. }
  830. #if CONFIG_WMAV1_DECODER
  831. AVCodec ff_wmav1_decoder = {
  832. .name = "wmav1",
  833. .type = AVMEDIA_TYPE_AUDIO,
  834. .id = AV_CODEC_ID_WMAV1,
  835. .priv_data_size = sizeof(WMACodecContext),
  836. .init = wma_decode_init,
  837. .close = ff_wma_end,
  838. .decode = wma_decode_superframe,
  839. .flush = flush,
  840. .capabilities = CODEC_CAP_DR1,
  841. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  842. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  843. AV_SAMPLE_FMT_NONE },
  844. };
  845. #endif
  846. #if CONFIG_WMAV2_DECODER
  847. AVCodec ff_wmav2_decoder = {
  848. .name = "wmav2",
  849. .type = AVMEDIA_TYPE_AUDIO,
  850. .id = AV_CODEC_ID_WMAV2,
  851. .priv_data_size = sizeof(WMACodecContext),
  852. .init = wma_decode_init,
  853. .close = ff_wma_end,
  854. .decode = wma_decode_superframe,
  855. .flush = flush,
  856. .capabilities = CODEC_CAP_DR1,
  857. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  858. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
  859. AV_SAMPLE_FMT_NONE },
  860. };
  861. #endif