You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

965 lines
28KB

  1. /*
  2. * Duck/ON2 TrueMotion 2 Decoder
  3. * Copyright (c) 2005 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Duck TrueMotion2 decoder.
  24. */
  25. #include "avcodec.h"
  26. #include "bytestream.h"
  27. #include "get_bits.h"
  28. #include "dsputil.h"
  29. #define TM2_ESCAPE 0x80000000
  30. #define TM2_DELTAS 64
  31. /* Huffman-coded streams of different types of blocks */
  32. enum TM2_STREAMS{ TM2_C_HI = 0, TM2_C_LO, TM2_L_HI, TM2_L_LO,
  33. TM2_UPD, TM2_MOT, TM2_TYPE, TM2_NUM_STREAMS};
  34. /* Block types */
  35. enum TM2_BLOCKS{ TM2_HI_RES = 0, TM2_MED_RES, TM2_LOW_RES, TM2_NULL_RES,
  36. TM2_UPDATE, TM2_STILL, TM2_MOTION};
  37. typedef struct TM2Context{
  38. AVCodecContext *avctx;
  39. AVFrame pic;
  40. GetBitContext gb;
  41. DSPContext dsp;
  42. uint8_t *buffer;
  43. int buffer_size;
  44. /* TM2 streams */
  45. int *tokens[TM2_NUM_STREAMS];
  46. int tok_lens[TM2_NUM_STREAMS];
  47. int tok_ptrs[TM2_NUM_STREAMS];
  48. int deltas[TM2_NUM_STREAMS][TM2_DELTAS];
  49. /* for blocks decoding */
  50. int D[4];
  51. int CD[4];
  52. int *last;
  53. int *clast;
  54. /* data for current and previous frame */
  55. int *Y1_base, *U1_base, *V1_base, *Y2_base, *U2_base, *V2_base;
  56. int *Y1, *U1, *V1, *Y2, *U2, *V2;
  57. int y_stride, uv_stride;
  58. int cur;
  59. } TM2Context;
  60. /**
  61. * Huffman codes for each of streams
  62. */
  63. typedef struct TM2Codes{
  64. VLC vlc; ///< table for FFmpeg bitstream reader
  65. int bits;
  66. int *recode; ///< table for converting from code indexes to values
  67. int length;
  68. } TM2Codes;
  69. /**
  70. * structure for gathering Huffman codes information
  71. */
  72. typedef struct TM2Huff{
  73. int val_bits; ///< length of literal
  74. int max_bits; ///< maximum length of code
  75. int min_bits; ///< minimum length of code
  76. int nodes; ///< total number of nodes in tree
  77. int num; ///< current number filled
  78. int max_num; ///< total number of codes
  79. int *nums; ///< literals
  80. uint32_t *bits; ///< codes
  81. int *lens; ///< codelengths
  82. } TM2Huff;
  83. static int tm2_read_tree(TM2Context *ctx, uint32_t prefix, int length, TM2Huff *huff)
  84. {
  85. if(length > huff->max_bits) {
  86. av_log(ctx->avctx, AV_LOG_ERROR, "Tree exceeded its given depth (%i)\n", huff->max_bits);
  87. return -1;
  88. }
  89. if(!get_bits1(&ctx->gb)) { /* literal */
  90. if (length == 0) {
  91. length = 1;
  92. }
  93. if(huff->num >= huff->max_num) {
  94. av_log(ctx->avctx, AV_LOG_DEBUG, "Too many literals\n");
  95. return -1;
  96. }
  97. huff->nums[huff->num] = get_bits_long(&ctx->gb, huff->val_bits);
  98. huff->bits[huff->num] = prefix;
  99. huff->lens[huff->num] = length;
  100. huff->num++;
  101. return 0;
  102. } else { /* non-terminal node */
  103. if(tm2_read_tree(ctx, prefix << 1, length + 1, huff) == -1)
  104. return -1;
  105. if(tm2_read_tree(ctx, (prefix << 1) | 1, length + 1, huff) == -1)
  106. return -1;
  107. }
  108. return 0;
  109. }
  110. static int tm2_build_huff_table(TM2Context *ctx, TM2Codes *code)
  111. {
  112. TM2Huff huff;
  113. int res = 0;
  114. huff.val_bits = get_bits(&ctx->gb, 5);
  115. huff.max_bits = get_bits(&ctx->gb, 5);
  116. huff.min_bits = get_bits(&ctx->gb, 5);
  117. huff.nodes = get_bits_long(&ctx->gb, 17);
  118. huff.num = 0;
  119. /* check for correct codes parameters */
  120. if((huff.val_bits < 1) || (huff.val_bits > 32) ||
  121. (huff.max_bits < 0) || (huff.max_bits > 25)) {
  122. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect tree parameters - literal length: %i, max code length: %i\n",
  123. huff.val_bits, huff.max_bits);
  124. return -1;
  125. }
  126. if((huff.nodes <= 0) || (huff.nodes > 0x10000)) {
  127. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of Huffman tree nodes: %i\n", huff.nodes);
  128. return -1;
  129. }
  130. /* one-node tree */
  131. if(huff.max_bits == 0)
  132. huff.max_bits = 1;
  133. /* allocate space for codes - it is exactly ceil(nodes / 2) entries */
  134. huff.max_num = (huff.nodes + 1) >> 1;
  135. huff.nums = av_mallocz(huff.max_num * sizeof(int));
  136. huff.bits = av_mallocz(huff.max_num * sizeof(uint32_t));
  137. huff.lens = av_mallocz(huff.max_num * sizeof(int));
  138. if(tm2_read_tree(ctx, 0, 0, &huff) == -1)
  139. res = -1;
  140. if(huff.num != huff.max_num) {
  141. av_log(ctx->avctx, AV_LOG_ERROR, "Got less codes than expected: %i of %i\n",
  142. huff.num, huff.max_num);
  143. res = -1;
  144. }
  145. /* convert codes to vlc_table */
  146. if(res != -1) {
  147. int i;
  148. res = init_vlc(&code->vlc, huff.max_bits, huff.max_num,
  149. huff.lens, sizeof(int), sizeof(int),
  150. huff.bits, sizeof(uint32_t), sizeof(uint32_t), 0);
  151. if(res < 0) {
  152. av_log(ctx->avctx, AV_LOG_ERROR, "Cannot build VLC table\n");
  153. res = -1;
  154. } else
  155. res = 0;
  156. if(res != -1) {
  157. code->bits = huff.max_bits;
  158. code->length = huff.max_num;
  159. code->recode = av_malloc(code->length * sizeof(int));
  160. for(i = 0; i < code->length; i++)
  161. code->recode[i] = huff.nums[i];
  162. }
  163. }
  164. /* free allocated memory */
  165. av_free(huff.nums);
  166. av_free(huff.bits);
  167. av_free(huff.lens);
  168. return res;
  169. }
  170. static void tm2_free_codes(TM2Codes *code)
  171. {
  172. av_free(code->recode);
  173. if(code->vlc.table)
  174. free_vlc(&code->vlc);
  175. }
  176. static inline int tm2_get_token(GetBitContext *gb, TM2Codes *code)
  177. {
  178. int val;
  179. val = get_vlc2(gb, code->vlc.table, code->bits, 1);
  180. return code->recode[val];
  181. }
  182. static inline int tm2_read_header(TM2Context *ctx, const uint8_t *buf)
  183. {
  184. uint32_t magic;
  185. const uint8_t *obuf;
  186. obuf = buf;
  187. magic = AV_RL32(buf);
  188. buf += 4;
  189. if(magic == 0x00000100) { /* old header */
  190. /* av_log (ctx->avctx, AV_LOG_ERROR, "TM2 old header: not implemented (yet)\n"); */
  191. return 40;
  192. } else if(magic == 0x00000101) { /* new header */
  193. return 40;
  194. } else {
  195. av_log (ctx->avctx, AV_LOG_ERROR, "Not a TM2 header: 0x%08X\n", magic);
  196. return -1;
  197. }
  198. return buf - obuf;
  199. }
  200. static int tm2_read_deltas(TM2Context *ctx, int stream_id) {
  201. int d, mb;
  202. int i, v;
  203. d = get_bits(&ctx->gb, 9);
  204. mb = get_bits(&ctx->gb, 5);
  205. if((d < 1) || (d > TM2_DELTAS) || (mb < 1) || (mb > 32)) {
  206. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect delta table: %i deltas x %i bits\n", d, mb);
  207. return -1;
  208. }
  209. for(i = 0; i < d; i++) {
  210. v = get_bits_long(&ctx->gb, mb);
  211. if(v & (1 << (mb - 1)))
  212. ctx->deltas[stream_id][i] = v - (1 << mb);
  213. else
  214. ctx->deltas[stream_id][i] = v;
  215. }
  216. for(; i < TM2_DELTAS; i++)
  217. ctx->deltas[stream_id][i] = 0;
  218. return 0;
  219. }
  220. static int tm2_read_stream(TM2Context *ctx, const uint8_t *buf, int stream_id, int buf_size)
  221. {
  222. int i;
  223. int skip = 0;
  224. int len, toks, pos;
  225. TM2Codes codes;
  226. GetByteContext gb;
  227. /* get stream length in dwords */
  228. bytestream2_init(&gb, buf, buf_size);
  229. len = bytestream2_get_be32(&gb);
  230. skip = len * 4 + 4;
  231. if(len == 0)
  232. return 4;
  233. if (len >= INT_MAX/4-1 || len < 0 || len > buf_size) {
  234. av_log(ctx->avctx, AV_LOG_ERROR, "Error, invalid stream size.\n");
  235. return -1;
  236. }
  237. toks = bytestream2_get_be32(&gb);
  238. if(toks & 1) {
  239. len = bytestream2_get_be32(&gb);
  240. if(len == TM2_ESCAPE) {
  241. len = bytestream2_get_be32(&gb);
  242. }
  243. if(len > 0) {
  244. pos = bytestream2_tell(&gb);
  245. if (skip <= pos)
  246. return -1;
  247. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  248. if(tm2_read_deltas(ctx, stream_id) == -1)
  249. return -1;
  250. bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2);
  251. }
  252. }
  253. /* skip unused fields */
  254. len = bytestream2_get_be32(&gb);
  255. if(len == TM2_ESCAPE) { /* some unknown length - could be escaped too */
  256. bytestream2_skip(&gb, 8); /* unused by decoder */
  257. } else {
  258. bytestream2_skip(&gb, 4); /* unused by decoder */
  259. }
  260. pos = bytestream2_tell(&gb);
  261. if (skip <= pos)
  262. return -1;
  263. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  264. if(tm2_build_huff_table(ctx, &codes) == -1)
  265. return -1;
  266. bytestream2_skip(&gb, ((get_bits_count(&ctx->gb) + 31) >> 5) << 2);
  267. toks >>= 1;
  268. /* check if we have sane number of tokens */
  269. if((toks < 0) || (toks > 0xFFFFFF)){
  270. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
  271. tm2_free_codes(&codes);
  272. return -1;
  273. }
  274. ctx->tokens[stream_id] = av_realloc(ctx->tokens[stream_id], toks * sizeof(int));
  275. ctx->tok_lens[stream_id] = toks;
  276. len = bytestream2_get_be32(&gb);
  277. if(len > 0) {
  278. pos = bytestream2_tell(&gb);
  279. if (skip <= pos)
  280. return -1;
  281. init_get_bits(&ctx->gb, buf + pos, (skip - pos) * 8);
  282. for(i = 0; i < toks; i++) {
  283. if (get_bits_left(&ctx->gb) <= 0) {
  284. av_log(ctx->avctx, AV_LOG_ERROR, "Incorrect number of tokens: %i\n", toks);
  285. return -1;
  286. }
  287. ctx->tokens[stream_id][i] = tm2_get_token(&ctx->gb, &codes);
  288. if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS) {
  289. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
  290. ctx->tokens[stream_id][i], stream_id, i);
  291. return AVERROR_INVALIDDATA;
  292. }
  293. }
  294. } else {
  295. for(i = 0; i < toks; i++) {
  296. ctx->tokens[stream_id][i] = codes.recode[0];
  297. if (stream_id <= TM2_MOT && ctx->tokens[stream_id][i] >= TM2_DELTAS) {
  298. av_log(ctx->avctx, AV_LOG_ERROR, "Invalid delta token index %d for type %d, n=%d\n",
  299. ctx->tokens[stream_id][i], stream_id, i);
  300. return AVERROR_INVALIDDATA;
  301. }
  302. }
  303. }
  304. tm2_free_codes(&codes);
  305. return skip;
  306. }
  307. static inline int GET_TOK(TM2Context *ctx,int type) {
  308. if(ctx->tok_ptrs[type] >= ctx->tok_lens[type]) {
  309. av_log(ctx->avctx, AV_LOG_ERROR, "Read token from stream %i out of bounds (%i>=%i)\n", type, ctx->tok_ptrs[type], ctx->tok_lens[type]);
  310. return 0;
  311. }
  312. if(type <= TM2_MOT)
  313. return ctx->deltas[type][ctx->tokens[type][ctx->tok_ptrs[type]++]];
  314. return ctx->tokens[type][ctx->tok_ptrs[type]++];
  315. }
  316. /* blocks decoding routines */
  317. /* common Y, U, V pointers initialisation */
  318. #define TM2_INIT_POINTERS() \
  319. int *last, *clast; \
  320. int *Y, *U, *V;\
  321. int Ystride, Ustride, Vstride;\
  322. \
  323. Ystride = ctx->y_stride;\
  324. Vstride = ctx->uv_stride;\
  325. Ustride = ctx->uv_stride;\
  326. Y = (ctx->cur?ctx->Y2:ctx->Y1) + by * 4 * Ystride + bx * 4;\
  327. V = (ctx->cur?ctx->V2:ctx->V1) + by * 2 * Vstride + bx * 2;\
  328. U = (ctx->cur?ctx->U2:ctx->U1) + by * 2 * Ustride + bx * 2;\
  329. last = ctx->last + bx * 4;\
  330. clast = ctx->clast + bx * 4;
  331. #define TM2_INIT_POINTERS_2() \
  332. int *Yo, *Uo, *Vo;\
  333. int oYstride, oUstride, oVstride;\
  334. \
  335. TM2_INIT_POINTERS();\
  336. oYstride = Ystride;\
  337. oVstride = Vstride;\
  338. oUstride = Ustride;\
  339. Yo = (ctx->cur?ctx->Y1:ctx->Y2) + by * 4 * oYstride + bx * 4;\
  340. Vo = (ctx->cur?ctx->V1:ctx->V2) + by * 2 * oVstride + bx * 2;\
  341. Uo = (ctx->cur?ctx->U1:ctx->U2) + by * 2 * oUstride + bx * 2;
  342. /* recalculate last and delta values for next blocks */
  343. #define TM2_RECALC_BLOCK(CHR, stride, last, CD) {\
  344. CD[0] = CHR[1] - last[1];\
  345. CD[1] = (int)CHR[stride + 1] - (int)CHR[1];\
  346. last[0] = (int)CHR[stride + 0];\
  347. last[1] = (int)CHR[stride + 1];}
  348. /* common operations - add deltas to 4x4 block of luma or 2x2 blocks of chroma */
  349. static inline void tm2_apply_deltas(TM2Context *ctx, int* Y, int stride, int *deltas, int *last)
  350. {
  351. int ct, d;
  352. int i, j;
  353. for(j = 0; j < 4; j++){
  354. ct = ctx->D[j];
  355. for(i = 0; i < 4; i++){
  356. d = deltas[i + j * 4];
  357. ct += d;
  358. last[i] += ct;
  359. Y[i] = av_clip_uint8(last[i]);
  360. }
  361. Y += stride;
  362. ctx->D[j] = ct;
  363. }
  364. }
  365. static inline void tm2_high_chroma(int *data, int stride, int *last, int *CD, int *deltas)
  366. {
  367. int i, j;
  368. for(j = 0; j < 2; j++){
  369. for(i = 0; i < 2; i++){
  370. CD[j] += deltas[i + j * 2];
  371. last[i] += CD[j];
  372. data[i] = last[i];
  373. }
  374. data += stride;
  375. }
  376. }
  377. static inline void tm2_low_chroma(int *data, int stride, int *clast, int *CD, int *deltas, int bx)
  378. {
  379. int t;
  380. int l;
  381. int prev;
  382. if(bx > 0)
  383. prev = clast[-3];
  384. else
  385. prev = 0;
  386. t = (CD[0] + CD[1]) >> 1;
  387. l = (prev - CD[0] - CD[1] + clast[1]) >> 1;
  388. CD[1] = CD[0] + CD[1] - t;
  389. CD[0] = t;
  390. clast[0] = l;
  391. tm2_high_chroma(data, stride, clast, CD, deltas);
  392. }
  393. static inline void tm2_hi_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  394. {
  395. int i;
  396. int deltas[16];
  397. TM2_INIT_POINTERS();
  398. /* hi-res chroma */
  399. for(i = 0; i < 4; i++) {
  400. deltas[i] = GET_TOK(ctx, TM2_C_HI);
  401. deltas[i + 4] = GET_TOK(ctx, TM2_C_HI);
  402. }
  403. tm2_high_chroma(U, Ustride, clast, ctx->CD, deltas);
  404. tm2_high_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas + 4);
  405. /* hi-res luma */
  406. for(i = 0; i < 16; i++)
  407. deltas[i] = GET_TOK(ctx, TM2_L_HI);
  408. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  409. }
  410. static inline void tm2_med_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  411. {
  412. int i;
  413. int deltas[16];
  414. TM2_INIT_POINTERS();
  415. /* low-res chroma */
  416. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  417. deltas[1] = deltas[2] = deltas[3] = 0;
  418. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  419. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  420. deltas[1] = deltas[2] = deltas[3] = 0;
  421. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  422. /* hi-res luma */
  423. for(i = 0; i < 16; i++)
  424. deltas[i] = GET_TOK(ctx, TM2_L_HI);
  425. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  426. }
  427. static inline void tm2_low_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  428. {
  429. int i;
  430. int t1, t2;
  431. int deltas[16];
  432. TM2_INIT_POINTERS();
  433. /* low-res chroma */
  434. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  435. deltas[1] = deltas[2] = deltas[3] = 0;
  436. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  437. deltas[0] = GET_TOK(ctx, TM2_C_LO);
  438. deltas[1] = deltas[2] = deltas[3] = 0;
  439. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  440. /* low-res luma */
  441. for(i = 0; i < 16; i++)
  442. deltas[i] = 0;
  443. deltas[ 0] = GET_TOK(ctx, TM2_L_LO);
  444. deltas[ 2] = GET_TOK(ctx, TM2_L_LO);
  445. deltas[ 8] = GET_TOK(ctx, TM2_L_LO);
  446. deltas[10] = GET_TOK(ctx, TM2_L_LO);
  447. if(bx > 0)
  448. last[0] = (last[-1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3] + last[1]) >> 1;
  449. else
  450. last[0] = (last[1] - ctx->D[0] - ctx->D[1] - ctx->D[2] - ctx->D[3])>> 1;
  451. last[2] = (last[1] + last[3]) >> 1;
  452. t1 = ctx->D[0] + ctx->D[1];
  453. ctx->D[0] = t1 >> 1;
  454. ctx->D[1] = t1 - (t1 >> 1);
  455. t2 = ctx->D[2] + ctx->D[3];
  456. ctx->D[2] = t2 >> 1;
  457. ctx->D[3] = t2 - (t2 >> 1);
  458. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  459. }
  460. static inline void tm2_null_res_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  461. {
  462. int i;
  463. int ct;
  464. int left, right, diff;
  465. int deltas[16];
  466. TM2_INIT_POINTERS();
  467. /* null chroma */
  468. deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
  469. tm2_low_chroma(U, Ustride, clast, ctx->CD, deltas, bx);
  470. deltas[0] = deltas[1] = deltas[2] = deltas[3] = 0;
  471. tm2_low_chroma(V, Vstride, clast + 2, ctx->CD + 2, deltas, bx);
  472. /* null luma */
  473. for(i = 0; i < 16; i++)
  474. deltas[i] = 0;
  475. ct = ctx->D[0] + ctx->D[1] + ctx->D[2] + ctx->D[3];
  476. if(bx > 0)
  477. left = last[-1] - ct;
  478. else
  479. left = 0;
  480. right = last[3];
  481. diff = right - left;
  482. last[0] = left + (diff >> 2);
  483. last[1] = left + (diff >> 1);
  484. last[2] = right - (diff >> 2);
  485. last[3] = right;
  486. {
  487. int tp = left;
  488. ctx->D[0] = (tp + (ct >> 2)) - left;
  489. left += ctx->D[0];
  490. ctx->D[1] = (tp + (ct >> 1)) - left;
  491. left += ctx->D[1];
  492. ctx->D[2] = ((tp + ct) - (ct >> 2)) - left;
  493. left += ctx->D[2];
  494. ctx->D[3] = (tp + ct) - left;
  495. }
  496. tm2_apply_deltas(ctx, Y, Ystride, deltas, last);
  497. }
  498. static inline void tm2_still_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  499. {
  500. int i, j;
  501. TM2_INIT_POINTERS_2();
  502. /* update chroma */
  503. for(j = 0; j < 2; j++){
  504. for(i = 0; i < 2; i++){
  505. U[i] = Uo[i];
  506. V[i] = Vo[i];
  507. }
  508. U += Ustride; V += Vstride;
  509. Uo += oUstride; Vo += oVstride;
  510. }
  511. U -= Ustride * 2;
  512. V -= Vstride * 2;
  513. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  514. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  515. /* update deltas */
  516. ctx->D[0] = Yo[3] - last[3];
  517. ctx->D[1] = Yo[3 + oYstride] - Yo[3];
  518. ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
  519. ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
  520. for(j = 0; j < 4; j++){
  521. for(i = 0; i < 4; i++){
  522. Y[i] = Yo[i];
  523. last[i] = Yo[i];
  524. }
  525. Y += Ystride;
  526. Yo += oYstride;
  527. }
  528. }
  529. static inline void tm2_update_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  530. {
  531. int i, j;
  532. int d;
  533. TM2_INIT_POINTERS_2();
  534. /* update chroma */
  535. for(j = 0; j < 2; j++){
  536. for(i = 0; i < 2; i++){
  537. U[i] = Uo[i] + GET_TOK(ctx, TM2_UPD);
  538. V[i] = Vo[i] + GET_TOK(ctx, TM2_UPD);
  539. }
  540. U += Ustride; V += Vstride;
  541. Uo += oUstride; Vo += oVstride;
  542. }
  543. U -= Ustride * 2;
  544. V -= Vstride * 2;
  545. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  546. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  547. /* update deltas */
  548. ctx->D[0] = Yo[3] - last[3];
  549. ctx->D[1] = Yo[3 + oYstride] - Yo[3];
  550. ctx->D[2] = Yo[3 + oYstride * 2] - Yo[3 + oYstride];
  551. ctx->D[3] = Yo[3 + oYstride * 3] - Yo[3 + oYstride * 2];
  552. for(j = 0; j < 4; j++){
  553. d = last[3];
  554. for(i = 0; i < 4; i++){
  555. Y[i] = Yo[i] + GET_TOK(ctx, TM2_UPD);
  556. last[i] = Y[i];
  557. }
  558. ctx->D[j] = last[3] - d;
  559. Y += Ystride;
  560. Yo += oYstride;
  561. }
  562. }
  563. static inline void tm2_motion_block(TM2Context *ctx, AVFrame *pic, int bx, int by)
  564. {
  565. int i, j;
  566. int mx, my;
  567. TM2_INIT_POINTERS_2();
  568. mx = GET_TOK(ctx, TM2_MOT);
  569. my = GET_TOK(ctx, TM2_MOT);
  570. mx = av_clip(mx, -(bx * 4 + 4), ctx->avctx->width - bx * 4);
  571. my = av_clip(my, -(by * 4 + 4), ctx->avctx->height - by * 4);
  572. Yo += my * oYstride + mx;
  573. Uo += (my >> 1) * oUstride + (mx >> 1);
  574. Vo += (my >> 1) * oVstride + (mx >> 1);
  575. /* copy chroma */
  576. for(j = 0; j < 2; j++){
  577. for(i = 0; i < 2; i++){
  578. U[i] = Uo[i];
  579. V[i] = Vo[i];
  580. }
  581. U += Ustride; V += Vstride;
  582. Uo += oUstride; Vo += oVstride;
  583. }
  584. U -= Ustride * 2;
  585. V -= Vstride * 2;
  586. TM2_RECALC_BLOCK(U, Ustride, clast, ctx->CD);
  587. TM2_RECALC_BLOCK(V, Vstride, (clast + 2), (ctx->CD + 2));
  588. /* copy luma */
  589. for(j = 0; j < 4; j++){
  590. for(i = 0; i < 4; i++){
  591. Y[i] = Yo[i];
  592. }
  593. Y += Ystride;
  594. Yo += oYstride;
  595. }
  596. /* calculate deltas */
  597. Y -= Ystride * 4;
  598. ctx->D[0] = Y[3] - last[3];
  599. ctx->D[1] = Y[3 + Ystride] - Y[3];
  600. ctx->D[2] = Y[3 + Ystride * 2] - Y[3 + Ystride];
  601. ctx->D[3] = Y[3 + Ystride * 3] - Y[3 + Ystride * 2];
  602. for(i = 0; i < 4; i++)
  603. last[i] = Y[i + Ystride * 3];
  604. }
  605. static int tm2_decode_blocks(TM2Context *ctx, AVFrame *p)
  606. {
  607. int i, j;
  608. int w = ctx->avctx->width, h = ctx->avctx->height, bw = w >> 2, bh = h >> 2, cw = w >> 1;
  609. int type;
  610. int keyframe = 1;
  611. int *Y, *U, *V;
  612. uint8_t *dst;
  613. for(i = 0; i < TM2_NUM_STREAMS; i++)
  614. ctx->tok_ptrs[i] = 0;
  615. if (ctx->tok_lens[TM2_TYPE]<bw*bh){
  616. av_log(ctx->avctx,AV_LOG_ERROR,"Got %i tokens for %i blocks\n",ctx->tok_lens[TM2_TYPE],bw*bh);
  617. return -1;
  618. }
  619. memset(ctx->last, 0, 4 * bw * sizeof(int));
  620. memset(ctx->clast, 0, 4 * bw * sizeof(int));
  621. for(j = 0; j < bh; j++) {
  622. memset(ctx->D, 0, 4 * sizeof(int));
  623. memset(ctx->CD, 0, 4 * sizeof(int));
  624. for(i = 0; i < bw; i++) {
  625. type = GET_TOK(ctx, TM2_TYPE);
  626. switch(type) {
  627. case TM2_HI_RES:
  628. tm2_hi_res_block(ctx, p, i, j);
  629. break;
  630. case TM2_MED_RES:
  631. tm2_med_res_block(ctx, p, i, j);
  632. break;
  633. case TM2_LOW_RES:
  634. tm2_low_res_block(ctx, p, i, j);
  635. break;
  636. case TM2_NULL_RES:
  637. tm2_null_res_block(ctx, p, i, j);
  638. break;
  639. case TM2_UPDATE:
  640. tm2_update_block(ctx, p, i, j);
  641. keyframe = 0;
  642. break;
  643. case TM2_STILL:
  644. tm2_still_block(ctx, p, i, j);
  645. keyframe = 0;
  646. break;
  647. case TM2_MOTION:
  648. tm2_motion_block(ctx, p, i, j);
  649. keyframe = 0;
  650. break;
  651. default:
  652. av_log(ctx->avctx, AV_LOG_ERROR, "Skipping unknown block type %i\n", type);
  653. }
  654. }
  655. }
  656. /* copy data from our buffer to AVFrame */
  657. Y = (ctx->cur?ctx->Y2:ctx->Y1);
  658. U = (ctx->cur?ctx->U2:ctx->U1);
  659. V = (ctx->cur?ctx->V2:ctx->V1);
  660. dst = p->data[0];
  661. for(j = 0; j < h; j++){
  662. for(i = 0; i < w; i++){
  663. int y = Y[i], u = U[i >> 1], v = V[i >> 1];
  664. dst[3*i+0] = av_clip_uint8(y + v);
  665. dst[3*i+1] = av_clip_uint8(y);
  666. dst[3*i+2] = av_clip_uint8(y + u);
  667. }
  668. /* horizontal edge extension */
  669. Y[-4] = Y[-3] = Y[-2] = Y[-1] = Y[0];
  670. Y[w + 3] = Y[w + 2] = Y[w + 1] = Y[w] = Y[w - 1];
  671. /* vertical edge extension */
  672. if (j == 0) {
  673. memcpy(Y - 4 - 1 * ctx->y_stride, Y - 4, ctx->y_stride);
  674. memcpy(Y - 4 - 2 * ctx->y_stride, Y - 4, ctx->y_stride);
  675. memcpy(Y - 4 - 3 * ctx->y_stride, Y - 4, ctx->y_stride);
  676. memcpy(Y - 4 - 4 * ctx->y_stride, Y - 4, ctx->y_stride);
  677. } else if (j == h - 1) {
  678. memcpy(Y - 4 + 1 * ctx->y_stride, Y - 4, ctx->y_stride);
  679. memcpy(Y - 4 + 2 * ctx->y_stride, Y - 4, ctx->y_stride);
  680. memcpy(Y - 4 + 3 * ctx->y_stride, Y - 4, ctx->y_stride);
  681. memcpy(Y - 4 + 4 * ctx->y_stride, Y - 4, ctx->y_stride);
  682. }
  683. Y += ctx->y_stride;
  684. if (j & 1) {
  685. /* horizontal edge extension */
  686. U[-2] = U[-1] = U[0];
  687. V[-2] = V[-1] = V[0];
  688. U[cw + 1] = U[cw] = U[cw - 1];
  689. V[cw + 1] = V[cw] = V[cw - 1];
  690. /* vertical edge extension */
  691. if (j == 1) {
  692. memcpy(U - 2 - 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
  693. memcpy(V - 2 - 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
  694. memcpy(U - 2 - 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
  695. memcpy(V - 2 - 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
  696. } else if (j == h - 1) {
  697. memcpy(U - 2 + 1 * ctx->uv_stride, U - 2, ctx->uv_stride);
  698. memcpy(V - 2 + 1 * ctx->uv_stride, V - 2, ctx->uv_stride);
  699. memcpy(U - 2 + 2 * ctx->uv_stride, U - 2, ctx->uv_stride);
  700. memcpy(V - 2 + 2 * ctx->uv_stride, V - 2, ctx->uv_stride);
  701. }
  702. U += ctx->uv_stride;
  703. V += ctx->uv_stride;
  704. }
  705. dst += p->linesize[0];
  706. }
  707. return keyframe;
  708. }
  709. static const int tm2_stream_order[TM2_NUM_STREAMS] = {
  710. TM2_C_HI, TM2_C_LO, TM2_L_HI, TM2_L_LO, TM2_UPD, TM2_MOT, TM2_TYPE
  711. };
  712. static int decode_frame(AVCodecContext *avctx,
  713. void *data, int *data_size,
  714. AVPacket *avpkt)
  715. {
  716. const uint8_t *buf = avpkt->data;
  717. int buf_size = avpkt->size & ~3;
  718. TM2Context * const l = avctx->priv_data;
  719. AVFrame * const p= (AVFrame*)&l->pic;
  720. int i, skip, t;
  721. av_fast_padded_malloc(&l->buffer, &l->buffer_size, buf_size);
  722. if(!l->buffer){
  723. av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
  724. return -1;
  725. }
  726. p->reference = 3;
  727. p->buffer_hints = FF_BUFFER_HINTS_VALID | FF_BUFFER_HINTS_PRESERVE | FF_BUFFER_HINTS_REUSABLE;
  728. if(avctx->reget_buffer(avctx, p) < 0){
  729. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  730. return -1;
  731. }
  732. l->dsp.bswap_buf((uint32_t*)l->buffer, (const uint32_t*)buf, buf_size >> 2);
  733. skip = tm2_read_header(l, l->buffer);
  734. if(skip == -1){
  735. return -1;
  736. }
  737. for(i = 0; i < TM2_NUM_STREAMS; i++){
  738. if (skip >= buf_size) {
  739. return AVERROR_INVALIDDATA;
  740. }
  741. t = tm2_read_stream(l, l->buffer + skip, tm2_stream_order[i], buf_size - skip);
  742. if(t < 0){
  743. return t;
  744. }
  745. skip += t;
  746. }
  747. p->key_frame = tm2_decode_blocks(l, p);
  748. if(p->key_frame)
  749. p->pict_type = AV_PICTURE_TYPE_I;
  750. else
  751. p->pict_type = AV_PICTURE_TYPE_P;
  752. l->cur = !l->cur;
  753. *data_size = sizeof(AVFrame);
  754. *(AVFrame*)data = l->pic;
  755. return buf_size;
  756. }
  757. static av_cold int decode_init(AVCodecContext *avctx){
  758. TM2Context * const l = avctx->priv_data;
  759. int i, w = avctx->width, h = avctx->height;
  760. if((avctx->width & 3) || (avctx->height & 3)){
  761. av_log(avctx, AV_LOG_ERROR, "Width and height must be multiple of 4\n");
  762. return -1;
  763. }
  764. l->avctx = avctx;
  765. l->pic.data[0]=NULL;
  766. avctx->pix_fmt = PIX_FMT_BGR24;
  767. avcodec_get_frame_defaults(&l->pic);
  768. dsputil_init(&l->dsp, avctx);
  769. l->last = av_malloc(4 * sizeof(*l->last) * (w >> 2));
  770. l->clast = av_malloc(4 * sizeof(*l->clast) * (w >> 2));
  771. for(i = 0; i < TM2_NUM_STREAMS; i++) {
  772. l->tokens[i] = NULL;
  773. l->tok_lens[i] = 0;
  774. }
  775. w += 8;
  776. h += 8;
  777. l->Y1_base = av_malloc(sizeof(*l->Y1_base) * w * h);
  778. l->Y2_base = av_malloc(sizeof(*l->Y2_base) * w * h);
  779. l->y_stride = w;
  780. w = (w + 1) >> 1;
  781. h = (h + 1) >> 1;
  782. l->U1_base = av_malloc(sizeof(*l->U1_base) * w * h);
  783. l->V1_base = av_malloc(sizeof(*l->V1_base) * w * h);
  784. l->U2_base = av_malloc(sizeof(*l->U2_base) * w * h);
  785. l->V2_base = av_malloc(sizeof(*l->V1_base) * w * h);
  786. l->uv_stride = w;
  787. l->cur = 0;
  788. if (!l->Y1_base || !l->Y2_base || !l->U1_base ||
  789. !l->V1_base || !l->U2_base || !l->V2_base ||
  790. !l->last || !l->clast) {
  791. av_freep(l->Y1_base);
  792. av_freep(l->Y2_base);
  793. av_freep(l->U1_base);
  794. av_freep(l->U2_base);
  795. av_freep(l->V1_base);
  796. av_freep(l->V2_base);
  797. av_freep(l->last);
  798. av_freep(l->clast);
  799. return AVERROR(ENOMEM);
  800. }
  801. l->Y1 = l->Y1_base + l->y_stride * 4 + 4;
  802. l->Y2 = l->Y2_base + l->y_stride * 4 + 4;
  803. l->U1 = l->U1_base + l->uv_stride * 2 + 2;
  804. l->U2 = l->U2_base + l->uv_stride * 2 + 2;
  805. l->V1 = l->V1_base + l->uv_stride * 2 + 2;
  806. l->V2 = l->V2_base + l->uv_stride * 2 + 2;
  807. return 0;
  808. }
  809. static av_cold int decode_end(AVCodecContext *avctx){
  810. TM2Context * const l = avctx->priv_data;
  811. AVFrame *pic = &l->pic;
  812. int i;
  813. av_free(l->last);
  814. av_free(l->clast);
  815. for(i = 0; i < TM2_NUM_STREAMS; i++)
  816. av_free(l->tokens[i]);
  817. if(l->Y1){
  818. av_free(l->Y1_base);
  819. av_free(l->U1_base);
  820. av_free(l->V1_base);
  821. av_free(l->Y2_base);
  822. av_free(l->U2_base);
  823. av_free(l->V2_base);
  824. }
  825. av_freep(&l->buffer);
  826. l->buffer_size = 0;
  827. if (pic->data[0])
  828. avctx->release_buffer(avctx, pic);
  829. return 0;
  830. }
  831. AVCodec ff_truemotion2_decoder = {
  832. .name = "truemotion2",
  833. .type = AVMEDIA_TYPE_VIDEO,
  834. .id = CODEC_ID_TRUEMOTION2,
  835. .priv_data_size = sizeof(TM2Context),
  836. .init = decode_init,
  837. .close = decode_end,
  838. .decode = decode_frame,
  839. .capabilities = CODEC_CAP_DR1,
  840. .long_name = NULL_IF_CONFIG_SMALL("Duck TrueMotion 2.0"),
  841. };