You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2005 lines
74KB

  1. /*
  2. * DCA compatible decoder
  3. * Copyright (C) 2004 Gildas Bazin
  4. * Copyright (C) 2004 Benjamin Zores
  5. * Copyright (C) 2006 Benjamin Larsson
  6. * Copyright (C) 2007 Konstantin Shishkov
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include <math.h>
  25. #include <stddef.h>
  26. #include <stdio.h>
  27. #include "libavutil/common.h"
  28. #include "libavutil/intmath.h"
  29. #include "libavutil/intreadwrite.h"
  30. #include "libavutil/mathematics.h"
  31. #include "libavutil/audioconvert.h"
  32. #include "avcodec.h"
  33. #include "dsputil.h"
  34. #include "fft.h"
  35. #include "get_bits.h"
  36. #include "put_bits.h"
  37. #include "dcadata.h"
  38. #include "dcahuff.h"
  39. #include "dca.h"
  40. #include "synth_filter.h"
  41. #include "dcadsp.h"
  42. #include "fmtconvert.h"
  43. #if ARCH_ARM
  44. # include "arm/dca.h"
  45. #endif
  46. //#define TRACE
  47. #define DCA_PRIM_CHANNELS_MAX (7)
  48. #define DCA_SUBBANDS (32)
  49. #define DCA_ABITS_MAX (32) /* Should be 28 */
  50. #define DCA_SUBSUBFRAMES_MAX (4)
  51. #define DCA_SUBFRAMES_MAX (16)
  52. #define DCA_BLOCKS_MAX (16)
  53. #define DCA_LFE_MAX (3)
  54. enum DCAMode {
  55. DCA_MONO = 0,
  56. DCA_CHANNEL,
  57. DCA_STEREO,
  58. DCA_STEREO_SUMDIFF,
  59. DCA_STEREO_TOTAL,
  60. DCA_3F,
  61. DCA_2F1R,
  62. DCA_3F1R,
  63. DCA_2F2R,
  64. DCA_3F2R,
  65. DCA_4F2R
  66. };
  67. /* these are unconfirmed but should be mostly correct */
  68. enum DCAExSSSpeakerMask {
  69. DCA_EXSS_FRONT_CENTER = 0x0001,
  70. DCA_EXSS_FRONT_LEFT_RIGHT = 0x0002,
  71. DCA_EXSS_SIDE_REAR_LEFT_RIGHT = 0x0004,
  72. DCA_EXSS_LFE = 0x0008,
  73. DCA_EXSS_REAR_CENTER = 0x0010,
  74. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT = 0x0020,
  75. DCA_EXSS_REAR_LEFT_RIGHT = 0x0040,
  76. DCA_EXSS_FRONT_HIGH_CENTER = 0x0080,
  77. DCA_EXSS_OVERHEAD = 0x0100,
  78. DCA_EXSS_CENTER_LEFT_RIGHT = 0x0200,
  79. DCA_EXSS_WIDE_LEFT_RIGHT = 0x0400,
  80. DCA_EXSS_SIDE_LEFT_RIGHT = 0x0800,
  81. DCA_EXSS_LFE2 = 0x1000,
  82. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT = 0x2000,
  83. DCA_EXSS_REAR_HIGH_CENTER = 0x4000,
  84. DCA_EXSS_REAR_HIGH_LEFT_RIGHT = 0x8000,
  85. };
  86. enum DCAExtensionMask {
  87. DCA_EXT_CORE = 0x001, ///< core in core substream
  88. DCA_EXT_XXCH = 0x002, ///< XXCh channels extension in core substream
  89. DCA_EXT_X96 = 0x004, ///< 96/24 extension in core substream
  90. DCA_EXT_XCH = 0x008, ///< XCh channel extension in core substream
  91. DCA_EXT_EXSS_CORE = 0x010, ///< core in ExSS (extension substream)
  92. DCA_EXT_EXSS_XBR = 0x020, ///< extended bitrate extension in ExSS
  93. DCA_EXT_EXSS_XXCH = 0x040, ///< XXCh channels extension in ExSS
  94. DCA_EXT_EXSS_X96 = 0x080, ///< 96/24 extension in ExSS
  95. DCA_EXT_EXSS_LBR = 0x100, ///< low bitrate component in ExSS
  96. DCA_EXT_EXSS_XLL = 0x200, ///< lossless extension in ExSS
  97. };
  98. /* -1 are reserved or unknown */
  99. static const int dca_ext_audio_descr_mask[] = {
  100. DCA_EXT_XCH,
  101. -1,
  102. DCA_EXT_X96,
  103. DCA_EXT_XCH | DCA_EXT_X96,
  104. -1,
  105. -1,
  106. DCA_EXT_XXCH,
  107. -1,
  108. };
  109. /* extensions that reside in core substream */
  110. #define DCA_CORE_EXTS (DCA_EXT_XCH | DCA_EXT_XXCH | DCA_EXT_X96)
  111. /* Tables for mapping dts channel configurations to libavcodec multichannel api.
  112. * Some compromises have been made for special configurations. Most configurations
  113. * are never used so complete accuracy is not needed.
  114. *
  115. * L = left, R = right, C = center, S = surround, F = front, R = rear, T = total, OV = overhead.
  116. * S -> side, when both rear and back are configured move one of them to the side channel
  117. * OV -> center back
  118. * All 2 channel configurations -> AV_CH_LAYOUT_STEREO
  119. */
  120. static const uint64_t dca_core_channel_layout[] = {
  121. AV_CH_FRONT_CENTER, ///< 1, A
  122. AV_CH_LAYOUT_STEREO, ///< 2, A + B (dual mono)
  123. AV_CH_LAYOUT_STEREO, ///< 2, L + R (stereo)
  124. AV_CH_LAYOUT_STEREO, ///< 2, (L + R) + (L - R) (sum-difference)
  125. AV_CH_LAYOUT_STEREO, ///< 2, LT + RT (left and right total)
  126. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER, ///< 3, C + L + R
  127. AV_CH_LAYOUT_STEREO | AV_CH_BACK_CENTER, ///< 3, L + R + S
  128. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 4, C + L + R + S
  129. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 4, L + R + SL + SR
  130. AV_CH_LAYOUT_STEREO | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT |
  131. AV_CH_SIDE_RIGHT, ///< 5, C + L + R + SL + SR
  132. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  133. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER, ///< 6, CL + CR + L + R + SL + SR
  134. AV_CH_LAYOUT_STEREO | AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT |
  135. AV_CH_FRONT_CENTER | AV_CH_BACK_CENTER, ///< 6, C + L + R + LR + RR + OV
  136. AV_CH_FRONT_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  137. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_BACK_CENTER |
  138. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 6, CF + CR + LF + RF + LR + RR
  139. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  140. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  141. AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, ///< 7, CL + C + CR + L + R + SL + SR
  142. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_RIGHT_OF_CENTER |
  143. AV_CH_LAYOUT_STEREO | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT |
  144. AV_CH_BACK_LEFT | AV_CH_BACK_RIGHT, ///< 8, CL + CR + L + R + SL1 + SL2 + SR1 + SR2
  145. AV_CH_FRONT_LEFT_OF_CENTER | AV_CH_FRONT_CENTER |
  146. AV_CH_FRONT_RIGHT_OF_CENTER | AV_CH_LAYOUT_STEREO |
  147. AV_CH_SIDE_LEFT | AV_CH_BACK_CENTER | AV_CH_SIDE_RIGHT, ///< 8, CL + C + CR + L + R + SL + S + SR
  148. };
  149. static const int8_t dca_lfe_index[] = {
  150. 1, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 1, 3, 2, 3
  151. };
  152. static const int8_t dca_channel_reorder_lfe[][9] = {
  153. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  154. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  155. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  156. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  157. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  158. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  159. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  160. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  161. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  162. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  163. { 3, 4, 0, 1, 5, 6, -1, -1, -1},
  164. { 2, 0, 1, 4, 5, 6, -1, -1, -1},
  165. { 0, 6, 4, 5, 2, 3, -1, -1, -1},
  166. { 4, 2, 5, 0, 1, 6, 7, -1, -1},
  167. { 5, 6, 0, 1, 7, 3, 8, 4, -1},
  168. { 4, 2, 5, 0, 1, 6, 8, 7, -1},
  169. };
  170. static const int8_t dca_channel_reorder_lfe_xch[][9] = {
  171. { 0, 2, -1, -1, -1, -1, -1, -1, -1},
  172. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  173. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  174. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  175. { 0, 1, 3, -1, -1, -1, -1, -1, -1},
  176. { 2, 0, 1, 4, -1, -1, -1, -1, -1},
  177. { 0, 1, 3, 4, -1, -1, -1, -1, -1},
  178. { 2, 0, 1, 4, 5, -1, -1, -1, -1},
  179. { 0, 1, 4, 5, 3, -1, -1, -1, -1},
  180. { 2, 0, 1, 5, 6, 4, -1, -1, -1},
  181. { 3, 4, 0, 1, 6, 7, 5, -1, -1},
  182. { 2, 0, 1, 4, 5, 6, 7, -1, -1},
  183. { 0, 6, 4, 5, 2, 3, 7, -1, -1},
  184. { 4, 2, 5, 0, 1, 7, 8, 6, -1},
  185. { 5, 6, 0, 1, 8, 3, 9, 4, 7},
  186. { 4, 2, 5, 0, 1, 6, 9, 8, 7},
  187. };
  188. static const int8_t dca_channel_reorder_nolfe[][9] = {
  189. { 0, -1, -1, -1, -1, -1, -1, -1, -1},
  190. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  191. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  192. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  193. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  194. { 2, 0, 1, -1, -1, -1, -1, -1, -1},
  195. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  196. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  197. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  198. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  199. { 2, 3, 0, 1, 4, 5, -1, -1, -1},
  200. { 2, 0, 1, 3, 4, 5, -1, -1, -1},
  201. { 0, 5, 3, 4, 1, 2, -1, -1, -1},
  202. { 3, 2, 4, 0, 1, 5, 6, -1, -1},
  203. { 4, 5, 0, 1, 6, 2, 7, 3, -1},
  204. { 3, 2, 4, 0, 1, 5, 7, 6, -1},
  205. };
  206. static const int8_t dca_channel_reorder_nolfe_xch[][9] = {
  207. { 0, 1, -1, -1, -1, -1, -1, -1, -1},
  208. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  209. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  210. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  211. { 0, 1, 2, -1, -1, -1, -1, -1, -1},
  212. { 2, 0, 1, 3, -1, -1, -1, -1, -1},
  213. { 0, 1, 2, 3, -1, -1, -1, -1, -1},
  214. { 2, 0, 1, 3, 4, -1, -1, -1, -1},
  215. { 0, 1, 3, 4, 2, -1, -1, -1, -1},
  216. { 2, 0, 1, 4, 5, 3, -1, -1, -1},
  217. { 2, 3, 0, 1, 5, 6, 4, -1, -1},
  218. { 2, 0, 1, 3, 4, 5, 6, -1, -1},
  219. { 0, 5, 3, 4, 1, 2, 6, -1, -1},
  220. { 3, 2, 4, 0, 1, 6, 7, 5, -1},
  221. { 4, 5, 0, 1, 7, 2, 8, 3, 6},
  222. { 3, 2, 4, 0, 1, 5, 8, 7, 6},
  223. };
  224. #define DCA_DOLBY 101 /* FIXME */
  225. #define DCA_CHANNEL_BITS 6
  226. #define DCA_CHANNEL_MASK 0x3F
  227. #define DCA_LFE 0x80
  228. #define HEADER_SIZE 14
  229. #define DCA_MAX_FRAME_SIZE 16384
  230. #define DCA_MAX_EXSS_HEADER_SIZE 4096
  231. #define DCA_BUFFER_PADDING_SIZE 1024
  232. /** Bit allocation */
  233. typedef struct {
  234. int offset; ///< code values offset
  235. int maxbits[8]; ///< max bits in VLC
  236. int wrap; ///< wrap for get_vlc2()
  237. VLC vlc[8]; ///< actual codes
  238. } BitAlloc;
  239. static BitAlloc dca_bitalloc_index; ///< indexes for samples VLC select
  240. static BitAlloc dca_tmode; ///< transition mode VLCs
  241. static BitAlloc dca_scalefactor; ///< scalefactor VLCs
  242. static BitAlloc dca_smpl_bitalloc[11]; ///< samples VLCs
  243. static av_always_inline int get_bitalloc(GetBitContext *gb, BitAlloc *ba,
  244. int idx)
  245. {
  246. return get_vlc2(gb, ba->vlc[idx].table, ba->vlc[idx].bits, ba->wrap) +
  247. ba->offset;
  248. }
  249. typedef struct {
  250. AVCodecContext *avctx;
  251. AVFrame frame;
  252. /* Frame header */
  253. int frame_type; ///< type of the current frame
  254. int samples_deficit; ///< deficit sample count
  255. int crc_present; ///< crc is present in the bitstream
  256. int sample_blocks; ///< number of PCM sample blocks
  257. int frame_size; ///< primary frame byte size
  258. int amode; ///< audio channels arrangement
  259. int sample_rate; ///< audio sampling rate
  260. int bit_rate; ///< transmission bit rate
  261. int bit_rate_index; ///< transmission bit rate index
  262. int downmix; ///< embedded downmix enabled
  263. int dynrange; ///< embedded dynamic range flag
  264. int timestamp; ///< embedded time stamp flag
  265. int aux_data; ///< auxiliary data flag
  266. int hdcd; ///< source material is mastered in HDCD
  267. int ext_descr; ///< extension audio descriptor flag
  268. int ext_coding; ///< extended coding flag
  269. int aspf; ///< audio sync word insertion flag
  270. int lfe; ///< low frequency effects flag
  271. int predictor_history; ///< predictor history flag
  272. int header_crc; ///< header crc check bytes
  273. int multirate_inter; ///< multirate interpolator switch
  274. int version; ///< encoder software revision
  275. int copy_history; ///< copy history
  276. int source_pcm_res; ///< source pcm resolution
  277. int front_sum; ///< front sum/difference flag
  278. int surround_sum; ///< surround sum/difference flag
  279. int dialog_norm; ///< dialog normalisation parameter
  280. /* Primary audio coding header */
  281. int subframes; ///< number of subframes
  282. int total_channels; ///< number of channels including extensions
  283. int prim_channels; ///< number of primary audio channels
  284. int subband_activity[DCA_PRIM_CHANNELS_MAX]; ///< subband activity count
  285. int vq_start_subband[DCA_PRIM_CHANNELS_MAX]; ///< high frequency vq start subband
  286. int joint_intensity[DCA_PRIM_CHANNELS_MAX]; ///< joint intensity coding index
  287. int transient_huffman[DCA_PRIM_CHANNELS_MAX]; ///< transient mode code book
  288. int scalefactor_huffman[DCA_PRIM_CHANNELS_MAX]; ///< scale factor code book
  289. int bitalloc_huffman[DCA_PRIM_CHANNELS_MAX]; ///< bit allocation quantizer select
  290. int quant_index_huffman[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< quantization index codebook select
  291. float scalefactor_adj[DCA_PRIM_CHANNELS_MAX][DCA_ABITS_MAX]; ///< scale factor adjustment
  292. /* Primary audio coding side information */
  293. int subsubframes[DCA_SUBFRAMES_MAX]; ///< number of subsubframes
  294. int partial_samples[DCA_SUBFRAMES_MAX]; ///< partial subsubframe samples count
  295. int prediction_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction mode (ADPCM used or not)
  296. int prediction_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< prediction VQ coefs
  297. int bitalloc[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< bit allocation index
  298. int transition_mode[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< transition mode (transients)
  299. int scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][2]; ///< scale factors (2 if transient)
  300. int joint_huff[DCA_PRIM_CHANNELS_MAX]; ///< joint subband scale factors codebook
  301. int joint_scale_factor[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< joint subband scale factors
  302. int downmix_coef[DCA_PRIM_CHANNELS_MAX][2]; ///< stereo downmix coefficients
  303. int dynrange_coef; ///< dynamic range coefficient
  304. int high_freq_vq[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS]; ///< VQ encoded high frequency subbands
  305. float lfe_data[2 * DCA_LFE_MAX * (DCA_BLOCKS_MAX + 4)]; ///< Low frequency effect data
  306. int lfe_scale_factor;
  307. /* Subband samples history (for ADPCM) */
  308. DECLARE_ALIGNED(16, float, subband_samples_hist)[DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][4];
  309. DECLARE_ALIGNED(32, float, subband_fir_hist)[DCA_PRIM_CHANNELS_MAX][512];
  310. DECLARE_ALIGNED(32, float, subband_fir_noidea)[DCA_PRIM_CHANNELS_MAX][32];
  311. int hist_index[DCA_PRIM_CHANNELS_MAX];
  312. DECLARE_ALIGNED(32, float, raXin)[32];
  313. int output; ///< type of output
  314. float scale_bias; ///< output scale
  315. DECLARE_ALIGNED(32, float, subband_samples)[DCA_BLOCKS_MAX][DCA_PRIM_CHANNELS_MAX][DCA_SUBBANDS][8];
  316. DECLARE_ALIGNED(32, float, samples)[(DCA_PRIM_CHANNELS_MAX + 1) * 256];
  317. const float *samples_chanptr[DCA_PRIM_CHANNELS_MAX + 1];
  318. uint8_t dca_buffer[DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE + DCA_BUFFER_PADDING_SIZE];
  319. int dca_buffer_size; ///< how much data is in the dca_buffer
  320. const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe
  321. GetBitContext gb;
  322. /* Current position in DCA frame */
  323. int current_subframe;
  324. int current_subsubframe;
  325. int core_ext_mask; ///< present extensions in the core substream
  326. /* XCh extension information */
  327. int xch_present; ///< XCh extension present and valid
  328. int xch_base_channel; ///< index of first (only) channel containing XCH data
  329. /* ExSS header parser */
  330. int static_fields; ///< static fields present
  331. int mix_metadata; ///< mixing metadata present
  332. int num_mix_configs; ///< number of mix out configurations
  333. int mix_config_num_ch[4]; ///< number of channels in each mix out configuration
  334. int profile;
  335. int debug_flag; ///< used for suppressing repeated error messages output
  336. DSPContext dsp;
  337. FFTContext imdct;
  338. SynthFilterContext synth;
  339. DCADSPContext dcadsp;
  340. FmtConvertContext fmt_conv;
  341. } DCAContext;
  342. static const uint16_t dca_vlc_offs[] = {
  343. 0, 512, 640, 768, 1282, 1794, 2436, 3080, 3770, 4454, 5364,
  344. 5372, 5380, 5388, 5392, 5396, 5412, 5420, 5428, 5460, 5492, 5508,
  345. 5572, 5604, 5668, 5796, 5860, 5892, 6412, 6668, 6796, 7308, 7564,
  346. 7820, 8076, 8620, 9132, 9388, 9910, 10166, 10680, 11196, 11726, 12240,
  347. 12752, 13298, 13810, 14326, 14840, 15500, 16022, 16540, 17158, 17678, 18264,
  348. 18796, 19352, 19926, 20468, 21472, 22398, 23014, 23622,
  349. };
  350. static av_cold void dca_init_vlcs(void)
  351. {
  352. static int vlcs_initialized = 0;
  353. int i, j, c = 14;
  354. static VLC_TYPE dca_table[23622][2];
  355. if (vlcs_initialized)
  356. return;
  357. dca_bitalloc_index.offset = 1;
  358. dca_bitalloc_index.wrap = 2;
  359. for (i = 0; i < 5; i++) {
  360. dca_bitalloc_index.vlc[i].table = &dca_table[dca_vlc_offs[i]];
  361. dca_bitalloc_index.vlc[i].table_allocated = dca_vlc_offs[i + 1] - dca_vlc_offs[i];
  362. init_vlc(&dca_bitalloc_index.vlc[i], bitalloc_12_vlc_bits[i], 12,
  363. bitalloc_12_bits[i], 1, 1,
  364. bitalloc_12_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  365. }
  366. dca_scalefactor.offset = -64;
  367. dca_scalefactor.wrap = 2;
  368. for (i = 0; i < 5; i++) {
  369. dca_scalefactor.vlc[i].table = &dca_table[dca_vlc_offs[i + 5]];
  370. dca_scalefactor.vlc[i].table_allocated = dca_vlc_offs[i + 6] - dca_vlc_offs[i + 5];
  371. init_vlc(&dca_scalefactor.vlc[i], SCALES_VLC_BITS, 129,
  372. scales_bits[i], 1, 1,
  373. scales_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  374. }
  375. dca_tmode.offset = 0;
  376. dca_tmode.wrap = 1;
  377. for (i = 0; i < 4; i++) {
  378. dca_tmode.vlc[i].table = &dca_table[dca_vlc_offs[i + 10]];
  379. dca_tmode.vlc[i].table_allocated = dca_vlc_offs[i + 11] - dca_vlc_offs[i + 10];
  380. init_vlc(&dca_tmode.vlc[i], tmode_vlc_bits[i], 4,
  381. tmode_bits[i], 1, 1,
  382. tmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  383. }
  384. for (i = 0; i < 10; i++)
  385. for (j = 0; j < 7; j++) {
  386. if (!bitalloc_codes[i][j])
  387. break;
  388. dca_smpl_bitalloc[i + 1].offset = bitalloc_offsets[i];
  389. dca_smpl_bitalloc[i + 1].wrap = 1 + (j > 4);
  390. dca_smpl_bitalloc[i + 1].vlc[j].table = &dca_table[dca_vlc_offs[c]];
  391. dca_smpl_bitalloc[i + 1].vlc[j].table_allocated = dca_vlc_offs[c + 1] - dca_vlc_offs[c];
  392. init_vlc(&dca_smpl_bitalloc[i + 1].vlc[j], bitalloc_maxbits[i][j],
  393. bitalloc_sizes[i],
  394. bitalloc_bits[i][j], 1, 1,
  395. bitalloc_codes[i][j], 2, 2, INIT_VLC_USE_NEW_STATIC);
  396. c++;
  397. }
  398. vlcs_initialized = 1;
  399. }
  400. static inline void get_array(GetBitContext *gb, int *dst, int len, int bits)
  401. {
  402. while (len--)
  403. *dst++ = get_bits(gb, bits);
  404. }
  405. static int dca_parse_audio_coding_header(DCAContext *s, int base_channel)
  406. {
  407. int i, j;
  408. static const float adj_table[4] = { 1.0, 1.1250, 1.2500, 1.4375 };
  409. static const int bitlen[11] = { 0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3 };
  410. static const int thr[11] = { 0, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7 };
  411. s->total_channels = get_bits(&s->gb, 3) + 1 + base_channel;
  412. s->prim_channels = s->total_channels;
  413. if (s->prim_channels > DCA_PRIM_CHANNELS_MAX)
  414. s->prim_channels = DCA_PRIM_CHANNELS_MAX;
  415. for (i = base_channel; i < s->prim_channels; i++) {
  416. s->subband_activity[i] = get_bits(&s->gb, 5) + 2;
  417. if (s->subband_activity[i] > DCA_SUBBANDS)
  418. s->subband_activity[i] = DCA_SUBBANDS;
  419. }
  420. for (i = base_channel; i < s->prim_channels; i++) {
  421. s->vq_start_subband[i] = get_bits(&s->gb, 5) + 1;
  422. if (s->vq_start_subband[i] > DCA_SUBBANDS)
  423. s->vq_start_subband[i] = DCA_SUBBANDS;
  424. }
  425. get_array(&s->gb, s->joint_intensity + base_channel, s->prim_channels - base_channel, 3);
  426. get_array(&s->gb, s->transient_huffman + base_channel, s->prim_channels - base_channel, 2);
  427. get_array(&s->gb, s->scalefactor_huffman + base_channel, s->prim_channels - base_channel, 3);
  428. get_array(&s->gb, s->bitalloc_huffman + base_channel, s->prim_channels - base_channel, 3);
  429. /* Get codebooks quantization indexes */
  430. if (!base_channel)
  431. memset(s->quant_index_huffman, 0, sizeof(s->quant_index_huffman));
  432. for (j = 1; j < 11; j++)
  433. for (i = base_channel; i < s->prim_channels; i++)
  434. s->quant_index_huffman[i][j] = get_bits(&s->gb, bitlen[j]);
  435. /* Get scale factor adjustment */
  436. for (j = 0; j < 11; j++)
  437. for (i = base_channel; i < s->prim_channels; i++)
  438. s->scalefactor_adj[i][j] = 1;
  439. for (j = 1; j < 11; j++)
  440. for (i = base_channel; i < s->prim_channels; i++)
  441. if (s->quant_index_huffman[i][j] < thr[j])
  442. s->scalefactor_adj[i][j] = adj_table[get_bits(&s->gb, 2)];
  443. if (s->crc_present) {
  444. /* Audio header CRC check */
  445. get_bits(&s->gb, 16);
  446. }
  447. s->current_subframe = 0;
  448. s->current_subsubframe = 0;
  449. #ifdef TRACE
  450. av_log(s->avctx, AV_LOG_DEBUG, "subframes: %i\n", s->subframes);
  451. av_log(s->avctx, AV_LOG_DEBUG, "prim channels: %i\n", s->prim_channels);
  452. for (i = base_channel; i < s->prim_channels; i++) {
  453. av_log(s->avctx, AV_LOG_DEBUG, "subband activity: %i\n",
  454. s->subband_activity[i]);
  455. av_log(s->avctx, AV_LOG_DEBUG, "vq start subband: %i\n",
  456. s->vq_start_subband[i]);
  457. av_log(s->avctx, AV_LOG_DEBUG, "joint intensity: %i\n",
  458. s->joint_intensity[i]);
  459. av_log(s->avctx, AV_LOG_DEBUG, "transient mode codebook: %i\n",
  460. s->transient_huffman[i]);
  461. av_log(s->avctx, AV_LOG_DEBUG, "scale factor codebook: %i\n",
  462. s->scalefactor_huffman[i]);
  463. av_log(s->avctx, AV_LOG_DEBUG, "bit allocation quantizer: %i\n",
  464. s->bitalloc_huffman[i]);
  465. av_log(s->avctx, AV_LOG_DEBUG, "quant index huff:");
  466. for (j = 0; j < 11; j++)
  467. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->quant_index_huffman[i][j]);
  468. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  469. av_log(s->avctx, AV_LOG_DEBUG, "scalefac adj:");
  470. for (j = 0; j < 11; j++)
  471. av_log(s->avctx, AV_LOG_DEBUG, " %1.3f", s->scalefactor_adj[i][j]);
  472. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  473. }
  474. #endif
  475. return 0;
  476. }
  477. static int dca_parse_frame_header(DCAContext *s)
  478. {
  479. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  480. /* Sync code */
  481. skip_bits_long(&s->gb, 32);
  482. /* Frame header */
  483. s->frame_type = get_bits(&s->gb, 1);
  484. s->samples_deficit = get_bits(&s->gb, 5) + 1;
  485. s->crc_present = get_bits(&s->gb, 1);
  486. s->sample_blocks = get_bits(&s->gb, 7) + 1;
  487. s->frame_size = get_bits(&s->gb, 14) + 1;
  488. if (s->frame_size < 95)
  489. return AVERROR_INVALIDDATA;
  490. s->amode = get_bits(&s->gb, 6);
  491. s->sample_rate = dca_sample_rates[get_bits(&s->gb, 4)];
  492. if (!s->sample_rate)
  493. return AVERROR_INVALIDDATA;
  494. s->bit_rate_index = get_bits(&s->gb, 5);
  495. s->bit_rate = dca_bit_rates[s->bit_rate_index];
  496. if (!s->bit_rate)
  497. return AVERROR_INVALIDDATA;
  498. s->downmix = get_bits(&s->gb, 1);
  499. s->dynrange = get_bits(&s->gb, 1);
  500. s->timestamp = get_bits(&s->gb, 1);
  501. s->aux_data = get_bits(&s->gb, 1);
  502. s->hdcd = get_bits(&s->gb, 1);
  503. s->ext_descr = get_bits(&s->gb, 3);
  504. s->ext_coding = get_bits(&s->gb, 1);
  505. s->aspf = get_bits(&s->gb, 1);
  506. s->lfe = get_bits(&s->gb, 2);
  507. s->predictor_history = get_bits(&s->gb, 1);
  508. /* TODO: check CRC */
  509. if (s->crc_present)
  510. s->header_crc = get_bits(&s->gb, 16);
  511. s->multirate_inter = get_bits(&s->gb, 1);
  512. s->version = get_bits(&s->gb, 4);
  513. s->copy_history = get_bits(&s->gb, 2);
  514. s->source_pcm_res = get_bits(&s->gb, 3);
  515. s->front_sum = get_bits(&s->gb, 1);
  516. s->surround_sum = get_bits(&s->gb, 1);
  517. s->dialog_norm = get_bits(&s->gb, 4);
  518. /* FIXME: channels mixing levels */
  519. s->output = s->amode;
  520. if (s->lfe)
  521. s->output |= DCA_LFE;
  522. #ifdef TRACE
  523. av_log(s->avctx, AV_LOG_DEBUG, "frame type: %i\n", s->frame_type);
  524. av_log(s->avctx, AV_LOG_DEBUG, "samples deficit: %i\n", s->samples_deficit);
  525. av_log(s->avctx, AV_LOG_DEBUG, "crc present: %i\n", s->crc_present);
  526. av_log(s->avctx, AV_LOG_DEBUG, "sample blocks: %i (%i samples)\n",
  527. s->sample_blocks, s->sample_blocks * 32);
  528. av_log(s->avctx, AV_LOG_DEBUG, "frame size: %i bytes\n", s->frame_size);
  529. av_log(s->avctx, AV_LOG_DEBUG, "amode: %i (%i channels)\n",
  530. s->amode, dca_channels[s->amode]);
  531. av_log(s->avctx, AV_LOG_DEBUG, "sample rate: %i Hz\n",
  532. s->sample_rate);
  533. av_log(s->avctx, AV_LOG_DEBUG, "bit rate: %i bits/s\n",
  534. s->bit_rate);
  535. av_log(s->avctx, AV_LOG_DEBUG, "downmix: %i\n", s->downmix);
  536. av_log(s->avctx, AV_LOG_DEBUG, "dynrange: %i\n", s->dynrange);
  537. av_log(s->avctx, AV_LOG_DEBUG, "timestamp: %i\n", s->timestamp);
  538. av_log(s->avctx, AV_LOG_DEBUG, "aux_data: %i\n", s->aux_data);
  539. av_log(s->avctx, AV_LOG_DEBUG, "hdcd: %i\n", s->hdcd);
  540. av_log(s->avctx, AV_LOG_DEBUG, "ext descr: %i\n", s->ext_descr);
  541. av_log(s->avctx, AV_LOG_DEBUG, "ext coding: %i\n", s->ext_coding);
  542. av_log(s->avctx, AV_LOG_DEBUG, "aspf: %i\n", s->aspf);
  543. av_log(s->avctx, AV_LOG_DEBUG, "lfe: %i\n", s->lfe);
  544. av_log(s->avctx, AV_LOG_DEBUG, "predictor history: %i\n",
  545. s->predictor_history);
  546. av_log(s->avctx, AV_LOG_DEBUG, "header crc: %i\n", s->header_crc);
  547. av_log(s->avctx, AV_LOG_DEBUG, "multirate inter: %i\n",
  548. s->multirate_inter);
  549. av_log(s->avctx, AV_LOG_DEBUG, "version number: %i\n", s->version);
  550. av_log(s->avctx, AV_LOG_DEBUG, "copy history: %i\n", s->copy_history);
  551. av_log(s->avctx, AV_LOG_DEBUG,
  552. "source pcm resolution: %i (%i bits/sample)\n",
  553. s->source_pcm_res, dca_bits_per_sample[s->source_pcm_res]);
  554. av_log(s->avctx, AV_LOG_DEBUG, "front sum: %i\n", s->front_sum);
  555. av_log(s->avctx, AV_LOG_DEBUG, "surround sum: %i\n", s->surround_sum);
  556. av_log(s->avctx, AV_LOG_DEBUG, "dialog norm: %i\n", s->dialog_norm);
  557. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  558. #endif
  559. /* Primary audio coding header */
  560. s->subframes = get_bits(&s->gb, 4) + 1;
  561. return dca_parse_audio_coding_header(s, 0);
  562. }
  563. static inline int get_scale(GetBitContext *gb, int level, int value, int log2range)
  564. {
  565. if (level < 5) {
  566. /* huffman encoded */
  567. value += get_bitalloc(gb, &dca_scalefactor, level);
  568. value = av_clip(value, 0, (1 << log2range) - 1);
  569. } else if (level < 8) {
  570. if (level + 1 > log2range) {
  571. skip_bits(gb, level + 1 - log2range);
  572. value = get_bits(gb, log2range);
  573. } else {
  574. value = get_bits(gb, level + 1);
  575. }
  576. }
  577. return value;
  578. }
  579. static int dca_subframe_header(DCAContext *s, int base_channel, int block_index)
  580. {
  581. /* Primary audio coding side information */
  582. int j, k;
  583. if (get_bits_left(&s->gb) < 0)
  584. return AVERROR_INVALIDDATA;
  585. if (!base_channel) {
  586. s->subsubframes[s->current_subframe] = get_bits(&s->gb, 2) + 1;
  587. s->partial_samples[s->current_subframe] = get_bits(&s->gb, 3);
  588. }
  589. for (j = base_channel; j < s->prim_channels; j++) {
  590. for (k = 0; k < s->subband_activity[j]; k++)
  591. s->prediction_mode[j][k] = get_bits(&s->gb, 1);
  592. }
  593. /* Get prediction codebook */
  594. for (j = base_channel; j < s->prim_channels; j++) {
  595. for (k = 0; k < s->subband_activity[j]; k++) {
  596. if (s->prediction_mode[j][k] > 0) {
  597. /* (Prediction coefficient VQ address) */
  598. s->prediction_vq[j][k] = get_bits(&s->gb, 12);
  599. }
  600. }
  601. }
  602. /* Bit allocation index */
  603. for (j = base_channel; j < s->prim_channels; j++) {
  604. for (k = 0; k < s->vq_start_subband[j]; k++) {
  605. if (s->bitalloc_huffman[j] == 6)
  606. s->bitalloc[j][k] = get_bits(&s->gb, 5);
  607. else if (s->bitalloc_huffman[j] == 5)
  608. s->bitalloc[j][k] = get_bits(&s->gb, 4);
  609. else if (s->bitalloc_huffman[j] == 7) {
  610. av_log(s->avctx, AV_LOG_ERROR,
  611. "Invalid bit allocation index\n");
  612. return AVERROR_INVALIDDATA;
  613. } else {
  614. s->bitalloc[j][k] =
  615. get_bitalloc(&s->gb, &dca_bitalloc_index, s->bitalloc_huffman[j]);
  616. }
  617. if (s->bitalloc[j][k] > 26) {
  618. // av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index [%i][%i] too big (%i)\n",
  619. // j, k, s->bitalloc[j][k]);
  620. return AVERROR_INVALIDDATA;
  621. }
  622. }
  623. }
  624. /* Transition mode */
  625. for (j = base_channel; j < s->prim_channels; j++) {
  626. for (k = 0; k < s->subband_activity[j]; k++) {
  627. s->transition_mode[j][k] = 0;
  628. if (s->subsubframes[s->current_subframe] > 1 &&
  629. k < s->vq_start_subband[j] && s->bitalloc[j][k] > 0) {
  630. s->transition_mode[j][k] =
  631. get_bitalloc(&s->gb, &dca_tmode, s->transient_huffman[j]);
  632. }
  633. }
  634. }
  635. if (get_bits_left(&s->gb) < 0)
  636. return AVERROR_INVALIDDATA;
  637. for (j = base_channel; j < s->prim_channels; j++) {
  638. const uint32_t *scale_table;
  639. int scale_sum, log_size;
  640. memset(s->scale_factor[j], 0,
  641. s->subband_activity[j] * sizeof(s->scale_factor[0][0][0]) * 2);
  642. if (s->scalefactor_huffman[j] == 6) {
  643. scale_table = scale_factor_quant7;
  644. log_size = 7;
  645. } else {
  646. scale_table = scale_factor_quant6;
  647. log_size = 6;
  648. }
  649. /* When huffman coded, only the difference is encoded */
  650. scale_sum = 0;
  651. for (k = 0; k < s->subband_activity[j]; k++) {
  652. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0) {
  653. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  654. s->scale_factor[j][k][0] = scale_table[scale_sum];
  655. }
  656. if (k < s->vq_start_subband[j] && s->transition_mode[j][k]) {
  657. /* Get second scale factor */
  658. scale_sum = get_scale(&s->gb, s->scalefactor_huffman[j], scale_sum, log_size);
  659. s->scale_factor[j][k][1] = scale_table[scale_sum];
  660. }
  661. }
  662. }
  663. /* Joint subband scale factor codebook select */
  664. for (j = base_channel; j < s->prim_channels; j++) {
  665. /* Transmitted only if joint subband coding enabled */
  666. if (s->joint_intensity[j] > 0)
  667. s->joint_huff[j] = get_bits(&s->gb, 3);
  668. }
  669. if (get_bits_left(&s->gb) < 0)
  670. return AVERROR_INVALIDDATA;
  671. /* Scale factors for joint subband coding */
  672. for (j = base_channel; j < s->prim_channels; j++) {
  673. int source_channel;
  674. /* Transmitted only if joint subband coding enabled */
  675. if (s->joint_intensity[j] > 0) {
  676. int scale = 0;
  677. source_channel = s->joint_intensity[j] - 1;
  678. /* When huffman coded, only the difference is encoded
  679. * (is this valid as well for joint scales ???) */
  680. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++) {
  681. scale = get_scale(&s->gb, s->joint_huff[j], 64 /* bias */, 7);
  682. s->joint_scale_factor[j][k] = scale; /*joint_scale_table[scale]; */
  683. }
  684. if (!(s->debug_flag & 0x02)) {
  685. av_log(s->avctx, AV_LOG_DEBUG,
  686. "Joint stereo coding not supported\n");
  687. s->debug_flag |= 0x02;
  688. }
  689. }
  690. }
  691. /* Stereo downmix coefficients */
  692. if (!base_channel && s->prim_channels > 2) {
  693. if (s->downmix) {
  694. for (j = base_channel; j < s->prim_channels; j++) {
  695. s->downmix_coef[j][0] = get_bits(&s->gb, 7);
  696. s->downmix_coef[j][1] = get_bits(&s->gb, 7);
  697. }
  698. } else {
  699. int am = s->amode & DCA_CHANNEL_MASK;
  700. if (am >= FF_ARRAY_ELEMS(dca_default_coeffs)) {
  701. av_log(s->avctx, AV_LOG_ERROR,
  702. "Invalid channel mode %d\n", am);
  703. return AVERROR_INVALIDDATA;
  704. }
  705. for (j = base_channel; j < s->prim_channels; j++) {
  706. s->downmix_coef[j][0] = dca_default_coeffs[am][j][0];
  707. s->downmix_coef[j][1] = dca_default_coeffs[am][j][1];
  708. }
  709. }
  710. }
  711. /* Dynamic range coefficient */
  712. if (!base_channel && s->dynrange)
  713. s->dynrange_coef = get_bits(&s->gb, 8);
  714. /* Side information CRC check word */
  715. if (s->crc_present) {
  716. get_bits(&s->gb, 16);
  717. }
  718. /*
  719. * Primary audio data arrays
  720. */
  721. /* VQ encoded high frequency subbands */
  722. for (j = base_channel; j < s->prim_channels; j++)
  723. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  724. /* 1 vector -> 32 samples */
  725. s->high_freq_vq[j][k] = get_bits(&s->gb, 10);
  726. /* Low frequency effect data */
  727. if (!base_channel && s->lfe) {
  728. /* LFE samples */
  729. int lfe_samples = 2 * s->lfe * (4 + block_index);
  730. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  731. float lfe_scale;
  732. for (j = lfe_samples; j < lfe_end_sample; j++) {
  733. /* Signed 8 bits int */
  734. s->lfe_data[j] = get_sbits(&s->gb, 8);
  735. }
  736. /* Scale factor index */
  737. skip_bits(&s->gb, 1);
  738. s->lfe_scale_factor = scale_factor_quant7[get_bits(&s->gb, 7)];
  739. /* Quantization step size * scale factor */
  740. lfe_scale = 0.035 * s->lfe_scale_factor;
  741. for (j = lfe_samples; j < lfe_end_sample; j++)
  742. s->lfe_data[j] *= lfe_scale;
  743. }
  744. #ifdef TRACE
  745. av_log(s->avctx, AV_LOG_DEBUG, "subsubframes: %i\n",
  746. s->subsubframes[s->current_subframe]);
  747. av_log(s->avctx, AV_LOG_DEBUG, "partial samples: %i\n",
  748. s->partial_samples[s->current_subframe]);
  749. for (j = base_channel; j < s->prim_channels; j++) {
  750. av_log(s->avctx, AV_LOG_DEBUG, "prediction mode:");
  751. for (k = 0; k < s->subband_activity[j]; k++)
  752. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->prediction_mode[j][k]);
  753. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  754. }
  755. for (j = base_channel; j < s->prim_channels; j++) {
  756. for (k = 0; k < s->subband_activity[j]; k++)
  757. av_log(s->avctx, AV_LOG_DEBUG,
  758. "prediction coefs: %f, %f, %f, %f\n",
  759. (float) adpcm_vb[s->prediction_vq[j][k]][0] / 8192,
  760. (float) adpcm_vb[s->prediction_vq[j][k]][1] / 8192,
  761. (float) adpcm_vb[s->prediction_vq[j][k]][2] / 8192,
  762. (float) adpcm_vb[s->prediction_vq[j][k]][3] / 8192);
  763. }
  764. for (j = base_channel; j < s->prim_channels; j++) {
  765. av_log(s->avctx, AV_LOG_DEBUG, "bitalloc index: ");
  766. for (k = 0; k < s->vq_start_subband[j]; k++)
  767. av_log(s->avctx, AV_LOG_DEBUG, "%2.2i ", s->bitalloc[j][k]);
  768. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  769. }
  770. for (j = base_channel; j < s->prim_channels; j++) {
  771. av_log(s->avctx, AV_LOG_DEBUG, "Transition mode:");
  772. for (k = 0; k < s->subband_activity[j]; k++)
  773. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->transition_mode[j][k]);
  774. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  775. }
  776. for (j = base_channel; j < s->prim_channels; j++) {
  777. av_log(s->avctx, AV_LOG_DEBUG, "Scale factor:");
  778. for (k = 0; k < s->subband_activity[j]; k++) {
  779. if (k >= s->vq_start_subband[j] || s->bitalloc[j][k] > 0)
  780. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->scale_factor[j][k][0]);
  781. if (k < s->vq_start_subband[j] && s->transition_mode[j][k])
  782. av_log(s->avctx, AV_LOG_DEBUG, " %i(t)", s->scale_factor[j][k][1]);
  783. }
  784. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  785. }
  786. for (j = base_channel; j < s->prim_channels; j++) {
  787. if (s->joint_intensity[j] > 0) {
  788. int source_channel = s->joint_intensity[j] - 1;
  789. av_log(s->avctx, AV_LOG_DEBUG, "Joint scale factor index:\n");
  790. for (k = s->subband_activity[j]; k < s->subband_activity[source_channel]; k++)
  791. av_log(s->avctx, AV_LOG_DEBUG, " %i", s->joint_scale_factor[j][k]);
  792. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  793. }
  794. }
  795. if (!base_channel && s->prim_channels > 2 && s->downmix) {
  796. av_log(s->avctx, AV_LOG_DEBUG, "Downmix coeffs:\n");
  797. for (j = 0; j < s->prim_channels; j++) {
  798. av_log(s->avctx, AV_LOG_DEBUG, "Channel 0, %d = %f\n", j,
  799. dca_downmix_coeffs[s->downmix_coef[j][0]]);
  800. av_log(s->avctx, AV_LOG_DEBUG, "Channel 1, %d = %f\n", j,
  801. dca_downmix_coeffs[s->downmix_coef[j][1]]);
  802. }
  803. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  804. }
  805. for (j = base_channel; j < s->prim_channels; j++)
  806. for (k = s->vq_start_subband[j]; k < s->subband_activity[j]; k++)
  807. av_log(s->avctx, AV_LOG_DEBUG, "VQ index: %i\n", s->high_freq_vq[j][k]);
  808. if (!base_channel && s->lfe) {
  809. int lfe_samples = 2 * s->lfe * (4 + block_index);
  810. int lfe_end_sample = 2 * s->lfe * (4 + block_index + s->subsubframes[s->current_subframe]);
  811. av_log(s->avctx, AV_LOG_DEBUG, "LFE samples:\n");
  812. for (j = lfe_samples; j < lfe_end_sample; j++)
  813. av_log(s->avctx, AV_LOG_DEBUG, " %f", s->lfe_data[j]);
  814. av_log(s->avctx, AV_LOG_DEBUG, "\n");
  815. }
  816. #endif
  817. return 0;
  818. }
  819. static void qmf_32_subbands(DCAContext *s, int chans,
  820. float samples_in[32][8], float *samples_out,
  821. float scale)
  822. {
  823. const float *prCoeff;
  824. int i;
  825. int sb_act = s->subband_activity[chans];
  826. int subindex;
  827. scale *= sqrt(1 / 8.0);
  828. /* Select filter */
  829. if (!s->multirate_inter) /* Non-perfect reconstruction */
  830. prCoeff = fir_32bands_nonperfect;
  831. else /* Perfect reconstruction */
  832. prCoeff = fir_32bands_perfect;
  833. for (i = sb_act; i < 32; i++)
  834. s->raXin[i] = 0.0;
  835. /* Reconstructed channel sample index */
  836. for (subindex = 0; subindex < 8; subindex++) {
  837. /* Load in one sample from each subband and clear inactive subbands */
  838. for (i = 0; i < sb_act; i++) {
  839. unsigned sign = (i - 1) & 2;
  840. uint32_t v = AV_RN32A(&samples_in[i][subindex]) ^ sign << 30;
  841. AV_WN32A(&s->raXin[i], v);
  842. }
  843. s->synth.synth_filter_float(&s->imdct,
  844. s->subband_fir_hist[chans],
  845. &s->hist_index[chans],
  846. s->subband_fir_noidea[chans], prCoeff,
  847. samples_out, s->raXin, scale);
  848. samples_out += 32;
  849. }
  850. }
  851. static void lfe_interpolation_fir(DCAContext *s, int decimation_select,
  852. int num_deci_sample, float *samples_in,
  853. float *samples_out, float scale)
  854. {
  855. /* samples_in: An array holding decimated samples.
  856. * Samples in current subframe starts from samples_in[0],
  857. * while samples_in[-1], samples_in[-2], ..., stores samples
  858. * from last subframe as history.
  859. *
  860. * samples_out: An array holding interpolated samples
  861. */
  862. int decifactor;
  863. const float *prCoeff;
  864. int deciindex;
  865. /* Select decimation filter */
  866. if (decimation_select == 1) {
  867. decifactor = 64;
  868. prCoeff = lfe_fir_128;
  869. } else {
  870. decifactor = 32;
  871. prCoeff = lfe_fir_64;
  872. }
  873. /* Interpolation */
  874. for (deciindex = 0; deciindex < num_deci_sample; deciindex++) {
  875. s->dcadsp.lfe_fir(samples_out, samples_in, prCoeff, decifactor, scale);
  876. samples_in++;
  877. samples_out += 2 * decifactor;
  878. }
  879. }
  880. /* downmixing routines */
  881. #define MIX_REAR1(samples, si1, rs, coef) \
  882. samples[i] += samples[si1] * coef[rs][0]; \
  883. samples[i+256] += samples[si1] * coef[rs][1];
  884. #define MIX_REAR2(samples, si1, si2, rs, coef) \
  885. samples[i] += samples[si1] * coef[rs][0] + samples[si2] * coef[rs + 1][0]; \
  886. samples[i+256] += samples[si1] * coef[rs][1] + samples[si2] * coef[rs + 1][1];
  887. #define MIX_FRONT3(samples, coef) \
  888. t = samples[i + c]; \
  889. u = samples[i + l]; \
  890. v = samples[i + r]; \
  891. samples[i] = t * coef[0][0] + u * coef[1][0] + v * coef[2][0]; \
  892. samples[i+256] = t * coef[0][1] + u * coef[1][1] + v * coef[2][1];
  893. #define DOWNMIX_TO_STEREO(op1, op2) \
  894. for (i = 0; i < 256; i++) { \
  895. op1 \
  896. op2 \
  897. }
  898. static void dca_downmix(float *samples, int srcfmt,
  899. int downmix_coef[DCA_PRIM_CHANNELS_MAX][2],
  900. const int8_t *channel_mapping)
  901. {
  902. int c, l, r, sl, sr, s;
  903. int i;
  904. float t, u, v;
  905. float coef[DCA_PRIM_CHANNELS_MAX][2];
  906. for (i = 0; i < DCA_PRIM_CHANNELS_MAX; i++) {
  907. coef[i][0] = dca_downmix_coeffs[downmix_coef[i][0]];
  908. coef[i][1] = dca_downmix_coeffs[downmix_coef[i][1]];
  909. }
  910. switch (srcfmt) {
  911. case DCA_MONO:
  912. case DCA_CHANNEL:
  913. case DCA_STEREO_TOTAL:
  914. case DCA_STEREO_SUMDIFF:
  915. case DCA_4F2R:
  916. av_log(NULL, 0, "Not implemented!\n");
  917. break;
  918. case DCA_STEREO:
  919. break;
  920. case DCA_3F:
  921. c = channel_mapping[0] * 256;
  922. l = channel_mapping[1] * 256;
  923. r = channel_mapping[2] * 256;
  924. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef), );
  925. break;
  926. case DCA_2F1R:
  927. s = channel_mapping[2] * 256;
  928. DOWNMIX_TO_STEREO(MIX_REAR1(samples, i + s, 2, coef), );
  929. break;
  930. case DCA_3F1R:
  931. c = channel_mapping[0] * 256;
  932. l = channel_mapping[1] * 256;
  933. r = channel_mapping[2] * 256;
  934. s = channel_mapping[3] * 256;
  935. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  936. MIX_REAR1(samples, i + s, 3, coef));
  937. break;
  938. case DCA_2F2R:
  939. sl = channel_mapping[2] * 256;
  940. sr = channel_mapping[3] * 256;
  941. DOWNMIX_TO_STEREO(MIX_REAR2(samples, i + sl, i + sr, 2, coef), );
  942. break;
  943. case DCA_3F2R:
  944. c = channel_mapping[0] * 256;
  945. l = channel_mapping[1] * 256;
  946. r = channel_mapping[2] * 256;
  947. sl = channel_mapping[3] * 256;
  948. sr = channel_mapping[4] * 256;
  949. DOWNMIX_TO_STEREO(MIX_FRONT3(samples, coef),
  950. MIX_REAR2(samples, i + sl, i + sr, 3, coef));
  951. break;
  952. }
  953. }
  954. #ifndef decode_blockcodes
  955. /* Very compact version of the block code decoder that does not use table
  956. * look-up but is slightly slower */
  957. static int decode_blockcode(int code, int levels, int *values)
  958. {
  959. int i;
  960. int offset = (levels - 1) >> 1;
  961. for (i = 0; i < 4; i++) {
  962. int div = FASTDIV(code, levels);
  963. values[i] = code - offset - div * levels;
  964. code = div;
  965. }
  966. return code;
  967. }
  968. static int decode_blockcodes(int code1, int code2, int levels, int *values)
  969. {
  970. return decode_blockcode(code1, levels, values) |
  971. decode_blockcode(code2, levels, values + 4);
  972. }
  973. #endif
  974. static const uint8_t abits_sizes[7] = { 7, 10, 12, 13, 15, 17, 19 };
  975. static const uint8_t abits_levels[7] = { 3, 5, 7, 9, 13, 17, 25 };
  976. #ifndef int8x8_fmul_int32
  977. static inline void int8x8_fmul_int32(float *dst, const int8_t *src, int scale)
  978. {
  979. float fscale = scale / 16.0;
  980. int i;
  981. for (i = 0; i < 8; i++)
  982. dst[i] = src[i] * fscale;
  983. }
  984. #endif
  985. static int dca_subsubframe(DCAContext *s, int base_channel, int block_index)
  986. {
  987. int k, l;
  988. int subsubframe = s->current_subsubframe;
  989. const float *quant_step_table;
  990. /* FIXME */
  991. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  992. LOCAL_ALIGNED_16(int, block, [8]);
  993. /*
  994. * Audio data
  995. */
  996. /* Select quantization step size table */
  997. if (s->bit_rate_index == 0x1f)
  998. quant_step_table = lossless_quant_d;
  999. else
  1000. quant_step_table = lossy_quant_d;
  1001. for (k = base_channel; k < s->prim_channels; k++) {
  1002. if (get_bits_left(&s->gb) < 0)
  1003. return AVERROR_INVALIDDATA;
  1004. for (l = 0; l < s->vq_start_subband[k]; l++) {
  1005. int m;
  1006. /* Select the mid-tread linear quantizer */
  1007. int abits = s->bitalloc[k][l];
  1008. float quant_step_size = quant_step_table[abits];
  1009. /*
  1010. * Determine quantization index code book and its type
  1011. */
  1012. /* Select quantization index code book */
  1013. int sel = s->quant_index_huffman[k][abits];
  1014. /*
  1015. * Extract bits from the bit stream
  1016. */
  1017. if (!abits) {
  1018. memset(subband_samples[k][l], 0, 8 * sizeof(subband_samples[0][0][0]));
  1019. } else {
  1020. /* Deal with transients */
  1021. int sfi = s->transition_mode[k][l] && subsubframe >= s->transition_mode[k][l];
  1022. float rscale = quant_step_size * s->scale_factor[k][l][sfi] *
  1023. s->scalefactor_adj[k][sel];
  1024. if (abits >= 11 || !dca_smpl_bitalloc[abits].vlc[sel].table) {
  1025. if (abits <= 7) {
  1026. /* Block code */
  1027. int block_code1, block_code2, size, levels, err;
  1028. size = abits_sizes[abits - 1];
  1029. levels = abits_levels[abits - 1];
  1030. block_code1 = get_bits(&s->gb, size);
  1031. block_code2 = get_bits(&s->gb, size);
  1032. err = decode_blockcodes(block_code1, block_code2,
  1033. levels, block);
  1034. if (err) {
  1035. av_log(s->avctx, AV_LOG_ERROR,
  1036. "ERROR: block code look-up failed\n");
  1037. return AVERROR_INVALIDDATA;
  1038. }
  1039. } else {
  1040. /* no coding */
  1041. for (m = 0; m < 8; m++)
  1042. block[m] = get_sbits(&s->gb, abits - 3);
  1043. }
  1044. } else {
  1045. /* Huffman coded */
  1046. for (m = 0; m < 8; m++)
  1047. block[m] = get_bitalloc(&s->gb,
  1048. &dca_smpl_bitalloc[abits], sel);
  1049. }
  1050. s->fmt_conv.int32_to_float_fmul_scalar(subband_samples[k][l],
  1051. block, rscale, 8);
  1052. }
  1053. /*
  1054. * Inverse ADPCM if in prediction mode
  1055. */
  1056. if (s->prediction_mode[k][l]) {
  1057. int n;
  1058. for (m = 0; m < 8; m++) {
  1059. for (n = 1; n <= 4; n++)
  1060. if (m >= n)
  1061. subband_samples[k][l][m] +=
  1062. (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1063. subband_samples[k][l][m - n] / 8192);
  1064. else if (s->predictor_history)
  1065. subband_samples[k][l][m] +=
  1066. (adpcm_vb[s->prediction_vq[k][l]][n - 1] *
  1067. s->subband_samples_hist[k][l][m - n + 4] / 8192);
  1068. }
  1069. }
  1070. }
  1071. /*
  1072. * Decode VQ encoded high frequencies
  1073. */
  1074. for (l = s->vq_start_subband[k]; l < s->subband_activity[k]; l++) {
  1075. /* 1 vector -> 32 samples but we only need the 8 samples
  1076. * for this subsubframe. */
  1077. int hfvq = s->high_freq_vq[k][l];
  1078. if (!s->debug_flag & 0x01) {
  1079. av_log(s->avctx, AV_LOG_DEBUG,
  1080. "Stream with high frequencies VQ coding\n");
  1081. s->debug_flag |= 0x01;
  1082. }
  1083. int8x8_fmul_int32(subband_samples[k][l],
  1084. &high_freq_vq[hfvq][subsubframe * 8],
  1085. s->scale_factor[k][l][0]);
  1086. }
  1087. }
  1088. /* Check for DSYNC after subsubframe */
  1089. if (s->aspf || subsubframe == s->subsubframes[s->current_subframe] - 1) {
  1090. if (0xFFFF == get_bits(&s->gb, 16)) { /* 0xFFFF */
  1091. #ifdef TRACE
  1092. av_log(s->avctx, AV_LOG_DEBUG, "Got subframe DSYNC\n");
  1093. #endif
  1094. } else {
  1095. av_log(s->avctx, AV_LOG_ERROR, "Didn't get subframe DSYNC\n");
  1096. }
  1097. }
  1098. /* Backup predictor history for adpcm */
  1099. for (k = base_channel; k < s->prim_channels; k++)
  1100. for (l = 0; l < s->vq_start_subband[k]; l++)
  1101. memcpy(s->subband_samples_hist[k][l],
  1102. &subband_samples[k][l][4],
  1103. 4 * sizeof(subband_samples[0][0][0]));
  1104. return 0;
  1105. }
  1106. static int dca_filter_channels(DCAContext *s, int block_index)
  1107. {
  1108. float (*subband_samples)[DCA_SUBBANDS][8] = s->subband_samples[block_index];
  1109. int k;
  1110. /* 32 subbands QMF */
  1111. for (k = 0; k < s->prim_channels; k++) {
  1112. /* static float pcm_to_double[8] = { 32768.0, 32768.0, 524288.0, 524288.0,
  1113. 0, 8388608.0, 8388608.0 };*/
  1114. qmf_32_subbands(s, k, subband_samples[k],
  1115. &s->samples[256 * s->channel_order_tab[k]],
  1116. M_SQRT1_2 * s->scale_bias /* pcm_to_double[s->source_pcm_res] */);
  1117. }
  1118. /* Down mixing */
  1119. if (s->avctx->request_channels == 2 && s->prim_channels > 2) {
  1120. dca_downmix(s->samples, s->amode, s->downmix_coef, s->channel_order_tab);
  1121. }
  1122. /* Generate LFE samples for this subsubframe FIXME!!! */
  1123. if (s->output & DCA_LFE) {
  1124. lfe_interpolation_fir(s, s->lfe, 2 * s->lfe,
  1125. s->lfe_data + 2 * s->lfe * (block_index + 4),
  1126. &s->samples[256 * dca_lfe_index[s->amode]],
  1127. (1.0 / 256.0) * s->scale_bias);
  1128. /* Outputs 20bits pcm samples */
  1129. }
  1130. return 0;
  1131. }
  1132. static int dca_subframe_footer(DCAContext *s, int base_channel)
  1133. {
  1134. int aux_data_count = 0, i;
  1135. /*
  1136. * Unpack optional information
  1137. */
  1138. /* presumably optional information only appears in the core? */
  1139. if (!base_channel) {
  1140. if (s->timestamp)
  1141. skip_bits_long(&s->gb, 32);
  1142. if (s->aux_data)
  1143. aux_data_count = get_bits(&s->gb, 6);
  1144. for (i = 0; i < aux_data_count; i++)
  1145. get_bits(&s->gb, 8);
  1146. if (s->crc_present && (s->downmix || s->dynrange))
  1147. get_bits(&s->gb, 16);
  1148. }
  1149. return 0;
  1150. }
  1151. /**
  1152. * Decode a dca frame block
  1153. *
  1154. * @param s pointer to the DCAContext
  1155. */
  1156. static int dca_decode_block(DCAContext *s, int base_channel, int block_index)
  1157. {
  1158. int ret;
  1159. /* Sanity check */
  1160. if (s->current_subframe >= s->subframes) {
  1161. av_log(s->avctx, AV_LOG_DEBUG, "check failed: %i>%i",
  1162. s->current_subframe, s->subframes);
  1163. return AVERROR_INVALIDDATA;
  1164. }
  1165. if (!s->current_subsubframe) {
  1166. #ifdef TRACE
  1167. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_header\n");
  1168. #endif
  1169. /* Read subframe header */
  1170. if ((ret = dca_subframe_header(s, base_channel, block_index)))
  1171. return ret;
  1172. }
  1173. /* Read subsubframe */
  1174. #ifdef TRACE
  1175. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subsubframe\n");
  1176. #endif
  1177. if ((ret = dca_subsubframe(s, base_channel, block_index)))
  1178. return ret;
  1179. /* Update state */
  1180. s->current_subsubframe++;
  1181. if (s->current_subsubframe >= s->subsubframes[s->current_subframe]) {
  1182. s->current_subsubframe = 0;
  1183. s->current_subframe++;
  1184. }
  1185. if (s->current_subframe >= s->subframes) {
  1186. #ifdef TRACE
  1187. av_log(s->avctx, AV_LOG_DEBUG, "DSYNC dca_subframe_footer\n");
  1188. #endif
  1189. /* Read subframe footer */
  1190. if ((ret = dca_subframe_footer(s, base_channel)))
  1191. return ret;
  1192. }
  1193. return 0;
  1194. }
  1195. /**
  1196. * Convert bitstream to one representation based on sync marker
  1197. */
  1198. static int dca_convert_bitstream(const uint8_t *src, int src_size, uint8_t *dst,
  1199. int max_size)
  1200. {
  1201. uint32_t mrk;
  1202. int i, tmp;
  1203. const uint16_t *ssrc = (const uint16_t *) src;
  1204. uint16_t *sdst = (uint16_t *) dst;
  1205. PutBitContext pb;
  1206. if ((unsigned) src_size > (unsigned) max_size) {
  1207. // av_log(NULL, AV_LOG_ERROR, "Input frame size larger than DCA_MAX_FRAME_SIZE!\n");
  1208. // return -1;
  1209. src_size = max_size;
  1210. }
  1211. mrk = AV_RB32(src);
  1212. switch (mrk) {
  1213. case DCA_MARKER_RAW_BE:
  1214. memcpy(dst, src, src_size);
  1215. return src_size;
  1216. case DCA_MARKER_RAW_LE:
  1217. for (i = 0; i < (src_size + 1) >> 1; i++)
  1218. *sdst++ = av_bswap16(*ssrc++);
  1219. return src_size;
  1220. case DCA_MARKER_14B_BE:
  1221. case DCA_MARKER_14B_LE:
  1222. init_put_bits(&pb, dst, max_size);
  1223. for (i = 0; i < (src_size + 1) >> 1; i++, src += 2) {
  1224. tmp = ((mrk == DCA_MARKER_14B_BE) ? AV_RB16(src) : AV_RL16(src)) & 0x3FFF;
  1225. put_bits(&pb, 14, tmp);
  1226. }
  1227. flush_put_bits(&pb);
  1228. return (put_bits_count(&pb) + 7) >> 3;
  1229. default:
  1230. return AVERROR_INVALIDDATA;
  1231. }
  1232. }
  1233. /**
  1234. * Return the number of channels in an ExSS speaker mask (HD)
  1235. */
  1236. static int dca_exss_mask2count(int mask)
  1237. {
  1238. /* count bits that mean speaker pairs twice */
  1239. return av_popcount(mask) +
  1240. av_popcount(mask & (DCA_EXSS_CENTER_LEFT_RIGHT |
  1241. DCA_EXSS_FRONT_LEFT_RIGHT |
  1242. DCA_EXSS_FRONT_HIGH_LEFT_RIGHT |
  1243. DCA_EXSS_WIDE_LEFT_RIGHT |
  1244. DCA_EXSS_SIDE_LEFT_RIGHT |
  1245. DCA_EXSS_SIDE_HIGH_LEFT_RIGHT |
  1246. DCA_EXSS_SIDE_REAR_LEFT_RIGHT |
  1247. DCA_EXSS_REAR_LEFT_RIGHT |
  1248. DCA_EXSS_REAR_HIGH_LEFT_RIGHT));
  1249. }
  1250. /**
  1251. * Skip mixing coefficients of a single mix out configuration (HD)
  1252. */
  1253. static void dca_exss_skip_mix_coeffs(GetBitContext *gb, int channels, int out_ch)
  1254. {
  1255. int i;
  1256. for (i = 0; i < channels; i++) {
  1257. int mix_map_mask = get_bits(gb, out_ch);
  1258. int num_coeffs = av_popcount(mix_map_mask);
  1259. skip_bits_long(gb, num_coeffs * 6);
  1260. }
  1261. }
  1262. /**
  1263. * Parse extension substream asset header (HD)
  1264. */
  1265. static int dca_exss_parse_asset_header(DCAContext *s)
  1266. {
  1267. int header_pos = get_bits_count(&s->gb);
  1268. int header_size;
  1269. int channels = 0;
  1270. int embedded_stereo = 0;
  1271. int embedded_6ch = 0;
  1272. int drc_code_present;
  1273. int av_uninit(extensions_mask);
  1274. int i, j;
  1275. if (get_bits_left(&s->gb) < 16)
  1276. return -1;
  1277. /* We will parse just enough to get to the extensions bitmask with which
  1278. * we can set the profile value. */
  1279. header_size = get_bits(&s->gb, 9) + 1;
  1280. skip_bits(&s->gb, 3); // asset index
  1281. if (s->static_fields) {
  1282. if (get_bits1(&s->gb))
  1283. skip_bits(&s->gb, 4); // asset type descriptor
  1284. if (get_bits1(&s->gb))
  1285. skip_bits_long(&s->gb, 24); // language descriptor
  1286. if (get_bits1(&s->gb)) {
  1287. /* How can one fit 1024 bytes of text here if the maximum value
  1288. * for the asset header size field above was 512 bytes? */
  1289. int text_length = get_bits(&s->gb, 10) + 1;
  1290. if (get_bits_left(&s->gb) < text_length * 8)
  1291. return -1;
  1292. skip_bits_long(&s->gb, text_length * 8); // info text
  1293. }
  1294. skip_bits(&s->gb, 5); // bit resolution - 1
  1295. skip_bits(&s->gb, 4); // max sample rate code
  1296. channels = get_bits(&s->gb, 8) + 1;
  1297. if (get_bits1(&s->gb)) { // 1-to-1 channels to speakers
  1298. int spkr_remap_sets;
  1299. int spkr_mask_size = 16;
  1300. int num_spkrs[7];
  1301. if (channels > 2)
  1302. embedded_stereo = get_bits1(&s->gb);
  1303. if (channels > 6)
  1304. embedded_6ch = get_bits1(&s->gb);
  1305. if (get_bits1(&s->gb)) {
  1306. spkr_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1307. skip_bits(&s->gb, spkr_mask_size); // spkr activity mask
  1308. }
  1309. spkr_remap_sets = get_bits(&s->gb, 3);
  1310. for (i = 0; i < spkr_remap_sets; i++) {
  1311. /* std layout mask for each remap set */
  1312. num_spkrs[i] = dca_exss_mask2count(get_bits(&s->gb, spkr_mask_size));
  1313. }
  1314. for (i = 0; i < spkr_remap_sets; i++) {
  1315. int num_dec_ch_remaps = get_bits(&s->gb, 5) + 1;
  1316. if (get_bits_left(&s->gb) < 0)
  1317. return -1;
  1318. for (j = 0; j < num_spkrs[i]; j++) {
  1319. int remap_dec_ch_mask = get_bits_long(&s->gb, num_dec_ch_remaps);
  1320. int num_dec_ch = av_popcount(remap_dec_ch_mask);
  1321. skip_bits_long(&s->gb, num_dec_ch * 5); // remap codes
  1322. }
  1323. }
  1324. } else {
  1325. skip_bits(&s->gb, 3); // representation type
  1326. }
  1327. }
  1328. drc_code_present = get_bits1(&s->gb);
  1329. if (drc_code_present)
  1330. get_bits(&s->gb, 8); // drc code
  1331. if (get_bits1(&s->gb))
  1332. skip_bits(&s->gb, 5); // dialog normalization code
  1333. if (drc_code_present && embedded_stereo)
  1334. get_bits(&s->gb, 8); // drc stereo code
  1335. if (s->mix_metadata && get_bits1(&s->gb)) {
  1336. skip_bits(&s->gb, 1); // external mix
  1337. skip_bits(&s->gb, 6); // post mix gain code
  1338. if (get_bits(&s->gb, 2) != 3) // mixer drc code
  1339. skip_bits(&s->gb, 3); // drc limit
  1340. else
  1341. skip_bits(&s->gb, 8); // custom drc code
  1342. if (get_bits1(&s->gb)) // channel specific scaling
  1343. for (i = 0; i < s->num_mix_configs; i++)
  1344. skip_bits_long(&s->gb, s->mix_config_num_ch[i] * 6); // scale codes
  1345. else
  1346. skip_bits_long(&s->gb, s->num_mix_configs * 6); // scale codes
  1347. for (i = 0; i < s->num_mix_configs; i++) {
  1348. if (get_bits_left(&s->gb) < 0)
  1349. return -1;
  1350. dca_exss_skip_mix_coeffs(&s->gb, channels, s->mix_config_num_ch[i]);
  1351. if (embedded_6ch)
  1352. dca_exss_skip_mix_coeffs(&s->gb, 6, s->mix_config_num_ch[i]);
  1353. if (embedded_stereo)
  1354. dca_exss_skip_mix_coeffs(&s->gb, 2, s->mix_config_num_ch[i]);
  1355. }
  1356. }
  1357. switch (get_bits(&s->gb, 2)) {
  1358. case 0: extensions_mask = get_bits(&s->gb, 12); break;
  1359. case 1: extensions_mask = DCA_EXT_EXSS_XLL; break;
  1360. case 2: extensions_mask = DCA_EXT_EXSS_LBR; break;
  1361. case 3: extensions_mask = 0; /* aux coding */ break;
  1362. }
  1363. /* not parsed further, we were only interested in the extensions mask */
  1364. if (get_bits_left(&s->gb) < 0)
  1365. return -1;
  1366. if (get_bits_count(&s->gb) - header_pos > header_size * 8) {
  1367. av_log(s->avctx, AV_LOG_WARNING, "Asset header size mismatch.\n");
  1368. return -1;
  1369. }
  1370. skip_bits_long(&s->gb, header_pos + header_size * 8 - get_bits_count(&s->gb));
  1371. if (extensions_mask & DCA_EXT_EXSS_XLL)
  1372. s->profile = FF_PROFILE_DTS_HD_MA;
  1373. else if (extensions_mask & (DCA_EXT_EXSS_XBR | DCA_EXT_EXSS_X96 |
  1374. DCA_EXT_EXSS_XXCH))
  1375. s->profile = FF_PROFILE_DTS_HD_HRA;
  1376. if (!(extensions_mask & DCA_EXT_CORE))
  1377. av_log(s->avctx, AV_LOG_WARNING, "DTS core detection mismatch.\n");
  1378. if ((extensions_mask & DCA_CORE_EXTS) != s->core_ext_mask)
  1379. av_log(s->avctx, AV_LOG_WARNING,
  1380. "DTS extensions detection mismatch (%d, %d)\n",
  1381. extensions_mask & DCA_CORE_EXTS, s->core_ext_mask);
  1382. return 0;
  1383. }
  1384. /**
  1385. * Parse extension substream header (HD)
  1386. */
  1387. static void dca_exss_parse_header(DCAContext *s)
  1388. {
  1389. int ss_index;
  1390. int blownup;
  1391. int num_audiop = 1;
  1392. int num_assets = 1;
  1393. int active_ss_mask[8];
  1394. int i, j;
  1395. if (get_bits_left(&s->gb) < 52)
  1396. return;
  1397. skip_bits(&s->gb, 8); // user data
  1398. ss_index = get_bits(&s->gb, 2);
  1399. blownup = get_bits1(&s->gb);
  1400. skip_bits(&s->gb, 8 + 4 * blownup); // header_size
  1401. skip_bits(&s->gb, 16 + 4 * blownup); // hd_size
  1402. s->static_fields = get_bits1(&s->gb);
  1403. if (s->static_fields) {
  1404. skip_bits(&s->gb, 2); // reference clock code
  1405. skip_bits(&s->gb, 3); // frame duration code
  1406. if (get_bits1(&s->gb))
  1407. skip_bits_long(&s->gb, 36); // timestamp
  1408. /* a single stream can contain multiple audio assets that can be
  1409. * combined to form multiple audio presentations */
  1410. num_audiop = get_bits(&s->gb, 3) + 1;
  1411. if (num_audiop > 1) {
  1412. av_log_ask_for_sample(s->avctx, "Multiple DTS-HD audio presentations.");
  1413. /* ignore such streams for now */
  1414. return;
  1415. }
  1416. num_assets = get_bits(&s->gb, 3) + 1;
  1417. if (num_assets > 1) {
  1418. av_log_ask_for_sample(s->avctx, "Multiple DTS-HD audio assets.");
  1419. /* ignore such streams for now */
  1420. return;
  1421. }
  1422. for (i = 0; i < num_audiop; i++)
  1423. active_ss_mask[i] = get_bits(&s->gb, ss_index + 1);
  1424. for (i = 0; i < num_audiop; i++)
  1425. for (j = 0; j <= ss_index; j++)
  1426. if (active_ss_mask[i] & (1 << j))
  1427. skip_bits(&s->gb, 8); // active asset mask
  1428. s->mix_metadata = get_bits1(&s->gb);
  1429. if (s->mix_metadata) {
  1430. int mix_out_mask_size;
  1431. skip_bits(&s->gb, 2); // adjustment level
  1432. mix_out_mask_size = (get_bits(&s->gb, 2) + 1) << 2;
  1433. s->num_mix_configs = get_bits(&s->gb, 2) + 1;
  1434. for (i = 0; i < s->num_mix_configs; i++) {
  1435. int mix_out_mask = get_bits(&s->gb, mix_out_mask_size);
  1436. s->mix_config_num_ch[i] = dca_exss_mask2count(mix_out_mask);
  1437. }
  1438. }
  1439. }
  1440. for (i = 0; i < num_assets; i++)
  1441. skip_bits_long(&s->gb, 16 + 4 * blownup); // asset size
  1442. for (i = 0; i < num_assets; i++) {
  1443. if (dca_exss_parse_asset_header(s))
  1444. return;
  1445. }
  1446. /* not parsed further, we were only interested in the extensions mask
  1447. * from the asset header */
  1448. }
  1449. /**
  1450. * Main frame decoding function
  1451. * FIXME add arguments
  1452. */
  1453. static int dca_decode_frame(AVCodecContext *avctx, void *data,
  1454. int *got_frame_ptr, AVPacket *avpkt)
  1455. {
  1456. const uint8_t *buf = avpkt->data;
  1457. int buf_size = avpkt->size;
  1458. int lfe_samples;
  1459. int num_core_channels = 0;
  1460. int i, ret;
  1461. float *samples_flt;
  1462. int16_t *samples_s16;
  1463. DCAContext *s = avctx->priv_data;
  1464. int channels;
  1465. int core_ss_end;
  1466. s->xch_present = 0;
  1467. s->dca_buffer_size = dca_convert_bitstream(buf, buf_size, s->dca_buffer,
  1468. DCA_MAX_FRAME_SIZE + DCA_MAX_EXSS_HEADER_SIZE);
  1469. if (s->dca_buffer_size == AVERROR_INVALIDDATA) {
  1470. av_log(avctx, AV_LOG_ERROR, "Not a valid DCA frame\n");
  1471. return AVERROR_INVALIDDATA;
  1472. }
  1473. init_get_bits(&s->gb, s->dca_buffer, s->dca_buffer_size * 8);
  1474. if ((ret = dca_parse_frame_header(s)) < 0) {
  1475. //seems like the frame is corrupt, try with the next one
  1476. return ret;
  1477. }
  1478. //set AVCodec values with parsed data
  1479. avctx->sample_rate = s->sample_rate;
  1480. avctx->bit_rate = s->bit_rate;
  1481. avctx->frame_size = s->sample_blocks * 32;
  1482. s->profile = FF_PROFILE_DTS;
  1483. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1484. if ((ret = dca_decode_block(s, 0, i))) {
  1485. av_log(avctx, AV_LOG_ERROR, "error decoding block\n");
  1486. return ret;
  1487. }
  1488. }
  1489. /* record number of core channels incase less than max channels are requested */
  1490. num_core_channels = s->prim_channels;
  1491. if (s->ext_coding)
  1492. s->core_ext_mask = dca_ext_audio_descr_mask[s->ext_descr];
  1493. else
  1494. s->core_ext_mask = 0;
  1495. core_ss_end = FFMIN(s->frame_size, s->dca_buffer_size) * 8;
  1496. /* only scan for extensions if ext_descr was unknown or indicated a
  1497. * supported XCh extension */
  1498. if (s->core_ext_mask < 0 || s->core_ext_mask & DCA_EXT_XCH) {
  1499. /* if ext_descr was unknown, clear s->core_ext_mask so that the
  1500. * extensions scan can fill it up */
  1501. s->core_ext_mask = FFMAX(s->core_ext_mask, 0);
  1502. /* extensions start at 32-bit boundaries into bitstream */
  1503. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1504. while (core_ss_end - get_bits_count(&s->gb) >= 32) {
  1505. uint32_t bits = get_bits_long(&s->gb, 32);
  1506. switch (bits) {
  1507. case 0x5a5a5a5a: {
  1508. int ext_amode, xch_fsize;
  1509. s->xch_base_channel = s->prim_channels;
  1510. /* validate sync word using XCHFSIZE field */
  1511. xch_fsize = show_bits(&s->gb, 10);
  1512. if ((s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize) &&
  1513. (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + xch_fsize + 1))
  1514. continue;
  1515. /* skip length-to-end-of-frame field for the moment */
  1516. skip_bits(&s->gb, 10);
  1517. s->core_ext_mask |= DCA_EXT_XCH;
  1518. /* extension amode(number of channels in extension) should be 1 */
  1519. /* AFAIK XCh is not used for more channels */
  1520. if ((ext_amode = get_bits(&s->gb, 4)) != 1) {
  1521. av_log(avctx, AV_LOG_ERROR, "XCh extension amode %d not"
  1522. " supported!\n", ext_amode);
  1523. continue;
  1524. }
  1525. /* much like core primary audio coding header */
  1526. dca_parse_audio_coding_header(s, s->xch_base_channel);
  1527. for (i = 0; i < (s->sample_blocks / 8); i++)
  1528. if ((ret = dca_decode_block(s, s->xch_base_channel, i))) {
  1529. av_log(avctx, AV_LOG_ERROR, "error decoding XCh extension\n");
  1530. continue;
  1531. }
  1532. s->xch_present = 1;
  1533. break;
  1534. }
  1535. case 0x47004a03:
  1536. /* XXCh: extended channels */
  1537. /* usually found either in core or HD part in DTS-HD HRA streams,
  1538. * but not in DTS-ES which contains XCh extensions instead */
  1539. s->core_ext_mask |= DCA_EXT_XXCH;
  1540. break;
  1541. case 0x1d95f262: {
  1542. int fsize96 = show_bits(&s->gb, 12) + 1;
  1543. if (s->frame_size != (get_bits_count(&s->gb) >> 3) - 4 + fsize96)
  1544. continue;
  1545. av_log(avctx, AV_LOG_DEBUG, "X96 extension found at %d bits\n",
  1546. get_bits_count(&s->gb));
  1547. skip_bits(&s->gb, 12);
  1548. av_log(avctx, AV_LOG_DEBUG, "FSIZE96 = %d bytes\n", fsize96);
  1549. av_log(avctx, AV_LOG_DEBUG, "REVNO = %d\n", get_bits(&s->gb, 4));
  1550. s->core_ext_mask |= DCA_EXT_X96;
  1551. break;
  1552. }
  1553. }
  1554. skip_bits_long(&s->gb, (-get_bits_count(&s->gb)) & 31);
  1555. }
  1556. } else {
  1557. /* no supported extensions, skip the rest of the core substream */
  1558. skip_bits_long(&s->gb, core_ss_end - get_bits_count(&s->gb));
  1559. }
  1560. if (s->core_ext_mask & DCA_EXT_X96)
  1561. s->profile = FF_PROFILE_DTS_96_24;
  1562. else if (s->core_ext_mask & (DCA_EXT_XCH | DCA_EXT_XXCH))
  1563. s->profile = FF_PROFILE_DTS_ES;
  1564. /* check for ExSS (HD part) */
  1565. if (s->dca_buffer_size - s->frame_size > 32 &&
  1566. get_bits_long(&s->gb, 32) == DCA_HD_MARKER)
  1567. dca_exss_parse_header(s);
  1568. avctx->profile = s->profile;
  1569. channels = s->prim_channels + !!s->lfe;
  1570. if (s->amode < 16) {
  1571. avctx->channel_layout = dca_core_channel_layout[s->amode];
  1572. if (s->xch_present && (!avctx->request_channels ||
  1573. avctx->request_channels > num_core_channels + !!s->lfe)) {
  1574. avctx->channel_layout |= AV_CH_BACK_CENTER;
  1575. if (s->lfe) {
  1576. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1577. s->channel_order_tab = dca_channel_reorder_lfe_xch[s->amode];
  1578. } else {
  1579. s->channel_order_tab = dca_channel_reorder_nolfe_xch[s->amode];
  1580. }
  1581. } else {
  1582. channels = num_core_channels + !!s->lfe;
  1583. s->xch_present = 0; /* disable further xch processing */
  1584. if (s->lfe) {
  1585. avctx->channel_layout |= AV_CH_LOW_FREQUENCY;
  1586. s->channel_order_tab = dca_channel_reorder_lfe[s->amode];
  1587. } else
  1588. s->channel_order_tab = dca_channel_reorder_nolfe[s->amode];
  1589. }
  1590. if (channels > !!s->lfe &&
  1591. s->channel_order_tab[channels - 1 - !!s->lfe] < 0)
  1592. return AVERROR_INVALIDDATA;
  1593. if (avctx->request_channels == 2 && s->prim_channels > 2) {
  1594. channels = 2;
  1595. s->output = DCA_STEREO;
  1596. avctx->channel_layout = AV_CH_LAYOUT_STEREO;
  1597. }
  1598. else if (avctx->request_channel_layout & AV_CH_LAYOUT_NATIVE) {
  1599. static const int8_t dca_channel_order_native[9] = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
  1600. s->channel_order_tab = dca_channel_order_native;
  1601. }
  1602. } else {
  1603. av_log(avctx, AV_LOG_ERROR, "Non standard configuration %d !\n", s->amode);
  1604. return AVERROR_INVALIDDATA;
  1605. }
  1606. if (avctx->channels != channels) {
  1607. if (avctx->channels)
  1608. av_log(avctx, AV_LOG_INFO, "Number of channels changed in DCA decoder (%d -> %d)\n", avctx->channels, channels);
  1609. avctx->channels = channels;
  1610. }
  1611. /* get output buffer */
  1612. s->frame.nb_samples = 256 * (s->sample_blocks / 8);
  1613. if ((ret = avctx->get_buffer(avctx, &s->frame)) < 0) {
  1614. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1615. return ret;
  1616. }
  1617. samples_flt = (float *) s->frame.data[0];
  1618. samples_s16 = (int16_t *) s->frame.data[0];
  1619. /* filter to get final output */
  1620. for (i = 0; i < (s->sample_blocks / 8); i++) {
  1621. dca_filter_channels(s, i);
  1622. /* If this was marked as a DTS-ES stream we need to subtract back- */
  1623. /* channel from SL & SR to remove matrixed back-channel signal */
  1624. if ((s->source_pcm_res & 1) && s->xch_present) {
  1625. float *back_chan = s->samples + s->channel_order_tab[s->xch_base_channel] * 256;
  1626. float *lt_chan = s->samples + s->channel_order_tab[s->xch_base_channel - 2] * 256;
  1627. float *rt_chan = s->samples + s->channel_order_tab[s->xch_base_channel - 1] * 256;
  1628. s->dsp.vector_fmac_scalar(lt_chan, back_chan, -M_SQRT1_2, 256);
  1629. s->dsp.vector_fmac_scalar(rt_chan, back_chan, -M_SQRT1_2, 256);
  1630. }
  1631. if (avctx->sample_fmt == AV_SAMPLE_FMT_FLT) {
  1632. s->fmt_conv.float_interleave(samples_flt, s->samples_chanptr, 256,
  1633. channels);
  1634. samples_flt += 256 * channels;
  1635. } else {
  1636. s->fmt_conv.float_to_int16_interleave(samples_s16,
  1637. s->samples_chanptr, 256,
  1638. channels);
  1639. samples_s16 += 256 * channels;
  1640. }
  1641. }
  1642. /* update lfe history */
  1643. lfe_samples = 2 * s->lfe * (s->sample_blocks / 8);
  1644. for (i = 0; i < 2 * s->lfe * 4; i++)
  1645. s->lfe_data[i] = s->lfe_data[i + lfe_samples];
  1646. *got_frame_ptr = 1;
  1647. *(AVFrame *) data = s->frame;
  1648. return buf_size;
  1649. }
  1650. /**
  1651. * DCA initialization
  1652. *
  1653. * @param avctx pointer to the AVCodecContext
  1654. */
  1655. static av_cold int dca_decode_init(AVCodecContext *avctx)
  1656. {
  1657. DCAContext *s = avctx->priv_data;
  1658. int i;
  1659. s->avctx = avctx;
  1660. dca_init_vlcs();
  1661. dsputil_init(&s->dsp, avctx);
  1662. ff_mdct_init(&s->imdct, 6, 1, 1.0);
  1663. ff_synth_filter_init(&s->synth);
  1664. ff_dcadsp_init(&s->dcadsp);
  1665. ff_fmt_convert_init(&s->fmt_conv, avctx);
  1666. for (i = 0; i < DCA_PRIM_CHANNELS_MAX + 1; i++)
  1667. s->samples_chanptr[i] = s->samples + i * 256;
  1668. if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT) {
  1669. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  1670. s->scale_bias = 1.0 / 32768.0;
  1671. } else {
  1672. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  1673. s->scale_bias = 1.0;
  1674. }
  1675. /* allow downmixing to stereo */
  1676. if (avctx->channels > 0 && avctx->request_channels < avctx->channels &&
  1677. avctx->request_channels == 2) {
  1678. avctx->channels = avctx->request_channels;
  1679. }
  1680. avcodec_get_frame_defaults(&s->frame);
  1681. avctx->coded_frame = &s->frame;
  1682. return 0;
  1683. }
  1684. static av_cold int dca_decode_end(AVCodecContext *avctx)
  1685. {
  1686. DCAContext *s = avctx->priv_data;
  1687. ff_mdct_end(&s->imdct);
  1688. return 0;
  1689. }
  1690. static const AVProfile profiles[] = {
  1691. { FF_PROFILE_DTS, "DTS" },
  1692. { FF_PROFILE_DTS_ES, "DTS-ES" },
  1693. { FF_PROFILE_DTS_96_24, "DTS 96/24" },
  1694. { FF_PROFILE_DTS_HD_HRA, "DTS-HD HRA" },
  1695. { FF_PROFILE_DTS_HD_MA, "DTS-HD MA" },
  1696. { FF_PROFILE_UNKNOWN },
  1697. };
  1698. AVCodec ff_dca_decoder = {
  1699. .name = "dca",
  1700. .type = AVMEDIA_TYPE_AUDIO,
  1701. .id = CODEC_ID_DTS,
  1702. .priv_data_size = sizeof(DCAContext),
  1703. .init = dca_decode_init,
  1704. .decode = dca_decode_frame,
  1705. .close = dca_decode_end,
  1706. .long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
  1707. .capabilities = CODEC_CAP_CHANNEL_CONF | CODEC_CAP_DR1,
  1708. .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLT,
  1709. AV_SAMPLE_FMT_S16,
  1710. AV_SAMPLE_FMT_NONE },
  1711. .profiles = NULL_IF_CONFIG_SMALL(profiles),
  1712. };