You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1111 lines
36KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  21. * the algorithm used
  22. */
  23. /**
  24. * @file huffyuv.c
  25. * huffyuv codec for libavcodec.
  26. */
  27. #include "common.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #define VLC_BITS 11
  31. typedef enum Predictor{
  32. LEFT= 0,
  33. PLANE,
  34. MEDIAN,
  35. } Predictor;
  36. typedef struct HYuvContext{
  37. AVCodecContext *avctx;
  38. Predictor predictor;
  39. GetBitContext gb;
  40. PutBitContext pb;
  41. int interlaced;
  42. int decorrelate;
  43. int bitstream_bpp;
  44. int version;
  45. int yuy2; //use yuy2 instead of 422P
  46. int bgr32; //use bgr32 instead of bgr24
  47. int width, height;
  48. int flags;
  49. int picture_number;
  50. int last_slice_end;
  51. uint8_t __align8 temp[3][2560];
  52. uint64_t stats[3][256];
  53. uint8_t len[3][256];
  54. uint32_t bits[3][256];
  55. VLC vlc[3];
  56. AVFrame picture;
  57. uint8_t __align8 bitstream_buffer[1024*1024*3]; //FIXME dynamic alloc or some other solution
  58. DSPContext dsp;
  59. }HYuvContext;
  60. static const unsigned char classic_shift_luma[] = {
  61. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  62. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  63. 69,68, 0
  64. };
  65. static const unsigned char classic_shift_chroma[] = {
  66. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  67. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  68. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  69. };
  70. static const unsigned char classic_add_luma[256] = {
  71. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  72. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  73. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  74. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  75. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  76. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  77. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  78. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  79. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  80. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  81. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  82. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  83. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  84. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  85. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  86. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  87. };
  88. static const unsigned char classic_add_chroma[256] = {
  89. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  90. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  91. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  92. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  93. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  94. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  95. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  96. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  97. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  98. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  99. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  100. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  101. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  102. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  103. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  104. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  105. };
  106. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  107. int i;
  108. for(i=0; i<w-1; i++){
  109. acc+= src[i];
  110. dst[i]= acc;
  111. i++;
  112. acc+= src[i];
  113. dst[i]= acc;
  114. }
  115. for(; i<w; i++){
  116. acc+= src[i];
  117. dst[i]= acc;
  118. }
  119. return acc;
  120. }
  121. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  122. int i;
  123. uint8_t l, lt;
  124. l= *left;
  125. lt= *left_top;
  126. for(i=0; i<w; i++){
  127. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  128. lt= src1[i];
  129. dst[i]= l;
  130. }
  131. *left= l;
  132. *left_top= lt;
  133. }
  134. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  135. int i;
  136. int r,g,b;
  137. r= *red;
  138. g= *green;
  139. b= *blue;
  140. for(i=0; i<w; i++){
  141. b+= src[4*i+0];
  142. g+= src[4*i+1];
  143. r+= src[4*i+2];
  144. dst[4*i+0]= b;
  145. dst[4*i+1]= g;
  146. dst[4*i+2]= r;
  147. }
  148. *red= r;
  149. *green= g;
  150. *blue= b;
  151. }
  152. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  153. int i;
  154. if(w<32){
  155. for(i=0; i<w; i++){
  156. const int temp= src[i];
  157. dst[i]= temp - left;
  158. left= temp;
  159. }
  160. return left;
  161. }else{
  162. for(i=0; i<16; i++){
  163. const int temp= src[i];
  164. dst[i]= temp - left;
  165. left= temp;
  166. }
  167. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  168. return src[w-1];
  169. }
  170. }
  171. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  172. int i, val, repeat;
  173. for(i=0; i<256;){
  174. repeat= get_bits(gb, 3);
  175. val = get_bits(gb, 5);
  176. if(repeat==0)
  177. repeat= get_bits(gb, 8);
  178. //printf("%d %d\n", val, repeat);
  179. while (repeat--)
  180. dst[i++] = val;
  181. }
  182. }
  183. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  184. int len, index;
  185. uint32_t bits=0;
  186. for(len=32; len>0; len--){
  187. for(index=0; index<256; index++){
  188. if(len_table[index]==len)
  189. dst[index]= bits++;
  190. }
  191. if(bits & 1){
  192. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  193. return -1;
  194. }
  195. bits >>= 1;
  196. }
  197. return 0;
  198. }
  199. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  200. uint64_t counts[2*size];
  201. int up[2*size];
  202. int offset, i, next;
  203. for(offset=1; ; offset<<=1){
  204. for(i=0; i<size; i++){
  205. counts[i]= stats[i] + offset - 1;
  206. }
  207. for(next=size; next<size*2; next++){
  208. uint64_t min1, min2;
  209. int min1_i, min2_i;
  210. min1=min2= INT64_MAX;
  211. min1_i= min2_i=-1;
  212. for(i=0; i<next; i++){
  213. if(min2 > counts[i]){
  214. if(min1 > counts[i]){
  215. min2= min1;
  216. min2_i= min1_i;
  217. min1= counts[i];
  218. min1_i= i;
  219. }else{
  220. min2= counts[i];
  221. min2_i= i;
  222. }
  223. }
  224. }
  225. if(min2==INT64_MAX) break;
  226. counts[next]= min1 + min2;
  227. counts[min1_i]=
  228. counts[min2_i]= INT64_MAX;
  229. up[min1_i]=
  230. up[min2_i]= next;
  231. up[next]= -1;
  232. }
  233. for(i=0; i<size; i++){
  234. int len;
  235. int index=i;
  236. for(len=0; up[index] != -1; len++)
  237. index= up[index];
  238. if(len > 32) break;
  239. dst[i]= len;
  240. }
  241. if(i==size) break;
  242. }
  243. }
  244. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  245. GetBitContext gb;
  246. int i;
  247. init_get_bits(&gb, src, length*8);
  248. for(i=0; i<3; i++){
  249. read_len_table(s->len[i], &gb);
  250. if(generate_bits_table(s->bits[i], s->len[i])<0){
  251. return -1;
  252. }
  253. #if 0
  254. for(j=0; j<256; j++){
  255. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  256. }
  257. #endif
  258. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  259. }
  260. return 0;
  261. }
  262. static int read_old_huffman_tables(HYuvContext *s){
  263. #if 1
  264. GetBitContext gb;
  265. int i;
  266. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  267. read_len_table(s->len[0], &gb);
  268. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  269. read_len_table(s->len[1], &gb);
  270. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  271. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  272. if(s->bitstream_bpp >= 24){
  273. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  274. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  275. }
  276. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  277. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  278. for(i=0; i<3; i++)
  279. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  280. return 0;
  281. #else
  282. fprintf(stderr, "v1 huffyuv is not supported \n");
  283. return -1;
  284. #endif
  285. }
  286. static int decode_init(AVCodecContext *avctx)
  287. {
  288. HYuvContext *s = avctx->priv_data;
  289. int width, height;
  290. s->avctx= avctx;
  291. s->flags= avctx->flags;
  292. dsputil_init(&s->dsp, avctx);
  293. width= s->width= avctx->width;
  294. height= s->height= avctx->height;
  295. avctx->coded_frame= &s->picture;
  296. s->bgr32=1;
  297. assert(width && height);
  298. //if(avctx->extradata)
  299. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  300. if(avctx->extradata_size){
  301. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  302. s->version=1; // do such files exist at all?
  303. else
  304. s->version=2;
  305. }else
  306. s->version=0;
  307. if(s->version==2){
  308. int method;
  309. method= ((uint8_t*)avctx->extradata)[0];
  310. s->decorrelate= method&64 ? 1 : 0;
  311. s->predictor= method&63;
  312. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  313. if(s->bitstream_bpp==0)
  314. s->bitstream_bpp= avctx->bits_per_sample&~7;
  315. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  316. return -1;
  317. }else{
  318. switch(avctx->bits_per_sample&7){
  319. case 1:
  320. s->predictor= LEFT;
  321. s->decorrelate= 0;
  322. break;
  323. case 2:
  324. s->predictor= LEFT;
  325. s->decorrelate= 1;
  326. break;
  327. case 3:
  328. s->predictor= PLANE;
  329. s->decorrelate= avctx->bits_per_sample >= 24;
  330. break;
  331. case 4:
  332. s->predictor= MEDIAN;
  333. s->decorrelate= 0;
  334. break;
  335. default:
  336. s->predictor= LEFT; //OLD
  337. s->decorrelate= 0;
  338. break;
  339. }
  340. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  341. if(read_old_huffman_tables(s) < 0)
  342. return -1;
  343. }
  344. s->interlaced= height > 288;
  345. switch(s->bitstream_bpp){
  346. case 12:
  347. avctx->pix_fmt = PIX_FMT_YUV420P;
  348. break;
  349. case 16:
  350. if(s->yuy2){
  351. avctx->pix_fmt = PIX_FMT_YUV422;
  352. }else{
  353. avctx->pix_fmt = PIX_FMT_YUV422P;
  354. }
  355. break;
  356. case 24:
  357. case 32:
  358. if(s->bgr32){
  359. avctx->pix_fmt = PIX_FMT_RGBA32;
  360. }else{
  361. avctx->pix_fmt = PIX_FMT_BGR24;
  362. }
  363. break;
  364. default:
  365. assert(0);
  366. }
  367. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  368. return 0;
  369. }
  370. static void store_table(HYuvContext *s, uint8_t *len){
  371. int i;
  372. int index= s->avctx->extradata_size;
  373. for(i=0; i<256;){
  374. int val= len[i];
  375. int repeat=0;
  376. for(; i<256 && len[i]==val && repeat<255; i++)
  377. repeat++;
  378. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  379. if(repeat>7){
  380. ((uint8_t*)s->avctx->extradata)[index++]= val;
  381. ((uint8_t*)s->avctx->extradata)[index++]= repeat;
  382. }else{
  383. ((uint8_t*)s->avctx->extradata)[index++]= val | (repeat<<5);
  384. }
  385. }
  386. s->avctx->extradata_size= index;
  387. }
  388. static int encode_init(AVCodecContext *avctx)
  389. {
  390. HYuvContext *s = avctx->priv_data;
  391. int i, j, width, height;
  392. s->avctx= avctx;
  393. s->flags= avctx->flags;
  394. dsputil_init(&s->dsp, avctx);
  395. width= s->width= avctx->width;
  396. height= s->height= avctx->height;
  397. assert(width && height);
  398. avctx->extradata= av_mallocz(1024*30);
  399. avctx->stats_out= av_mallocz(1024*30);
  400. s->version=2;
  401. avctx->coded_frame= &s->picture;
  402. switch(avctx->pix_fmt){
  403. case PIX_FMT_YUV420P:
  404. s->bitstream_bpp= 12;
  405. break;
  406. case PIX_FMT_YUV422P:
  407. s->bitstream_bpp= 16;
  408. break;
  409. default:
  410. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  411. return -1;
  412. }
  413. avctx->bits_per_sample= s->bitstream_bpp;
  414. s->decorrelate= s->bitstream_bpp >= 24;
  415. s->predictor= avctx->prediction_method;
  416. ((uint8_t*)avctx->extradata)[0]= s->predictor;
  417. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  418. ((uint8_t*)avctx->extradata)[2]=
  419. ((uint8_t*)avctx->extradata)[3]= 0;
  420. s->avctx->extradata_size= 4;
  421. if(avctx->stats_in){
  422. char *p= avctx->stats_in;
  423. for(i=0; i<3; i++)
  424. for(j=0; j<256; j++)
  425. s->stats[i][j]= 1;
  426. for(;;){
  427. for(i=0; i<3; i++){
  428. char *next;
  429. for(j=0; j<256; j++){
  430. s->stats[i][j]+= strtol(p, &next, 0);
  431. if(next==p) return -1;
  432. p=next;
  433. }
  434. }
  435. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  436. }
  437. }else{
  438. for(i=0; i<3; i++)
  439. for(j=0; j<256; j++){
  440. int d= FFMIN(j, 256-j);
  441. s->stats[i][j]= 100000000/(d+1);
  442. }
  443. }
  444. for(i=0; i<3; i++){
  445. generate_len_table(s->len[i], s->stats[i], 256);
  446. if(generate_bits_table(s->bits[i], s->len[i])<0){
  447. return -1;
  448. }
  449. store_table(s, s->len[i]);
  450. }
  451. for(i=0; i<3; i++)
  452. for(j=0; j<256; j++)
  453. s->stats[i][j]= 0;
  454. s->interlaced= height > 288;
  455. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  456. s->picture_number=0;
  457. return 0;
  458. }
  459. static void decode_422_bitstream(HYuvContext *s, int count){
  460. int i;
  461. count/=2;
  462. for(i=0; i<count; i++){
  463. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  464. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  465. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  466. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  467. }
  468. }
  469. static void decode_gray_bitstream(HYuvContext *s, int count){
  470. int i;
  471. count/=2;
  472. for(i=0; i<count; i++){
  473. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  474. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  475. }
  476. }
  477. static void encode_422_bitstream(HYuvContext *s, int count){
  478. int i;
  479. count/=2;
  480. if(s->flags&CODEC_FLAG_PASS1){
  481. for(i=0; i<count; i++){
  482. s->stats[0][ s->temp[0][2*i ] ]++;
  483. s->stats[1][ s->temp[1][ i ] ]++;
  484. s->stats[0][ s->temp[0][2*i+1] ]++;
  485. s->stats[2][ s->temp[2][ i ] ]++;
  486. }
  487. }else{
  488. for(i=0; i<count; i++){
  489. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  490. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  491. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  492. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  493. }
  494. }
  495. }
  496. static void encode_gray_bitstream(HYuvContext *s, int count){
  497. int i;
  498. count/=2;
  499. if(s->flags&CODEC_FLAG_PASS1){
  500. for(i=0; i<count; i++){
  501. s->stats[0][ s->temp[0][2*i ] ]++;
  502. s->stats[0][ s->temp[0][2*i+1] ]++;
  503. }
  504. }else{
  505. for(i=0; i<count; i++){
  506. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  507. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  508. }
  509. }
  510. }
  511. static void decode_bgr_bitstream(HYuvContext *s, int count){
  512. int i;
  513. if(s->decorrelate){
  514. if(s->bitstream_bpp==24){
  515. for(i=0; i<count; i++){
  516. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  517. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  518. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  519. }
  520. }else{
  521. for(i=0; i<count; i++){
  522. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  523. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  524. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+1];
  525. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  526. }
  527. }
  528. }else{
  529. if(s->bitstream_bpp==24){
  530. for(i=0; i<count; i++){
  531. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  532. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  533. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  534. }
  535. }else{
  536. for(i=0; i<count; i++){
  537. s->temp[0][4*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  538. s->temp[0][4*i+1]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  539. s->temp[0][4*i+2]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  540. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  541. }
  542. }
  543. }
  544. }
  545. static void draw_slice(HYuvContext *s, int y){
  546. int h, cy;
  547. int offset[4];
  548. if(s->avctx->draw_horiz_band==NULL)
  549. return;
  550. h= y - s->last_slice_end;
  551. y -= h;
  552. if(s->bitstream_bpp==12){
  553. cy= y>>1;
  554. }else{
  555. cy= y;
  556. }
  557. offset[0] = s->picture.linesize[0]*y;
  558. offset[1] = s->picture.linesize[1]*cy;
  559. offset[2] = s->picture.linesize[2]*cy;
  560. offset[3] = 0;
  561. emms_c();
  562. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  563. s->last_slice_end= y + h;
  564. }
  565. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  566. HYuvContext *s = avctx->priv_data;
  567. const int width= s->width;
  568. const int width2= s->width>>1;
  569. const int height= s->height;
  570. int fake_ystride, fake_ustride, fake_vstride;
  571. AVFrame * const p= &s->picture;
  572. AVFrame *picture = data;
  573. /* no supplementary picture */
  574. if (buf_size == 0)
  575. return 0;
  576. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  577. init_get_bits(&s->gb, s->bitstream_buffer, buf_size*8);
  578. if(p->data[0])
  579. avctx->release_buffer(avctx, p);
  580. p->reference= 0;
  581. if(avctx->get_buffer(avctx, p) < 0){
  582. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  583. return -1;
  584. }
  585. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  586. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  587. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  588. s->last_slice_end= 0;
  589. if(s->bitstream_bpp<24){
  590. int y, cy;
  591. int lefty, leftu, leftv;
  592. int lefttopy, lefttopu, lefttopv;
  593. if(s->yuy2){
  594. p->data[0][3]= get_bits(&s->gb, 8);
  595. p->data[0][2]= get_bits(&s->gb, 8);
  596. p->data[0][1]= get_bits(&s->gb, 8);
  597. p->data[0][0]= get_bits(&s->gb, 8);
  598. av_log(avctx, AV_LOG_ERROR, "YUY2 output isnt implemenetd yet\n");
  599. return -1;
  600. }else{
  601. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  602. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  603. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  604. p->data[0][0]= get_bits(&s->gb, 8);
  605. switch(s->predictor){
  606. case LEFT:
  607. case PLANE:
  608. decode_422_bitstream(s, width-2);
  609. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  610. if(!(s->flags&CODEC_FLAG_GRAY)){
  611. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  612. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  613. }
  614. for(cy=y=1; y<s->height; y++,cy++){
  615. uint8_t *ydst, *udst, *vdst;
  616. if(s->bitstream_bpp==12){
  617. decode_gray_bitstream(s, width);
  618. ydst= p->data[0] + p->linesize[0]*y;
  619. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  620. if(s->predictor == PLANE){
  621. if(y>s->interlaced)
  622. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  623. }
  624. y++;
  625. if(y>=s->height) break;
  626. }
  627. draw_slice(s, y);
  628. ydst= p->data[0] + p->linesize[0]*y;
  629. udst= p->data[1] + p->linesize[1]*cy;
  630. vdst= p->data[2] + p->linesize[2]*cy;
  631. decode_422_bitstream(s, width);
  632. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  633. if(!(s->flags&CODEC_FLAG_GRAY)){
  634. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  635. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  636. }
  637. if(s->predictor == PLANE){
  638. if(cy>s->interlaced){
  639. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  640. if(!(s->flags&CODEC_FLAG_GRAY)){
  641. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  642. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  643. }
  644. }
  645. }
  646. }
  647. draw_slice(s, height);
  648. break;
  649. case MEDIAN:
  650. /* first line except first 2 pixels is left predicted */
  651. decode_422_bitstream(s, width-2);
  652. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  653. if(!(s->flags&CODEC_FLAG_GRAY)){
  654. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  655. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  656. }
  657. cy=y=1;
  658. /* second line is left predicted for interlaced case */
  659. if(s->interlaced){
  660. decode_422_bitstream(s, width);
  661. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  662. if(!(s->flags&CODEC_FLAG_GRAY)){
  663. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  664. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  665. }
  666. y++; cy++;
  667. }
  668. /* next 4 pixels are left predicted too */
  669. decode_422_bitstream(s, 4);
  670. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  671. if(!(s->flags&CODEC_FLAG_GRAY)){
  672. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  673. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  674. }
  675. /* next line except the first 4 pixels is median predicted */
  676. lefttopy= p->data[0][3];
  677. decode_422_bitstream(s, width-4);
  678. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  679. if(!(s->flags&CODEC_FLAG_GRAY)){
  680. lefttopu= p->data[1][1];
  681. lefttopv= p->data[2][1];
  682. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  683. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  684. }
  685. y++; cy++;
  686. for(; y<height; y++,cy++){
  687. uint8_t *ydst, *udst, *vdst;
  688. if(s->bitstream_bpp==12){
  689. while(2*cy > y){
  690. decode_gray_bitstream(s, width);
  691. ydst= p->data[0] + p->linesize[0]*y;
  692. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  693. y++;
  694. }
  695. if(y>=height) break;
  696. }
  697. draw_slice(s, y);
  698. decode_422_bitstream(s, width);
  699. ydst= p->data[0] + p->linesize[0]*y;
  700. udst= p->data[1] + p->linesize[1]*cy;
  701. vdst= p->data[2] + p->linesize[2]*cy;
  702. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  703. if(!(s->flags&CODEC_FLAG_GRAY)){
  704. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  705. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  706. }
  707. }
  708. draw_slice(s, height);
  709. break;
  710. }
  711. }
  712. }else{
  713. int y;
  714. int leftr, leftg, leftb;
  715. const int last_line= (height-1)*p->linesize[0];
  716. if(s->bitstream_bpp==32){
  717. p->data[0][last_line+3]= get_bits(&s->gb, 8);
  718. leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8);
  719. leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8);
  720. leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8);
  721. }else{
  722. leftr= p->data[0][last_line+2]= get_bits(&s->gb, 8);
  723. leftg= p->data[0][last_line+1]= get_bits(&s->gb, 8);
  724. leftb= p->data[0][last_line+0]= get_bits(&s->gb, 8);
  725. skip_bits(&s->gb, 8);
  726. }
  727. if(s->bgr32){
  728. switch(s->predictor){
  729. case LEFT:
  730. case PLANE:
  731. decode_bgr_bitstream(s, width-1);
  732. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  733. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  734. decode_bgr_bitstream(s, width);
  735. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  736. if(s->predictor == PLANE){
  737. if((y&s->interlaced)==0){
  738. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  739. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  740. }
  741. }
  742. }
  743. draw_slice(s, height); // just 1 large slice as this isnt possible in reverse order
  744. break;
  745. default:
  746. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  747. }
  748. }else{
  749. av_log(avctx, AV_LOG_ERROR, "BGR24 output isnt implemenetd yet\n");
  750. return -1;
  751. }
  752. }
  753. emms_c();
  754. *picture= *p;
  755. *data_size = sizeof(AVFrame);
  756. return (get_bits_count(&s->gb)+31)/32*4;
  757. }
  758. static int decode_end(AVCodecContext *avctx)
  759. {
  760. HYuvContext *s = avctx->priv_data;
  761. int i;
  762. for(i=0; i<3; i++){
  763. free_vlc(&s->vlc[i]);
  764. }
  765. return 0;
  766. }
  767. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  768. HYuvContext *s = avctx->priv_data;
  769. AVFrame *pict = data;
  770. const int width= s->width;
  771. const int width2= s->width>>1;
  772. const int height= s->height;
  773. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  774. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  775. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  776. AVFrame * const p= &s->picture;
  777. int i, size;
  778. init_put_bits(&s->pb, buf, buf_size);
  779. *p = *pict;
  780. p->pict_type= FF_I_TYPE;
  781. p->key_frame= 1;
  782. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  783. int lefty, leftu, leftv, y, cy;
  784. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  785. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  786. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  787. put_bits(&s->pb, 8, p->data[0][0]);
  788. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  789. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  790. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  791. encode_422_bitstream(s, width-2);
  792. if(s->predictor==MEDIAN){
  793. int lefttopy, lefttopu, lefttopv;
  794. cy=y=1;
  795. if(s->interlaced){
  796. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  797. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  798. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  799. encode_422_bitstream(s, width);
  800. y++; cy++;
  801. }
  802. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  803. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ystride, 2, leftu);
  804. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_ystride, 2, leftv);
  805. encode_422_bitstream(s, 4);
  806. lefttopy= p->data[0][3];
  807. lefttopu= p->data[1][1];
  808. lefttopv= p->data[2][1];
  809. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  810. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  811. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  812. encode_422_bitstream(s, width-4);
  813. y++; cy++;
  814. for(; y<height; y++,cy++){
  815. uint8_t *ydst, *udst, *vdst;
  816. if(s->bitstream_bpp==12){
  817. while(2*cy > y){
  818. ydst= p->data[0] + p->linesize[0]*y;
  819. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  820. encode_gray_bitstream(s, width);
  821. y++;
  822. }
  823. if(y>=height) break;
  824. }
  825. ydst= p->data[0] + p->linesize[0]*y;
  826. udst= p->data[1] + p->linesize[1]*cy;
  827. vdst= p->data[2] + p->linesize[2]*cy;
  828. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  829. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  830. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  831. encode_422_bitstream(s, width);
  832. }
  833. }else{
  834. for(cy=y=1; y<height; y++,cy++){
  835. uint8_t *ydst, *udst, *vdst;
  836. /* encode a luma only line & y++ */
  837. if(s->bitstream_bpp==12){
  838. ydst= p->data[0] + p->linesize[0]*y;
  839. if(s->predictor == PLANE && s->interlaced < y){
  840. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  841. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  842. }else{
  843. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  844. }
  845. encode_gray_bitstream(s, width);
  846. y++;
  847. if(y>=height) break;
  848. }
  849. ydst= p->data[0] + p->linesize[0]*y;
  850. udst= p->data[1] + p->linesize[1]*cy;
  851. vdst= p->data[2] + p->linesize[2]*cy;
  852. if(s->predictor == PLANE && s->interlaced < cy){
  853. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  854. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  855. s->dsp.diff_bytes(s->temp[2] + 1250, vdst, vdst - fake_vstride, width2);
  856. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  857. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  858. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + 1250, width2, leftv);
  859. }else{
  860. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  861. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  862. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  863. }
  864. encode_422_bitstream(s, width);
  865. }
  866. }
  867. }else{
  868. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  869. }
  870. emms_c();
  871. size= (put_bits_count(&s->pb)+31)/32;
  872. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  873. int j;
  874. char *p= avctx->stats_out;
  875. for(i=0; i<3; i++){
  876. for(j=0; j<256; j++){
  877. sprintf(p, "%llu ", s->stats[i][j]);
  878. p+= strlen(p);
  879. s->stats[i][j]= 0;
  880. }
  881. sprintf(p, "\n");
  882. p++;
  883. }
  884. }else{
  885. flush_put_bits(&s->pb);
  886. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  887. }
  888. s->picture_number++;
  889. return size*4;
  890. }
  891. static int encode_end(AVCodecContext *avctx)
  892. {
  893. // HYuvContext *s = avctx->priv_data;
  894. av_freep(&avctx->extradata);
  895. av_freep(&avctx->stats_out);
  896. return 0;
  897. }
  898. static const AVOption huffyuv_options[] =
  899. {
  900. AVOPTION_CODEC_INT("prediction_method", "prediction_method", prediction_method, 0, 2, 0),
  901. AVOPTION_END()
  902. };
  903. AVCodec huffyuv_decoder = {
  904. "huffyuv",
  905. CODEC_TYPE_VIDEO,
  906. CODEC_ID_HUFFYUV,
  907. sizeof(HYuvContext),
  908. decode_init,
  909. NULL,
  910. decode_end,
  911. decode_frame,
  912. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  913. NULL
  914. };
  915. #ifdef CONFIG_ENCODERS
  916. AVCodec huffyuv_encoder = {
  917. "huffyuv",
  918. CODEC_TYPE_VIDEO,
  919. CODEC_ID_HUFFYUV,
  920. sizeof(HYuvContext),
  921. encode_init,
  922. encode_frame,
  923. encode_end,
  924. .options = huffyuv_options,
  925. };
  926. #endif //CONFIG_ENCODERS