You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

791 lines
23KB

  1. /*
  2. * FLAC (Free Lossless Audio Codec) decoder
  3. * Copyright (c) 2003 Alex Beregszaszi
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file flac.c
  21. * FLAC (Free Lossless Audio Codec) decoder
  22. * @author Alex Beregszaszi
  23. *
  24. * For more information on the FLAC format, visit:
  25. * http://flac.sourceforge.net/
  26. *
  27. * This decoder can be used in 1 of 2 ways: Either raw FLAC data can be fed
  28. * through, starting from the initial 'fLaC' signature; or by passing the
  29. * 34-byte streaminfo structure through avctx->extradata[_size] followed
  30. * by data starting with the 0xFFF8 marker.
  31. */
  32. #include <limits.h>
  33. #include "avcodec.h"
  34. #include "golomb.h"
  35. #undef NDEBUG
  36. #include <assert.h>
  37. #define MAX_CHANNELS 8
  38. #define MAX_BLOCKSIZE 65535
  39. #define FLAC_STREAMINFO_SIZE 34
  40. enum decorrelation_type {
  41. INDEPENDENT,
  42. LEFT_SIDE,
  43. RIGHT_SIDE,
  44. MID_SIDE,
  45. };
  46. typedef struct FLACContext {
  47. AVCodecContext *avctx;
  48. GetBitContext gb;
  49. int min_blocksize, max_blocksize;
  50. int min_framesize, max_framesize;
  51. int samplerate, channels;
  52. int blocksize/*, last_blocksize*/;
  53. int bps, curr_bps;
  54. enum decorrelation_type decorrelation;
  55. int32_t *decoded[MAX_CHANNELS];
  56. uint8_t *bitstream;
  57. int bitstream_size;
  58. int bitstream_index;
  59. int allocated_bitstream_size;
  60. } FLACContext;
  61. #define METADATA_TYPE_STREAMINFO 0
  62. static int sample_rate_table[] =
  63. { 0, 0, 0, 0,
  64. 8000, 16000, 22050, 24000, 32000, 44100, 48000, 96000,
  65. 0, 0, 0, 0 };
  66. static int sample_size_table[] =
  67. { 0, 8, 12, 0, 16, 20, 24, 0 };
  68. static int blocksize_table[] = {
  69. 0, 192, 576<<0, 576<<1, 576<<2, 576<<3, 0, 0,
  70. 256<<0, 256<<1, 256<<2, 256<<3, 256<<4, 256<<5, 256<<6, 256<<7
  71. };
  72. static const uint8_t table_crc8[256] = {
  73. 0x00, 0x07, 0x0e, 0x09, 0x1c, 0x1b, 0x12, 0x15,
  74. 0x38, 0x3f, 0x36, 0x31, 0x24, 0x23, 0x2a, 0x2d,
  75. 0x70, 0x77, 0x7e, 0x79, 0x6c, 0x6b, 0x62, 0x65,
  76. 0x48, 0x4f, 0x46, 0x41, 0x54, 0x53, 0x5a, 0x5d,
  77. 0xe0, 0xe7, 0xee, 0xe9, 0xfc, 0xfb, 0xf2, 0xf5,
  78. 0xd8, 0xdf, 0xd6, 0xd1, 0xc4, 0xc3, 0xca, 0xcd,
  79. 0x90, 0x97, 0x9e, 0x99, 0x8c, 0x8b, 0x82, 0x85,
  80. 0xa8, 0xaf, 0xa6, 0xa1, 0xb4, 0xb3, 0xba, 0xbd,
  81. 0xc7, 0xc0, 0xc9, 0xce, 0xdb, 0xdc, 0xd5, 0xd2,
  82. 0xff, 0xf8, 0xf1, 0xf6, 0xe3, 0xe4, 0xed, 0xea,
  83. 0xb7, 0xb0, 0xb9, 0xbe, 0xab, 0xac, 0xa5, 0xa2,
  84. 0x8f, 0x88, 0x81, 0x86, 0x93, 0x94, 0x9d, 0x9a,
  85. 0x27, 0x20, 0x29, 0x2e, 0x3b, 0x3c, 0x35, 0x32,
  86. 0x1f, 0x18, 0x11, 0x16, 0x03, 0x04, 0x0d, 0x0a,
  87. 0x57, 0x50, 0x59, 0x5e, 0x4b, 0x4c, 0x45, 0x42,
  88. 0x6f, 0x68, 0x61, 0x66, 0x73, 0x74, 0x7d, 0x7a,
  89. 0x89, 0x8e, 0x87, 0x80, 0x95, 0x92, 0x9b, 0x9c,
  90. 0xb1, 0xb6, 0xbf, 0xb8, 0xad, 0xaa, 0xa3, 0xa4,
  91. 0xf9, 0xfe, 0xf7, 0xf0, 0xe5, 0xe2, 0xeb, 0xec,
  92. 0xc1, 0xc6, 0xcf, 0xc8, 0xdd, 0xda, 0xd3, 0xd4,
  93. 0x69, 0x6e, 0x67, 0x60, 0x75, 0x72, 0x7b, 0x7c,
  94. 0x51, 0x56, 0x5f, 0x58, 0x4d, 0x4a, 0x43, 0x44,
  95. 0x19, 0x1e, 0x17, 0x10, 0x05, 0x02, 0x0b, 0x0c,
  96. 0x21, 0x26, 0x2f, 0x28, 0x3d, 0x3a, 0x33, 0x34,
  97. 0x4e, 0x49, 0x40, 0x47, 0x52, 0x55, 0x5c, 0x5b,
  98. 0x76, 0x71, 0x78, 0x7f, 0x6a, 0x6d, 0x64, 0x63,
  99. 0x3e, 0x39, 0x30, 0x37, 0x22, 0x25, 0x2c, 0x2b,
  100. 0x06, 0x01, 0x08, 0x0f, 0x1a, 0x1d, 0x14, 0x13,
  101. 0xae, 0xa9, 0xa0, 0xa7, 0xb2, 0xb5, 0xbc, 0xbb,
  102. 0x96, 0x91, 0x98, 0x9f, 0x8a, 0x8d, 0x84, 0x83,
  103. 0xde, 0xd9, 0xd0, 0xd7, 0xc2, 0xc5, 0xcc, 0xcb,
  104. 0xe6, 0xe1, 0xe8, 0xef, 0xfa, 0xfd, 0xf4, 0xf3
  105. };
  106. static int64_t get_utf8(GetBitContext *gb)
  107. {
  108. uint64_t val;
  109. int ones=0, bytes;
  110. while(get_bits1(gb))
  111. ones++;
  112. if (ones==0) bytes=0;
  113. else if(ones==1) return -1;
  114. else bytes= ones - 1;
  115. val= get_bits(gb, 7-ones);
  116. while(bytes--){
  117. const int tmp = get_bits(gb, 8);
  118. if((tmp>>6) != 2)
  119. return -1;
  120. val<<=6;
  121. val|= tmp&0x3F;
  122. }
  123. return val;
  124. }
  125. static int get_crc8(const uint8_t *buf, int count){
  126. int crc=0;
  127. int i;
  128. for(i=0; i<count; i++){
  129. crc = table_crc8[crc ^ buf[i]];
  130. }
  131. return crc;
  132. }
  133. static void metadata_streaminfo(FLACContext *s);
  134. static void dump_headers(FLACContext *s);
  135. static int flac_decode_init(AVCodecContext * avctx)
  136. {
  137. FLACContext *s = avctx->priv_data;
  138. s->avctx = avctx;
  139. /* initialize based on the demuxer-supplied streamdata header */
  140. if (avctx->extradata_size == FLAC_STREAMINFO_SIZE) {
  141. init_get_bits(&s->gb, avctx->extradata, avctx->extradata_size*8);
  142. metadata_streaminfo(s);
  143. dump_headers(s);
  144. }
  145. return 0;
  146. }
  147. static void dump_headers(FLACContext *s)
  148. {
  149. av_log(s->avctx, AV_LOG_DEBUG, " Blocksize: %d .. %d (%d)\n", s->min_blocksize, s->max_blocksize, s->blocksize);
  150. av_log(s->avctx, AV_LOG_DEBUG, " Framesize: %d .. %d\n", s->min_framesize, s->max_framesize);
  151. av_log(s->avctx, AV_LOG_DEBUG, " Samplerate: %d\n", s->samplerate);
  152. av_log(s->avctx, AV_LOG_DEBUG, " Channels: %d\n", s->channels);
  153. av_log(s->avctx, AV_LOG_DEBUG, " Bits: %d\n", s->bps);
  154. }
  155. static void allocate_buffers(FLACContext *s){
  156. int i;
  157. assert(s->max_blocksize);
  158. if(s->max_framesize == 0 && s->max_blocksize){
  159. s->max_framesize= (s->channels * s->bps * s->max_blocksize + 7)/ 8; //FIXME header overhead
  160. }
  161. for (i = 0; i < s->channels; i++)
  162. {
  163. s->decoded[i] = av_realloc(s->decoded[i], sizeof(int32_t)*s->max_blocksize);
  164. }
  165. s->bitstream= av_fast_realloc(s->bitstream, &s->allocated_bitstream_size, s->max_framesize);
  166. }
  167. static void metadata_streaminfo(FLACContext *s)
  168. {
  169. /* mandatory streaminfo */
  170. s->min_blocksize = get_bits(&s->gb, 16);
  171. s->max_blocksize = get_bits(&s->gb, 16);
  172. s->min_framesize = get_bits_long(&s->gb, 24);
  173. s->max_framesize = get_bits_long(&s->gb, 24);
  174. s->samplerate = get_bits_long(&s->gb, 20);
  175. s->channels = get_bits(&s->gb, 3) + 1;
  176. s->bps = get_bits(&s->gb, 5) + 1;
  177. s->avctx->channels = s->channels;
  178. s->avctx->sample_rate = s->samplerate;
  179. skip_bits(&s->gb, 36); /* total num of samples */
  180. skip_bits(&s->gb, 64); /* md5 sum */
  181. skip_bits(&s->gb, 64); /* md5 sum */
  182. allocate_buffers(s);
  183. }
  184. static int decode_residuals(FLACContext *s, int channel, int pred_order)
  185. {
  186. int i, tmp, partition, method_type, rice_order;
  187. int sample = 0, samples;
  188. method_type = get_bits(&s->gb, 2);
  189. if (method_type != 0){
  190. av_log(s->avctx, AV_LOG_DEBUG, "illegal residual coding method %d\n", method_type);
  191. return -1;
  192. }
  193. rice_order = get_bits(&s->gb, 4);
  194. samples= s->blocksize >> rice_order;
  195. sample=
  196. i= pred_order;
  197. for (partition = 0; partition < (1 << rice_order); partition++)
  198. {
  199. tmp = get_bits(&s->gb, 4);
  200. if (tmp == 15)
  201. {
  202. av_log(s->avctx, AV_LOG_DEBUG, "fixed len partition\n");
  203. tmp = get_bits(&s->gb, 5);
  204. for (; i < samples; i++, sample++)
  205. s->decoded[channel][sample] = get_sbits(&s->gb, tmp);
  206. }
  207. else
  208. {
  209. // av_log(s->avctx, AV_LOG_DEBUG, "rice coded partition k=%d\n", tmp);
  210. for (; i < samples; i++, sample++){
  211. s->decoded[channel][sample] = get_sr_golomb_flac(&s->gb, tmp, INT_MAX, 0);
  212. }
  213. }
  214. i= 0;
  215. }
  216. // av_log(s->avctx, AV_LOG_DEBUG, "partitions: %d, samples: %d\n", 1 << rice_order, sample);
  217. return 0;
  218. }
  219. static int decode_subframe_fixed(FLACContext *s, int channel, int pred_order)
  220. {
  221. int i;
  222. // av_log(s->avctx, AV_LOG_DEBUG, " SUBFRAME FIXED\n");
  223. /* warm up samples */
  224. // av_log(s->avctx, AV_LOG_DEBUG, " warm up samples: %d\n", pred_order);
  225. for (i = 0; i < pred_order; i++)
  226. {
  227. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  228. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, s->decoded[channel][i]);
  229. }
  230. if (decode_residuals(s, channel, pred_order) < 0)
  231. return -1;
  232. switch(pred_order)
  233. {
  234. case 0:
  235. break;
  236. case 1:
  237. for (i = pred_order; i < s->blocksize; i++)
  238. s->decoded[channel][i] += s->decoded[channel][i-1];
  239. break;
  240. case 2:
  241. for (i = pred_order; i < s->blocksize; i++)
  242. s->decoded[channel][i] += 2*s->decoded[channel][i-1]
  243. - s->decoded[channel][i-2];
  244. break;
  245. case 3:
  246. for (i = pred_order; i < s->blocksize; i++)
  247. s->decoded[channel][i] += 3*s->decoded[channel][i-1]
  248. - 3*s->decoded[channel][i-2]
  249. + s->decoded[channel][i-3];
  250. break;
  251. case 4:
  252. for (i = pred_order; i < s->blocksize; i++)
  253. s->decoded[channel][i] += 4*s->decoded[channel][i-1]
  254. - 6*s->decoded[channel][i-2]
  255. + 4*s->decoded[channel][i-3]
  256. - s->decoded[channel][i-4];
  257. break;
  258. default:
  259. av_log(s->avctx, AV_LOG_ERROR, "illegal pred order %d\n", pred_order);
  260. return -1;
  261. }
  262. return 0;
  263. }
  264. static int decode_subframe_lpc(FLACContext *s, int channel, int pred_order)
  265. {
  266. int sum, i, j;
  267. int coeff_prec, qlevel;
  268. int coeffs[pred_order];
  269. // av_log(s->avctx, AV_LOG_DEBUG, " SUBFRAME LPC\n");
  270. /* warm up samples */
  271. // av_log(s->avctx, AV_LOG_DEBUG, " warm up samples: %d\n", pred_order);
  272. for (i = 0; i < pred_order; i++)
  273. {
  274. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  275. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, s->decoded[channel][i]);
  276. }
  277. coeff_prec = get_bits(&s->gb, 4) + 1;
  278. if (coeff_prec == 16)
  279. {
  280. av_log(s->avctx, AV_LOG_DEBUG, "invalid coeff precision\n");
  281. return -1;
  282. }
  283. // av_log(s->avctx, AV_LOG_DEBUG, " qlp coeff prec: %d\n", coeff_prec);
  284. qlevel = get_sbits(&s->gb, 5);
  285. // av_log(s->avctx, AV_LOG_DEBUG, " quant level: %d\n", qlevel);
  286. if(qlevel < 0){
  287. av_log(s->avctx, AV_LOG_DEBUG, "qlevel %d not supported, maybe buggy stream\n", qlevel);
  288. return -1;
  289. }
  290. for (i = 0; i < pred_order; i++)
  291. {
  292. coeffs[i] = get_sbits(&s->gb, coeff_prec);
  293. // av_log(s->avctx, AV_LOG_DEBUG, " %d: %d\n", i, coeffs[i]);
  294. }
  295. if (decode_residuals(s, channel, pred_order) < 0)
  296. return -1;
  297. for (i = pred_order; i < s->blocksize; i++)
  298. {
  299. sum = 0;
  300. for (j = 0; j < pred_order; j++)
  301. sum += coeffs[j] * s->decoded[channel][i-j-1];
  302. s->decoded[channel][i] += sum >> qlevel;
  303. }
  304. return 0;
  305. }
  306. static inline int decode_subframe(FLACContext *s, int channel)
  307. {
  308. int type, wasted = 0;
  309. int i, tmp;
  310. s->curr_bps = s->bps;
  311. if(channel == 0){
  312. if(s->decorrelation == RIGHT_SIDE)
  313. s->curr_bps++;
  314. }else{
  315. if(s->decorrelation == LEFT_SIDE || s->decorrelation == MID_SIDE)
  316. s->curr_bps++;
  317. }
  318. if (get_bits1(&s->gb))
  319. {
  320. av_log(s->avctx, AV_LOG_DEBUG, "invalid subframe padding\n");
  321. return -1;
  322. }
  323. type = get_bits(&s->gb, 6);
  324. // wasted = get_bits1(&s->gb);
  325. // if (wasted)
  326. // {
  327. // while (!get_bits1(&s->gb))
  328. // wasted++;
  329. // if (wasted)
  330. // wasted++;
  331. // s->curr_bps -= wasted;
  332. // }
  333. #if 0
  334. wasted= 16 - av_log2(show_bits(&s->gb, 17));
  335. skip_bits(&s->gb, wasted+1);
  336. s->curr_bps -= wasted;
  337. #else
  338. if (get_bits1(&s->gb))
  339. {
  340. wasted = 1;
  341. while (!get_bits1(&s->gb))
  342. wasted++;
  343. s->curr_bps -= wasted;
  344. av_log(s->avctx, AV_LOG_DEBUG, "%d wasted bits\n", wasted);
  345. }
  346. #endif
  347. //FIXME use av_log2 for types
  348. if (type == 0)
  349. {
  350. av_log(s->avctx, AV_LOG_DEBUG, "coding type: constant\n");
  351. tmp = get_sbits(&s->gb, s->curr_bps);
  352. for (i = 0; i < s->blocksize; i++)
  353. s->decoded[channel][i] = tmp;
  354. }
  355. else if (type == 1)
  356. {
  357. av_log(s->avctx, AV_LOG_DEBUG, "coding type: verbatim\n");
  358. for (i = 0; i < s->blocksize; i++)
  359. s->decoded[channel][i] = get_sbits(&s->gb, s->curr_bps);
  360. }
  361. else if ((type >= 8) && (type <= 12))
  362. {
  363. // av_log(s->avctx, AV_LOG_DEBUG, "coding type: fixed\n");
  364. if (decode_subframe_fixed(s, channel, type & ~0x8) < 0)
  365. return -1;
  366. }
  367. else if (type >= 32)
  368. {
  369. // av_log(s->avctx, AV_LOG_DEBUG, "coding type: lpc\n");
  370. if (decode_subframe_lpc(s, channel, (type & ~0x20)+1) < 0)
  371. return -1;
  372. }
  373. else
  374. {
  375. av_log(s->avctx, AV_LOG_DEBUG, "invalid coding type\n");
  376. return -1;
  377. }
  378. if (wasted)
  379. {
  380. int i;
  381. for (i = 0; i < s->blocksize; i++)
  382. s->decoded[channel][i] <<= wasted;
  383. }
  384. return 0;
  385. }
  386. static int decode_frame(FLACContext *s)
  387. {
  388. int blocksize_code, sample_rate_code, sample_size_code, assignment, i, crc8;
  389. int decorrelation, bps, blocksize, samplerate;
  390. blocksize_code = get_bits(&s->gb, 4);
  391. sample_rate_code = get_bits(&s->gb, 4);
  392. assignment = get_bits(&s->gb, 4); /* channel assignment */
  393. if (assignment < 8 && s->channels == assignment+1)
  394. decorrelation = INDEPENDENT;
  395. else if (assignment >=8 && assignment < 11 && s->channels == 2)
  396. decorrelation = LEFT_SIDE + assignment - 8;
  397. else
  398. {
  399. av_log(s->avctx, AV_LOG_DEBUG, "unsupported channel assignment %d (channels=%d)\n", assignment, s->channels);
  400. return -1;
  401. }
  402. sample_size_code = get_bits(&s->gb, 3);
  403. if(sample_size_code == 0)
  404. bps= s->bps;
  405. else if((sample_size_code != 3) && (sample_size_code != 7))
  406. bps = sample_size_table[sample_size_code];
  407. else
  408. {
  409. av_log(s->avctx, AV_LOG_DEBUG, "invalid sample size code (%d)\n", sample_size_code);
  410. return -1;
  411. }
  412. if (get_bits1(&s->gb))
  413. {
  414. av_log(s->avctx, AV_LOG_DEBUG, "broken stream, invalid padding\n");
  415. return -1;
  416. }
  417. if(get_utf8(&s->gb) < 0){
  418. av_log(s->avctx, AV_LOG_ERROR, "utf8 fscked\n");
  419. return -1;
  420. }
  421. #if 0
  422. if (/*((blocksize_code == 6) || (blocksize_code == 7)) &&*/
  423. (s->min_blocksize != s->max_blocksize)){
  424. }else{
  425. }
  426. #endif
  427. if (blocksize_code == 0)
  428. blocksize = s->min_blocksize;
  429. else if (blocksize_code == 6)
  430. blocksize = get_bits(&s->gb, 8)+1;
  431. else if (blocksize_code == 7)
  432. blocksize = get_bits(&s->gb, 16)+1;
  433. else
  434. blocksize = blocksize_table[blocksize_code];
  435. if(blocksize > s->max_blocksize){
  436. av_log(s->avctx, AV_LOG_ERROR, "blocksize %d > %d\n", blocksize, s->max_blocksize);
  437. return -1;
  438. }
  439. if (sample_rate_code == 0){
  440. samplerate= s->samplerate;
  441. }else if ((sample_rate_code > 3) && (sample_rate_code < 12))
  442. samplerate = sample_rate_table[sample_rate_code];
  443. else if (sample_rate_code == 12)
  444. samplerate = get_bits(&s->gb, 8) * 1000;
  445. else if (sample_rate_code == 13)
  446. samplerate = get_bits(&s->gb, 16);
  447. else if (sample_rate_code == 14)
  448. samplerate = get_bits(&s->gb, 16) * 10;
  449. else{
  450. av_log(s->avctx, AV_LOG_ERROR, "illegal sample rate code %d\n", sample_rate_code);
  451. return -1;
  452. }
  453. skip_bits(&s->gb, 8);
  454. crc8= get_crc8(s->gb.buffer, get_bits_count(&s->gb)/8);
  455. if(crc8){
  456. av_log(s->avctx, AV_LOG_ERROR, "header crc missmatch crc=%2X\n", crc8);
  457. return -1;
  458. }
  459. s->blocksize = blocksize;
  460. s->samplerate = samplerate;
  461. s->bps = bps;
  462. s->decorrelation= decorrelation;
  463. // dump_headers(s);
  464. /* subframes */
  465. for (i = 0; i < s->channels; i++)
  466. {
  467. // av_log(s->avctx, AV_LOG_DEBUG, "decoded: %x residual: %x\n", s->decoded[i], s->residual[i]);
  468. if (decode_subframe(s, i) < 0)
  469. return -1;
  470. }
  471. align_get_bits(&s->gb);
  472. /* frame footer */
  473. skip_bits(&s->gb, 16); /* data crc */
  474. return 0;
  475. }
  476. static int flac_decode_frame(AVCodecContext *avctx,
  477. void *data, int *data_size,
  478. uint8_t *buf, int buf_size)
  479. {
  480. FLACContext *s = avctx->priv_data;
  481. int metadata_last, metadata_type, metadata_size;
  482. int tmp = 0, i, j = 0, input_buf_size = 0;
  483. int16_t *samples = data;
  484. if(s->max_framesize == 0){
  485. s->max_framesize= 8192; // should hopefully be enough for the first header
  486. s->bitstream= av_fast_realloc(s->bitstream, &s->allocated_bitstream_size, s->max_framesize);
  487. }
  488. if(1 && s->max_framesize){//FIXME truncated
  489. buf_size= FFMIN(buf_size, s->max_framesize - s->bitstream_size);
  490. input_buf_size= buf_size;
  491. if(s->bitstream_index + s->bitstream_size + buf_size > s->allocated_bitstream_size){
  492. // printf("memmove\n");
  493. memmove(s->bitstream, &s->bitstream[s->bitstream_index], s->bitstream_size);
  494. s->bitstream_index=0;
  495. }
  496. memcpy(&s->bitstream[s->bitstream_index + s->bitstream_size], buf, buf_size);
  497. buf= &s->bitstream[s->bitstream_index];
  498. buf_size += s->bitstream_size;
  499. s->bitstream_size= buf_size;
  500. if(buf_size < s->max_framesize){
  501. // printf("wanna more data ...\n");
  502. return input_buf_size;
  503. }
  504. }
  505. init_get_bits(&s->gb, buf, buf_size*8);
  506. /* fLaC signature (be) */
  507. if (show_bits_long(&s->gb, 32) == bswap_32(ff_get_fourcc("fLaC")))
  508. {
  509. skip_bits(&s->gb, 32);
  510. av_log(s->avctx, AV_LOG_DEBUG, "STREAM HEADER\n");
  511. do {
  512. metadata_last = get_bits(&s->gb, 1);
  513. metadata_type = get_bits(&s->gb, 7);
  514. metadata_size = get_bits_long(&s->gb, 24);
  515. av_log(s->avctx, AV_LOG_DEBUG, " metadata block: flag = %d, type = %d, size = %d\n",
  516. metadata_last, metadata_type,
  517. metadata_size);
  518. if(metadata_size){
  519. switch(metadata_type)
  520. {
  521. case METADATA_TYPE_STREAMINFO:
  522. metadata_streaminfo(s);
  523. dump_headers(s);
  524. break;
  525. default:
  526. for(i=0; i<metadata_size; i++)
  527. skip_bits(&s->gb, 8);
  528. }
  529. }
  530. } while(!metadata_last);
  531. }
  532. else
  533. {
  534. tmp = show_bits(&s->gb, 16);
  535. if(tmp != 0xFFF8){
  536. av_log(s->avctx, AV_LOG_ERROR, "FRAME HEADER not here\n");
  537. while(get_bits_count(&s->gb)/8+2 < buf_size && show_bits(&s->gb, 16) != 0xFFF8)
  538. skip_bits(&s->gb, 8);
  539. goto end; // we may not have enough bits left to decode a frame, so try next time
  540. }
  541. skip_bits(&s->gb, 16);
  542. if (decode_frame(s) < 0){
  543. av_log(s->avctx, AV_LOG_ERROR, "decode_frame() failed\n");
  544. s->bitstream_size=0;
  545. s->bitstream_index=0;
  546. return -1;
  547. }
  548. }
  549. #if 0
  550. /* fix the channel order here */
  551. if (s->order == MID_SIDE)
  552. {
  553. short *left = samples;
  554. short *right = samples + s->blocksize;
  555. for (i = 0; i < s->blocksize; i += 2)
  556. {
  557. uint32_t x = s->decoded[0][i];
  558. uint32_t y = s->decoded[0][i+1];
  559. right[i] = x - (y / 2);
  560. left[i] = right[i] + y;
  561. }
  562. *data_size = 2 * s->blocksize;
  563. }
  564. else
  565. {
  566. for (i = 0; i < s->channels; i++)
  567. {
  568. switch(s->order)
  569. {
  570. case INDEPENDENT:
  571. for (j = 0; j < s->blocksize; j++)
  572. samples[(s->blocksize*i)+j] = s->decoded[i][j];
  573. break;
  574. case LEFT_SIDE:
  575. case RIGHT_SIDE:
  576. if (i == 0)
  577. for (j = 0; j < s->blocksize; j++)
  578. samples[(s->blocksize*i)+j] = s->decoded[0][j];
  579. else
  580. for (j = 0; j < s->blocksize; j++)
  581. samples[(s->blocksize*i)+j] = s->decoded[0][j] - s->decoded[i][j];
  582. break;
  583. // case MID_SIDE:
  584. // av_log(s->avctx, AV_LOG_DEBUG, "mid-side unsupported\n");
  585. }
  586. *data_size += s->blocksize;
  587. }
  588. }
  589. #else
  590. switch(s->decorrelation)
  591. {
  592. case INDEPENDENT:
  593. for (j = 0; j < s->blocksize; j++)
  594. {
  595. for (i = 0; i < s->channels; i++)
  596. *(samples++) = s->decoded[i][j];
  597. }
  598. break;
  599. case LEFT_SIDE:
  600. assert(s->channels == 2);
  601. for (i = 0; i < s->blocksize; i++)
  602. {
  603. *(samples++) = s->decoded[0][i];
  604. *(samples++) = s->decoded[0][i] - s->decoded[1][i];
  605. }
  606. break;
  607. case RIGHT_SIDE:
  608. assert(s->channels == 2);
  609. for (i = 0; i < s->blocksize; i++)
  610. {
  611. *(samples++) = s->decoded[0][i] + s->decoded[1][i];
  612. *(samples++) = s->decoded[1][i];
  613. }
  614. break;
  615. case MID_SIDE:
  616. assert(s->channels == 2);
  617. for (i = 0; i < s->blocksize; i++)
  618. {
  619. int mid, side;
  620. mid = s->decoded[0][i];
  621. side = s->decoded[1][i];
  622. #if 1 //needs to be checked but IMHO it should be binary identical
  623. mid -= side>>1;
  624. *(samples++) = mid + side;
  625. *(samples++) = mid;
  626. #else
  627. mid <<= 1;
  628. if (side & 1)
  629. mid++;
  630. *(samples++) = (mid + side) >> 1;
  631. *(samples++) = (mid - side) >> 1;
  632. #endif
  633. }
  634. break;
  635. }
  636. #endif
  637. *data_size = (int8_t *)samples - (int8_t *)data;
  638. // av_log(s->avctx, AV_LOG_DEBUG, "data size: %d\n", *data_size);
  639. // s->last_blocksize = s->blocksize;
  640. end:
  641. i= (get_bits_count(&s->gb)+7)/8;;
  642. if(i > buf_size){
  643. av_log(s->avctx, AV_LOG_ERROR, "overread: %d\n", i - buf_size);
  644. s->bitstream_size=0;
  645. s->bitstream_index=0;
  646. return -1;
  647. }
  648. if(s->bitstream_size){
  649. s->bitstream_index += i;
  650. s->bitstream_size -= i;
  651. return input_buf_size;
  652. }else
  653. return i;
  654. }
  655. static int flac_decode_close(AVCodecContext *avctx)
  656. {
  657. FLACContext *s = avctx->priv_data;
  658. int i;
  659. for (i = 0; i < s->channels; i++)
  660. {
  661. av_freep(&s->decoded[i]);
  662. }
  663. av_freep(&s->bitstream);
  664. return 0;
  665. }
  666. static void flac_flush(AVCodecContext *avctx){
  667. FLACContext *s = avctx->priv_data;
  668. s->bitstream_size=
  669. s->bitstream_index= 0;
  670. }
  671. AVCodec flac_decoder = {
  672. "flac",
  673. CODEC_TYPE_AUDIO,
  674. CODEC_ID_FLAC,
  675. sizeof(FLACContext),
  676. flac_decode_init,
  677. NULL,
  678. flac_decode_close,
  679. flac_decode_frame,
  680. .flush= flac_flush,
  681. };