You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

861 lines
29KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. */
  20. /**
  21. * @file ratecontrol.c
  22. * Rate control for video encoders.
  23. */
  24. #include "avcodec.h"
  25. #include "dsputil.h"
  26. #include "mpegvideo.h"
  27. #undef NDEBUG // allways check asserts, the speed effect is far too small to disable them
  28. #include <assert.h>
  29. #ifndef M_E
  30. #define M_E 2.718281828
  31. #endif
  32. static int init_pass2(MpegEncContext *s);
  33. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  34. void ff_write_pass1_stats(MpegEncContext *s){
  35. sprintf(s->avctx->stats_out, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d;\n",
  36. s->current_picture_ptr->display_picture_number, s->current_picture_ptr->coded_picture_number, s->pict_type,
  37. s->current_picture.quality, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  38. s->f_code, s->b_code, s->current_picture.mc_mb_var_sum, s->current_picture.mb_var_sum, s->i_count);
  39. }
  40. int ff_rate_control_init(MpegEncContext *s)
  41. {
  42. RateControlContext *rcc= &s->rc_context;
  43. int i;
  44. emms_c();
  45. for(i=0; i<5; i++){
  46. rcc->pred[i].coeff= FF_QP2LAMBDA * 7.0;
  47. rcc->pred[i].count= 1.0;
  48. rcc->pred[i].decay= 0.4;
  49. rcc->i_cplx_sum [i]=
  50. rcc->p_cplx_sum [i]=
  51. rcc->mv_bits_sum[i]=
  52. rcc->qscale_sum [i]=
  53. rcc->frame_count[i]= 1; // 1 is better cuz of 1/0 and such
  54. rcc->last_qscale_for[i]=FF_QP2LAMBDA * 5;
  55. }
  56. rcc->buffer_index= s->avctx->rc_initial_buffer_occupancy;
  57. if(s->flags&CODEC_FLAG_PASS2){
  58. int i;
  59. char *p;
  60. /* find number of pics */
  61. p= s->avctx->stats_in;
  62. for(i=-1; p; i++){
  63. p= strchr(p+1, ';');
  64. }
  65. i+= s->max_b_frames;
  66. rcc->entry = (RateControlEntry*)av_mallocz(i*sizeof(RateControlEntry));
  67. rcc->num_entries= i;
  68. /* init all to skiped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  69. for(i=0; i<rcc->num_entries; i++){
  70. RateControlEntry *rce= &rcc->entry[i];
  71. rce->pict_type= rce->new_pict_type=P_TYPE;
  72. rce->qscale= rce->new_qscale=FF_QP2LAMBDA * 2;
  73. rce->misc_bits= s->mb_num + 10;
  74. rce->mb_var_sum= s->mb_num*100;
  75. }
  76. /* read stats */
  77. p= s->avctx->stats_in;
  78. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  79. RateControlEntry *rce;
  80. int picture_number;
  81. int e;
  82. char *next;
  83. next= strchr(p, ';');
  84. if(next){
  85. (*next)=0; //sscanf in unbelieavle slow on looong strings //FIXME copy / dont write
  86. next++;
  87. }
  88. e= sscanf(p, " in:%d ", &picture_number);
  89. assert(picture_number >= 0);
  90. assert(picture_number < rcc->num_entries);
  91. rce= &rcc->entry[picture_number];
  92. e+=sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d",
  93. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  94. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count);
  95. if(e!=12){
  96. av_log(s->avctx, AV_LOG_ERROR, "statistics are damaged at line %d, parser out=%d\n", i, e);
  97. return -1;
  98. }
  99. p= next;
  100. }
  101. if(init_pass2(s) < 0) return -1;
  102. }
  103. if(!(s->flags&CODEC_FLAG_PASS2)){
  104. rcc->short_term_qsum=0.001;
  105. rcc->short_term_qcount=0.001;
  106. rcc->pass1_rc_eq_output_sum= 0.001;
  107. rcc->pass1_wanted_bits=0.001;
  108. /* init stuff with the user specified complexity */
  109. if(s->avctx->rc_initial_cplx){
  110. for(i=0; i<60*30; i++){
  111. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  112. RateControlEntry rce;
  113. double q;
  114. if (i%((s->gop_size+3)/4)==0) rce.pict_type= I_TYPE;
  115. else if(i%(s->max_b_frames+1)) rce.pict_type= B_TYPE;
  116. else rce.pict_type= P_TYPE;
  117. rce.new_pict_type= rce.pict_type;
  118. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  119. rce.mb_var_sum = s->mb_num;
  120. rce.qscale = FF_QP2LAMBDA * 2;
  121. rce.f_code = 2;
  122. rce.b_code = 1;
  123. rce.misc_bits= 1;
  124. if(s->pict_type== I_TYPE){
  125. rce.i_count = s->mb_num;
  126. rce.i_tex_bits= bits;
  127. rce.p_tex_bits= 0;
  128. rce.mv_bits= 0;
  129. }else{
  130. rce.i_count = 0; //FIXME we do know this approx
  131. rce.i_tex_bits= 0;
  132. rce.p_tex_bits= bits*0.9;
  133. rce.mv_bits= bits*0.1;
  134. }
  135. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  136. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  137. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  138. rcc->frame_count[rce.pict_type] ++;
  139. bits= rce.i_tex_bits + rce.p_tex_bits;
  140. q= get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum, i);
  141. rcc->pass1_wanted_bits+= s->bit_rate/(s->avctx->frame_rate / (double)s->avctx->frame_rate_base);
  142. }
  143. }
  144. }
  145. return 0;
  146. }
  147. void ff_rate_control_uninit(MpegEncContext *s)
  148. {
  149. RateControlContext *rcc= &s->rc_context;
  150. emms_c();
  151. av_freep(&rcc->entry);
  152. }
  153. static inline double qp2bits(RateControlEntry *rce, double qp){
  154. if(qp<=0.0){
  155. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  156. }
  157. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  158. }
  159. static inline double bits2qp(RateControlEntry *rce, double bits){
  160. if(bits<0.9){
  161. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  162. }
  163. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  164. }
  165. int ff_vbv_update(MpegEncContext *s, int frame_size){
  166. RateControlContext *rcc= &s->rc_context;
  167. const double fps= (double)s->avctx->frame_rate / (double)s->avctx->frame_rate_base;
  168. const int buffer_size= s->avctx->rc_buffer_size;
  169. const double min_rate= s->avctx->rc_min_rate/fps;
  170. const double max_rate= s->avctx->rc_max_rate/fps;
  171. //printf("%d %f %d %f %f\n", buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  172. if(buffer_size){
  173. int left;
  174. rcc->buffer_index-= frame_size;
  175. if(rcc->buffer_index < 0){
  176. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  177. rcc->buffer_index= 0;
  178. }
  179. left= buffer_size - rcc->buffer_index - 1;
  180. rcc->buffer_index += clip(left, min_rate, max_rate);
  181. if(rcc->buffer_index > buffer_size){
  182. int stuffing= ceil((rcc->buffer_index - buffer_size)/8);
  183. if(stuffing < 4 && s->codec_id == CODEC_ID_MPEG4)
  184. stuffing=4;
  185. rcc->buffer_index -= 8*stuffing;
  186. if(s->avctx->debug & FF_DEBUG_RC)
  187. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  188. return stuffing;
  189. }
  190. }
  191. return 0;
  192. }
  193. /**
  194. * modifies the bitrate curve from pass1 for one frame
  195. */
  196. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  197. RateControlContext *rcc= &s->rc_context;
  198. AVCodecContext *a= s->avctx;
  199. double q, bits;
  200. const int pict_type= rce->new_pict_type;
  201. const double mb_num= s->mb_num;
  202. int i;
  203. double const_values[]={
  204. M_PI,
  205. M_E,
  206. rce->i_tex_bits*rce->qscale,
  207. rce->p_tex_bits*rce->qscale,
  208. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  209. rce->mv_bits/mb_num,
  210. rce->pict_type == B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  211. rce->i_count/mb_num,
  212. rce->mc_mb_var_sum/mb_num,
  213. rce->mb_var_sum/mb_num,
  214. rce->pict_type == I_TYPE,
  215. rce->pict_type == P_TYPE,
  216. rce->pict_type == B_TYPE,
  217. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  218. a->qcompress,
  219. /* rcc->last_qscale_for[I_TYPE],
  220. rcc->last_qscale_for[P_TYPE],
  221. rcc->last_qscale_for[B_TYPE],
  222. rcc->next_non_b_qscale,*/
  223. rcc->i_cplx_sum[I_TYPE] / (double)rcc->frame_count[I_TYPE],
  224. rcc->i_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  225. rcc->p_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  226. rcc->p_cplx_sum[B_TYPE] / (double)rcc->frame_count[B_TYPE],
  227. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  228. 0
  229. };
  230. static const char *const_names[]={
  231. "PI",
  232. "E",
  233. "iTex",
  234. "pTex",
  235. "tex",
  236. "mv",
  237. "fCode",
  238. "iCount",
  239. "mcVar",
  240. "var",
  241. "isI",
  242. "isP",
  243. "isB",
  244. "avgQP",
  245. "qComp",
  246. /* "lastIQP",
  247. "lastPQP",
  248. "lastBQP",
  249. "nextNonBQP",*/
  250. "avgIITex",
  251. "avgPITex",
  252. "avgPPTex",
  253. "avgBPTex",
  254. "avgTex",
  255. NULL
  256. };
  257. static double (*func1[])(void *, double)={
  258. (void *)bits2qp,
  259. (void *)qp2bits,
  260. NULL
  261. };
  262. static const char *func1_names[]={
  263. "bits2qp",
  264. "qp2bits",
  265. NULL
  266. };
  267. bits= ff_eval(s->avctx->rc_eq, const_values, const_names, func1, func1_names, NULL, NULL, rce);
  268. rcc->pass1_rc_eq_output_sum+= bits;
  269. bits*=rate_factor;
  270. if(bits<0.0) bits=0.0;
  271. bits+= 1.0; //avoid 1/0 issues
  272. /* user override */
  273. for(i=0; i<s->avctx->rc_override_count; i++){
  274. RcOverride *rco= s->avctx->rc_override;
  275. if(rco[i].start_frame > frame_num) continue;
  276. if(rco[i].end_frame < frame_num) continue;
  277. if(rco[i].qscale)
  278. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  279. else
  280. bits*= rco[i].quality_factor;
  281. }
  282. q= bits2qp(rce, bits);
  283. /* I/B difference */
  284. if (pict_type==I_TYPE && s->avctx->i_quant_factor<0.0)
  285. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  286. else if(pict_type==B_TYPE && s->avctx->b_quant_factor<0.0)
  287. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  288. return q;
  289. }
  290. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q){
  291. RateControlContext *rcc= &s->rc_context;
  292. AVCodecContext *a= s->avctx;
  293. const int pict_type= rce->new_pict_type;
  294. const double last_p_q = rcc->last_qscale_for[P_TYPE];
  295. const double last_non_b_q= rcc->last_qscale_for[rcc->last_non_b_pict_type];
  296. if (pict_type==I_TYPE && (a->i_quant_factor>0.0 || rcc->last_non_b_pict_type==P_TYPE))
  297. q= last_p_q *ABS(a->i_quant_factor) + a->i_quant_offset;
  298. else if(pict_type==B_TYPE && a->b_quant_factor>0.0)
  299. q= last_non_b_q* a->b_quant_factor + a->b_quant_offset;
  300. /* last qscale / qdiff stuff */
  301. if(rcc->last_non_b_pict_type==pict_type || pict_type!=I_TYPE){
  302. double last_q= rcc->last_qscale_for[pict_type];
  303. const int maxdiff= FF_QP2LAMBDA * a->max_qdiff;
  304. if (q > last_q + maxdiff) q= last_q + maxdiff;
  305. else if(q < last_q - maxdiff) q= last_q - maxdiff;
  306. }
  307. rcc->last_qscale_for[pict_type]= q; //Note we cant do that after blurring
  308. if(pict_type!=B_TYPE)
  309. rcc->last_non_b_pict_type= pict_type;
  310. return q;
  311. }
  312. /**
  313. * gets the qmin & qmax for pict_type
  314. */
  315. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  316. int qmin= s->avctx->lmin;
  317. int qmax= s->avctx->lmax;
  318. assert(qmin <= qmax);
  319. if(pict_type==B_TYPE){
  320. qmin= (int)(qmin*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  321. qmax= (int)(qmax*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  322. }else if(pict_type==I_TYPE){
  323. qmin= (int)(qmin*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  324. qmax= (int)(qmax*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  325. }
  326. qmin= clip(qmin, 1, FF_LAMBDA_MAX);
  327. qmax= clip(qmax, 1, FF_LAMBDA_MAX);
  328. if(qmax<qmin) qmax= qmin;
  329. *qmin_ret= qmin;
  330. *qmax_ret= qmax;
  331. }
  332. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  333. RateControlContext *rcc= &s->rc_context;
  334. int qmin, qmax;
  335. double bits;
  336. const int pict_type= rce->new_pict_type;
  337. const double buffer_size= s->avctx->rc_buffer_size;
  338. const double fps= (double)s->avctx->frame_rate / (double)s->avctx->frame_rate_base;
  339. const double min_rate= s->avctx->rc_min_rate / fps;
  340. const double max_rate= s->avctx->rc_max_rate / fps;
  341. get_qminmax(&qmin, &qmax, s, pict_type);
  342. /* modulation */
  343. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==P_TYPE)
  344. q*= s->avctx->rc_qmod_amp;
  345. bits= qp2bits(rce, q);
  346. //printf("q:%f\n", q);
  347. /* buffer overflow/underflow protection */
  348. if(buffer_size){
  349. double expected_size= rcc->buffer_index;
  350. double q_limit;
  351. if(min_rate){
  352. double d= 2*(buffer_size - expected_size)/buffer_size;
  353. if(d>1.0) d=1.0;
  354. else if(d<0.0001) d=0.0001;
  355. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  356. q_limit= bits2qp(rce, FFMAX((min_rate - buffer_size + rcc->buffer_index)*3, 1));
  357. if(q > q_limit){
  358. if(s->avctx->debug&FF_DEBUG_RC){
  359. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  360. }
  361. q= q_limit;
  362. }
  363. }
  364. if(max_rate){
  365. double d= 2*expected_size/buffer_size;
  366. if(d>1.0) d=1.0;
  367. else if(d<0.0001) d=0.0001;
  368. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  369. q_limit= bits2qp(rce, FFMAX(rcc->buffer_index/3, 1));
  370. if(q < q_limit){
  371. if(s->avctx->debug&FF_DEBUG_RC){
  372. av_log(s->avctx, AV_LOG_DEBUG, "limiting QP %f -> %f\n", q, q_limit);
  373. }
  374. q= q_limit;
  375. }
  376. }
  377. }
  378. //printf("q:%f max:%f min:%f size:%f index:%d bits:%f agr:%f\n", q,max_rate, min_rate, buffer_size, rcc->buffer_index, bits, s->avctx->rc_buffer_aggressivity);
  379. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  380. if (q<qmin) q=qmin;
  381. else if(q>qmax) q=qmax;
  382. }else{
  383. double min2= log(qmin);
  384. double max2= log(qmax);
  385. q= log(q);
  386. q= (q - min2)/(max2-min2) - 0.5;
  387. q*= -4.0;
  388. q= 1.0/(1.0 + exp(q));
  389. q= q*(max2-min2) + min2;
  390. q= exp(q);
  391. }
  392. return q;
  393. }
  394. //----------------------------------
  395. // 1 Pass Code
  396. static double predict_size(Predictor *p, double q, double var)
  397. {
  398. return p->coeff*var / (q*p->count);
  399. }
  400. /*
  401. static double predict_qp(Predictor *p, double size, double var)
  402. {
  403. //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
  404. return p->coeff*var / (size*p->count);
  405. }
  406. */
  407. static void update_predictor(Predictor *p, double q, double var, double size)
  408. {
  409. double new_coeff= size*q / (var + 1);
  410. if(var<10) return;
  411. p->count*= p->decay;
  412. p->coeff*= p->decay;
  413. p->count++;
  414. p->coeff+= new_coeff;
  415. }
  416. static void adaptive_quantization(MpegEncContext *s, double q){
  417. int i;
  418. const float lumi_masking= s->avctx->lumi_masking / (128.0*128.0);
  419. const float dark_masking= s->avctx->dark_masking / (128.0*128.0);
  420. const float temp_cplx_masking= s->avctx->temporal_cplx_masking;
  421. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  422. const float p_masking = s->avctx->p_masking;
  423. float bits_sum= 0.0;
  424. float cplx_sum= 0.0;
  425. float cplx_tab[s->mb_num];
  426. float bits_tab[s->mb_num];
  427. const int qmin= s->avctx->lmin;
  428. const int qmax= s->avctx->lmax;
  429. Picture * const pic= &s->current_picture;
  430. for(i=0; i<s->mb_num; i++){
  431. const int mb_xy= s->mb_index2xy[i];
  432. float temp_cplx= sqrt(pic->mc_mb_var[mb_xy]); //FIXME merge in pow()
  433. float spat_cplx= sqrt(pic->mb_var[mb_xy]);
  434. const int lumi= pic->mb_mean[mb_xy];
  435. float bits, cplx, factor;
  436. #if 0
  437. if(spat_cplx < q/3) spat_cplx= q/3; //FIXME finetune
  438. if(temp_cplx < q/3) temp_cplx= q/3; //FIXME finetune
  439. #endif
  440. if(spat_cplx < 4) spat_cplx= 4; //FIXME finetune
  441. if(temp_cplx < 4) temp_cplx= 4; //FIXME finetune
  442. if((s->mb_type[mb_xy]&CANDIDATE_MB_TYPE_INTRA)){//FIXME hq mode
  443. cplx= spat_cplx;
  444. factor= 1.0 + p_masking;
  445. }else{
  446. cplx= temp_cplx;
  447. factor= pow(temp_cplx, - temp_cplx_masking);
  448. }
  449. factor*=pow(spat_cplx, - spatial_cplx_masking);
  450. if(lumi>127)
  451. factor*= (1.0 - (lumi-128)*(lumi-128)*lumi_masking);
  452. else
  453. factor*= (1.0 - (lumi-128)*(lumi-128)*dark_masking);
  454. if(factor<0.00001) factor= 0.00001;
  455. bits= cplx*factor;
  456. cplx_sum+= cplx;
  457. bits_sum+= bits;
  458. cplx_tab[i]= cplx;
  459. bits_tab[i]= bits;
  460. }
  461. /* handle qmin/qmax cliping */
  462. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  463. float factor= bits_sum/cplx_sum;
  464. for(i=0; i<s->mb_num; i++){
  465. float newq= q*cplx_tab[i]/bits_tab[i];
  466. newq*= factor;
  467. if (newq > qmax){
  468. bits_sum -= bits_tab[i];
  469. cplx_sum -= cplx_tab[i]*q/qmax;
  470. }
  471. else if(newq < qmin){
  472. bits_sum -= bits_tab[i];
  473. cplx_sum -= cplx_tab[i]*q/qmin;
  474. }
  475. }
  476. if(bits_sum < 0.001) bits_sum= 0.001;
  477. if(cplx_sum < 0.001) cplx_sum= 0.001;
  478. }
  479. for(i=0; i<s->mb_num; i++){
  480. const int mb_xy= s->mb_index2xy[i];
  481. float newq= q*cplx_tab[i]/bits_tab[i];
  482. int intq;
  483. if(s->flags&CODEC_FLAG_NORMALIZE_AQP){
  484. newq*= bits_sum/cplx_sum;
  485. }
  486. intq= (int)(newq + 0.5);
  487. if (intq > qmax) intq= qmax;
  488. else if(intq < qmin) intq= qmin;
  489. //if(i%s->mb_width==0) printf("\n");
  490. //printf("%2d%3d ", intq, ff_sqrt(s->mc_mb_var[i]));
  491. s->lambda_table[mb_xy]= intq;
  492. }
  493. }
  494. //FIXME rd or at least approx for dquant
  495. float ff_rate_estimate_qscale(MpegEncContext *s)
  496. {
  497. float q;
  498. int qmin, qmax;
  499. float br_compensation;
  500. double diff;
  501. double short_term_q;
  502. double fps;
  503. int picture_number= s->picture_number;
  504. int64_t wanted_bits;
  505. RateControlContext *rcc= &s->rc_context;
  506. AVCodecContext *a= s->avctx;
  507. RateControlEntry local_rce, *rce;
  508. double bits;
  509. double rate_factor;
  510. int var;
  511. const int pict_type= s->pict_type;
  512. Picture * const pic= &s->current_picture;
  513. emms_c();
  514. get_qminmax(&qmin, &qmax, s, pict_type);
  515. fps= (double)s->avctx->frame_rate / (double)s->avctx->frame_rate_base;
  516. //printf("input_pic_num:%d pic_num:%d frame_rate:%d\n", s->input_picture_number, s->picture_number, s->frame_rate);
  517. /* update predictors */
  518. if(picture_number>2){
  519. const int last_var= s->last_pict_type == I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  520. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
  521. }
  522. if(s->flags&CODEC_FLAG_PASS2){
  523. assert(picture_number>=0);
  524. assert(picture_number<rcc->num_entries);
  525. rce= &rcc->entry[picture_number];
  526. wanted_bits= rce->expected_bits;
  527. }else{
  528. rce= &local_rce;
  529. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  530. }
  531. diff= s->total_bits - wanted_bits;
  532. br_compensation= (a->bit_rate_tolerance - diff)/a->bit_rate_tolerance;
  533. if(br_compensation<=0.0) br_compensation=0.001;
  534. var= pict_type == I_TYPE ? pic->mb_var_sum : pic->mc_mb_var_sum;
  535. short_term_q = 0; /* avoid warning */
  536. if(s->flags&CODEC_FLAG_PASS2){
  537. if(pict_type!=I_TYPE)
  538. assert(pict_type == rce->new_pict_type);
  539. q= rce->new_qscale / br_compensation;
  540. //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
  541. }else{
  542. rce->pict_type=
  543. rce->new_pict_type= pict_type;
  544. rce->mc_mb_var_sum= pic->mc_mb_var_sum;
  545. rce->mb_var_sum = pic-> mb_var_sum;
  546. rce->qscale = FF_QP2LAMBDA * 2;
  547. rce->f_code = s->f_code;
  548. rce->b_code = s->b_code;
  549. rce->misc_bits= 1;
  550. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  551. if(pict_type== I_TYPE){
  552. rce->i_count = s->mb_num;
  553. rce->i_tex_bits= bits;
  554. rce->p_tex_bits= 0;
  555. rce->mv_bits= 0;
  556. }else{
  557. rce->i_count = 0; //FIXME we do know this approx
  558. rce->i_tex_bits= 0;
  559. rce->p_tex_bits= bits*0.9;
  560. rce->mv_bits= bits*0.1;
  561. }
  562. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  563. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  564. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  565. rcc->frame_count[pict_type] ++;
  566. bits= rce->i_tex_bits + rce->p_tex_bits;
  567. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_rc_eq_output_sum * br_compensation;
  568. q= get_qscale(s, rce, rate_factor, picture_number);
  569. assert(q>0.0);
  570. //printf("%f ", q);
  571. q= get_diff_limited_q(s, rce, q);
  572. //printf("%f ", q);
  573. assert(q>0.0);
  574. if(pict_type==P_TYPE || s->intra_only){ //FIXME type dependant blur like in 2-pass
  575. rcc->short_term_qsum*=a->qblur;
  576. rcc->short_term_qcount*=a->qblur;
  577. rcc->short_term_qsum+= q;
  578. rcc->short_term_qcount++;
  579. //printf("%f ", q);
  580. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  581. //printf("%f ", q);
  582. }
  583. assert(q>0.0);
  584. q= modify_qscale(s, rce, q, picture_number);
  585. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  586. assert(q>0.0);
  587. }
  588. if(s->avctx->debug&FF_DEBUG_RC){
  589. av_log(s->avctx, AV_LOG_DEBUG, "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f size:%d var:%d/%d br:%d fps:%d\n",
  590. av_get_pict_type_char(pict_type), qmin, q, qmax, picture_number, (int)wanted_bits/1000, (int)s->total_bits/1000,
  591. br_compensation, short_term_q, s->frame_bits, pic->mb_var_sum, pic->mc_mb_var_sum, s->bit_rate/1000, (int)fps
  592. );
  593. }
  594. if (q<qmin) q=qmin;
  595. else if(q>qmax) q=qmax;
  596. if(s->adaptive_quant)
  597. adaptive_quantization(s, q);
  598. else
  599. q= (int)(q + 0.5);
  600. rcc->last_qscale= q;
  601. rcc->last_mc_mb_var_sum= pic->mc_mb_var_sum;
  602. rcc->last_mb_var_sum= pic->mb_var_sum;
  603. #if 0
  604. {
  605. static int mvsum=0, texsum=0;
  606. mvsum += s->mv_bits;
  607. texsum += s->i_tex_bits + s->p_tex_bits;
  608. printf("%d %d//\n\n", mvsum, texsum);
  609. }
  610. #endif
  611. return q;
  612. }
  613. //----------------------------------------------
  614. // 2-Pass code
  615. static int init_pass2(MpegEncContext *s)
  616. {
  617. RateControlContext *rcc= &s->rc_context;
  618. AVCodecContext *a= s->avctx;
  619. int i;
  620. double fps= (double)s->avctx->frame_rate / (double)s->avctx->frame_rate_base;
  621. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  622. double avg_quantizer[5];
  623. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer idependant bits
  624. uint64_t available_bits[5];
  625. uint64_t all_const_bits;
  626. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  627. double rate_factor=0;
  628. double step;
  629. //int last_i_frame=-10000000;
  630. const int filter_size= (int)(a->qblur*4) | 1;
  631. double expected_bits;
  632. double *qscale, *blured_qscale;
  633. /* find complexity & const_bits & decide the pict_types */
  634. for(i=0; i<rcc->num_entries; i++){
  635. RateControlEntry *rce= &rcc->entry[i];
  636. rce->new_pict_type= rce->pict_type;
  637. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  638. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  639. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  640. rcc->frame_count[rce->pict_type] ++;
  641. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  642. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  643. }
  644. all_const_bits= const_bits[I_TYPE] + const_bits[P_TYPE] + const_bits[B_TYPE];
  645. if(all_available_bits < all_const_bits){
  646. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is to low\n");
  647. return -1;
  648. }
  649. /* find average quantizers */
  650. avg_quantizer[P_TYPE]=0;
  651. for(step=256*256; step>0.0000001; step*=0.5){
  652. double expected_bits=0;
  653. avg_quantizer[P_TYPE]+= step;
  654. avg_quantizer[I_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset;
  655. avg_quantizer[B_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset;
  656. expected_bits=
  657. + all_const_bits
  658. + complexity[I_TYPE]/avg_quantizer[I_TYPE]
  659. + complexity[P_TYPE]/avg_quantizer[P_TYPE]
  660. + complexity[B_TYPE]/avg_quantizer[B_TYPE];
  661. if(expected_bits < all_available_bits) avg_quantizer[P_TYPE]-= step;
  662. //printf("%f %lld %f\n", expected_bits, all_available_bits, avg_quantizer[P_TYPE]);
  663. }
  664. //printf("qp_i:%f, qp_p:%f, qp_b:%f\n", avg_quantizer[I_TYPE],avg_quantizer[P_TYPE],avg_quantizer[B_TYPE]);
  665. for(i=0; i<5; i++){
  666. available_bits[i]= const_bits[i] + complexity[i]/avg_quantizer[i];
  667. }
  668. //printf("%lld %lld %lld %lld\n", available_bits[I_TYPE], available_bits[P_TYPE], available_bits[B_TYPE], all_available_bits);
  669. qscale= av_malloc(sizeof(double)*rcc->num_entries);
  670. blured_qscale= av_malloc(sizeof(double)*rcc->num_entries);
  671. for(step=256*256; step>0.0000001; step*=0.5){
  672. expected_bits=0;
  673. rate_factor+= step;
  674. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  675. /* find qscale */
  676. for(i=0; i<rcc->num_entries; i++){
  677. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  678. }
  679. assert(filter_size%2==1);
  680. /* fixed I/B QP relative to P mode */
  681. for(i=rcc->num_entries-1; i>=0; i--){
  682. RateControlEntry *rce= &rcc->entry[i];
  683. qscale[i]= get_diff_limited_q(s, rce, qscale[i]);
  684. }
  685. /* smooth curve */
  686. for(i=0; i<rcc->num_entries; i++){
  687. RateControlEntry *rce= &rcc->entry[i];
  688. const int pict_type= rce->new_pict_type;
  689. int j;
  690. double q=0.0, sum=0.0;
  691. for(j=0; j<filter_size; j++){
  692. int index= i+j-filter_size/2;
  693. double d= index-i;
  694. double coeff= a->qblur==0 ? 1.0 : exp(-d*d/(a->qblur * a->qblur));
  695. if(index < 0 || index >= rcc->num_entries) continue;
  696. if(pict_type != rcc->entry[index].new_pict_type) continue;
  697. q+= qscale[index] * coeff;
  698. sum+= coeff;
  699. }
  700. blured_qscale[i]= q/sum;
  701. }
  702. /* find expected bits */
  703. for(i=0; i<rcc->num_entries; i++){
  704. RateControlEntry *rce= &rcc->entry[i];
  705. double bits;
  706. rce->new_qscale= modify_qscale(s, rce, blured_qscale[i], i);
  707. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  708. //printf("%d %f\n", rce->new_bits, blured_qscale[i]);
  709. bits += 8*ff_vbv_update(s, bits);
  710. rce->expected_bits= expected_bits;
  711. expected_bits += bits;
  712. }
  713. // printf("%f %d %f\n", expected_bits, (int)all_available_bits, rate_factor);
  714. if(expected_bits > all_available_bits) rate_factor-= step;
  715. }
  716. av_free(qscale);
  717. av_free(blured_qscale);
  718. if(abs(expected_bits/all_available_bits - 1.0) > 0.01 ){
  719. av_log(s->avctx, AV_LOG_ERROR, "Error: 2pass curve failed to converge\n");
  720. return -1;
  721. }
  722. return 0;
  723. }