You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2761 lines
81KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. /**
  20. * @file mpegaudiodec.c
  21. * MPEG Audio decoder.
  22. */
  23. //#define DEBUG
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "mpegaudio.h"
  27. #include "dsputil.h"
  28. /*
  29. * TODO:
  30. * - in low precision mode, use more 16 bit multiplies in synth filter
  31. * - test lsf / mpeg25 extensively.
  32. */
  33. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  34. audio decoder */
  35. #ifdef CONFIG_MPEGAUDIO_HP
  36. #define USE_HIGHPRECISION
  37. #endif
  38. #ifdef USE_HIGHPRECISION
  39. #define FRAC_BITS 23 /* fractional bits for sb_samples and dct */
  40. #define WFRAC_BITS 16 /* fractional bits for window */
  41. #else
  42. #define FRAC_BITS 15 /* fractional bits for sb_samples and dct */
  43. #define WFRAC_BITS 14 /* fractional bits for window */
  44. #endif
  45. #define FRAC_ONE (1 << FRAC_BITS)
  46. #define MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
  47. #define MUL64(a,b) ((int64_t)(a) * (int64_t)(b))
  48. #define FIX(a) ((int)((a) * FRAC_ONE))
  49. /* WARNING: only correct for posititive numbers */
  50. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  51. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  52. #if FRAC_BITS <= 15
  53. typedef int16_t MPA_INT;
  54. #else
  55. typedef int32_t MPA_INT;
  56. #endif
  57. /****************/
  58. #define HEADER_SIZE 4
  59. #define BACKSTEP_SIZE 512
  60. struct GranuleDef;
  61. typedef struct MPADecodeContext {
  62. uint8_t inbuf1[2][MPA_MAX_CODED_FRAME_SIZE + BACKSTEP_SIZE]; /* input buffer */
  63. int inbuf_index;
  64. uint8_t *inbuf_ptr, *inbuf;
  65. int frame_size;
  66. int free_format_frame_size; /* frame size in case of free format
  67. (zero if currently unknown) */
  68. /* next header (used in free format parsing) */
  69. uint32_t free_format_next_header;
  70. int error_protection;
  71. int layer;
  72. int sample_rate;
  73. int sample_rate_index; /* between 0 and 8 */
  74. int bit_rate;
  75. int old_frame_size;
  76. GetBitContext gb;
  77. int nb_channels;
  78. int mode;
  79. int mode_ext;
  80. int lsf;
  81. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  82. int synth_buf_offset[MPA_MAX_CHANNELS];
  83. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  84. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  85. #ifdef DEBUG
  86. int frame_count;
  87. #endif
  88. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  89. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  90. unsigned int dither_state;
  91. } MPADecodeContext;
  92. /* layer 3 "granule" */
  93. typedef struct GranuleDef {
  94. uint8_t scfsi;
  95. int part2_3_length;
  96. int big_values;
  97. int global_gain;
  98. int scalefac_compress;
  99. uint8_t block_type;
  100. uint8_t switch_point;
  101. int table_select[3];
  102. int subblock_gain[3];
  103. uint8_t scalefac_scale;
  104. uint8_t count1table_select;
  105. int region_size[3]; /* number of huffman codes in each region */
  106. int preflag;
  107. int short_start, long_end; /* long/short band indexes */
  108. uint8_t scale_factors[40];
  109. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  110. } GranuleDef;
  111. #define MODE_EXT_MS_STEREO 2
  112. #define MODE_EXT_I_STEREO 1
  113. /* layer 3 huffman tables */
  114. typedef struct HuffTable {
  115. int xsize;
  116. const uint8_t *bits;
  117. const uint16_t *codes;
  118. } HuffTable;
  119. #include "mpegaudiodectab.h"
  120. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  121. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  122. /* vlc structure for decoding layer 3 huffman tables */
  123. static VLC huff_vlc[16];
  124. static uint8_t *huff_code_table[16];
  125. static VLC huff_quad_vlc[2];
  126. /* computed from band_size_long */
  127. static uint16_t band_index_long[9][23];
  128. /* XXX: free when all decoders are closed */
  129. #define TABLE_4_3_SIZE (8191 + 16)
  130. static int8_t *table_4_3_exp;
  131. #if FRAC_BITS <= 15
  132. static uint16_t *table_4_3_value;
  133. #else
  134. static uint32_t *table_4_3_value;
  135. #endif
  136. /* intensity stereo coef table */
  137. static int32_t is_table[2][16];
  138. static int32_t is_table_lsf[2][2][16];
  139. static int32_t csa_table[8][4];
  140. static float csa_table_float[8][4];
  141. static int32_t mdct_win[8][36];
  142. /* lower 2 bits: modulo 3, higher bits: shift */
  143. static uint16_t scale_factor_modshift[64];
  144. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  145. static int32_t scale_factor_mult[15][3];
  146. /* mult table for layer 2 group quantization */
  147. #define SCALE_GEN(v) \
  148. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  149. static int32_t scale_factor_mult2[3][3] = {
  150. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  151. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  152. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  153. };
  154. /* 2^(n/4) */
  155. static uint32_t scale_factor_mult3[4] = {
  156. FIXR(1.0),
  157. FIXR(1.18920711500272106671),
  158. FIXR(1.41421356237309504880),
  159. FIXR(1.68179283050742908605),
  160. };
  161. void ff_mpa_synth_init(MPA_INT *window);
  162. static MPA_INT window[512] __attribute__((aligned(16)));
  163. /* layer 1 unscaling */
  164. /* n = number of bits of the mantissa minus 1 */
  165. static inline int l1_unscale(int n, int mant, int scale_factor)
  166. {
  167. int shift, mod;
  168. int64_t val;
  169. shift = scale_factor_modshift[scale_factor];
  170. mod = shift & 3;
  171. shift >>= 2;
  172. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  173. shift += n;
  174. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  175. return (int)((val + (1LL << (shift - 1))) >> shift);
  176. }
  177. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  178. {
  179. int shift, mod, val;
  180. shift = scale_factor_modshift[scale_factor];
  181. mod = shift & 3;
  182. shift >>= 2;
  183. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  184. /* NOTE: at this point, 0 <= shift <= 21 */
  185. if (shift > 0)
  186. val = (val + (1 << (shift - 1))) >> shift;
  187. return val;
  188. }
  189. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  190. static inline int l3_unscale(int value, int exponent)
  191. {
  192. #if FRAC_BITS <= 15
  193. unsigned int m;
  194. #else
  195. uint64_t m;
  196. #endif
  197. int e;
  198. e = table_4_3_exp[value];
  199. e += (exponent >> 2);
  200. e = FRAC_BITS - e;
  201. #if FRAC_BITS <= 15
  202. if (e > 31)
  203. e = 31;
  204. #endif
  205. m = table_4_3_value[value];
  206. #if FRAC_BITS <= 15
  207. m = (m * scale_factor_mult3[exponent & 3]);
  208. m = (m + (1 << (e-1))) >> e;
  209. return m;
  210. #else
  211. m = MUL64(m, scale_factor_mult3[exponent & 3]);
  212. m = (m + (uint64_t_C(1) << (e-1))) >> e;
  213. return m;
  214. #endif
  215. }
  216. /* all integer n^(4/3) computation code */
  217. #define DEV_ORDER 13
  218. #define POW_FRAC_BITS 24
  219. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  220. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  221. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  222. static int dev_4_3_coefs[DEV_ORDER];
  223. static int pow_mult3[3] = {
  224. POW_FIX(1.0),
  225. POW_FIX(1.25992104989487316476),
  226. POW_FIX(1.58740105196819947474),
  227. };
  228. static void int_pow_init(void)
  229. {
  230. int i, a;
  231. a = POW_FIX(1.0);
  232. for(i=0;i<DEV_ORDER;i++) {
  233. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  234. dev_4_3_coefs[i] = a;
  235. }
  236. }
  237. /* return the mantissa and the binary exponent */
  238. static int int_pow(int i, int *exp_ptr)
  239. {
  240. int e, er, eq, j;
  241. int a, a1;
  242. /* renormalize */
  243. a = i;
  244. e = POW_FRAC_BITS;
  245. while (a < (1 << (POW_FRAC_BITS - 1))) {
  246. a = a << 1;
  247. e--;
  248. }
  249. a -= (1 << POW_FRAC_BITS);
  250. a1 = 0;
  251. for(j = DEV_ORDER - 1; j >= 0; j--)
  252. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  253. a = (1 << POW_FRAC_BITS) + a1;
  254. /* exponent compute (exact) */
  255. e = e * 4;
  256. er = e % 3;
  257. eq = e / 3;
  258. a = POW_MULL(a, pow_mult3[er]);
  259. while (a >= 2 * POW_FRAC_ONE) {
  260. a = a >> 1;
  261. eq++;
  262. }
  263. /* convert to float */
  264. while (a < POW_FRAC_ONE) {
  265. a = a << 1;
  266. eq--;
  267. }
  268. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  269. #if POW_FRAC_BITS > FRAC_BITS
  270. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  271. /* correct overflow */
  272. if (a >= 2 * (1 << FRAC_BITS)) {
  273. a = a >> 1;
  274. eq++;
  275. }
  276. #endif
  277. *exp_ptr = eq;
  278. return a;
  279. }
  280. static int decode_init(AVCodecContext * avctx)
  281. {
  282. MPADecodeContext *s = avctx->priv_data;
  283. static int init=0;
  284. int i, j, k;
  285. if(avctx->antialias_algo == FF_AA_INT)
  286. s->compute_antialias= compute_antialias_integer;
  287. else
  288. s->compute_antialias= compute_antialias_float;
  289. if (!init && !avctx->parse_only) {
  290. /* scale factors table for layer 1/2 */
  291. for(i=0;i<64;i++) {
  292. int shift, mod;
  293. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  294. shift = (i / 3);
  295. mod = i % 3;
  296. scale_factor_modshift[i] = mod | (shift << 2);
  297. }
  298. /* scale factor multiply for layer 1 */
  299. for(i=0;i<15;i++) {
  300. int n, norm;
  301. n = i + 2;
  302. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  303. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  304. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  305. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  306. dprintf("%d: norm=%x s=%x %x %x\n",
  307. i, norm,
  308. scale_factor_mult[i][0],
  309. scale_factor_mult[i][1],
  310. scale_factor_mult[i][2]);
  311. }
  312. ff_mpa_synth_init(window);
  313. /* huffman decode tables */
  314. huff_code_table[0] = NULL;
  315. for(i=1;i<16;i++) {
  316. const HuffTable *h = &mpa_huff_tables[i];
  317. int xsize, x, y;
  318. unsigned int n;
  319. uint8_t *code_table;
  320. xsize = h->xsize;
  321. n = xsize * xsize;
  322. /* XXX: fail test */
  323. init_vlc(&huff_vlc[i], 8, n,
  324. h->bits, 1, 1, h->codes, 2, 2, 1);
  325. code_table = av_mallocz(n);
  326. j = 0;
  327. for(x=0;x<xsize;x++) {
  328. for(y=0;y<xsize;y++)
  329. code_table[j++] = (x << 4) | y;
  330. }
  331. huff_code_table[i] = code_table;
  332. }
  333. for(i=0;i<2;i++) {
  334. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  335. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  336. }
  337. for(i=0;i<9;i++) {
  338. k = 0;
  339. for(j=0;j<22;j++) {
  340. band_index_long[i][j] = k;
  341. k += band_size_long[i][j];
  342. }
  343. band_index_long[i][22] = k;
  344. }
  345. /* compute n ^ (4/3) and store it in mantissa/exp format */
  346. table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
  347. if(!table_4_3_exp)
  348. return -1;
  349. table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
  350. if(!table_4_3_value)
  351. return -1;
  352. int_pow_init();
  353. for(i=1;i<TABLE_4_3_SIZE;i++) {
  354. int e, m;
  355. m = int_pow(i, &e);
  356. #if 0
  357. /* test code */
  358. {
  359. double f, fm;
  360. int e1, m1;
  361. f = pow((double)i, 4.0 / 3.0);
  362. fm = frexp(f, &e1);
  363. m1 = FIXR(2 * fm);
  364. #if FRAC_BITS <= 15
  365. if ((unsigned short)m1 != m1) {
  366. m1 = m1 >> 1;
  367. e1++;
  368. }
  369. #endif
  370. e1--;
  371. if (m != m1 || e != e1) {
  372. printf("%4d: m=%x m1=%x e=%d e1=%d\n",
  373. i, m, m1, e, e1);
  374. }
  375. }
  376. #endif
  377. /* normalized to FRAC_BITS */
  378. table_4_3_value[i] = m;
  379. table_4_3_exp[i] = e;
  380. }
  381. for(i=0;i<7;i++) {
  382. float f;
  383. int v;
  384. if (i != 6) {
  385. f = tan((double)i * M_PI / 12.0);
  386. v = FIXR(f / (1.0 + f));
  387. } else {
  388. v = FIXR(1.0);
  389. }
  390. is_table[0][i] = v;
  391. is_table[1][6 - i] = v;
  392. }
  393. /* invalid values */
  394. for(i=7;i<16;i++)
  395. is_table[0][i] = is_table[1][i] = 0.0;
  396. for(i=0;i<16;i++) {
  397. double f;
  398. int e, k;
  399. for(j=0;j<2;j++) {
  400. e = -(j + 1) * ((i + 1) >> 1);
  401. f = pow(2.0, e / 4.0);
  402. k = i & 1;
  403. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  404. is_table_lsf[j][k][i] = FIXR(1.0);
  405. dprintf("is_table_lsf %d %d: %x %x\n",
  406. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  407. }
  408. }
  409. for(i=0;i<8;i++) {
  410. float ci, cs, ca;
  411. ci = ci_table[i];
  412. cs = 1.0 / sqrt(1.0 + ci * ci);
  413. ca = cs * ci;
  414. csa_table[i][0] = FIX(cs);
  415. csa_table[i][1] = FIX(ca);
  416. csa_table[i][2] = FIX(ca) + FIX(cs);
  417. csa_table[i][3] = FIX(ca) - FIX(cs);
  418. csa_table_float[i][0] = cs;
  419. csa_table_float[i][1] = ca;
  420. csa_table_float[i][2] = ca + cs;
  421. csa_table_float[i][3] = ca - cs;
  422. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  423. }
  424. /* compute mdct windows */
  425. for(i=0;i<36;i++) {
  426. int v;
  427. v = FIXR(sin(M_PI * (i + 0.5) / 36.0));
  428. mdct_win[0][i] = v;
  429. mdct_win[1][i] = v;
  430. mdct_win[3][i] = v;
  431. }
  432. for(i=0;i<6;i++) {
  433. mdct_win[1][18 + i] = FIXR(1.0);
  434. mdct_win[1][24 + i] = FIXR(sin(M_PI * ((i + 6) + 0.5) / 12.0));
  435. mdct_win[1][30 + i] = FIXR(0.0);
  436. mdct_win[3][i] = FIXR(0.0);
  437. mdct_win[3][6 + i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  438. mdct_win[3][12 + i] = FIXR(1.0);
  439. }
  440. for(i=0;i<12;i++)
  441. mdct_win[2][i] = FIXR(sin(M_PI * (i + 0.5) / 12.0));
  442. /* NOTE: we do frequency inversion adter the MDCT by changing
  443. the sign of the right window coefs */
  444. for(j=0;j<4;j++) {
  445. for(i=0;i<36;i+=2) {
  446. mdct_win[j + 4][i] = mdct_win[j][i];
  447. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  448. }
  449. }
  450. #if defined(DEBUG)
  451. for(j=0;j<8;j++) {
  452. printf("win%d=\n", j);
  453. for(i=0;i<36;i++)
  454. printf("%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  455. printf("\n");
  456. }
  457. #endif
  458. init = 1;
  459. }
  460. s->inbuf_index = 0;
  461. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  462. s->inbuf_ptr = s->inbuf;
  463. #ifdef DEBUG
  464. s->frame_count = 0;
  465. #endif
  466. if (avctx->codec_id == CODEC_ID_MP3ADU)
  467. s->adu_mode = 1;
  468. return 0;
  469. }
  470. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  471. /* cos(i*pi/64) */
  472. #define COS0_0 FIXR(0.50060299823519630134)
  473. #define COS0_1 FIXR(0.50547095989754365998)
  474. #define COS0_2 FIXR(0.51544730992262454697)
  475. #define COS0_3 FIXR(0.53104259108978417447)
  476. #define COS0_4 FIXR(0.55310389603444452782)
  477. #define COS0_5 FIXR(0.58293496820613387367)
  478. #define COS0_6 FIXR(0.62250412303566481615)
  479. #define COS0_7 FIXR(0.67480834145500574602)
  480. #define COS0_8 FIXR(0.74453627100229844977)
  481. #define COS0_9 FIXR(0.83934964541552703873)
  482. #define COS0_10 FIXR(0.97256823786196069369)
  483. #define COS0_11 FIXR(1.16943993343288495515)
  484. #define COS0_12 FIXR(1.48416461631416627724)
  485. #define COS0_13 FIXR(2.05778100995341155085)
  486. #define COS0_14 FIXR(3.40760841846871878570)
  487. #define COS0_15 FIXR(10.19000812354805681150)
  488. #define COS1_0 FIXR(0.50241928618815570551)
  489. #define COS1_1 FIXR(0.52249861493968888062)
  490. #define COS1_2 FIXR(0.56694403481635770368)
  491. #define COS1_3 FIXR(0.64682178335999012954)
  492. #define COS1_4 FIXR(0.78815462345125022473)
  493. #define COS1_5 FIXR(1.06067768599034747134)
  494. #define COS1_6 FIXR(1.72244709823833392782)
  495. #define COS1_7 FIXR(5.10114861868916385802)
  496. #define COS2_0 FIXR(0.50979557910415916894)
  497. #define COS2_1 FIXR(0.60134488693504528054)
  498. #define COS2_2 FIXR(0.89997622313641570463)
  499. #define COS2_3 FIXR(2.56291544774150617881)
  500. #define COS3_0 FIXR(0.54119610014619698439)
  501. #define COS3_1 FIXR(1.30656296487637652785)
  502. #define COS4_0 FIXR(0.70710678118654752439)
  503. /* butterfly operator */
  504. #define BF(a, b, c)\
  505. {\
  506. tmp0 = tab[a] + tab[b];\
  507. tmp1 = tab[a] - tab[b];\
  508. tab[a] = tmp0;\
  509. tab[b] = MULL(tmp1, c);\
  510. }
  511. #define BF1(a, b, c, d)\
  512. {\
  513. BF(a, b, COS4_0);\
  514. BF(c, d, -COS4_0);\
  515. tab[c] += tab[d];\
  516. }
  517. #define BF2(a, b, c, d)\
  518. {\
  519. BF(a, b, COS4_0);\
  520. BF(c, d, -COS4_0);\
  521. tab[c] += tab[d];\
  522. tab[a] += tab[c];\
  523. tab[c] += tab[b];\
  524. tab[b] += tab[d];\
  525. }
  526. #define ADD(a, b) tab[a] += tab[b]
  527. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  528. static void dct32(int32_t *out, int32_t *tab)
  529. {
  530. int tmp0, tmp1;
  531. /* pass 1 */
  532. BF(0, 31, COS0_0);
  533. BF(1, 30, COS0_1);
  534. BF(2, 29, COS0_2);
  535. BF(3, 28, COS0_3);
  536. BF(4, 27, COS0_4);
  537. BF(5, 26, COS0_5);
  538. BF(6, 25, COS0_6);
  539. BF(7, 24, COS0_7);
  540. BF(8, 23, COS0_8);
  541. BF(9, 22, COS0_9);
  542. BF(10, 21, COS0_10);
  543. BF(11, 20, COS0_11);
  544. BF(12, 19, COS0_12);
  545. BF(13, 18, COS0_13);
  546. BF(14, 17, COS0_14);
  547. BF(15, 16, COS0_15);
  548. /* pass 2 */
  549. BF(0, 15, COS1_0);
  550. BF(1, 14, COS1_1);
  551. BF(2, 13, COS1_2);
  552. BF(3, 12, COS1_3);
  553. BF(4, 11, COS1_4);
  554. BF(5, 10, COS1_5);
  555. BF(6, 9, COS1_6);
  556. BF(7, 8, COS1_7);
  557. BF(16, 31, -COS1_0);
  558. BF(17, 30, -COS1_1);
  559. BF(18, 29, -COS1_2);
  560. BF(19, 28, -COS1_3);
  561. BF(20, 27, -COS1_4);
  562. BF(21, 26, -COS1_5);
  563. BF(22, 25, -COS1_6);
  564. BF(23, 24, -COS1_7);
  565. /* pass 3 */
  566. BF(0, 7, COS2_0);
  567. BF(1, 6, COS2_1);
  568. BF(2, 5, COS2_2);
  569. BF(3, 4, COS2_3);
  570. BF(8, 15, -COS2_0);
  571. BF(9, 14, -COS2_1);
  572. BF(10, 13, -COS2_2);
  573. BF(11, 12, -COS2_3);
  574. BF(16, 23, COS2_0);
  575. BF(17, 22, COS2_1);
  576. BF(18, 21, COS2_2);
  577. BF(19, 20, COS2_3);
  578. BF(24, 31, -COS2_0);
  579. BF(25, 30, -COS2_1);
  580. BF(26, 29, -COS2_2);
  581. BF(27, 28, -COS2_3);
  582. /* pass 4 */
  583. BF(0, 3, COS3_0);
  584. BF(1, 2, COS3_1);
  585. BF(4, 7, -COS3_0);
  586. BF(5, 6, -COS3_1);
  587. BF(8, 11, COS3_0);
  588. BF(9, 10, COS3_1);
  589. BF(12, 15, -COS3_0);
  590. BF(13, 14, -COS3_1);
  591. BF(16, 19, COS3_0);
  592. BF(17, 18, COS3_1);
  593. BF(20, 23, -COS3_0);
  594. BF(21, 22, -COS3_1);
  595. BF(24, 27, COS3_0);
  596. BF(25, 26, COS3_1);
  597. BF(28, 31, -COS3_0);
  598. BF(29, 30, -COS3_1);
  599. /* pass 5 */
  600. BF1(0, 1, 2, 3);
  601. BF2(4, 5, 6, 7);
  602. BF1(8, 9, 10, 11);
  603. BF2(12, 13, 14, 15);
  604. BF1(16, 17, 18, 19);
  605. BF2(20, 21, 22, 23);
  606. BF1(24, 25, 26, 27);
  607. BF2(28, 29, 30, 31);
  608. /* pass 6 */
  609. ADD( 8, 12);
  610. ADD(12, 10);
  611. ADD(10, 14);
  612. ADD(14, 9);
  613. ADD( 9, 13);
  614. ADD(13, 11);
  615. ADD(11, 15);
  616. out[ 0] = tab[0];
  617. out[16] = tab[1];
  618. out[ 8] = tab[2];
  619. out[24] = tab[3];
  620. out[ 4] = tab[4];
  621. out[20] = tab[5];
  622. out[12] = tab[6];
  623. out[28] = tab[7];
  624. out[ 2] = tab[8];
  625. out[18] = tab[9];
  626. out[10] = tab[10];
  627. out[26] = tab[11];
  628. out[ 6] = tab[12];
  629. out[22] = tab[13];
  630. out[14] = tab[14];
  631. out[30] = tab[15];
  632. ADD(24, 28);
  633. ADD(28, 26);
  634. ADD(26, 30);
  635. ADD(30, 25);
  636. ADD(25, 29);
  637. ADD(29, 27);
  638. ADD(27, 31);
  639. out[ 1] = tab[16] + tab[24];
  640. out[17] = tab[17] + tab[25];
  641. out[ 9] = tab[18] + tab[26];
  642. out[25] = tab[19] + tab[27];
  643. out[ 5] = tab[20] + tab[28];
  644. out[21] = tab[21] + tab[29];
  645. out[13] = tab[22] + tab[30];
  646. out[29] = tab[23] + tab[31];
  647. out[ 3] = tab[24] + tab[20];
  648. out[19] = tab[25] + tab[21];
  649. out[11] = tab[26] + tab[22];
  650. out[27] = tab[27] + tab[23];
  651. out[ 7] = tab[28] + tab[18];
  652. out[23] = tab[29] + tab[19];
  653. out[15] = tab[30] + tab[17];
  654. out[31] = tab[31];
  655. }
  656. #define OUT_SHIFT (WFRAC_BITS + FRAC_BITS - 15)
  657. #if FRAC_BITS <= 15
  658. static inline int round_sample(int *sum)
  659. {
  660. int sum1;
  661. sum1 = (*sum) >> OUT_SHIFT;
  662. *sum &= (1<<OUT_SHIFT)-1;
  663. if (sum1 < -32768)
  664. sum1 = -32768;
  665. else if (sum1 > 32767)
  666. sum1 = 32767;
  667. return sum1;
  668. }
  669. #if defined(ARCH_POWERPC_405)
  670. /* signed 16x16 -> 32 multiply add accumulate */
  671. #define MACS(rt, ra, rb) \
  672. asm ("maclhw %0, %2, %3" : "=r" (rt) : "0" (rt), "r" (ra), "r" (rb));
  673. /* signed 16x16 -> 32 multiply */
  674. #define MULS(ra, rb) \
  675. ({ int __rt; asm ("mullhw %0, %1, %2" : "=r" (__rt) : "r" (ra), "r" (rb)); __rt; })
  676. #else
  677. /* signed 16x16 -> 32 multiply add accumulate */
  678. #define MACS(rt, ra, rb) rt += (ra) * (rb)
  679. /* signed 16x16 -> 32 multiply */
  680. #define MULS(ra, rb) ((ra) * (rb))
  681. #endif
  682. #else
  683. static inline int round_sample(int64_t *sum)
  684. {
  685. int sum1;
  686. sum1 = (int)((*sum) >> OUT_SHIFT);
  687. *sum &= (1<<OUT_SHIFT)-1;
  688. if (sum1 < -32768)
  689. sum1 = -32768;
  690. else if (sum1 > 32767)
  691. sum1 = 32767;
  692. return sum1;
  693. }
  694. #define MULS(ra, rb) MUL64(ra, rb)
  695. #endif
  696. #define SUM8(sum, op, w, p) \
  697. { \
  698. sum op MULS((w)[0 * 64], p[0 * 64]);\
  699. sum op MULS((w)[1 * 64], p[1 * 64]);\
  700. sum op MULS((w)[2 * 64], p[2 * 64]);\
  701. sum op MULS((w)[3 * 64], p[3 * 64]);\
  702. sum op MULS((w)[4 * 64], p[4 * 64]);\
  703. sum op MULS((w)[5 * 64], p[5 * 64]);\
  704. sum op MULS((w)[6 * 64], p[6 * 64]);\
  705. sum op MULS((w)[7 * 64], p[7 * 64]);\
  706. }
  707. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  708. { \
  709. int tmp;\
  710. tmp = p[0 * 64];\
  711. sum1 op1 MULS((w1)[0 * 64], tmp);\
  712. sum2 op2 MULS((w2)[0 * 64], tmp);\
  713. tmp = p[1 * 64];\
  714. sum1 op1 MULS((w1)[1 * 64], tmp);\
  715. sum2 op2 MULS((w2)[1 * 64], tmp);\
  716. tmp = p[2 * 64];\
  717. sum1 op1 MULS((w1)[2 * 64], tmp);\
  718. sum2 op2 MULS((w2)[2 * 64], tmp);\
  719. tmp = p[3 * 64];\
  720. sum1 op1 MULS((w1)[3 * 64], tmp);\
  721. sum2 op2 MULS((w2)[3 * 64], tmp);\
  722. tmp = p[4 * 64];\
  723. sum1 op1 MULS((w1)[4 * 64], tmp);\
  724. sum2 op2 MULS((w2)[4 * 64], tmp);\
  725. tmp = p[5 * 64];\
  726. sum1 op1 MULS((w1)[5 * 64], tmp);\
  727. sum2 op2 MULS((w2)[5 * 64], tmp);\
  728. tmp = p[6 * 64];\
  729. sum1 op1 MULS((w1)[6 * 64], tmp);\
  730. sum2 op2 MULS((w2)[6 * 64], tmp);\
  731. tmp = p[7 * 64];\
  732. sum1 op1 MULS((w1)[7 * 64], tmp);\
  733. sum2 op2 MULS((w2)[7 * 64], tmp);\
  734. }
  735. void ff_mpa_synth_init(MPA_INT *window)
  736. {
  737. int i;
  738. /* max = 18760, max sum over all 16 coefs : 44736 */
  739. for(i=0;i<257;i++) {
  740. int v;
  741. v = mpa_enwindow[i];
  742. #if WFRAC_BITS < 16
  743. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  744. #endif
  745. window[i] = v;
  746. if ((i & 63) != 0)
  747. v = -v;
  748. if (i != 0)
  749. window[512 - i] = v;
  750. }
  751. }
  752. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  753. 32 samples. */
  754. /* XXX: optimize by avoiding ring buffer usage */
  755. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  756. MPA_INT *window, int *dither_state,
  757. int16_t *samples, int incr,
  758. int32_t sb_samples[SBLIMIT])
  759. {
  760. int32_t tmp[32];
  761. register MPA_INT *synth_buf;
  762. register const MPA_INT *w, *w2, *p;
  763. int j, offset, v;
  764. int16_t *samples2;
  765. #if FRAC_BITS <= 15
  766. int sum, sum2;
  767. #else
  768. int64_t sum, sum2;
  769. #endif
  770. dct32(tmp, sb_samples);
  771. offset = *synth_buf_offset;
  772. synth_buf = synth_buf_ptr + offset;
  773. for(j=0;j<32;j++) {
  774. v = tmp[j];
  775. #if FRAC_BITS <= 15
  776. /* NOTE: can cause a loss in precision if very high amplitude
  777. sound */
  778. if (v > 32767)
  779. v = 32767;
  780. else if (v < -32768)
  781. v = -32768;
  782. #endif
  783. synth_buf[j] = v;
  784. }
  785. /* copy to avoid wrap */
  786. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  787. samples2 = samples + 31 * incr;
  788. w = window;
  789. w2 = window + 31;
  790. sum = *dither_state;
  791. p = synth_buf + 16;
  792. SUM8(sum, +=, w, p);
  793. p = synth_buf + 48;
  794. SUM8(sum, -=, w + 32, p);
  795. *samples = round_sample(&sum);
  796. samples += incr;
  797. w++;
  798. /* we calculate two samples at the same time to avoid one memory
  799. access per two sample */
  800. for(j=1;j<16;j++) {
  801. sum2 = 0;
  802. p = synth_buf + 16 + j;
  803. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  804. p = synth_buf + 48 - j;
  805. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  806. *samples = round_sample(&sum);
  807. samples += incr;
  808. sum += sum2;
  809. *samples2 = round_sample(&sum);
  810. samples2 -= incr;
  811. w++;
  812. w2--;
  813. }
  814. p = synth_buf + 32;
  815. SUM8(sum, -=, w + 32, p);
  816. *samples = round_sample(&sum);
  817. *dither_state= sum;
  818. offset = (offset - 32) & 511;
  819. *synth_buf_offset = offset;
  820. }
  821. /* cos(pi*i/24) */
  822. #define C1 FIXR(0.99144486137381041114)
  823. #define C3 FIXR(0.92387953251128675612)
  824. #define C5 FIXR(0.79335334029123516458)
  825. #define C7 FIXR(0.60876142900872063941)
  826. #define C9 FIXR(0.38268343236508977173)
  827. #define C11 FIXR(0.13052619222005159154)
  828. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  829. cases. */
  830. static void imdct12(int *out, int *in)
  831. {
  832. int tmp;
  833. int64_t in1_3, in1_9, in4_3, in4_9;
  834. in1_3 = MUL64(in[1], C3);
  835. in1_9 = MUL64(in[1], C9);
  836. in4_3 = MUL64(in[4], C3);
  837. in4_9 = MUL64(in[4], C9);
  838. tmp = FRAC_RND(MUL64(in[0], C7) - in1_3 - MUL64(in[2], C11) +
  839. MUL64(in[3], C1) - in4_9 - MUL64(in[5], C5));
  840. out[0] = tmp;
  841. out[5] = -tmp;
  842. tmp = FRAC_RND(MUL64(in[0] - in[3], C9) - in1_3 +
  843. MUL64(in[2] + in[5], C3) - in4_9);
  844. out[1] = tmp;
  845. out[4] = -tmp;
  846. tmp = FRAC_RND(MUL64(in[0], C11) - in1_9 + MUL64(in[2], C7) -
  847. MUL64(in[3], C5) + in4_3 - MUL64(in[5], C1));
  848. out[2] = tmp;
  849. out[3] = -tmp;
  850. tmp = FRAC_RND(MUL64(-in[0], C5) + in1_9 + MUL64(in[2], C1) +
  851. MUL64(in[3], C11) - in4_3 - MUL64(in[5], C7));
  852. out[6] = tmp;
  853. out[11] = tmp;
  854. tmp = FRAC_RND(MUL64(-in[0] + in[3], C3) - in1_9 +
  855. MUL64(in[2] + in[5], C9) + in4_3);
  856. out[7] = tmp;
  857. out[10] = tmp;
  858. tmp = FRAC_RND(-MUL64(in[0], C1) - in1_3 - MUL64(in[2], C5) -
  859. MUL64(in[3], C7) - in4_9 - MUL64(in[5], C11));
  860. out[8] = tmp;
  861. out[9] = tmp;
  862. }
  863. #undef C1
  864. #undef C3
  865. #undef C5
  866. #undef C7
  867. #undef C9
  868. #undef C11
  869. /* cos(pi*i/18) */
  870. #define C1 FIXR(0.98480775301220805936)
  871. #define C2 FIXR(0.93969262078590838405)
  872. #define C3 FIXR(0.86602540378443864676)
  873. #define C4 FIXR(0.76604444311897803520)
  874. #define C5 FIXR(0.64278760968653932632)
  875. #define C6 FIXR(0.5)
  876. #define C7 FIXR(0.34202014332566873304)
  877. #define C8 FIXR(0.17364817766693034885)
  878. /* 0.5 / cos(pi*(2*i+1)/36) */
  879. static const int icos36[9] = {
  880. FIXR(0.50190991877167369479),
  881. FIXR(0.51763809020504152469),
  882. FIXR(0.55168895948124587824),
  883. FIXR(0.61038729438072803416),
  884. FIXR(0.70710678118654752439),
  885. FIXR(0.87172339781054900991),
  886. FIXR(1.18310079157624925896),
  887. FIXR(1.93185165257813657349),
  888. FIXR(5.73685662283492756461),
  889. };
  890. static const int icos72[18] = {
  891. /* 0.5 / cos(pi*(2*i+19)/72) */
  892. FIXR(0.74009361646113053152),
  893. FIXR(0.82133981585229078570),
  894. FIXR(0.93057949835178895673),
  895. FIXR(1.08284028510010010928),
  896. FIXR(1.30656296487637652785),
  897. FIXR(1.66275476171152078719),
  898. FIXR(2.31011315767264929558),
  899. FIXR(3.83064878777019433457),
  900. FIXR(11.46279281302667383546),
  901. /* 0.5 / cos(pi*(2*(i + 18) +19)/72) */
  902. FIXR(-0.67817085245462840086),
  903. FIXR(-0.63023620700513223342),
  904. FIXR(-0.59284452371708034528),
  905. FIXR(-0.56369097343317117734),
  906. FIXR(-0.54119610014619698439),
  907. FIXR(-0.52426456257040533932),
  908. FIXR(-0.51213975715725461845),
  909. FIXR(-0.50431448029007636036),
  910. FIXR(-0.50047634258165998492),
  911. };
  912. /* using Lee like decomposition followed by hand coded 9 points DCT */
  913. static void imdct36(int *out, int *in)
  914. {
  915. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  916. int tmp[18], *tmp1, *in1;
  917. int64_t in3_3, in6_6;
  918. for(i=17;i>=1;i--)
  919. in[i] += in[i-1];
  920. for(i=17;i>=3;i-=2)
  921. in[i] += in[i-2];
  922. for(j=0;j<2;j++) {
  923. tmp1 = tmp + j;
  924. in1 = in + j;
  925. in3_3 = MUL64(in1[2*3], C3);
  926. in6_6 = MUL64(in1[2*6], C6);
  927. tmp1[0] = FRAC_RND(MUL64(in1[2*1], C1) + in3_3 +
  928. MUL64(in1[2*5], C5) + MUL64(in1[2*7], C7));
  929. tmp1[2] = in1[2*0] + FRAC_RND(MUL64(in1[2*2], C2) +
  930. MUL64(in1[2*4], C4) + in6_6 +
  931. MUL64(in1[2*8], C8));
  932. tmp1[4] = FRAC_RND(MUL64(in1[2*1] - in1[2*5] - in1[2*7], C3));
  933. tmp1[6] = FRAC_RND(MUL64(in1[2*2] - in1[2*4] - in1[2*8], C6)) -
  934. in1[2*6] + in1[2*0];
  935. tmp1[8] = FRAC_RND(MUL64(in1[2*1], C5) - in3_3 -
  936. MUL64(in1[2*5], C7) + MUL64(in1[2*7], C1));
  937. tmp1[10] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C8) -
  938. MUL64(in1[2*4], C2) + in6_6 +
  939. MUL64(in1[2*8], C4));
  940. tmp1[12] = FRAC_RND(MUL64(in1[2*1], C7) - in3_3 +
  941. MUL64(in1[2*5], C1) -
  942. MUL64(in1[2*7], C5));
  943. tmp1[14] = in1[2*0] + FRAC_RND(MUL64(-in1[2*2], C4) +
  944. MUL64(in1[2*4], C8) + in6_6 -
  945. MUL64(in1[2*8], C2));
  946. tmp1[16] = in1[2*0] - in1[2*2] + in1[2*4] - in1[2*6] + in1[2*8];
  947. }
  948. i = 0;
  949. for(j=0;j<4;j++) {
  950. t0 = tmp[i];
  951. t1 = tmp[i + 2];
  952. s0 = t1 + t0;
  953. s2 = t1 - t0;
  954. t2 = tmp[i + 1];
  955. t3 = tmp[i + 3];
  956. s1 = MULL(t3 + t2, icos36[j]);
  957. s3 = MULL(t3 - t2, icos36[8 - j]);
  958. t0 = MULL(s0 + s1, icos72[9 + 8 - j]);
  959. t1 = MULL(s0 - s1, icos72[8 - j]);
  960. out[18 + 9 + j] = t0;
  961. out[18 + 8 - j] = t0;
  962. out[9 + j] = -t1;
  963. out[8 - j] = t1;
  964. t0 = MULL(s2 + s3, icos72[9+j]);
  965. t1 = MULL(s2 - s3, icos72[j]);
  966. out[18 + 9 + (8 - j)] = t0;
  967. out[18 + j] = t0;
  968. out[9 + (8 - j)] = -t1;
  969. out[j] = t1;
  970. i += 4;
  971. }
  972. s0 = tmp[16];
  973. s1 = MULL(tmp[17], icos36[4]);
  974. t0 = MULL(s0 + s1, icos72[9 + 4]);
  975. t1 = MULL(s0 - s1, icos72[4]);
  976. out[18 + 9 + 4] = t0;
  977. out[18 + 8 - 4] = t0;
  978. out[9 + 4] = -t1;
  979. out[8 - 4] = t1;
  980. }
  981. /* header decoding. MUST check the header before because no
  982. consistency check is done there. Return 1 if free format found and
  983. that the frame size must be computed externally */
  984. static int decode_header(MPADecodeContext *s, uint32_t header)
  985. {
  986. int sample_rate, frame_size, mpeg25, padding;
  987. int sample_rate_index, bitrate_index;
  988. if (header & (1<<20)) {
  989. s->lsf = (header & (1<<19)) ? 0 : 1;
  990. mpeg25 = 0;
  991. } else {
  992. s->lsf = 1;
  993. mpeg25 = 1;
  994. }
  995. s->layer = 4 - ((header >> 17) & 3);
  996. /* extract frequency */
  997. sample_rate_index = (header >> 10) & 3;
  998. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  999. sample_rate_index += 3 * (s->lsf + mpeg25);
  1000. s->sample_rate_index = sample_rate_index;
  1001. s->error_protection = ((header >> 16) & 1) ^ 1;
  1002. s->sample_rate = sample_rate;
  1003. bitrate_index = (header >> 12) & 0xf;
  1004. padding = (header >> 9) & 1;
  1005. //extension = (header >> 8) & 1;
  1006. s->mode = (header >> 6) & 3;
  1007. s->mode_ext = (header >> 4) & 3;
  1008. //copyright = (header >> 3) & 1;
  1009. //original = (header >> 2) & 1;
  1010. //emphasis = header & 3;
  1011. if (s->mode == MPA_MONO)
  1012. s->nb_channels = 1;
  1013. else
  1014. s->nb_channels = 2;
  1015. if (bitrate_index != 0) {
  1016. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1017. s->bit_rate = frame_size * 1000;
  1018. switch(s->layer) {
  1019. case 1:
  1020. frame_size = (frame_size * 12000) / sample_rate;
  1021. frame_size = (frame_size + padding) * 4;
  1022. break;
  1023. case 2:
  1024. frame_size = (frame_size * 144000) / sample_rate;
  1025. frame_size += padding;
  1026. break;
  1027. default:
  1028. case 3:
  1029. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1030. frame_size += padding;
  1031. break;
  1032. }
  1033. s->frame_size = frame_size;
  1034. } else {
  1035. /* if no frame size computed, signal it */
  1036. if (!s->free_format_frame_size)
  1037. return 1;
  1038. /* free format: compute bitrate and real frame size from the
  1039. frame size we extracted by reading the bitstream */
  1040. s->frame_size = s->free_format_frame_size;
  1041. switch(s->layer) {
  1042. case 1:
  1043. s->frame_size += padding * 4;
  1044. s->bit_rate = (s->frame_size * sample_rate) / 48000;
  1045. break;
  1046. case 2:
  1047. s->frame_size += padding;
  1048. s->bit_rate = (s->frame_size * sample_rate) / 144000;
  1049. break;
  1050. default:
  1051. case 3:
  1052. s->frame_size += padding;
  1053. s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000;
  1054. break;
  1055. }
  1056. }
  1057. #if defined(DEBUG)
  1058. printf("layer%d, %d Hz, %d kbits/s, ",
  1059. s->layer, s->sample_rate, s->bit_rate);
  1060. if (s->nb_channels == 2) {
  1061. if (s->layer == 3) {
  1062. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1063. printf("ms-");
  1064. if (s->mode_ext & MODE_EXT_I_STEREO)
  1065. printf("i-");
  1066. }
  1067. printf("stereo");
  1068. } else {
  1069. printf("mono");
  1070. }
  1071. printf("\n");
  1072. #endif
  1073. return 0;
  1074. }
  1075. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1076. header, otherwise the coded frame size in bytes */
  1077. int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
  1078. {
  1079. MPADecodeContext s1, *s = &s1;
  1080. memset( s, 0, sizeof(MPADecodeContext) );
  1081. if (ff_mpa_check_header(head) != 0)
  1082. return -1;
  1083. if (decode_header(s, head) != 0) {
  1084. return -1;
  1085. }
  1086. switch(s->layer) {
  1087. case 1:
  1088. avctx->frame_size = 384;
  1089. break;
  1090. case 2:
  1091. avctx->frame_size = 1152;
  1092. break;
  1093. default:
  1094. case 3:
  1095. if (s->lsf)
  1096. avctx->frame_size = 576;
  1097. else
  1098. avctx->frame_size = 1152;
  1099. break;
  1100. }
  1101. avctx->sample_rate = s->sample_rate;
  1102. avctx->channels = s->nb_channels;
  1103. avctx->bit_rate = s->bit_rate;
  1104. avctx->sub_id = s->layer;
  1105. return s->frame_size;
  1106. }
  1107. /* return the number of decoded frames */
  1108. static int mp_decode_layer1(MPADecodeContext *s)
  1109. {
  1110. int bound, i, v, n, ch, j, mant;
  1111. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1112. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1113. if (s->mode == MPA_JSTEREO)
  1114. bound = (s->mode_ext + 1) * 4;
  1115. else
  1116. bound = SBLIMIT;
  1117. /* allocation bits */
  1118. for(i=0;i<bound;i++) {
  1119. for(ch=0;ch<s->nb_channels;ch++) {
  1120. allocation[ch][i] = get_bits(&s->gb, 4);
  1121. }
  1122. }
  1123. for(i=bound;i<SBLIMIT;i++) {
  1124. allocation[0][i] = get_bits(&s->gb, 4);
  1125. }
  1126. /* scale factors */
  1127. for(i=0;i<bound;i++) {
  1128. for(ch=0;ch<s->nb_channels;ch++) {
  1129. if (allocation[ch][i])
  1130. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1131. }
  1132. }
  1133. for(i=bound;i<SBLIMIT;i++) {
  1134. if (allocation[0][i]) {
  1135. scale_factors[0][i] = get_bits(&s->gb, 6);
  1136. scale_factors[1][i] = get_bits(&s->gb, 6);
  1137. }
  1138. }
  1139. /* compute samples */
  1140. for(j=0;j<12;j++) {
  1141. for(i=0;i<bound;i++) {
  1142. for(ch=0;ch<s->nb_channels;ch++) {
  1143. n = allocation[ch][i];
  1144. if (n) {
  1145. mant = get_bits(&s->gb, n + 1);
  1146. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1147. } else {
  1148. v = 0;
  1149. }
  1150. s->sb_samples[ch][j][i] = v;
  1151. }
  1152. }
  1153. for(i=bound;i<SBLIMIT;i++) {
  1154. n = allocation[0][i];
  1155. if (n) {
  1156. mant = get_bits(&s->gb, n + 1);
  1157. v = l1_unscale(n, mant, scale_factors[0][i]);
  1158. s->sb_samples[0][j][i] = v;
  1159. v = l1_unscale(n, mant, scale_factors[1][i]);
  1160. s->sb_samples[1][j][i] = v;
  1161. } else {
  1162. s->sb_samples[0][j][i] = 0;
  1163. s->sb_samples[1][j][i] = 0;
  1164. }
  1165. }
  1166. }
  1167. return 12;
  1168. }
  1169. /* bitrate is in kb/s */
  1170. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1171. {
  1172. int ch_bitrate, table;
  1173. ch_bitrate = bitrate / nb_channels;
  1174. if (!lsf) {
  1175. if ((freq == 48000 && ch_bitrate >= 56) ||
  1176. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1177. table = 0;
  1178. else if (freq != 48000 && ch_bitrate >= 96)
  1179. table = 1;
  1180. else if (freq != 32000 && ch_bitrate <= 48)
  1181. table = 2;
  1182. else
  1183. table = 3;
  1184. } else {
  1185. table = 4;
  1186. }
  1187. return table;
  1188. }
  1189. static int mp_decode_layer2(MPADecodeContext *s)
  1190. {
  1191. int sblimit; /* number of used subbands */
  1192. const unsigned char *alloc_table;
  1193. int table, bit_alloc_bits, i, j, ch, bound, v;
  1194. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1195. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1196. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1197. int scale, qindex, bits, steps, k, l, m, b;
  1198. /* select decoding table */
  1199. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1200. s->sample_rate, s->lsf);
  1201. sblimit = sblimit_table[table];
  1202. alloc_table = alloc_tables[table];
  1203. if (s->mode == MPA_JSTEREO)
  1204. bound = (s->mode_ext + 1) * 4;
  1205. else
  1206. bound = sblimit;
  1207. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1208. /* sanity check */
  1209. if( bound > sblimit ) bound = sblimit;
  1210. /* parse bit allocation */
  1211. j = 0;
  1212. for(i=0;i<bound;i++) {
  1213. bit_alloc_bits = alloc_table[j];
  1214. for(ch=0;ch<s->nb_channels;ch++) {
  1215. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1216. }
  1217. j += 1 << bit_alloc_bits;
  1218. }
  1219. for(i=bound;i<sblimit;i++) {
  1220. bit_alloc_bits = alloc_table[j];
  1221. v = get_bits(&s->gb, bit_alloc_bits);
  1222. bit_alloc[0][i] = v;
  1223. bit_alloc[1][i] = v;
  1224. j += 1 << bit_alloc_bits;
  1225. }
  1226. #ifdef DEBUG
  1227. {
  1228. for(ch=0;ch<s->nb_channels;ch++) {
  1229. for(i=0;i<sblimit;i++)
  1230. printf(" %d", bit_alloc[ch][i]);
  1231. printf("\n");
  1232. }
  1233. }
  1234. #endif
  1235. /* scale codes */
  1236. for(i=0;i<sblimit;i++) {
  1237. for(ch=0;ch<s->nb_channels;ch++) {
  1238. if (bit_alloc[ch][i])
  1239. scale_code[ch][i] = get_bits(&s->gb, 2);
  1240. }
  1241. }
  1242. /* scale factors */
  1243. for(i=0;i<sblimit;i++) {
  1244. for(ch=0;ch<s->nb_channels;ch++) {
  1245. if (bit_alloc[ch][i]) {
  1246. sf = scale_factors[ch][i];
  1247. switch(scale_code[ch][i]) {
  1248. default:
  1249. case 0:
  1250. sf[0] = get_bits(&s->gb, 6);
  1251. sf[1] = get_bits(&s->gb, 6);
  1252. sf[2] = get_bits(&s->gb, 6);
  1253. break;
  1254. case 2:
  1255. sf[0] = get_bits(&s->gb, 6);
  1256. sf[1] = sf[0];
  1257. sf[2] = sf[0];
  1258. break;
  1259. case 1:
  1260. sf[0] = get_bits(&s->gb, 6);
  1261. sf[2] = get_bits(&s->gb, 6);
  1262. sf[1] = sf[0];
  1263. break;
  1264. case 3:
  1265. sf[0] = get_bits(&s->gb, 6);
  1266. sf[2] = get_bits(&s->gb, 6);
  1267. sf[1] = sf[2];
  1268. break;
  1269. }
  1270. }
  1271. }
  1272. }
  1273. #ifdef DEBUG
  1274. for(ch=0;ch<s->nb_channels;ch++) {
  1275. for(i=0;i<sblimit;i++) {
  1276. if (bit_alloc[ch][i]) {
  1277. sf = scale_factors[ch][i];
  1278. printf(" %d %d %d", sf[0], sf[1], sf[2]);
  1279. } else {
  1280. printf(" -");
  1281. }
  1282. }
  1283. printf("\n");
  1284. }
  1285. #endif
  1286. /* samples */
  1287. for(k=0;k<3;k++) {
  1288. for(l=0;l<12;l+=3) {
  1289. j = 0;
  1290. for(i=0;i<bound;i++) {
  1291. bit_alloc_bits = alloc_table[j];
  1292. for(ch=0;ch<s->nb_channels;ch++) {
  1293. b = bit_alloc[ch][i];
  1294. if (b) {
  1295. scale = scale_factors[ch][i][k];
  1296. qindex = alloc_table[j+b];
  1297. bits = quant_bits[qindex];
  1298. if (bits < 0) {
  1299. /* 3 values at the same time */
  1300. v = get_bits(&s->gb, -bits);
  1301. steps = quant_steps[qindex];
  1302. s->sb_samples[ch][k * 12 + l + 0][i] =
  1303. l2_unscale_group(steps, v % steps, scale);
  1304. v = v / steps;
  1305. s->sb_samples[ch][k * 12 + l + 1][i] =
  1306. l2_unscale_group(steps, v % steps, scale);
  1307. v = v / steps;
  1308. s->sb_samples[ch][k * 12 + l + 2][i] =
  1309. l2_unscale_group(steps, v, scale);
  1310. } else {
  1311. for(m=0;m<3;m++) {
  1312. v = get_bits(&s->gb, bits);
  1313. v = l1_unscale(bits - 1, v, scale);
  1314. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1315. }
  1316. }
  1317. } else {
  1318. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1319. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1320. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1321. }
  1322. }
  1323. /* next subband in alloc table */
  1324. j += 1 << bit_alloc_bits;
  1325. }
  1326. /* XXX: find a way to avoid this duplication of code */
  1327. for(i=bound;i<sblimit;i++) {
  1328. bit_alloc_bits = alloc_table[j];
  1329. b = bit_alloc[0][i];
  1330. if (b) {
  1331. int mant, scale0, scale1;
  1332. scale0 = scale_factors[0][i][k];
  1333. scale1 = scale_factors[1][i][k];
  1334. qindex = alloc_table[j+b];
  1335. bits = quant_bits[qindex];
  1336. if (bits < 0) {
  1337. /* 3 values at the same time */
  1338. v = get_bits(&s->gb, -bits);
  1339. steps = quant_steps[qindex];
  1340. mant = v % steps;
  1341. v = v / steps;
  1342. s->sb_samples[0][k * 12 + l + 0][i] =
  1343. l2_unscale_group(steps, mant, scale0);
  1344. s->sb_samples[1][k * 12 + l + 0][i] =
  1345. l2_unscale_group(steps, mant, scale1);
  1346. mant = v % steps;
  1347. v = v / steps;
  1348. s->sb_samples[0][k * 12 + l + 1][i] =
  1349. l2_unscale_group(steps, mant, scale0);
  1350. s->sb_samples[1][k * 12 + l + 1][i] =
  1351. l2_unscale_group(steps, mant, scale1);
  1352. s->sb_samples[0][k * 12 + l + 2][i] =
  1353. l2_unscale_group(steps, v, scale0);
  1354. s->sb_samples[1][k * 12 + l + 2][i] =
  1355. l2_unscale_group(steps, v, scale1);
  1356. } else {
  1357. for(m=0;m<3;m++) {
  1358. mant = get_bits(&s->gb, bits);
  1359. s->sb_samples[0][k * 12 + l + m][i] =
  1360. l1_unscale(bits - 1, mant, scale0);
  1361. s->sb_samples[1][k * 12 + l + m][i] =
  1362. l1_unscale(bits - 1, mant, scale1);
  1363. }
  1364. }
  1365. } else {
  1366. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1367. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1368. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1369. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1370. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1371. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1372. }
  1373. /* next subband in alloc table */
  1374. j += 1 << bit_alloc_bits;
  1375. }
  1376. /* fill remaining samples to zero */
  1377. for(i=sblimit;i<SBLIMIT;i++) {
  1378. for(ch=0;ch<s->nb_channels;ch++) {
  1379. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1380. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1381. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1382. }
  1383. }
  1384. }
  1385. }
  1386. return 3 * 12;
  1387. }
  1388. /*
  1389. * Seek back in the stream for backstep bytes (at most 511 bytes)
  1390. */
  1391. static void seek_to_maindata(MPADecodeContext *s, unsigned int backstep)
  1392. {
  1393. uint8_t *ptr;
  1394. /* compute current position in stream */
  1395. ptr = (uint8_t *)(s->gb.buffer + (get_bits_count(&s->gb)>>3));
  1396. /* copy old data before current one */
  1397. ptr -= backstep;
  1398. memcpy(ptr, s->inbuf1[s->inbuf_index ^ 1] +
  1399. BACKSTEP_SIZE + s->old_frame_size - backstep, backstep);
  1400. /* init get bits again */
  1401. init_get_bits(&s->gb, ptr, (s->frame_size + backstep)*8);
  1402. /* prepare next buffer */
  1403. s->inbuf_index ^= 1;
  1404. s->inbuf = &s->inbuf1[s->inbuf_index][BACKSTEP_SIZE];
  1405. s->old_frame_size = s->frame_size;
  1406. }
  1407. static inline void lsf_sf_expand(int *slen,
  1408. int sf, int n1, int n2, int n3)
  1409. {
  1410. if (n3) {
  1411. slen[3] = sf % n3;
  1412. sf /= n3;
  1413. } else {
  1414. slen[3] = 0;
  1415. }
  1416. if (n2) {
  1417. slen[2] = sf % n2;
  1418. sf /= n2;
  1419. } else {
  1420. slen[2] = 0;
  1421. }
  1422. slen[1] = sf % n1;
  1423. sf /= n1;
  1424. slen[0] = sf;
  1425. }
  1426. static void exponents_from_scale_factors(MPADecodeContext *s,
  1427. GranuleDef *g,
  1428. int16_t *exponents)
  1429. {
  1430. const uint8_t *bstab, *pretab;
  1431. int len, i, j, k, l, v0, shift, gain, gains[3];
  1432. int16_t *exp_ptr;
  1433. exp_ptr = exponents;
  1434. gain = g->global_gain - 210;
  1435. shift = g->scalefac_scale + 1;
  1436. bstab = band_size_long[s->sample_rate_index];
  1437. pretab = mpa_pretab[g->preflag];
  1438. for(i=0;i<g->long_end;i++) {
  1439. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift);
  1440. len = bstab[i];
  1441. for(j=len;j>0;j--)
  1442. *exp_ptr++ = v0;
  1443. }
  1444. if (g->short_start < 13) {
  1445. bstab = band_size_short[s->sample_rate_index];
  1446. gains[0] = gain - (g->subblock_gain[0] << 3);
  1447. gains[1] = gain - (g->subblock_gain[1] << 3);
  1448. gains[2] = gain - (g->subblock_gain[2] << 3);
  1449. k = g->long_end;
  1450. for(i=g->short_start;i<13;i++) {
  1451. len = bstab[i];
  1452. for(l=0;l<3;l++) {
  1453. v0 = gains[l] - (g->scale_factors[k++] << shift);
  1454. for(j=len;j>0;j--)
  1455. *exp_ptr++ = v0;
  1456. }
  1457. }
  1458. }
  1459. }
  1460. /* handle n = 0 too */
  1461. static inline int get_bitsz(GetBitContext *s, int n)
  1462. {
  1463. if (n == 0)
  1464. return 0;
  1465. else
  1466. return get_bits(s, n);
  1467. }
  1468. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1469. int16_t *exponents, int end_pos)
  1470. {
  1471. int s_index;
  1472. int linbits, code, x, y, l, v, i, j, k, pos;
  1473. GetBitContext last_gb;
  1474. VLC *vlc;
  1475. uint8_t *code_table;
  1476. /* low frequencies (called big values) */
  1477. s_index = 0;
  1478. for(i=0;i<3;i++) {
  1479. j = g->region_size[i];
  1480. if (j == 0)
  1481. continue;
  1482. /* select vlc table */
  1483. k = g->table_select[i];
  1484. l = mpa_huff_data[k][0];
  1485. linbits = mpa_huff_data[k][1];
  1486. vlc = &huff_vlc[l];
  1487. code_table = huff_code_table[l];
  1488. /* read huffcode and compute each couple */
  1489. for(;j>0;j--) {
  1490. if (get_bits_count(&s->gb) >= end_pos)
  1491. break;
  1492. if (code_table) {
  1493. code = get_vlc(&s->gb, vlc);
  1494. if (code < 0)
  1495. return -1;
  1496. y = code_table[code];
  1497. x = y >> 4;
  1498. y = y & 0x0f;
  1499. } else {
  1500. x = 0;
  1501. y = 0;
  1502. }
  1503. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1504. i, g->region_size[i] - j, x, y, exponents[s_index]);
  1505. if (x) {
  1506. if (x == 15)
  1507. x += get_bitsz(&s->gb, linbits);
  1508. v = l3_unscale(x, exponents[s_index]);
  1509. if (get_bits1(&s->gb))
  1510. v = -v;
  1511. } else {
  1512. v = 0;
  1513. }
  1514. g->sb_hybrid[s_index++] = v;
  1515. if (y) {
  1516. if (y == 15)
  1517. y += get_bitsz(&s->gb, linbits);
  1518. v = l3_unscale(y, exponents[s_index]);
  1519. if (get_bits1(&s->gb))
  1520. v = -v;
  1521. } else {
  1522. v = 0;
  1523. }
  1524. g->sb_hybrid[s_index++] = v;
  1525. }
  1526. }
  1527. /* high frequencies */
  1528. vlc = &huff_quad_vlc[g->count1table_select];
  1529. last_gb.buffer = NULL;
  1530. while (s_index <= 572) {
  1531. pos = get_bits_count(&s->gb);
  1532. if (pos >= end_pos) {
  1533. if (pos > end_pos && last_gb.buffer != NULL) {
  1534. /* some encoders generate an incorrect size for this
  1535. part. We must go back into the data */
  1536. s_index -= 4;
  1537. s->gb = last_gb;
  1538. }
  1539. break;
  1540. }
  1541. last_gb= s->gb;
  1542. code = get_vlc(&s->gb, vlc);
  1543. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1544. if (code < 0)
  1545. return -1;
  1546. for(i=0;i<4;i++) {
  1547. if (code & (8 >> i)) {
  1548. /* non zero value. Could use a hand coded function for
  1549. 'one' value */
  1550. v = l3_unscale(1, exponents[s_index]);
  1551. if(get_bits1(&s->gb))
  1552. v = -v;
  1553. } else {
  1554. v = 0;
  1555. }
  1556. g->sb_hybrid[s_index++] = v;
  1557. }
  1558. }
  1559. while (s_index < 576)
  1560. g->sb_hybrid[s_index++] = 0;
  1561. return 0;
  1562. }
  1563. /* Reorder short blocks from bitstream order to interleaved order. It
  1564. would be faster to do it in parsing, but the code would be far more
  1565. complicated */
  1566. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1567. {
  1568. int i, j, k, len;
  1569. int32_t *ptr, *dst, *ptr1;
  1570. int32_t tmp[576];
  1571. if (g->block_type != 2)
  1572. return;
  1573. if (g->switch_point) {
  1574. if (s->sample_rate_index != 8) {
  1575. ptr = g->sb_hybrid + 36;
  1576. } else {
  1577. ptr = g->sb_hybrid + 48;
  1578. }
  1579. } else {
  1580. ptr = g->sb_hybrid;
  1581. }
  1582. for(i=g->short_start;i<13;i++) {
  1583. len = band_size_short[s->sample_rate_index][i];
  1584. ptr1 = ptr;
  1585. for(k=0;k<3;k++) {
  1586. dst = tmp + k;
  1587. for(j=len;j>0;j--) {
  1588. *dst = *ptr++;
  1589. dst += 3;
  1590. }
  1591. }
  1592. memcpy(ptr1, tmp, len * 3 * sizeof(int32_t));
  1593. }
  1594. }
  1595. #define ISQRT2 FIXR(0.70710678118654752440)
  1596. static void compute_stereo(MPADecodeContext *s,
  1597. GranuleDef *g0, GranuleDef *g1)
  1598. {
  1599. int i, j, k, l;
  1600. int32_t v1, v2;
  1601. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1602. int32_t (*is_tab)[16];
  1603. int32_t *tab0, *tab1;
  1604. int non_zero_found_short[3];
  1605. /* intensity stereo */
  1606. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1607. if (!s->lsf) {
  1608. is_tab = is_table;
  1609. sf_max = 7;
  1610. } else {
  1611. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1612. sf_max = 16;
  1613. }
  1614. tab0 = g0->sb_hybrid + 576;
  1615. tab1 = g1->sb_hybrid + 576;
  1616. non_zero_found_short[0] = 0;
  1617. non_zero_found_short[1] = 0;
  1618. non_zero_found_short[2] = 0;
  1619. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1620. for(i = 12;i >= g1->short_start;i--) {
  1621. /* for last band, use previous scale factor */
  1622. if (i != 11)
  1623. k -= 3;
  1624. len = band_size_short[s->sample_rate_index][i];
  1625. for(l=2;l>=0;l--) {
  1626. tab0 -= len;
  1627. tab1 -= len;
  1628. if (!non_zero_found_short[l]) {
  1629. /* test if non zero band. if so, stop doing i-stereo */
  1630. for(j=0;j<len;j++) {
  1631. if (tab1[j] != 0) {
  1632. non_zero_found_short[l] = 1;
  1633. goto found1;
  1634. }
  1635. }
  1636. sf = g1->scale_factors[k + l];
  1637. if (sf >= sf_max)
  1638. goto found1;
  1639. v1 = is_tab[0][sf];
  1640. v2 = is_tab[1][sf];
  1641. for(j=0;j<len;j++) {
  1642. tmp0 = tab0[j];
  1643. tab0[j] = MULL(tmp0, v1);
  1644. tab1[j] = MULL(tmp0, v2);
  1645. }
  1646. } else {
  1647. found1:
  1648. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1649. /* lower part of the spectrum : do ms stereo
  1650. if enabled */
  1651. for(j=0;j<len;j++) {
  1652. tmp0 = tab0[j];
  1653. tmp1 = tab1[j];
  1654. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1655. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1656. }
  1657. }
  1658. }
  1659. }
  1660. }
  1661. non_zero_found = non_zero_found_short[0] |
  1662. non_zero_found_short[1] |
  1663. non_zero_found_short[2];
  1664. for(i = g1->long_end - 1;i >= 0;i--) {
  1665. len = band_size_long[s->sample_rate_index][i];
  1666. tab0 -= len;
  1667. tab1 -= len;
  1668. /* test if non zero band. if so, stop doing i-stereo */
  1669. if (!non_zero_found) {
  1670. for(j=0;j<len;j++) {
  1671. if (tab1[j] != 0) {
  1672. non_zero_found = 1;
  1673. goto found2;
  1674. }
  1675. }
  1676. /* for last band, use previous scale factor */
  1677. k = (i == 21) ? 20 : i;
  1678. sf = g1->scale_factors[k];
  1679. if (sf >= sf_max)
  1680. goto found2;
  1681. v1 = is_tab[0][sf];
  1682. v2 = is_tab[1][sf];
  1683. for(j=0;j<len;j++) {
  1684. tmp0 = tab0[j];
  1685. tab0[j] = MULL(tmp0, v1);
  1686. tab1[j] = MULL(tmp0, v2);
  1687. }
  1688. } else {
  1689. found2:
  1690. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1691. /* lower part of the spectrum : do ms stereo
  1692. if enabled */
  1693. for(j=0;j<len;j++) {
  1694. tmp0 = tab0[j];
  1695. tmp1 = tab1[j];
  1696. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1697. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1698. }
  1699. }
  1700. }
  1701. }
  1702. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1703. /* ms stereo ONLY */
  1704. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1705. global gain */
  1706. tab0 = g0->sb_hybrid;
  1707. tab1 = g1->sb_hybrid;
  1708. for(i=0;i<576;i++) {
  1709. tmp0 = tab0[i];
  1710. tmp1 = tab1[i];
  1711. tab0[i] = tmp0 + tmp1;
  1712. tab1[i] = tmp0 - tmp1;
  1713. }
  1714. }
  1715. }
  1716. static void compute_antialias_integer(MPADecodeContext *s,
  1717. GranuleDef *g)
  1718. {
  1719. int32_t *ptr, *p0, *p1, *csa;
  1720. int n, i, j;
  1721. /* we antialias only "long" bands */
  1722. if (g->block_type == 2) {
  1723. if (!g->switch_point)
  1724. return;
  1725. /* XXX: check this for 8000Hz case */
  1726. n = 1;
  1727. } else {
  1728. n = SBLIMIT - 1;
  1729. }
  1730. ptr = g->sb_hybrid + 18;
  1731. for(i = n;i > 0;i--) {
  1732. p0 = ptr - 1;
  1733. p1 = ptr;
  1734. csa = &csa_table[0][0];
  1735. for(j=0;j<4;j++) {
  1736. int tmp0 = *p0;
  1737. int tmp1 = *p1;
  1738. #if 0
  1739. *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
  1740. *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
  1741. #else
  1742. int64_t tmp2= MUL64(tmp0 + tmp1, csa[0]);
  1743. *p0 = FRAC_RND(tmp2 - MUL64(tmp1, csa[2]));
  1744. *p1 = FRAC_RND(tmp2 + MUL64(tmp0, csa[3]));
  1745. #endif
  1746. p0--; p1++;
  1747. csa += 4;
  1748. tmp0 = *p0;
  1749. tmp1 = *p1;
  1750. #if 0
  1751. *p0 = FRAC_RND(MUL64(tmp0, csa[0]) - MUL64(tmp1, csa[1]));
  1752. *p1 = FRAC_RND(MUL64(tmp0, csa[1]) + MUL64(tmp1, csa[0]));
  1753. #else
  1754. tmp2= MUL64(tmp0 + tmp1, csa[0]);
  1755. *p0 = FRAC_RND(tmp2 - MUL64(tmp1, csa[2]));
  1756. *p1 = FRAC_RND(tmp2 + MUL64(tmp0, csa[3]));
  1757. #endif
  1758. p0--; p1++;
  1759. csa += 4;
  1760. }
  1761. ptr += 18;
  1762. }
  1763. }
  1764. static void compute_antialias_float(MPADecodeContext *s,
  1765. GranuleDef *g)
  1766. {
  1767. int32_t *ptr, *p0, *p1;
  1768. int n, i, j;
  1769. /* we antialias only "long" bands */
  1770. if (g->block_type == 2) {
  1771. if (!g->switch_point)
  1772. return;
  1773. /* XXX: check this for 8000Hz case */
  1774. n = 1;
  1775. } else {
  1776. n = SBLIMIT - 1;
  1777. }
  1778. ptr = g->sb_hybrid + 18;
  1779. for(i = n;i > 0;i--) {
  1780. float *csa = &csa_table_float[0][0];
  1781. p0 = ptr - 1;
  1782. p1 = ptr;
  1783. for(j=0;j<4;j++) {
  1784. float tmp0 = *p0;
  1785. float tmp1 = *p1;
  1786. #if 1
  1787. *p0 = lrintf(tmp0 * csa[0] - tmp1 * csa[1]);
  1788. *p1 = lrintf(tmp0 * csa[1] + tmp1 * csa[0]);
  1789. #else
  1790. float tmp2= (tmp0 + tmp1) * csa[0];
  1791. *p0 = lrintf(tmp2 - tmp1 * csa[2]);
  1792. *p1 = lrintf(tmp2 + tmp0 * csa[3]);
  1793. #endif
  1794. p0--; p1++;
  1795. csa += 4;
  1796. tmp0 = *p0;
  1797. tmp1 = *p1;
  1798. #if 1
  1799. *p0 = lrintf(tmp0 * csa[0] - tmp1 * csa[1]);
  1800. *p1 = lrintf(tmp0 * csa[1] + tmp1 * csa[0]);
  1801. #else
  1802. tmp2= (tmp0 + tmp1) * csa[0];
  1803. *p0 = lrintf(tmp2 - tmp1 * csa[2]);
  1804. *p1 = lrintf(tmp2 + tmp0 * csa[3]);
  1805. #endif
  1806. p0--; p1++;
  1807. csa += 4;
  1808. }
  1809. ptr += 18;
  1810. }
  1811. }
  1812. static void compute_imdct(MPADecodeContext *s,
  1813. GranuleDef *g,
  1814. int32_t *sb_samples,
  1815. int32_t *mdct_buf)
  1816. {
  1817. int32_t *ptr, *win, *win1, *buf, *buf2, *out_ptr, *ptr1;
  1818. int32_t in[6];
  1819. int32_t out[36];
  1820. int32_t out2[12];
  1821. int i, j, k, mdct_long_end, v, sblimit;
  1822. /* find last non zero block */
  1823. ptr = g->sb_hybrid + 576;
  1824. ptr1 = g->sb_hybrid + 2 * 18;
  1825. while (ptr >= ptr1) {
  1826. ptr -= 6;
  1827. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1828. if (v != 0)
  1829. break;
  1830. }
  1831. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1832. if (g->block_type == 2) {
  1833. /* XXX: check for 8000 Hz */
  1834. if (g->switch_point)
  1835. mdct_long_end = 2;
  1836. else
  1837. mdct_long_end = 0;
  1838. } else {
  1839. mdct_long_end = sblimit;
  1840. }
  1841. buf = mdct_buf;
  1842. ptr = g->sb_hybrid;
  1843. for(j=0;j<mdct_long_end;j++) {
  1844. imdct36(out, ptr);
  1845. /* apply window & overlap with previous buffer */
  1846. out_ptr = sb_samples + j;
  1847. /* select window */
  1848. if (g->switch_point && j < 2)
  1849. win1 = mdct_win[0];
  1850. else
  1851. win1 = mdct_win[g->block_type];
  1852. /* select frequency inversion */
  1853. win = win1 + ((4 * 36) & -(j & 1));
  1854. for(i=0;i<18;i++) {
  1855. *out_ptr = MULL(out[i], win[i]) + buf[i];
  1856. buf[i] = MULL(out[i + 18], win[i + 18]);
  1857. out_ptr += SBLIMIT;
  1858. }
  1859. ptr += 18;
  1860. buf += 18;
  1861. }
  1862. for(j=mdct_long_end;j<sblimit;j++) {
  1863. for(i=0;i<6;i++) {
  1864. out[i] = 0;
  1865. out[6 + i] = 0;
  1866. out[30+i] = 0;
  1867. }
  1868. /* select frequency inversion */
  1869. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1870. buf2 = out + 6;
  1871. for(k=0;k<3;k++) {
  1872. /* reorder input for short mdct */
  1873. ptr1 = ptr + k;
  1874. for(i=0;i<6;i++) {
  1875. in[i] = *ptr1;
  1876. ptr1 += 3;
  1877. }
  1878. imdct12(out2, in);
  1879. /* apply 12 point window and do small overlap */
  1880. for(i=0;i<6;i++) {
  1881. buf2[i] = MULL(out2[i], win[i]) + buf2[i];
  1882. buf2[i + 6] = MULL(out2[i + 6], win[i + 6]);
  1883. }
  1884. buf2 += 6;
  1885. }
  1886. /* overlap */
  1887. out_ptr = sb_samples + j;
  1888. for(i=0;i<18;i++) {
  1889. *out_ptr = out[i] + buf[i];
  1890. buf[i] = out[i + 18];
  1891. out_ptr += SBLIMIT;
  1892. }
  1893. ptr += 18;
  1894. buf += 18;
  1895. }
  1896. /* zero bands */
  1897. for(j=sblimit;j<SBLIMIT;j++) {
  1898. /* overlap */
  1899. out_ptr = sb_samples + j;
  1900. for(i=0;i<18;i++) {
  1901. *out_ptr = buf[i];
  1902. buf[i] = 0;
  1903. out_ptr += SBLIMIT;
  1904. }
  1905. buf += 18;
  1906. }
  1907. }
  1908. #if defined(DEBUG)
  1909. void sample_dump(int fnum, int32_t *tab, int n)
  1910. {
  1911. static FILE *files[16], *f;
  1912. char buf[512];
  1913. int i;
  1914. int32_t v;
  1915. f = files[fnum];
  1916. if (!f) {
  1917. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1918. fnum,
  1919. #ifdef USE_HIGHPRECISION
  1920. "hp"
  1921. #else
  1922. "lp"
  1923. #endif
  1924. );
  1925. f = fopen(buf, "w");
  1926. if (!f)
  1927. return;
  1928. files[fnum] = f;
  1929. }
  1930. if (fnum == 0) {
  1931. static int pos = 0;
  1932. printf("pos=%d\n", pos);
  1933. for(i=0;i<n;i++) {
  1934. printf(" %0.4f", (double)tab[i] / FRAC_ONE);
  1935. if ((i % 18) == 17)
  1936. printf("\n");
  1937. }
  1938. pos += n;
  1939. }
  1940. for(i=0;i<n;i++) {
  1941. /* normalize to 23 frac bits */
  1942. v = tab[i] << (23 - FRAC_BITS);
  1943. fwrite(&v, 1, sizeof(int32_t), f);
  1944. }
  1945. }
  1946. #endif
  1947. /* main layer3 decoding function */
  1948. static int mp_decode_layer3(MPADecodeContext *s)
  1949. {
  1950. int nb_granules, main_data_begin, private_bits;
  1951. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos, bits_left;
  1952. GranuleDef granules[2][2], *g;
  1953. int16_t exponents[576];
  1954. /* read side info */
  1955. if (s->lsf) {
  1956. main_data_begin = get_bits(&s->gb, 8);
  1957. if (s->nb_channels == 2)
  1958. private_bits = get_bits(&s->gb, 2);
  1959. else
  1960. private_bits = get_bits(&s->gb, 1);
  1961. nb_granules = 1;
  1962. } else {
  1963. main_data_begin = get_bits(&s->gb, 9);
  1964. if (s->nb_channels == 2)
  1965. private_bits = get_bits(&s->gb, 3);
  1966. else
  1967. private_bits = get_bits(&s->gb, 5);
  1968. nb_granules = 2;
  1969. for(ch=0;ch<s->nb_channels;ch++) {
  1970. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1971. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1972. }
  1973. }
  1974. for(gr=0;gr<nb_granules;gr++) {
  1975. for(ch=0;ch<s->nb_channels;ch++) {
  1976. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1977. g = &granules[ch][gr];
  1978. g->part2_3_length = get_bits(&s->gb, 12);
  1979. g->big_values = get_bits(&s->gb, 9);
  1980. g->global_gain = get_bits(&s->gb, 8);
  1981. /* if MS stereo only is selected, we precompute the
  1982. 1/sqrt(2) renormalization factor */
  1983. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1984. MODE_EXT_MS_STEREO)
  1985. g->global_gain -= 2;
  1986. if (s->lsf)
  1987. g->scalefac_compress = get_bits(&s->gb, 9);
  1988. else
  1989. g->scalefac_compress = get_bits(&s->gb, 4);
  1990. blocksplit_flag = get_bits(&s->gb, 1);
  1991. if (blocksplit_flag) {
  1992. g->block_type = get_bits(&s->gb, 2);
  1993. if (g->block_type == 0)
  1994. return -1;
  1995. g->switch_point = get_bits(&s->gb, 1);
  1996. for(i=0;i<2;i++)
  1997. g->table_select[i] = get_bits(&s->gb, 5);
  1998. for(i=0;i<3;i++)
  1999. g->subblock_gain[i] = get_bits(&s->gb, 3);
  2000. /* compute huffman coded region sizes */
  2001. if (g->block_type == 2)
  2002. g->region_size[0] = (36 / 2);
  2003. else {
  2004. if (s->sample_rate_index <= 2)
  2005. g->region_size[0] = (36 / 2);
  2006. else if (s->sample_rate_index != 8)
  2007. g->region_size[0] = (54 / 2);
  2008. else
  2009. g->region_size[0] = (108 / 2);
  2010. }
  2011. g->region_size[1] = (576 / 2);
  2012. } else {
  2013. int region_address1, region_address2, l;
  2014. g->block_type = 0;
  2015. g->switch_point = 0;
  2016. for(i=0;i<3;i++)
  2017. g->table_select[i] = get_bits(&s->gb, 5);
  2018. /* compute huffman coded region sizes */
  2019. region_address1 = get_bits(&s->gb, 4);
  2020. region_address2 = get_bits(&s->gb, 3);
  2021. dprintf("region1=%d region2=%d\n",
  2022. region_address1, region_address2);
  2023. g->region_size[0] =
  2024. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  2025. l = region_address1 + region_address2 + 2;
  2026. /* should not overflow */
  2027. if (l > 22)
  2028. l = 22;
  2029. g->region_size[1] =
  2030. band_index_long[s->sample_rate_index][l] >> 1;
  2031. }
  2032. /* convert region offsets to region sizes and truncate
  2033. size to big_values */
  2034. g->region_size[2] = (576 / 2);
  2035. j = 0;
  2036. for(i=0;i<3;i++) {
  2037. k = g->region_size[i];
  2038. if (k > g->big_values)
  2039. k = g->big_values;
  2040. g->region_size[i] = k - j;
  2041. j = k;
  2042. }
  2043. /* compute band indexes */
  2044. if (g->block_type == 2) {
  2045. if (g->switch_point) {
  2046. /* if switched mode, we handle the 36 first samples as
  2047. long blocks. For 8000Hz, we handle the 48 first
  2048. exponents as long blocks (XXX: check this!) */
  2049. if (s->sample_rate_index <= 2)
  2050. g->long_end = 8;
  2051. else if (s->sample_rate_index != 8)
  2052. g->long_end = 6;
  2053. else
  2054. g->long_end = 4; /* 8000 Hz */
  2055. if (s->sample_rate_index != 8)
  2056. g->short_start = 3;
  2057. else
  2058. g->short_start = 2;
  2059. } else {
  2060. g->long_end = 0;
  2061. g->short_start = 0;
  2062. }
  2063. } else {
  2064. g->short_start = 13;
  2065. g->long_end = 22;
  2066. }
  2067. g->preflag = 0;
  2068. if (!s->lsf)
  2069. g->preflag = get_bits(&s->gb, 1);
  2070. g->scalefac_scale = get_bits(&s->gb, 1);
  2071. g->count1table_select = get_bits(&s->gb, 1);
  2072. dprintf("block_type=%d switch_point=%d\n",
  2073. g->block_type, g->switch_point);
  2074. }
  2075. }
  2076. if (!s->adu_mode) {
  2077. /* now we get bits from the main_data_begin offset */
  2078. dprintf("seekback: %d\n", main_data_begin);
  2079. seek_to_maindata(s, main_data_begin);
  2080. }
  2081. for(gr=0;gr<nb_granules;gr++) {
  2082. for(ch=0;ch<s->nb_channels;ch++) {
  2083. g = &granules[ch][gr];
  2084. bits_pos = get_bits_count(&s->gb);
  2085. if (!s->lsf) {
  2086. uint8_t *sc;
  2087. int slen, slen1, slen2;
  2088. /* MPEG1 scale factors */
  2089. slen1 = slen_table[0][g->scalefac_compress];
  2090. slen2 = slen_table[1][g->scalefac_compress];
  2091. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2092. if (g->block_type == 2) {
  2093. n = g->switch_point ? 17 : 18;
  2094. j = 0;
  2095. for(i=0;i<n;i++)
  2096. g->scale_factors[j++] = get_bitsz(&s->gb, slen1);
  2097. for(i=0;i<18;i++)
  2098. g->scale_factors[j++] = get_bitsz(&s->gb, slen2);
  2099. for(i=0;i<3;i++)
  2100. g->scale_factors[j++] = 0;
  2101. } else {
  2102. sc = granules[ch][0].scale_factors;
  2103. j = 0;
  2104. for(k=0;k<4;k++) {
  2105. n = (k == 0 ? 6 : 5);
  2106. if ((g->scfsi & (0x8 >> k)) == 0) {
  2107. slen = (k < 2) ? slen1 : slen2;
  2108. for(i=0;i<n;i++)
  2109. g->scale_factors[j++] = get_bitsz(&s->gb, slen);
  2110. } else {
  2111. /* simply copy from last granule */
  2112. for(i=0;i<n;i++) {
  2113. g->scale_factors[j] = sc[j];
  2114. j++;
  2115. }
  2116. }
  2117. }
  2118. g->scale_factors[j++] = 0;
  2119. }
  2120. #if defined(DEBUG)
  2121. {
  2122. printf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2123. g->scfsi, gr, ch);
  2124. for(i=0;i<j;i++)
  2125. printf(" %d", g->scale_factors[i]);
  2126. printf("\n");
  2127. }
  2128. #endif
  2129. } else {
  2130. int tindex, tindex2, slen[4], sl, sf;
  2131. /* LSF scale factors */
  2132. if (g->block_type == 2) {
  2133. tindex = g->switch_point ? 2 : 1;
  2134. } else {
  2135. tindex = 0;
  2136. }
  2137. sf = g->scalefac_compress;
  2138. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2139. /* intensity stereo case */
  2140. sf >>= 1;
  2141. if (sf < 180) {
  2142. lsf_sf_expand(slen, sf, 6, 6, 0);
  2143. tindex2 = 3;
  2144. } else if (sf < 244) {
  2145. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2146. tindex2 = 4;
  2147. } else {
  2148. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2149. tindex2 = 5;
  2150. }
  2151. } else {
  2152. /* normal case */
  2153. if (sf < 400) {
  2154. lsf_sf_expand(slen, sf, 5, 4, 4);
  2155. tindex2 = 0;
  2156. } else if (sf < 500) {
  2157. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2158. tindex2 = 1;
  2159. } else {
  2160. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2161. tindex2 = 2;
  2162. g->preflag = 1;
  2163. }
  2164. }
  2165. j = 0;
  2166. for(k=0;k<4;k++) {
  2167. n = lsf_nsf_table[tindex2][tindex][k];
  2168. sl = slen[k];
  2169. for(i=0;i<n;i++)
  2170. g->scale_factors[j++] = get_bitsz(&s->gb, sl);
  2171. }
  2172. /* XXX: should compute exact size */
  2173. for(;j<40;j++)
  2174. g->scale_factors[j] = 0;
  2175. #if defined(DEBUG)
  2176. {
  2177. printf("gr=%d ch=%d scale_factors:\n",
  2178. gr, ch);
  2179. for(i=0;i<40;i++)
  2180. printf(" %d", g->scale_factors[i]);
  2181. printf("\n");
  2182. }
  2183. #endif
  2184. }
  2185. exponents_from_scale_factors(s, g, exponents);
  2186. /* read Huffman coded residue */
  2187. if (huffman_decode(s, g, exponents,
  2188. bits_pos + g->part2_3_length) < 0)
  2189. return -1;
  2190. #if defined(DEBUG)
  2191. sample_dump(0, g->sb_hybrid, 576);
  2192. #endif
  2193. /* skip extension bits */
  2194. bits_left = g->part2_3_length - (get_bits_count(&s->gb) - bits_pos);
  2195. if (bits_left < 0) {
  2196. dprintf("bits_left=%d\n", bits_left);
  2197. return -1;
  2198. }
  2199. while (bits_left >= 16) {
  2200. skip_bits(&s->gb, 16);
  2201. bits_left -= 16;
  2202. }
  2203. if (bits_left > 0)
  2204. skip_bits(&s->gb, bits_left);
  2205. } /* ch */
  2206. if (s->nb_channels == 2)
  2207. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2208. for(ch=0;ch<s->nb_channels;ch++) {
  2209. g = &granules[ch][gr];
  2210. reorder_block(s, g);
  2211. #if defined(DEBUG)
  2212. sample_dump(0, g->sb_hybrid, 576);
  2213. #endif
  2214. s->compute_antialias(s, g);
  2215. #if defined(DEBUG)
  2216. sample_dump(1, g->sb_hybrid, 576);
  2217. #endif
  2218. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2219. #if defined(DEBUG)
  2220. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2221. #endif
  2222. }
  2223. } /* gr */
  2224. return nb_granules * 18;
  2225. }
  2226. static int mp_decode_frame(MPADecodeContext *s,
  2227. short *samples)
  2228. {
  2229. int i, nb_frames, ch;
  2230. short *samples_ptr;
  2231. init_get_bits(&s->gb, s->inbuf + HEADER_SIZE,
  2232. (s->inbuf_ptr - s->inbuf - HEADER_SIZE)*8);
  2233. /* skip error protection field */
  2234. if (s->error_protection)
  2235. get_bits(&s->gb, 16);
  2236. dprintf("frame %d:\n", s->frame_count);
  2237. switch(s->layer) {
  2238. case 1:
  2239. nb_frames = mp_decode_layer1(s);
  2240. break;
  2241. case 2:
  2242. nb_frames = mp_decode_layer2(s);
  2243. break;
  2244. case 3:
  2245. default:
  2246. nb_frames = mp_decode_layer3(s);
  2247. break;
  2248. }
  2249. #if defined(DEBUG)
  2250. for(i=0;i<nb_frames;i++) {
  2251. for(ch=0;ch<s->nb_channels;ch++) {
  2252. int j;
  2253. printf("%d-%d:", i, ch);
  2254. for(j=0;j<SBLIMIT;j++)
  2255. printf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2256. printf("\n");
  2257. }
  2258. }
  2259. #endif
  2260. /* apply the synthesis filter */
  2261. for(ch=0;ch<s->nb_channels;ch++) {
  2262. samples_ptr = samples + ch;
  2263. for(i=0;i<nb_frames;i++) {
  2264. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2265. window, &s->dither_state,
  2266. samples_ptr, s->nb_channels,
  2267. s->sb_samples[ch][i]);
  2268. samples_ptr += 32 * s->nb_channels;
  2269. }
  2270. }
  2271. #ifdef DEBUG
  2272. s->frame_count++;
  2273. #endif
  2274. return nb_frames * 32 * sizeof(short) * s->nb_channels;
  2275. }
  2276. static int decode_frame(AVCodecContext * avctx,
  2277. void *data, int *data_size,
  2278. uint8_t * buf, int buf_size)
  2279. {
  2280. MPADecodeContext *s = avctx->priv_data;
  2281. uint32_t header;
  2282. uint8_t *buf_ptr;
  2283. int len, out_size;
  2284. short *out_samples = data;
  2285. buf_ptr = buf;
  2286. while (buf_size > 0) {
  2287. len = s->inbuf_ptr - s->inbuf;
  2288. if (s->frame_size == 0) {
  2289. /* special case for next header for first frame in free
  2290. format case (XXX: find a simpler method) */
  2291. if (s->free_format_next_header != 0) {
  2292. s->inbuf[0] = s->free_format_next_header >> 24;
  2293. s->inbuf[1] = s->free_format_next_header >> 16;
  2294. s->inbuf[2] = s->free_format_next_header >> 8;
  2295. s->inbuf[3] = s->free_format_next_header;
  2296. s->inbuf_ptr = s->inbuf + 4;
  2297. s->free_format_next_header = 0;
  2298. goto got_header;
  2299. }
  2300. /* no header seen : find one. We need at least HEADER_SIZE
  2301. bytes to parse it */
  2302. len = HEADER_SIZE - len;
  2303. if (len > buf_size)
  2304. len = buf_size;
  2305. if (len > 0) {
  2306. memcpy(s->inbuf_ptr, buf_ptr, len);
  2307. buf_ptr += len;
  2308. buf_size -= len;
  2309. s->inbuf_ptr += len;
  2310. }
  2311. if ((s->inbuf_ptr - s->inbuf) >= HEADER_SIZE) {
  2312. got_header:
  2313. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2314. (s->inbuf[2] << 8) | s->inbuf[3];
  2315. if (ff_mpa_check_header(header) < 0) {
  2316. /* no sync found : move by one byte (inefficient, but simple!) */
  2317. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2318. s->inbuf_ptr--;
  2319. dprintf("skip %x\n", header);
  2320. /* reset free format frame size to give a chance
  2321. to get a new bitrate */
  2322. s->free_format_frame_size = 0;
  2323. } else {
  2324. if (decode_header(s, header) == 1) {
  2325. /* free format: prepare to compute frame size */
  2326. s->frame_size = -1;
  2327. }
  2328. /* update codec info */
  2329. avctx->sample_rate = s->sample_rate;
  2330. avctx->channels = s->nb_channels;
  2331. avctx->bit_rate = s->bit_rate;
  2332. avctx->sub_id = s->layer;
  2333. switch(s->layer) {
  2334. case 1:
  2335. avctx->frame_size = 384;
  2336. break;
  2337. case 2:
  2338. avctx->frame_size = 1152;
  2339. break;
  2340. case 3:
  2341. if (s->lsf)
  2342. avctx->frame_size = 576;
  2343. else
  2344. avctx->frame_size = 1152;
  2345. break;
  2346. }
  2347. }
  2348. }
  2349. } else if (s->frame_size == -1) {
  2350. /* free format : find next sync to compute frame size */
  2351. len = MPA_MAX_CODED_FRAME_SIZE - len;
  2352. if (len > buf_size)
  2353. len = buf_size;
  2354. if (len == 0) {
  2355. /* frame too long: resync */
  2356. s->frame_size = 0;
  2357. memmove(s->inbuf, s->inbuf + 1, s->inbuf_ptr - s->inbuf - 1);
  2358. s->inbuf_ptr--;
  2359. } else {
  2360. uint8_t *p, *pend;
  2361. uint32_t header1;
  2362. int padding;
  2363. memcpy(s->inbuf_ptr, buf_ptr, len);
  2364. /* check for header */
  2365. p = s->inbuf_ptr - 3;
  2366. pend = s->inbuf_ptr + len - 4;
  2367. while (p <= pend) {
  2368. header = (p[0] << 24) | (p[1] << 16) |
  2369. (p[2] << 8) | p[3];
  2370. header1 = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2371. (s->inbuf[2] << 8) | s->inbuf[3];
  2372. /* check with high probability that we have a
  2373. valid header */
  2374. if ((header & SAME_HEADER_MASK) ==
  2375. (header1 & SAME_HEADER_MASK)) {
  2376. /* header found: update pointers */
  2377. len = (p + 4) - s->inbuf_ptr;
  2378. buf_ptr += len;
  2379. buf_size -= len;
  2380. s->inbuf_ptr = p;
  2381. /* compute frame size */
  2382. s->free_format_next_header = header;
  2383. s->free_format_frame_size = s->inbuf_ptr - s->inbuf;
  2384. padding = (header1 >> 9) & 1;
  2385. if (s->layer == 1)
  2386. s->free_format_frame_size -= padding * 4;
  2387. else
  2388. s->free_format_frame_size -= padding;
  2389. dprintf("free frame size=%d padding=%d\n",
  2390. s->free_format_frame_size, padding);
  2391. decode_header(s, header1);
  2392. goto next_data;
  2393. }
  2394. p++;
  2395. }
  2396. /* not found: simply increase pointers */
  2397. buf_ptr += len;
  2398. s->inbuf_ptr += len;
  2399. buf_size -= len;
  2400. }
  2401. } else if (len < s->frame_size) {
  2402. if (s->frame_size > MPA_MAX_CODED_FRAME_SIZE)
  2403. s->frame_size = MPA_MAX_CODED_FRAME_SIZE;
  2404. len = s->frame_size - len;
  2405. if (len > buf_size)
  2406. len = buf_size;
  2407. memcpy(s->inbuf_ptr, buf_ptr, len);
  2408. buf_ptr += len;
  2409. s->inbuf_ptr += len;
  2410. buf_size -= len;
  2411. }
  2412. next_data:
  2413. if (s->frame_size > 0 &&
  2414. (s->inbuf_ptr - s->inbuf) >= s->frame_size) {
  2415. if (avctx->parse_only) {
  2416. /* simply return the frame data */
  2417. *(uint8_t **)data = s->inbuf;
  2418. out_size = s->inbuf_ptr - s->inbuf;
  2419. } else {
  2420. out_size = mp_decode_frame(s, out_samples);
  2421. }
  2422. s->inbuf_ptr = s->inbuf;
  2423. s->frame_size = 0;
  2424. *data_size = out_size;
  2425. break;
  2426. }
  2427. }
  2428. return buf_ptr - buf;
  2429. }
  2430. static int decode_frame_adu(AVCodecContext * avctx,
  2431. void *data, int *data_size,
  2432. uint8_t * buf, int buf_size)
  2433. {
  2434. MPADecodeContext *s = avctx->priv_data;
  2435. uint32_t header;
  2436. int len, out_size;
  2437. short *out_samples = data;
  2438. len = buf_size;
  2439. // Discard too short frames
  2440. if (buf_size < HEADER_SIZE) {
  2441. *data_size = 0;
  2442. return buf_size;
  2443. }
  2444. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2445. len = MPA_MAX_CODED_FRAME_SIZE;
  2446. memcpy(s->inbuf, buf, len);
  2447. s->inbuf_ptr = s->inbuf + len;
  2448. // Get header and restore sync word
  2449. header = (s->inbuf[0] << 24) | (s->inbuf[1] << 16) |
  2450. (s->inbuf[2] << 8) | s->inbuf[3] | 0xffe00000;
  2451. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2452. *data_size = 0;
  2453. return buf_size;
  2454. }
  2455. decode_header(s, header);
  2456. /* update codec info */
  2457. avctx->sample_rate = s->sample_rate;
  2458. avctx->channels = s->nb_channels;
  2459. avctx->bit_rate = s->bit_rate;
  2460. avctx->sub_id = s->layer;
  2461. avctx->frame_size=s->frame_size = len;
  2462. if (avctx->parse_only) {
  2463. /* simply return the frame data */
  2464. *(uint8_t **)data = s->inbuf;
  2465. out_size = s->inbuf_ptr - s->inbuf;
  2466. } else {
  2467. out_size = mp_decode_frame(s, out_samples);
  2468. }
  2469. *data_size = out_size;
  2470. return buf_size;
  2471. }
  2472. AVCodec mp2_decoder =
  2473. {
  2474. "mp2",
  2475. CODEC_TYPE_AUDIO,
  2476. CODEC_ID_MP2,
  2477. sizeof(MPADecodeContext),
  2478. decode_init,
  2479. NULL,
  2480. NULL,
  2481. decode_frame,
  2482. CODEC_CAP_PARSE_ONLY,
  2483. };
  2484. AVCodec mp3_decoder =
  2485. {
  2486. "mp3",
  2487. CODEC_TYPE_AUDIO,
  2488. CODEC_ID_MP3,
  2489. sizeof(MPADecodeContext),
  2490. decode_init,
  2491. NULL,
  2492. NULL,
  2493. decode_frame,
  2494. CODEC_CAP_PARSE_ONLY,
  2495. };
  2496. AVCodec mp3adu_decoder =
  2497. {
  2498. "mp3adu",
  2499. CODEC_TYPE_AUDIO,
  2500. CODEC_ID_MP3ADU,
  2501. sizeof(MPADecodeContext),
  2502. decode_init,
  2503. NULL,
  2504. NULL,
  2505. decode_frame_adu,
  2506. CODEC_CAP_PARSE_ONLY,
  2507. };