You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4203 lines
144KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. /**
  24. * @file vc1.c
  25. * VC-1 and WMV3 decoder
  26. *
  27. */
  28. #include "common.h"
  29. #include "dsputil.h"
  30. #include "avcodec.h"
  31. #include "mpegvideo.h"
  32. #include "vc1data.h"
  33. #include "vc1acdata.h"
  34. #include "vc1.h"
  35. #undef NDEBUG
  36. #include <assert.h>
  37. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  38. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  39. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  40. #define MB_INTRA_VLC_BITS 9
  41. extern VLC ff_msmp4_mb_i_vlc;
  42. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  43. #define DC_VLC_BITS 9
  44. #define AC_VLC_BITS 9
  45. static const uint16_t table_mb_intra[64][2];
  46. /**
  47. * Get unary code of limited length
  48. * @fixme FIXME Slow and ugly
  49. * @param gb GetBitContext
  50. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  51. * @param[in] len Maximum length
  52. * @return Unary length/index
  53. */
  54. static int get_prefix(GetBitContext *gb, int stop, int len)
  55. {
  56. #if 1
  57. int i;
  58. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  59. return i;
  60. /* int i = 0, tmp = !stop;
  61. while (i != len && tmp != stop)
  62. {
  63. tmp = get_bits(gb, 1);
  64. i++;
  65. }
  66. if (i == len && tmp != stop) return len+1;
  67. return i;*/
  68. #else
  69. unsigned int buf;
  70. int log;
  71. OPEN_READER(re, gb);
  72. UPDATE_CACHE(re, gb);
  73. buf=GET_CACHE(re, gb); //Still not sure
  74. if (stop) buf = ~buf;
  75. log= av_log2(-buf); //FIXME: -?
  76. if (log < limit){
  77. LAST_SKIP_BITS(re, gb, log+1);
  78. CLOSE_READER(re, gb);
  79. return log;
  80. }
  81. LAST_SKIP_BITS(re, gb, limit);
  82. CLOSE_READER(re, gb);
  83. return limit;
  84. #endif
  85. }
  86. static inline int decode210(GetBitContext *gb){
  87. int n;
  88. n = get_bits1(gb);
  89. if (n == 1)
  90. return 0;
  91. else
  92. return 2 - get_bits1(gb);
  93. }
  94. /**
  95. * Init VC-1 specific tables and VC1Context members
  96. * @param v The VC1Context to initialize
  97. * @return Status
  98. */
  99. static int vc1_init_common(VC1Context *v)
  100. {
  101. static int done = 0;
  102. int i = 0;
  103. v->hrd_rate = v->hrd_buffer = NULL;
  104. /* VLC tables */
  105. if(!done)
  106. {
  107. done = 1;
  108. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  109. vc1_bfraction_bits, 1, 1,
  110. vc1_bfraction_codes, 1, 1, 1);
  111. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  112. vc1_norm2_bits, 1, 1,
  113. vc1_norm2_codes, 1, 1, 1);
  114. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  115. vc1_norm6_bits, 1, 1,
  116. vc1_norm6_codes, 2, 2, 1);
  117. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  118. vc1_imode_bits, 1, 1,
  119. vc1_imode_codes, 1, 1, 1);
  120. for (i=0; i<3; i++)
  121. {
  122. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  123. vc1_ttmb_bits[i], 1, 1,
  124. vc1_ttmb_codes[i], 2, 2, 1);
  125. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  126. vc1_ttblk_bits[i], 1, 1,
  127. vc1_ttblk_codes[i], 1, 1, 1);
  128. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  129. vc1_subblkpat_bits[i], 1, 1,
  130. vc1_subblkpat_codes[i], 1, 1, 1);
  131. }
  132. for(i=0; i<4; i++)
  133. {
  134. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  135. vc1_4mv_block_pattern_bits[i], 1, 1,
  136. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  137. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  138. vc1_cbpcy_p_bits[i], 1, 1,
  139. vc1_cbpcy_p_codes[i], 2, 2, 1);
  140. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  141. vc1_mv_diff_bits[i], 1, 1,
  142. vc1_mv_diff_codes[i], 2, 2, 1);
  143. }
  144. for(i=0; i<8; i++)
  145. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  146. &vc1_ac_tables[i][0][1], 8, 4,
  147. &vc1_ac_tables[i][0][0], 8, 4, 1);
  148. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  149. &ff_msmp4_mb_i_table[0][1], 4, 2,
  150. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  151. }
  152. /* Other defaults */
  153. v->pq = -1;
  154. v->mvrange = 0; /* 7.1.1.18, p80 */
  155. return 0;
  156. }
  157. /***********************************************************************/
  158. /**
  159. * @defgroup bitplane VC9 Bitplane decoding
  160. * @see 8.7, p56
  161. * @{
  162. */
  163. /** @addtogroup bitplane
  164. * Imode types
  165. * @{
  166. */
  167. enum Imode {
  168. IMODE_RAW,
  169. IMODE_NORM2,
  170. IMODE_DIFF2,
  171. IMODE_NORM6,
  172. IMODE_DIFF6,
  173. IMODE_ROWSKIP,
  174. IMODE_COLSKIP
  175. };
  176. /** @} */ //imode defines
  177. /** Decode rows by checking if they are skipped
  178. * @param plane Buffer to store decoded bits
  179. * @param[in] width Width of this buffer
  180. * @param[in] height Height of this buffer
  181. * @param[in] stride of this buffer
  182. */
  183. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  184. int x, y;
  185. for (y=0; y<height; y++){
  186. if (!get_bits(gb, 1)) //rowskip
  187. memset(plane, 0, width);
  188. else
  189. for (x=0; x<width; x++)
  190. plane[x] = get_bits(gb, 1);
  191. plane += stride;
  192. }
  193. }
  194. /** Decode columns by checking if they are skipped
  195. * @param plane Buffer to store decoded bits
  196. * @param[in] width Width of this buffer
  197. * @param[in] height Height of this buffer
  198. * @param[in] stride of this buffer
  199. * @fixme FIXME: Optimize
  200. */
  201. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  202. int x, y;
  203. for (x=0; x<width; x++){
  204. if (!get_bits(gb, 1)) //colskip
  205. for (y=0; y<height; y++)
  206. plane[y*stride] = 0;
  207. else
  208. for (y=0; y<height; y++)
  209. plane[y*stride] = get_bits(gb, 1);
  210. plane ++;
  211. }
  212. }
  213. /** Decode a bitplane's bits
  214. * @param bp Bitplane where to store the decode bits
  215. * @param v VC-1 context for bit reading and logging
  216. * @return Status
  217. * @fixme FIXME: Optimize
  218. */
  219. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  220. {
  221. GetBitContext *gb = &v->s.gb;
  222. int imode, x, y, code, offset;
  223. uint8_t invert, *planep = data;
  224. int width, height, stride;
  225. width = v->s.mb_width;
  226. height = v->s.mb_height;
  227. stride = v->s.mb_stride;
  228. invert = get_bits(gb, 1);
  229. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  230. *raw_flag = 0;
  231. switch (imode)
  232. {
  233. case IMODE_RAW:
  234. //Data is actually read in the MB layer (same for all tests == "raw")
  235. *raw_flag = 1; //invert ignored
  236. return invert;
  237. case IMODE_DIFF2:
  238. case IMODE_NORM2:
  239. if ((height * width) & 1)
  240. {
  241. *planep++ = get_bits(gb, 1);
  242. offset = 1;
  243. }
  244. else offset = 0;
  245. // decode bitplane as one long line
  246. for (y = offset; y < height * width; y += 2) {
  247. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  248. *planep++ = code & 1;
  249. offset++;
  250. if(offset == width) {
  251. offset = 0;
  252. planep += stride - width;
  253. }
  254. *planep++ = code >> 1;
  255. offset++;
  256. if(offset == width) {
  257. offset = 0;
  258. planep += stride - width;
  259. }
  260. }
  261. break;
  262. case IMODE_DIFF6:
  263. case IMODE_NORM6:
  264. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  265. for(y = 0; y < height; y+= 3) {
  266. for(x = width & 1; x < width; x += 2) {
  267. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  268. if(code < 0){
  269. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  270. return -1;
  271. }
  272. planep[x + 0] = (code >> 0) & 1;
  273. planep[x + 1] = (code >> 1) & 1;
  274. planep[x + 0 + stride] = (code >> 2) & 1;
  275. planep[x + 1 + stride] = (code >> 3) & 1;
  276. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  277. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  278. }
  279. planep += stride * 3;
  280. }
  281. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  282. } else { // 3x2
  283. planep += (height & 1) * stride;
  284. for(y = height & 1; y < height; y += 2) {
  285. for(x = width % 3; x < width; x += 3) {
  286. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  287. if(code < 0){
  288. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  289. return -1;
  290. }
  291. planep[x + 0] = (code >> 0) & 1;
  292. planep[x + 1] = (code >> 1) & 1;
  293. planep[x + 2] = (code >> 2) & 1;
  294. planep[x + 0 + stride] = (code >> 3) & 1;
  295. planep[x + 1 + stride] = (code >> 4) & 1;
  296. planep[x + 2 + stride] = (code >> 5) & 1;
  297. }
  298. planep += stride * 2;
  299. }
  300. x = width % 3;
  301. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  302. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  303. }
  304. break;
  305. case IMODE_ROWSKIP:
  306. decode_rowskip(data, width, height, stride, &v->s.gb);
  307. break;
  308. case IMODE_COLSKIP:
  309. decode_colskip(data, width, height, stride, &v->s.gb);
  310. break;
  311. default: break;
  312. }
  313. /* Applying diff operator */
  314. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  315. {
  316. planep = data;
  317. planep[0] ^= invert;
  318. for (x=1; x<width; x++)
  319. planep[x] ^= planep[x-1];
  320. for (y=1; y<height; y++)
  321. {
  322. planep += stride;
  323. planep[0] ^= planep[-stride];
  324. for (x=1; x<width; x++)
  325. {
  326. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  327. else planep[x] ^= planep[x-1];
  328. }
  329. }
  330. }
  331. else if (invert)
  332. {
  333. planep = data;
  334. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  335. }
  336. return (imode<<1) + invert;
  337. }
  338. /** @} */ //Bitplane group
  339. /***********************************************************************/
  340. /** VOP Dquant decoding
  341. * @param v VC-1 Context
  342. */
  343. static int vop_dquant_decoding(VC1Context *v)
  344. {
  345. GetBitContext *gb = &v->s.gb;
  346. int pqdiff;
  347. //variable size
  348. if (v->dquant == 2)
  349. {
  350. pqdiff = get_bits(gb, 3);
  351. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  352. else v->altpq = v->pq + pqdiff + 1;
  353. }
  354. else
  355. {
  356. v->dquantfrm = get_bits(gb, 1);
  357. if ( v->dquantfrm )
  358. {
  359. v->dqprofile = get_bits(gb, 2);
  360. switch (v->dqprofile)
  361. {
  362. case DQPROFILE_SINGLE_EDGE:
  363. case DQPROFILE_DOUBLE_EDGES:
  364. v->dqsbedge = get_bits(gb, 2);
  365. break;
  366. case DQPROFILE_ALL_MBS:
  367. v->dqbilevel = get_bits(gb, 1);
  368. default: break; //Forbidden ?
  369. }
  370. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  371. {
  372. pqdiff = get_bits(gb, 3);
  373. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  374. else v->altpq = v->pq + pqdiff + 1;
  375. }
  376. }
  377. }
  378. return 0;
  379. }
  380. /** Put block onto picture
  381. */
  382. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  383. {
  384. uint8_t *Y;
  385. int ys, us, vs;
  386. DSPContext *dsp = &v->s.dsp;
  387. if(v->rangeredfrm) {
  388. int i, j, k;
  389. for(k = 0; k < 6; k++)
  390. for(j = 0; j < 8; j++)
  391. for(i = 0; i < 8; i++)
  392. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  393. }
  394. ys = v->s.current_picture.linesize[0];
  395. us = v->s.current_picture.linesize[1];
  396. vs = v->s.current_picture.linesize[2];
  397. Y = v->s.dest[0];
  398. dsp->put_pixels_clamped(block[0], Y, ys);
  399. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  400. Y += ys * 8;
  401. dsp->put_pixels_clamped(block[2], Y, ys);
  402. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  403. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  404. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  405. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  406. }
  407. }
  408. /** Do motion compensation over 1 macroblock
  409. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  410. */
  411. static void vc1_mc_1mv(VC1Context *v, int dir)
  412. {
  413. MpegEncContext *s = &v->s;
  414. DSPContext *dsp = &v->s.dsp;
  415. uint8_t *srcY, *srcU, *srcV;
  416. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  417. if(!v->s.last_picture.data[0])return;
  418. mx = s->mv[dir][0][0];
  419. my = s->mv[dir][0][1];
  420. // store motion vectors for further use in B frames
  421. if(s->pict_type == P_TYPE) {
  422. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  423. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  424. }
  425. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  426. uvmy = (my + ((my & 3) == 3)) >> 1;
  427. if(v->fastuvmc) {
  428. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  429. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  430. }
  431. if(!dir) {
  432. srcY = s->last_picture.data[0];
  433. srcU = s->last_picture.data[1];
  434. srcV = s->last_picture.data[2];
  435. } else {
  436. srcY = s->next_picture.data[0];
  437. srcU = s->next_picture.data[1];
  438. srcV = s->next_picture.data[2];
  439. }
  440. src_x = s->mb_x * 16 + (mx >> 2);
  441. src_y = s->mb_y * 16 + (my >> 2);
  442. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  443. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  444. if(v->profile != PROFILE_ADVANCED){
  445. src_x = av_clip( src_x, -16, s->mb_width * 16);
  446. src_y = av_clip( src_y, -16, s->mb_height * 16);
  447. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  448. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  449. }else{
  450. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  451. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  452. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  453. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  454. }
  455. srcY += src_y * s->linesize + src_x;
  456. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  457. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  458. /* for grayscale we should not try to read from unknown area */
  459. if(s->flags & CODEC_FLAG_GRAY) {
  460. srcU = s->edge_emu_buffer + 18 * s->linesize;
  461. srcV = s->edge_emu_buffer + 18 * s->linesize;
  462. }
  463. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  464. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  465. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  466. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  467. srcY -= s->mspel * (1 + s->linesize);
  468. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  469. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  470. srcY = s->edge_emu_buffer;
  471. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  472. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  473. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  474. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  475. srcU = uvbuf;
  476. srcV = uvbuf + 16;
  477. /* if we deal with range reduction we need to scale source blocks */
  478. if(v->rangeredfrm) {
  479. int i, j;
  480. uint8_t *src, *src2;
  481. src = srcY;
  482. for(j = 0; j < 17 + s->mspel*2; j++) {
  483. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  484. src += s->linesize;
  485. }
  486. src = srcU; src2 = srcV;
  487. for(j = 0; j < 9; j++) {
  488. for(i = 0; i < 9; i++) {
  489. src[i] = ((src[i] - 128) >> 1) + 128;
  490. src2[i] = ((src2[i] - 128) >> 1) + 128;
  491. }
  492. src += s->uvlinesize;
  493. src2 += s->uvlinesize;
  494. }
  495. }
  496. /* if we deal with intensity compensation we need to scale source blocks */
  497. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  498. int i, j;
  499. uint8_t *src, *src2;
  500. src = srcY;
  501. for(j = 0; j < 17 + s->mspel*2; j++) {
  502. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  503. src += s->linesize;
  504. }
  505. src = srcU; src2 = srcV;
  506. for(j = 0; j < 9; j++) {
  507. for(i = 0; i < 9; i++) {
  508. src[i] = v->lutuv[src[i]];
  509. src2[i] = v->lutuv[src2[i]];
  510. }
  511. src += s->uvlinesize;
  512. src2 += s->uvlinesize;
  513. }
  514. }
  515. srcY += s->mspel * (1 + s->linesize);
  516. }
  517. if(s->mspel) {
  518. dxy = ((my & 3) << 2) | (mx & 3);
  519. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  520. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  521. srcY += s->linesize * 8;
  522. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  523. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  524. } else { // hpel mc - always used for luma
  525. dxy = (my & 2) | ((mx & 2) >> 1);
  526. if(!v->rnd)
  527. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  528. else
  529. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  530. }
  531. if(s->flags & CODEC_FLAG_GRAY) return;
  532. /* Chroma MC always uses qpel bilinear */
  533. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  534. uvmx = (uvmx&3)<<1;
  535. uvmy = (uvmy&3)<<1;
  536. if(!v->rnd){
  537. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  538. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  539. }else{
  540. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  541. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  542. }
  543. }
  544. /** Do motion compensation for 4-MV macroblock - luminance block
  545. */
  546. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  547. {
  548. MpegEncContext *s = &v->s;
  549. DSPContext *dsp = &v->s.dsp;
  550. uint8_t *srcY;
  551. int dxy, mx, my, src_x, src_y;
  552. int off;
  553. if(!v->s.last_picture.data[0])return;
  554. mx = s->mv[0][n][0];
  555. my = s->mv[0][n][1];
  556. srcY = s->last_picture.data[0];
  557. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  558. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  559. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  560. if(v->profile != PROFILE_ADVANCED){
  561. src_x = av_clip( src_x, -16, s->mb_width * 16);
  562. src_y = av_clip( src_y, -16, s->mb_height * 16);
  563. }else{
  564. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  565. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  566. }
  567. srcY += src_y * s->linesize + src_x;
  568. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  569. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  570. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  571. srcY -= s->mspel * (1 + s->linesize);
  572. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  573. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  574. srcY = s->edge_emu_buffer;
  575. /* if we deal with range reduction we need to scale source blocks */
  576. if(v->rangeredfrm) {
  577. int i, j;
  578. uint8_t *src;
  579. src = srcY;
  580. for(j = 0; j < 9 + s->mspel*2; j++) {
  581. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  582. src += s->linesize;
  583. }
  584. }
  585. /* if we deal with intensity compensation we need to scale source blocks */
  586. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  587. int i, j;
  588. uint8_t *src;
  589. src = srcY;
  590. for(j = 0; j < 9 + s->mspel*2; j++) {
  591. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  592. src += s->linesize;
  593. }
  594. }
  595. srcY += s->mspel * (1 + s->linesize);
  596. }
  597. if(s->mspel) {
  598. dxy = ((my & 3) << 2) | (mx & 3);
  599. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  600. } else { // hpel mc - always used for luma
  601. dxy = (my & 2) | ((mx & 2) >> 1);
  602. if(!v->rnd)
  603. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  604. else
  605. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  606. }
  607. }
  608. static inline int median4(int a, int b, int c, int d)
  609. {
  610. if(a < b) {
  611. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  612. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  613. } else {
  614. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  615. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  616. }
  617. }
  618. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  619. */
  620. static void vc1_mc_4mv_chroma(VC1Context *v)
  621. {
  622. MpegEncContext *s = &v->s;
  623. DSPContext *dsp = &v->s.dsp;
  624. uint8_t *srcU, *srcV;
  625. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  626. int i, idx, tx = 0, ty = 0;
  627. int mvx[4], mvy[4], intra[4];
  628. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  629. if(!v->s.last_picture.data[0])return;
  630. if(s->flags & CODEC_FLAG_GRAY) return;
  631. for(i = 0; i < 4; i++) {
  632. mvx[i] = s->mv[0][i][0];
  633. mvy[i] = s->mv[0][i][1];
  634. intra[i] = v->mb_type[0][s->block_index[i]];
  635. }
  636. /* calculate chroma MV vector from four luma MVs */
  637. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  638. if(!idx) { // all blocks are inter
  639. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  640. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  641. } else if(count[idx] == 1) { // 3 inter blocks
  642. switch(idx) {
  643. case 0x1:
  644. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  645. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  646. break;
  647. case 0x2:
  648. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  649. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  650. break;
  651. case 0x4:
  652. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  653. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  654. break;
  655. case 0x8:
  656. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  657. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  658. break;
  659. }
  660. } else if(count[idx] == 2) {
  661. int t1 = 0, t2 = 0;
  662. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  663. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  664. tx = (mvx[t1] + mvx[t2]) / 2;
  665. ty = (mvy[t1] + mvy[t2]) / 2;
  666. } else {
  667. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  668. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  669. return; //no need to do MC for inter blocks
  670. }
  671. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  672. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  673. uvmx = (tx + ((tx&3) == 3)) >> 1;
  674. uvmy = (ty + ((ty&3) == 3)) >> 1;
  675. if(v->fastuvmc) {
  676. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  677. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  678. }
  679. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  680. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  681. if(v->profile != PROFILE_ADVANCED){
  682. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  683. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  684. }else{
  685. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  686. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  687. }
  688. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  689. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  690. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  691. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  692. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  693. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  694. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  695. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  696. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  697. srcU = s->edge_emu_buffer;
  698. srcV = s->edge_emu_buffer + 16;
  699. /* if we deal with range reduction we need to scale source blocks */
  700. if(v->rangeredfrm) {
  701. int i, j;
  702. uint8_t *src, *src2;
  703. src = srcU; src2 = srcV;
  704. for(j = 0; j < 9; j++) {
  705. for(i = 0; i < 9; i++) {
  706. src[i] = ((src[i] - 128) >> 1) + 128;
  707. src2[i] = ((src2[i] - 128) >> 1) + 128;
  708. }
  709. src += s->uvlinesize;
  710. src2 += s->uvlinesize;
  711. }
  712. }
  713. /* if we deal with intensity compensation we need to scale source blocks */
  714. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  715. int i, j;
  716. uint8_t *src, *src2;
  717. src = srcU; src2 = srcV;
  718. for(j = 0; j < 9; j++) {
  719. for(i = 0; i < 9; i++) {
  720. src[i] = v->lutuv[src[i]];
  721. src2[i] = v->lutuv[src2[i]];
  722. }
  723. src += s->uvlinesize;
  724. src2 += s->uvlinesize;
  725. }
  726. }
  727. }
  728. /* Chroma MC always uses qpel bilinear */
  729. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  730. uvmx = (uvmx&3)<<1;
  731. uvmy = (uvmy&3)<<1;
  732. if(!v->rnd){
  733. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  734. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  735. }else{
  736. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  737. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  738. }
  739. }
  740. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  741. /**
  742. * Decode Simple/Main Profiles sequence header
  743. * @see Figure 7-8, p16-17
  744. * @param avctx Codec context
  745. * @param gb GetBit context initialized from Codec context extra_data
  746. * @return Status
  747. */
  748. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  749. {
  750. VC1Context *v = avctx->priv_data;
  751. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  752. v->profile = get_bits(gb, 2);
  753. if (v->profile == PROFILE_COMPLEX)
  754. {
  755. av_log(avctx, AV_LOG_ERROR, "WMV3 Complex Profile is not fully supported\n");
  756. }
  757. if (v->profile == PROFILE_ADVANCED)
  758. {
  759. return decode_sequence_header_adv(v, gb);
  760. }
  761. else
  762. {
  763. v->res_sm = get_bits(gb, 2); //reserved
  764. if (v->res_sm)
  765. {
  766. av_log(avctx, AV_LOG_ERROR,
  767. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  768. return -1;
  769. }
  770. }
  771. // (fps-2)/4 (->30)
  772. v->frmrtq_postproc = get_bits(gb, 3); //common
  773. // (bitrate-32kbps)/64kbps
  774. v->bitrtq_postproc = get_bits(gb, 5); //common
  775. v->s.loop_filter = get_bits(gb, 1); //common
  776. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  777. {
  778. av_log(avctx, AV_LOG_ERROR,
  779. "LOOPFILTER shell not be enabled in simple profile\n");
  780. }
  781. v->res_x8 = get_bits(gb, 1); //reserved
  782. if (v->res_x8)
  783. {
  784. av_log(avctx, AV_LOG_ERROR,
  785. "1 for reserved RES_X8 is forbidden\n");
  786. //return -1;
  787. }
  788. v->multires = get_bits(gb, 1);
  789. v->res_fasttx = get_bits(gb, 1);
  790. if (!v->res_fasttx)
  791. {
  792. av_log(avctx, AV_LOG_ERROR,
  793. "0 for reserved RES_FASTTX is forbidden\n");
  794. //return -1;
  795. }
  796. v->fastuvmc = get_bits(gb, 1); //common
  797. if (!v->profile && !v->fastuvmc)
  798. {
  799. av_log(avctx, AV_LOG_ERROR,
  800. "FASTUVMC unavailable in Simple Profile\n");
  801. return -1;
  802. }
  803. v->extended_mv = get_bits(gb, 1); //common
  804. if (!v->profile && v->extended_mv)
  805. {
  806. av_log(avctx, AV_LOG_ERROR,
  807. "Extended MVs unavailable in Simple Profile\n");
  808. return -1;
  809. }
  810. v->dquant = get_bits(gb, 2); //common
  811. v->vstransform = get_bits(gb, 1); //common
  812. v->res_transtab = get_bits(gb, 1);
  813. if (v->res_transtab)
  814. {
  815. av_log(avctx, AV_LOG_ERROR,
  816. "1 for reserved RES_TRANSTAB is forbidden\n");
  817. return -1;
  818. }
  819. v->overlap = get_bits(gb, 1); //common
  820. v->s.resync_marker = get_bits(gb, 1);
  821. v->rangered = get_bits(gb, 1);
  822. if (v->rangered && v->profile == PROFILE_SIMPLE)
  823. {
  824. av_log(avctx, AV_LOG_INFO,
  825. "RANGERED should be set to 0 in simple profile\n");
  826. }
  827. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  828. v->quantizer_mode = get_bits(gb, 2); //common
  829. v->finterpflag = get_bits(gb, 1); //common
  830. v->res_rtm_flag = get_bits(gb, 1); //reserved
  831. if (!v->res_rtm_flag)
  832. {
  833. // av_log(avctx, AV_LOG_ERROR,
  834. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  835. av_log(avctx, AV_LOG_ERROR,
  836. "Old WMV3 version detected, only I-frames will be decoded\n");
  837. //return -1;
  838. }
  839. //TODO: figure out what they mean (always 0x402F)
  840. if(!v->res_fasttx) skip_bits(gb, 16);
  841. av_log(avctx, AV_LOG_DEBUG,
  842. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  843. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  844. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  845. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  846. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  847. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  848. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  849. v->dquant, v->quantizer_mode, avctx->max_b_frames
  850. );
  851. return 0;
  852. }
  853. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  854. {
  855. v->res_rtm_flag = 1;
  856. v->level = get_bits(gb, 3);
  857. if(v->level >= 5)
  858. {
  859. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  860. }
  861. v->chromaformat = get_bits(gb, 2);
  862. if (v->chromaformat != 1)
  863. {
  864. av_log(v->s.avctx, AV_LOG_ERROR,
  865. "Only 4:2:0 chroma format supported\n");
  866. return -1;
  867. }
  868. // (fps-2)/4 (->30)
  869. v->frmrtq_postproc = get_bits(gb, 3); //common
  870. // (bitrate-32kbps)/64kbps
  871. v->bitrtq_postproc = get_bits(gb, 5); //common
  872. v->postprocflag = get_bits(gb, 1); //common
  873. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  874. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  875. v->s.avctx->width = v->s.avctx->coded_width;
  876. v->s.avctx->height = v->s.avctx->coded_height;
  877. v->broadcast = get_bits1(gb);
  878. v->interlace = get_bits1(gb);
  879. v->tfcntrflag = get_bits1(gb);
  880. v->finterpflag = get_bits1(gb);
  881. get_bits1(gb); // reserved
  882. v->s.h_edge_pos = v->s.avctx->coded_width;
  883. v->s.v_edge_pos = v->s.avctx->coded_height;
  884. av_log(v->s.avctx, AV_LOG_DEBUG,
  885. "Advanced Profile level %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  886. "LoopFilter=%i, ChromaFormat=%i, Pulldown=%i, Interlace: %i\n"
  887. "TFCTRflag=%i, FINTERPflag=%i\n",
  888. v->level, v->frmrtq_postproc, v->bitrtq_postproc,
  889. v->s.loop_filter, v->chromaformat, v->broadcast, v->interlace,
  890. v->tfcntrflag, v->finterpflag
  891. );
  892. v->psf = get_bits1(gb);
  893. if(v->psf) { //PsF, 6.1.13
  894. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  895. return -1;
  896. }
  897. v->s.max_b_frames = v->s.avctx->max_b_frames = 7;
  898. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  899. int w, h, ar = 0;
  900. av_log(v->s.avctx, AV_LOG_DEBUG, "Display extended info:\n");
  901. v->s.avctx->width = v->s.width = w = get_bits(gb, 14) + 1;
  902. v->s.avctx->height = v->s.height = h = get_bits(gb, 14) + 1;
  903. av_log(v->s.avctx, AV_LOG_DEBUG, "Display dimensions: %ix%i\n", w, h);
  904. if(get_bits1(gb))
  905. ar = get_bits(gb, 4);
  906. if(ar && ar < 14){
  907. v->s.avctx->sample_aspect_ratio = vc1_pixel_aspect[ar];
  908. }else if(ar == 15){
  909. w = get_bits(gb, 8);
  910. h = get_bits(gb, 8);
  911. v->s.avctx->sample_aspect_ratio = (AVRational){w, h};
  912. }
  913. if(get_bits1(gb)){ //framerate stuff
  914. if(get_bits1(gb)) {
  915. v->s.avctx->time_base.num = 32;
  916. v->s.avctx->time_base.den = get_bits(gb, 16) + 1;
  917. } else {
  918. int nr, dr;
  919. nr = get_bits(gb, 8);
  920. dr = get_bits(gb, 4);
  921. if(nr && nr < 8 && dr && dr < 3){
  922. v->s.avctx->time_base.num = fps_dr[dr - 1];
  923. v->s.avctx->time_base.den = fps_nr[nr - 1] * 1000;
  924. }
  925. }
  926. }
  927. if(get_bits1(gb)){
  928. v->color_prim = get_bits(gb, 8);
  929. v->transfer_char = get_bits(gb, 8);
  930. v->matrix_coef = get_bits(gb, 8);
  931. }
  932. }
  933. v->hrd_param_flag = get_bits1(gb);
  934. if(v->hrd_param_flag) {
  935. int i;
  936. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  937. get_bits(gb, 4); //bitrate exponent
  938. get_bits(gb, 4); //buffer size exponent
  939. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  940. get_bits(gb, 16); //hrd_rate[n]
  941. get_bits(gb, 16); //hrd_buffer[n]
  942. }
  943. }
  944. return 0;
  945. }
  946. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  947. {
  948. VC1Context *v = avctx->priv_data;
  949. int i, blink, clentry, refdist;
  950. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  951. blink = get_bits1(gb); // broken link
  952. clentry = get_bits1(gb); // closed entry
  953. v->panscanflag = get_bits1(gb);
  954. refdist = get_bits1(gb); // refdist flag
  955. v->s.loop_filter = get_bits1(gb);
  956. v->fastuvmc = get_bits1(gb);
  957. v->extended_mv = get_bits1(gb);
  958. v->dquant = get_bits(gb, 2);
  959. v->vstransform = get_bits1(gb);
  960. v->overlap = get_bits1(gb);
  961. v->quantizer_mode = get_bits(gb, 2);
  962. if(v->hrd_param_flag){
  963. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  964. get_bits(gb, 8); //hrd_full[n]
  965. }
  966. }
  967. if(get_bits1(gb)){
  968. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  969. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  970. }
  971. if(v->extended_mv)
  972. v->extended_dmv = get_bits1(gb);
  973. if(get_bits1(gb)) {
  974. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  975. skip_bits(gb, 3); // Y range, ignored for now
  976. }
  977. if(get_bits1(gb)) {
  978. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  979. skip_bits(gb, 3); // UV range, ignored for now
  980. }
  981. av_log(avctx, AV_LOG_DEBUG, "Entry point info:\n"
  982. "BrokenLink=%i, ClosedEntry=%i, PanscanFlag=%i\n"
  983. "RefDist=%i, Postproc=%i, FastUVMC=%i, ExtMV=%i\n"
  984. "DQuant=%i, VSTransform=%i, Overlap=%i, Qmode=%i\n",
  985. blink, clentry, v->panscanflag, refdist, v->s.loop_filter,
  986. v->fastuvmc, v->extended_mv, v->dquant, v->vstransform, v->overlap, v->quantizer_mode);
  987. return 0;
  988. }
  989. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  990. {
  991. int pqindex, lowquant, status;
  992. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  993. skip_bits(gb, 2); //framecnt unused
  994. v->rangeredfrm = 0;
  995. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  996. v->s.pict_type = get_bits(gb, 1);
  997. if (v->s.avctx->max_b_frames) {
  998. if (!v->s.pict_type) {
  999. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1000. else v->s.pict_type = B_TYPE;
  1001. } else v->s.pict_type = P_TYPE;
  1002. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1003. v->bi_type = 0;
  1004. if(v->s.pict_type == B_TYPE) {
  1005. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1006. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1007. if(v->bfraction == 0) {
  1008. v->s.pict_type = BI_TYPE;
  1009. }
  1010. }
  1011. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1012. get_bits(gb, 7); // skip buffer fullness
  1013. /* calculate RND */
  1014. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1015. v->rnd = 1;
  1016. if(v->s.pict_type == P_TYPE)
  1017. v->rnd ^= 1;
  1018. /* Quantizer stuff */
  1019. pqindex = get_bits(gb, 5);
  1020. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1021. v->pq = pquant_table[0][pqindex];
  1022. else
  1023. v->pq = pquant_table[1][pqindex];
  1024. v->pquantizer = 1;
  1025. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1026. v->pquantizer = pqindex < 9;
  1027. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1028. v->pquantizer = 0;
  1029. v->pqindex = pqindex;
  1030. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1031. else v->halfpq = 0;
  1032. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1033. v->pquantizer = get_bits(gb, 1);
  1034. v->dquantfrm = 0;
  1035. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1036. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1037. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1038. v->range_x = 1 << (v->k_x - 1);
  1039. v->range_y = 1 << (v->k_y - 1);
  1040. if (v->profile == PROFILE_ADVANCED)
  1041. {
  1042. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1043. }
  1044. else
  1045. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1046. if(v->res_x8 && (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)){
  1047. if(get_bits1(gb))return -1;
  1048. }
  1049. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1050. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1051. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1052. switch(v->s.pict_type) {
  1053. case P_TYPE:
  1054. if (v->pq < 5) v->tt_index = 0;
  1055. else if(v->pq < 13) v->tt_index = 1;
  1056. else v->tt_index = 2;
  1057. lowquant = (v->pq > 12) ? 0 : 1;
  1058. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1059. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1060. {
  1061. int scale, shift, i;
  1062. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1063. v->lumscale = get_bits(gb, 6);
  1064. v->lumshift = get_bits(gb, 6);
  1065. v->use_ic = 1;
  1066. /* fill lookup tables for intensity compensation */
  1067. if(!v->lumscale) {
  1068. scale = -64;
  1069. shift = (255 - v->lumshift * 2) << 6;
  1070. if(v->lumshift > 31)
  1071. shift += 128 << 6;
  1072. } else {
  1073. scale = v->lumscale + 32;
  1074. if(v->lumshift > 31)
  1075. shift = (v->lumshift - 64) << 6;
  1076. else
  1077. shift = v->lumshift << 6;
  1078. }
  1079. for(i = 0; i < 256; i++) {
  1080. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1081. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1082. }
  1083. }
  1084. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1085. v->s.quarter_sample = 0;
  1086. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1087. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1088. v->s.quarter_sample = 0;
  1089. else
  1090. v->s.quarter_sample = 1;
  1091. } else
  1092. v->s.quarter_sample = 1;
  1093. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1094. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1095. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1096. || v->mv_mode == MV_PMODE_MIXED_MV)
  1097. {
  1098. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1099. if (status < 0) return -1;
  1100. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1101. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1102. } else {
  1103. v->mv_type_is_raw = 0;
  1104. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1105. }
  1106. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1107. if (status < 0) return -1;
  1108. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1109. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1110. /* Hopefully this is correct for P frames */
  1111. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1112. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1113. if (v->dquant)
  1114. {
  1115. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1116. vop_dquant_decoding(v);
  1117. }
  1118. v->ttfrm = 0; //FIXME Is that so ?
  1119. if (v->vstransform)
  1120. {
  1121. v->ttmbf = get_bits(gb, 1);
  1122. if (v->ttmbf)
  1123. {
  1124. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1125. }
  1126. } else {
  1127. v->ttmbf = 1;
  1128. v->ttfrm = TT_8X8;
  1129. }
  1130. break;
  1131. case B_TYPE:
  1132. if (v->pq < 5) v->tt_index = 0;
  1133. else if(v->pq < 13) v->tt_index = 1;
  1134. else v->tt_index = 2;
  1135. lowquant = (v->pq > 12) ? 0 : 1;
  1136. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1137. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1138. v->s.mspel = v->s.quarter_sample;
  1139. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1140. if (status < 0) return -1;
  1141. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1142. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1143. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1144. if (status < 0) return -1;
  1145. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1146. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1147. v->s.mv_table_index = get_bits(gb, 2);
  1148. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1149. if (v->dquant)
  1150. {
  1151. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1152. vop_dquant_decoding(v);
  1153. }
  1154. v->ttfrm = 0;
  1155. if (v->vstransform)
  1156. {
  1157. v->ttmbf = get_bits(gb, 1);
  1158. if (v->ttmbf)
  1159. {
  1160. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1161. }
  1162. } else {
  1163. v->ttmbf = 1;
  1164. v->ttfrm = TT_8X8;
  1165. }
  1166. break;
  1167. }
  1168. /* AC Syntax */
  1169. v->c_ac_table_index = decode012(gb);
  1170. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1171. {
  1172. v->y_ac_table_index = decode012(gb);
  1173. }
  1174. /* DC Syntax */
  1175. v->s.dc_table_index = get_bits(gb, 1);
  1176. if(v->s.pict_type == BI_TYPE) {
  1177. v->s.pict_type = B_TYPE;
  1178. v->bi_type = 1;
  1179. }
  1180. return 0;
  1181. }
  1182. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1183. {
  1184. int pqindex, lowquant;
  1185. int status;
  1186. v->p_frame_skipped = 0;
  1187. if(v->interlace){
  1188. v->fcm = decode012(gb);
  1189. if(v->fcm) return -1; // interlaced frames/fields are not implemented
  1190. }
  1191. switch(get_prefix(gb, 0, 4)) {
  1192. case 0:
  1193. v->s.pict_type = P_TYPE;
  1194. break;
  1195. case 1:
  1196. v->s.pict_type = B_TYPE;
  1197. break;
  1198. case 2:
  1199. v->s.pict_type = I_TYPE;
  1200. break;
  1201. case 3:
  1202. v->s.pict_type = BI_TYPE;
  1203. break;
  1204. case 4:
  1205. v->s.pict_type = P_TYPE; // skipped pic
  1206. v->p_frame_skipped = 1;
  1207. return 0;
  1208. }
  1209. if(v->tfcntrflag)
  1210. get_bits(gb, 8);
  1211. if(v->broadcast) {
  1212. if(!v->interlace || v->psf) {
  1213. v->rptfrm = get_bits(gb, 2);
  1214. } else {
  1215. v->tff = get_bits1(gb);
  1216. v->rptfrm = get_bits1(gb);
  1217. }
  1218. }
  1219. if(v->panscanflag) {
  1220. //...
  1221. }
  1222. v->rnd = get_bits1(gb);
  1223. if(v->interlace)
  1224. v->uvsamp = get_bits1(gb);
  1225. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1226. if(v->s.pict_type == B_TYPE) {
  1227. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1228. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1229. if(v->bfraction == 0) {
  1230. v->s.pict_type = BI_TYPE; /* XXX: should not happen here */
  1231. }
  1232. }
  1233. pqindex = get_bits(gb, 5);
  1234. v->pqindex = pqindex;
  1235. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1236. v->pq = pquant_table[0][pqindex];
  1237. else
  1238. v->pq = pquant_table[1][pqindex];
  1239. v->pquantizer = 1;
  1240. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1241. v->pquantizer = pqindex < 9;
  1242. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1243. v->pquantizer = 0;
  1244. v->pqindex = pqindex;
  1245. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1246. else v->halfpq = 0;
  1247. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1248. v->pquantizer = get_bits(gb, 1);
  1249. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1250. switch(v->s.pict_type) {
  1251. case I_TYPE:
  1252. case BI_TYPE:
  1253. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1254. if (status < 0) return -1;
  1255. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1256. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1257. v->condover = CONDOVER_NONE;
  1258. if(v->overlap && v->pq <= 8) {
  1259. v->condover = decode012(gb);
  1260. if(v->condover == CONDOVER_SELECT) {
  1261. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1262. if (status < 0) return -1;
  1263. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1264. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1265. }
  1266. }
  1267. break;
  1268. case P_TYPE:
  1269. if(v->postprocflag)
  1270. v->postproc = get_bits1(gb);
  1271. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1272. else v->mvrange = 0;
  1273. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1274. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1275. v->range_x = 1 << (v->k_x - 1);
  1276. v->range_y = 1 << (v->k_y - 1);
  1277. if (v->pq < 5) v->tt_index = 0;
  1278. else if(v->pq < 13) v->tt_index = 1;
  1279. else v->tt_index = 2;
  1280. lowquant = (v->pq > 12) ? 0 : 1;
  1281. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1282. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1283. {
  1284. int scale, shift, i;
  1285. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1286. v->lumscale = get_bits(gb, 6);
  1287. v->lumshift = get_bits(gb, 6);
  1288. /* fill lookup tables for intensity compensation */
  1289. if(!v->lumscale) {
  1290. scale = -64;
  1291. shift = (255 - v->lumshift * 2) << 6;
  1292. if(v->lumshift > 31)
  1293. shift += 128 << 6;
  1294. } else {
  1295. scale = v->lumscale + 32;
  1296. if(v->lumshift > 31)
  1297. shift = (v->lumshift - 64) << 6;
  1298. else
  1299. shift = v->lumshift << 6;
  1300. }
  1301. for(i = 0; i < 256; i++) {
  1302. v->luty[i] = av_clip_uint8((scale * i + shift + 32) >> 6);
  1303. v->lutuv[i] = av_clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1304. }
  1305. v->use_ic = 1;
  1306. }
  1307. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1308. v->s.quarter_sample = 0;
  1309. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1310. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1311. v->s.quarter_sample = 0;
  1312. else
  1313. v->s.quarter_sample = 1;
  1314. } else
  1315. v->s.quarter_sample = 1;
  1316. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1317. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1318. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1319. || v->mv_mode == MV_PMODE_MIXED_MV)
  1320. {
  1321. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1322. if (status < 0) return -1;
  1323. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1324. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1325. } else {
  1326. v->mv_type_is_raw = 0;
  1327. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1328. }
  1329. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1330. if (status < 0) return -1;
  1331. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1332. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1333. /* Hopefully this is correct for P frames */
  1334. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1335. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1336. if (v->dquant)
  1337. {
  1338. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1339. vop_dquant_decoding(v);
  1340. }
  1341. v->ttfrm = 0; //FIXME Is that so ?
  1342. if (v->vstransform)
  1343. {
  1344. v->ttmbf = get_bits(gb, 1);
  1345. if (v->ttmbf)
  1346. {
  1347. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1348. }
  1349. } else {
  1350. v->ttmbf = 1;
  1351. v->ttfrm = TT_8X8;
  1352. }
  1353. break;
  1354. case B_TYPE:
  1355. if(v->postprocflag)
  1356. v->postproc = get_bits1(gb);
  1357. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1358. else v->mvrange = 0;
  1359. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1360. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1361. v->range_x = 1 << (v->k_x - 1);
  1362. v->range_y = 1 << (v->k_y - 1);
  1363. if (v->pq < 5) v->tt_index = 0;
  1364. else if(v->pq < 13) v->tt_index = 1;
  1365. else v->tt_index = 2;
  1366. lowquant = (v->pq > 12) ? 0 : 1;
  1367. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1368. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1369. v->s.mspel = v->s.quarter_sample;
  1370. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1371. if (status < 0) return -1;
  1372. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1373. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1374. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1375. if (status < 0) return -1;
  1376. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1377. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1378. v->s.mv_table_index = get_bits(gb, 2);
  1379. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1380. if (v->dquant)
  1381. {
  1382. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1383. vop_dquant_decoding(v);
  1384. }
  1385. v->ttfrm = 0;
  1386. if (v->vstransform)
  1387. {
  1388. v->ttmbf = get_bits(gb, 1);
  1389. if (v->ttmbf)
  1390. {
  1391. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1392. }
  1393. } else {
  1394. v->ttmbf = 1;
  1395. v->ttfrm = TT_8X8;
  1396. }
  1397. break;
  1398. }
  1399. /* AC Syntax */
  1400. v->c_ac_table_index = decode012(gb);
  1401. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1402. {
  1403. v->y_ac_table_index = decode012(gb);
  1404. }
  1405. /* DC Syntax */
  1406. v->s.dc_table_index = get_bits(gb, 1);
  1407. if ((v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE) && v->dquant) {
  1408. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1409. vop_dquant_decoding(v);
  1410. }
  1411. v->bi_type = 0;
  1412. if(v->s.pict_type == BI_TYPE) {
  1413. v->s.pict_type = B_TYPE;
  1414. v->bi_type = 1;
  1415. }
  1416. return 0;
  1417. }
  1418. /***********************************************************************/
  1419. /**
  1420. * @defgroup block VC-1 Block-level functions
  1421. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1422. * @{
  1423. */
  1424. /**
  1425. * @def GET_MQUANT
  1426. * @brief Get macroblock-level quantizer scale
  1427. */
  1428. #define GET_MQUANT() \
  1429. if (v->dquantfrm) \
  1430. { \
  1431. int edges = 0; \
  1432. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1433. { \
  1434. if (v->dqbilevel) \
  1435. { \
  1436. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1437. } \
  1438. else \
  1439. { \
  1440. mqdiff = get_bits(gb, 3); \
  1441. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1442. else mquant = get_bits(gb, 5); \
  1443. } \
  1444. } \
  1445. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1446. edges = 1 << v->dqsbedge; \
  1447. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1448. edges = (3 << v->dqsbedge) % 15; \
  1449. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1450. edges = 15; \
  1451. if((edges&1) && !s->mb_x) \
  1452. mquant = v->altpq; \
  1453. if((edges&2) && s->first_slice_line) \
  1454. mquant = v->altpq; \
  1455. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1456. mquant = v->altpq; \
  1457. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1458. mquant = v->altpq; \
  1459. }
  1460. /**
  1461. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1462. * @brief Get MV differentials
  1463. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1464. * @param _dmv_x Horizontal differential for decoded MV
  1465. * @param _dmv_y Vertical differential for decoded MV
  1466. */
  1467. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1468. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1469. VC1_MV_DIFF_VLC_BITS, 2); \
  1470. if (index > 36) \
  1471. { \
  1472. mb_has_coeffs = 1; \
  1473. index -= 37; \
  1474. } \
  1475. else mb_has_coeffs = 0; \
  1476. s->mb_intra = 0; \
  1477. if (!index) { _dmv_x = _dmv_y = 0; } \
  1478. else if (index == 35) \
  1479. { \
  1480. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1481. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1482. } \
  1483. else if (index == 36) \
  1484. { \
  1485. _dmv_x = 0; \
  1486. _dmv_y = 0; \
  1487. s->mb_intra = 1; \
  1488. } \
  1489. else \
  1490. { \
  1491. index1 = index%6; \
  1492. if (!s->quarter_sample && index1 == 5) val = 1; \
  1493. else val = 0; \
  1494. if(size_table[index1] - val > 0) \
  1495. val = get_bits(gb, size_table[index1] - val); \
  1496. else val = 0; \
  1497. sign = 0 - (val&1); \
  1498. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1499. \
  1500. index1 = index/6; \
  1501. if (!s->quarter_sample && index1 == 5) val = 1; \
  1502. else val = 0; \
  1503. if(size_table[index1] - val > 0) \
  1504. val = get_bits(gb, size_table[index1] - val); \
  1505. else val = 0; \
  1506. sign = 0 - (val&1); \
  1507. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1508. }
  1509. /** Predict and set motion vector
  1510. */
  1511. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1512. {
  1513. int xy, wrap, off = 0;
  1514. int16_t *A, *B, *C;
  1515. int px, py;
  1516. int sum;
  1517. /* scale MV difference to be quad-pel */
  1518. dmv_x <<= 1 - s->quarter_sample;
  1519. dmv_y <<= 1 - s->quarter_sample;
  1520. wrap = s->b8_stride;
  1521. xy = s->block_index[n];
  1522. if(s->mb_intra){
  1523. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1524. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1525. s->current_picture.motion_val[1][xy][0] = 0;
  1526. s->current_picture.motion_val[1][xy][1] = 0;
  1527. if(mv1) { /* duplicate motion data for 1-MV block */
  1528. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1529. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1530. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1531. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1532. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1533. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1534. s->current_picture.motion_val[1][xy + 1][0] = 0;
  1535. s->current_picture.motion_val[1][xy + 1][1] = 0;
  1536. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  1537. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  1538. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  1539. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  1540. }
  1541. return;
  1542. }
  1543. C = s->current_picture.motion_val[0][xy - 1];
  1544. A = s->current_picture.motion_val[0][xy - wrap];
  1545. if(mv1)
  1546. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1547. else {
  1548. //in 4-MV mode different blocks have different B predictor position
  1549. switch(n){
  1550. case 0:
  1551. off = (s->mb_x > 0) ? -1 : 1;
  1552. break;
  1553. case 1:
  1554. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1555. break;
  1556. case 2:
  1557. off = 1;
  1558. break;
  1559. case 3:
  1560. off = -1;
  1561. }
  1562. }
  1563. B = s->current_picture.motion_val[0][xy - wrap + off];
  1564. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1565. if(s->mb_width == 1) {
  1566. px = A[0];
  1567. py = A[1];
  1568. } else {
  1569. px = mid_pred(A[0], B[0], C[0]);
  1570. py = mid_pred(A[1], B[1], C[1]);
  1571. }
  1572. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1573. px = C[0];
  1574. py = C[1];
  1575. } else {
  1576. px = py = 0;
  1577. }
  1578. /* Pullback MV as specified in 8.3.5.3.4 */
  1579. {
  1580. int qx, qy, X, Y;
  1581. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1582. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1583. X = (s->mb_width << 6) - 4;
  1584. Y = (s->mb_height << 6) - 4;
  1585. if(mv1) {
  1586. if(qx + px < -60) px = -60 - qx;
  1587. if(qy + py < -60) py = -60 - qy;
  1588. } else {
  1589. if(qx + px < -28) px = -28 - qx;
  1590. if(qy + py < -28) py = -28 - qy;
  1591. }
  1592. if(qx + px > X) px = X - qx;
  1593. if(qy + py > Y) py = Y - qy;
  1594. }
  1595. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1596. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1597. if(is_intra[xy - wrap])
  1598. sum = FFABS(px) + FFABS(py);
  1599. else
  1600. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1601. if(sum > 32) {
  1602. if(get_bits1(&s->gb)) {
  1603. px = A[0];
  1604. py = A[1];
  1605. } else {
  1606. px = C[0];
  1607. py = C[1];
  1608. }
  1609. } else {
  1610. if(is_intra[xy - 1])
  1611. sum = FFABS(px) + FFABS(py);
  1612. else
  1613. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1614. if(sum > 32) {
  1615. if(get_bits1(&s->gb)) {
  1616. px = A[0];
  1617. py = A[1];
  1618. } else {
  1619. px = C[0];
  1620. py = C[1];
  1621. }
  1622. }
  1623. }
  1624. }
  1625. /* store MV using signed modulus of MV range defined in 4.11 */
  1626. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1627. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1628. if(mv1) { /* duplicate motion data for 1-MV block */
  1629. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1630. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1631. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1632. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1633. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1634. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1635. }
  1636. }
  1637. /** Motion compensation for direct or interpolated blocks in B-frames
  1638. */
  1639. static void vc1_interp_mc(VC1Context *v)
  1640. {
  1641. MpegEncContext *s = &v->s;
  1642. DSPContext *dsp = &v->s.dsp;
  1643. uint8_t *srcY, *srcU, *srcV;
  1644. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1645. if(!v->s.next_picture.data[0])return;
  1646. mx = s->mv[1][0][0];
  1647. my = s->mv[1][0][1];
  1648. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1649. uvmy = (my + ((my & 3) == 3)) >> 1;
  1650. if(v->fastuvmc) {
  1651. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  1652. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  1653. }
  1654. srcY = s->next_picture.data[0];
  1655. srcU = s->next_picture.data[1];
  1656. srcV = s->next_picture.data[2];
  1657. src_x = s->mb_x * 16 + (mx >> 2);
  1658. src_y = s->mb_y * 16 + (my >> 2);
  1659. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1660. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1661. if(v->profile != PROFILE_ADVANCED){
  1662. src_x = av_clip( src_x, -16, s->mb_width * 16);
  1663. src_y = av_clip( src_y, -16, s->mb_height * 16);
  1664. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  1665. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  1666. }else{
  1667. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  1668. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  1669. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  1670. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  1671. }
  1672. srcY += src_y * s->linesize + src_x;
  1673. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1674. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1675. /* for grayscale we should not try to read from unknown area */
  1676. if(s->flags & CODEC_FLAG_GRAY) {
  1677. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1678. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1679. }
  1680. if(v->rangeredfrm
  1681. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1682. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1683. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1684. srcY -= s->mspel * (1 + s->linesize);
  1685. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1686. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1687. srcY = s->edge_emu_buffer;
  1688. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1689. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1690. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1691. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1692. srcU = uvbuf;
  1693. srcV = uvbuf + 16;
  1694. /* if we deal with range reduction we need to scale source blocks */
  1695. if(v->rangeredfrm) {
  1696. int i, j;
  1697. uint8_t *src, *src2;
  1698. src = srcY;
  1699. for(j = 0; j < 17 + s->mspel*2; j++) {
  1700. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1701. src += s->linesize;
  1702. }
  1703. src = srcU; src2 = srcV;
  1704. for(j = 0; j < 9; j++) {
  1705. for(i = 0; i < 9; i++) {
  1706. src[i] = ((src[i] - 128) >> 1) + 128;
  1707. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1708. }
  1709. src += s->uvlinesize;
  1710. src2 += s->uvlinesize;
  1711. }
  1712. }
  1713. srcY += s->mspel * (1 + s->linesize);
  1714. }
  1715. mx >>= 1;
  1716. my >>= 1;
  1717. dxy = ((my & 1) << 1) | (mx & 1);
  1718. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1719. if(s->flags & CODEC_FLAG_GRAY) return;
  1720. /* Chroma MC always uses qpel blilinear */
  1721. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1722. uvmx = (uvmx&3)<<1;
  1723. uvmy = (uvmy&3)<<1;
  1724. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1725. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1726. }
  1727. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1728. {
  1729. int n = bfrac;
  1730. #if B_FRACTION_DEN==256
  1731. if(inv)
  1732. n -= 256;
  1733. if(!qs)
  1734. return 2 * ((value * n + 255) >> 9);
  1735. return (value * n + 128) >> 8;
  1736. #else
  1737. if(inv)
  1738. n -= B_FRACTION_DEN;
  1739. if(!qs)
  1740. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1741. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1742. #endif
  1743. }
  1744. /** Reconstruct motion vector for B-frame and do motion compensation
  1745. */
  1746. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1747. {
  1748. if(v->use_ic) {
  1749. v->mv_mode2 = v->mv_mode;
  1750. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1751. }
  1752. if(direct) {
  1753. vc1_mc_1mv(v, 0);
  1754. vc1_interp_mc(v);
  1755. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1756. return;
  1757. }
  1758. if(mode == BMV_TYPE_INTERPOLATED) {
  1759. vc1_mc_1mv(v, 0);
  1760. vc1_interp_mc(v);
  1761. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1762. return;
  1763. }
  1764. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1765. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1766. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1767. }
  1768. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1769. {
  1770. MpegEncContext *s = &v->s;
  1771. int xy, wrap, off = 0;
  1772. int16_t *A, *B, *C;
  1773. int px, py;
  1774. int sum;
  1775. int r_x, r_y;
  1776. const uint8_t *is_intra = v->mb_type[0];
  1777. r_x = v->range_x;
  1778. r_y = v->range_y;
  1779. /* scale MV difference to be quad-pel */
  1780. dmv_x[0] <<= 1 - s->quarter_sample;
  1781. dmv_y[0] <<= 1 - s->quarter_sample;
  1782. dmv_x[1] <<= 1 - s->quarter_sample;
  1783. dmv_y[1] <<= 1 - s->quarter_sample;
  1784. wrap = s->b8_stride;
  1785. xy = s->block_index[0];
  1786. if(s->mb_intra) {
  1787. s->current_picture.motion_val[0][xy][0] =
  1788. s->current_picture.motion_val[0][xy][1] =
  1789. s->current_picture.motion_val[1][xy][0] =
  1790. s->current_picture.motion_val[1][xy][1] = 0;
  1791. return;
  1792. }
  1793. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1794. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1795. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1796. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1797. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  1798. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1799. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1800. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  1801. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  1802. if(direct) {
  1803. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1804. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1805. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1806. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1807. return;
  1808. }
  1809. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1810. C = s->current_picture.motion_val[0][xy - 2];
  1811. A = s->current_picture.motion_val[0][xy - wrap*2];
  1812. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1813. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1814. if(!s->mb_x) C[0] = C[1] = 0;
  1815. if(!s->first_slice_line) { // predictor A is not out of bounds
  1816. if(s->mb_width == 1) {
  1817. px = A[0];
  1818. py = A[1];
  1819. } else {
  1820. px = mid_pred(A[0], B[0], C[0]);
  1821. py = mid_pred(A[1], B[1], C[1]);
  1822. }
  1823. } else if(s->mb_x) { // predictor C is not out of bounds
  1824. px = C[0];
  1825. py = C[1];
  1826. } else {
  1827. px = py = 0;
  1828. }
  1829. /* Pullback MV as specified in 8.3.5.3.4 */
  1830. {
  1831. int qx, qy, X, Y;
  1832. if(v->profile < PROFILE_ADVANCED) {
  1833. qx = (s->mb_x << 5);
  1834. qy = (s->mb_y << 5);
  1835. X = (s->mb_width << 5) - 4;
  1836. Y = (s->mb_height << 5) - 4;
  1837. if(qx + px < -28) px = -28 - qx;
  1838. if(qy + py < -28) py = -28 - qy;
  1839. if(qx + px > X) px = X - qx;
  1840. if(qy + py > Y) py = Y - qy;
  1841. } else {
  1842. qx = (s->mb_x << 6);
  1843. qy = (s->mb_y << 6);
  1844. X = (s->mb_width << 6) - 4;
  1845. Y = (s->mb_height << 6) - 4;
  1846. if(qx + px < -60) px = -60 - qx;
  1847. if(qy + py < -60) py = -60 - qy;
  1848. if(qx + px > X) px = X - qx;
  1849. if(qy + py > Y) py = Y - qy;
  1850. }
  1851. }
  1852. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1853. if(0 && !s->first_slice_line && s->mb_x) {
  1854. if(is_intra[xy - wrap])
  1855. sum = FFABS(px) + FFABS(py);
  1856. else
  1857. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1858. if(sum > 32) {
  1859. if(get_bits1(&s->gb)) {
  1860. px = A[0];
  1861. py = A[1];
  1862. } else {
  1863. px = C[0];
  1864. py = C[1];
  1865. }
  1866. } else {
  1867. if(is_intra[xy - 2])
  1868. sum = FFABS(px) + FFABS(py);
  1869. else
  1870. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1871. if(sum > 32) {
  1872. if(get_bits1(&s->gb)) {
  1873. px = A[0];
  1874. py = A[1];
  1875. } else {
  1876. px = C[0];
  1877. py = C[1];
  1878. }
  1879. }
  1880. }
  1881. }
  1882. /* store MV using signed modulus of MV range defined in 4.11 */
  1883. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  1884. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  1885. }
  1886. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1887. C = s->current_picture.motion_val[1][xy - 2];
  1888. A = s->current_picture.motion_val[1][xy - wrap*2];
  1889. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1890. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  1891. if(!s->mb_x) C[0] = C[1] = 0;
  1892. if(!s->first_slice_line) { // predictor A is not out of bounds
  1893. if(s->mb_width == 1) {
  1894. px = A[0];
  1895. py = A[1];
  1896. } else {
  1897. px = mid_pred(A[0], B[0], C[0]);
  1898. py = mid_pred(A[1], B[1], C[1]);
  1899. }
  1900. } else if(s->mb_x) { // predictor C is not out of bounds
  1901. px = C[0];
  1902. py = C[1];
  1903. } else {
  1904. px = py = 0;
  1905. }
  1906. /* Pullback MV as specified in 8.3.5.3.4 */
  1907. {
  1908. int qx, qy, X, Y;
  1909. if(v->profile < PROFILE_ADVANCED) {
  1910. qx = (s->mb_x << 5);
  1911. qy = (s->mb_y << 5);
  1912. X = (s->mb_width << 5) - 4;
  1913. Y = (s->mb_height << 5) - 4;
  1914. if(qx + px < -28) px = -28 - qx;
  1915. if(qy + py < -28) py = -28 - qy;
  1916. if(qx + px > X) px = X - qx;
  1917. if(qy + py > Y) py = Y - qy;
  1918. } else {
  1919. qx = (s->mb_x << 6);
  1920. qy = (s->mb_y << 6);
  1921. X = (s->mb_width << 6) - 4;
  1922. Y = (s->mb_height << 6) - 4;
  1923. if(qx + px < -60) px = -60 - qx;
  1924. if(qy + py < -60) py = -60 - qy;
  1925. if(qx + px > X) px = X - qx;
  1926. if(qy + py > Y) py = Y - qy;
  1927. }
  1928. }
  1929. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1930. if(0 && !s->first_slice_line && s->mb_x) {
  1931. if(is_intra[xy - wrap])
  1932. sum = FFABS(px) + FFABS(py);
  1933. else
  1934. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1935. if(sum > 32) {
  1936. if(get_bits1(&s->gb)) {
  1937. px = A[0];
  1938. py = A[1];
  1939. } else {
  1940. px = C[0];
  1941. py = C[1];
  1942. }
  1943. } else {
  1944. if(is_intra[xy - 2])
  1945. sum = FFABS(px) + FFABS(py);
  1946. else
  1947. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1948. if(sum > 32) {
  1949. if(get_bits1(&s->gb)) {
  1950. px = A[0];
  1951. py = A[1];
  1952. } else {
  1953. px = C[0];
  1954. py = C[1];
  1955. }
  1956. }
  1957. }
  1958. }
  1959. /* store MV using signed modulus of MV range defined in 4.11 */
  1960. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1961. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1962. }
  1963. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1964. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1965. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1966. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1967. }
  1968. /** Get predicted DC value for I-frames only
  1969. * prediction dir: left=0, top=1
  1970. * @param s MpegEncContext
  1971. * @param[in] n block index in the current MB
  1972. * @param dc_val_ptr Pointer to DC predictor
  1973. * @param dir_ptr Prediction direction for use in AC prediction
  1974. */
  1975. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1976. int16_t **dc_val_ptr, int *dir_ptr)
  1977. {
  1978. int a, b, c, wrap, pred, scale;
  1979. int16_t *dc_val;
  1980. static const uint16_t dcpred[32] = {
  1981. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1982. 114, 102, 93, 85, 79, 73, 68, 64,
  1983. 60, 57, 54, 51, 49, 47, 45, 43,
  1984. 41, 39, 38, 37, 35, 34, 33
  1985. };
  1986. /* find prediction - wmv3_dc_scale always used here in fact */
  1987. if (n < 4) scale = s->y_dc_scale;
  1988. else scale = s->c_dc_scale;
  1989. wrap = s->block_wrap[n];
  1990. dc_val= s->dc_val[0] + s->block_index[n];
  1991. /* B A
  1992. * C X
  1993. */
  1994. c = dc_val[ - 1];
  1995. b = dc_val[ - 1 - wrap];
  1996. a = dc_val[ - wrap];
  1997. if (pq < 9 || !overlap)
  1998. {
  1999. /* Set outer values */
  2000. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2001. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2002. }
  2003. else
  2004. {
  2005. /* Set outer values */
  2006. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2007. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2008. }
  2009. if (abs(a - b) <= abs(b - c)) {
  2010. pred = c;
  2011. *dir_ptr = 1;//left
  2012. } else {
  2013. pred = a;
  2014. *dir_ptr = 0;//top
  2015. }
  2016. /* update predictor */
  2017. *dc_val_ptr = &dc_val[0];
  2018. return pred;
  2019. }
  2020. /** Get predicted DC value
  2021. * prediction dir: left=0, top=1
  2022. * @param s MpegEncContext
  2023. * @param[in] n block index in the current MB
  2024. * @param dc_val_ptr Pointer to DC predictor
  2025. * @param dir_ptr Prediction direction for use in AC prediction
  2026. */
  2027. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2028. int a_avail, int c_avail,
  2029. int16_t **dc_val_ptr, int *dir_ptr)
  2030. {
  2031. int a, b, c, wrap, pred, scale;
  2032. int16_t *dc_val;
  2033. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2034. int q1, q2 = 0;
  2035. /* find prediction - wmv3_dc_scale always used here in fact */
  2036. if (n < 4) scale = s->y_dc_scale;
  2037. else scale = s->c_dc_scale;
  2038. wrap = s->block_wrap[n];
  2039. dc_val= s->dc_val[0] + s->block_index[n];
  2040. /* B A
  2041. * C X
  2042. */
  2043. c = dc_val[ - 1];
  2044. b = dc_val[ - 1 - wrap];
  2045. a = dc_val[ - wrap];
  2046. /* scale predictors if needed */
  2047. q1 = s->current_picture.qscale_table[mb_pos];
  2048. if(c_avail && (n!= 1 && n!=3)) {
  2049. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2050. if(q2 && q2 != q1)
  2051. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2052. }
  2053. if(a_avail && (n!= 2 && n!=3)) {
  2054. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2055. if(q2 && q2 != q1)
  2056. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2057. }
  2058. if(a_avail && c_avail && (n!=3)) {
  2059. int off = mb_pos;
  2060. if(n != 1) off--;
  2061. if(n != 2) off -= s->mb_stride;
  2062. q2 = s->current_picture.qscale_table[off];
  2063. if(q2 && q2 != q1)
  2064. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2065. }
  2066. if(a_avail && c_avail) {
  2067. if(abs(a - b) <= abs(b - c)) {
  2068. pred = c;
  2069. *dir_ptr = 1;//left
  2070. } else {
  2071. pred = a;
  2072. *dir_ptr = 0;//top
  2073. }
  2074. } else if(a_avail) {
  2075. pred = a;
  2076. *dir_ptr = 0;//top
  2077. } else if(c_avail) {
  2078. pred = c;
  2079. *dir_ptr = 1;//left
  2080. } else {
  2081. pred = 0;
  2082. *dir_ptr = 1;//left
  2083. }
  2084. /* update predictor */
  2085. *dc_val_ptr = &dc_val[0];
  2086. return pred;
  2087. }
  2088. /**
  2089. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2090. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2091. * @{
  2092. */
  2093. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2094. {
  2095. int xy, wrap, pred, a, b, c;
  2096. xy = s->block_index[n];
  2097. wrap = s->b8_stride;
  2098. /* B C
  2099. * A X
  2100. */
  2101. a = s->coded_block[xy - 1 ];
  2102. b = s->coded_block[xy - 1 - wrap];
  2103. c = s->coded_block[xy - wrap];
  2104. if (b == c) {
  2105. pred = a;
  2106. } else {
  2107. pred = c;
  2108. }
  2109. /* store value */
  2110. *coded_block_ptr = &s->coded_block[xy];
  2111. return pred;
  2112. }
  2113. /**
  2114. * Decode one AC coefficient
  2115. * @param v The VC1 context
  2116. * @param last Last coefficient
  2117. * @param skip How much zero coefficients to skip
  2118. * @param value Decoded AC coefficient value
  2119. * @see 8.1.3.4
  2120. */
  2121. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2122. {
  2123. GetBitContext *gb = &v->s.gb;
  2124. int index, escape, run = 0, level = 0, lst = 0;
  2125. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2126. if (index != vc1_ac_sizes[codingset] - 1) {
  2127. run = vc1_index_decode_table[codingset][index][0];
  2128. level = vc1_index_decode_table[codingset][index][1];
  2129. lst = index >= vc1_last_decode_table[codingset];
  2130. if(get_bits(gb, 1))
  2131. level = -level;
  2132. } else {
  2133. escape = decode210(gb);
  2134. if (escape != 2) {
  2135. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2136. run = vc1_index_decode_table[codingset][index][0];
  2137. level = vc1_index_decode_table[codingset][index][1];
  2138. lst = index >= vc1_last_decode_table[codingset];
  2139. if(escape == 0) {
  2140. if(lst)
  2141. level += vc1_last_delta_level_table[codingset][run];
  2142. else
  2143. level += vc1_delta_level_table[codingset][run];
  2144. } else {
  2145. if(lst)
  2146. run += vc1_last_delta_run_table[codingset][level] + 1;
  2147. else
  2148. run += vc1_delta_run_table[codingset][level] + 1;
  2149. }
  2150. if(get_bits(gb, 1))
  2151. level = -level;
  2152. } else {
  2153. int sign;
  2154. lst = get_bits(gb, 1);
  2155. if(v->s.esc3_level_length == 0) {
  2156. if(v->pq < 8 || v->dquantfrm) { // table 59
  2157. v->s.esc3_level_length = get_bits(gb, 3);
  2158. if(!v->s.esc3_level_length)
  2159. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2160. } else { //table 60
  2161. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  2162. }
  2163. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2164. }
  2165. run = get_bits(gb, v->s.esc3_run_length);
  2166. sign = get_bits(gb, 1);
  2167. level = get_bits(gb, v->s.esc3_level_length);
  2168. if(sign)
  2169. level = -level;
  2170. }
  2171. }
  2172. *last = lst;
  2173. *skip = run;
  2174. *value = level;
  2175. }
  2176. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2177. * @param v VC1Context
  2178. * @param block block to decode
  2179. * @param coded are AC coeffs present or not
  2180. * @param codingset set of VLC to decode data
  2181. */
  2182. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2183. {
  2184. GetBitContext *gb = &v->s.gb;
  2185. MpegEncContext *s = &v->s;
  2186. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2187. int run_diff, i;
  2188. int16_t *dc_val;
  2189. int16_t *ac_val, *ac_val2;
  2190. int dcdiff;
  2191. /* Get DC differential */
  2192. if (n < 4) {
  2193. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2194. } else {
  2195. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2196. }
  2197. if (dcdiff < 0){
  2198. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2199. return -1;
  2200. }
  2201. if (dcdiff)
  2202. {
  2203. if (dcdiff == 119 /* ESC index value */)
  2204. {
  2205. /* TODO: Optimize */
  2206. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2207. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2208. else dcdiff = get_bits(gb, 8);
  2209. }
  2210. else
  2211. {
  2212. if (v->pq == 1)
  2213. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2214. else if (v->pq == 2)
  2215. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2216. }
  2217. if (get_bits(gb, 1))
  2218. dcdiff = -dcdiff;
  2219. }
  2220. /* Prediction */
  2221. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2222. *dc_val = dcdiff;
  2223. /* Store the quantized DC coeff, used for prediction */
  2224. if (n < 4) {
  2225. block[0] = dcdiff * s->y_dc_scale;
  2226. } else {
  2227. block[0] = dcdiff * s->c_dc_scale;
  2228. }
  2229. /* Skip ? */
  2230. run_diff = 0;
  2231. i = 0;
  2232. if (!coded) {
  2233. goto not_coded;
  2234. }
  2235. //AC Decoding
  2236. i = 1;
  2237. {
  2238. int last = 0, skip, value;
  2239. const int8_t *zz_table;
  2240. int scale;
  2241. int k;
  2242. scale = v->pq * 2 + v->halfpq;
  2243. if(v->s.ac_pred) {
  2244. if(!dc_pred_dir)
  2245. zz_table = vc1_horizontal_zz;
  2246. else
  2247. zz_table = vc1_vertical_zz;
  2248. } else
  2249. zz_table = vc1_normal_zz;
  2250. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2251. ac_val2 = ac_val;
  2252. if(dc_pred_dir) //left
  2253. ac_val -= 16;
  2254. else //top
  2255. ac_val -= 16 * s->block_wrap[n];
  2256. while (!last) {
  2257. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2258. i += skip;
  2259. if(i > 63)
  2260. break;
  2261. block[zz_table[i++]] = value;
  2262. }
  2263. /* apply AC prediction if needed */
  2264. if(s->ac_pred) {
  2265. if(dc_pred_dir) { //left
  2266. for(k = 1; k < 8; k++)
  2267. block[k << 3] += ac_val[k];
  2268. } else { //top
  2269. for(k = 1; k < 8; k++)
  2270. block[k] += ac_val[k + 8];
  2271. }
  2272. }
  2273. /* save AC coeffs for further prediction */
  2274. for(k = 1; k < 8; k++) {
  2275. ac_val2[k] = block[k << 3];
  2276. ac_val2[k + 8] = block[k];
  2277. }
  2278. /* scale AC coeffs */
  2279. for(k = 1; k < 64; k++)
  2280. if(block[k]) {
  2281. block[k] *= scale;
  2282. if(!v->pquantizer)
  2283. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2284. }
  2285. if(s->ac_pred) i = 63;
  2286. }
  2287. not_coded:
  2288. if(!coded) {
  2289. int k, scale;
  2290. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2291. ac_val2 = ac_val;
  2292. scale = v->pq * 2 + v->halfpq;
  2293. memset(ac_val2, 0, 16 * 2);
  2294. if(dc_pred_dir) {//left
  2295. ac_val -= 16;
  2296. if(s->ac_pred)
  2297. memcpy(ac_val2, ac_val, 8 * 2);
  2298. } else {//top
  2299. ac_val -= 16 * s->block_wrap[n];
  2300. if(s->ac_pred)
  2301. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2302. }
  2303. /* apply AC prediction if needed */
  2304. if(s->ac_pred) {
  2305. if(dc_pred_dir) { //left
  2306. for(k = 1; k < 8; k++) {
  2307. block[k << 3] = ac_val[k] * scale;
  2308. if(!v->pquantizer && block[k << 3])
  2309. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2310. }
  2311. } else { //top
  2312. for(k = 1; k < 8; k++) {
  2313. block[k] = ac_val[k + 8] * scale;
  2314. if(!v->pquantizer && block[k])
  2315. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2316. }
  2317. }
  2318. i = 63;
  2319. }
  2320. }
  2321. s->block_last_index[n] = i;
  2322. return 0;
  2323. }
  2324. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2325. * @param v VC1Context
  2326. * @param block block to decode
  2327. * @param coded are AC coeffs present or not
  2328. * @param codingset set of VLC to decode data
  2329. */
  2330. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2331. {
  2332. GetBitContext *gb = &v->s.gb;
  2333. MpegEncContext *s = &v->s;
  2334. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2335. int run_diff, i;
  2336. int16_t *dc_val;
  2337. int16_t *ac_val, *ac_val2;
  2338. int dcdiff;
  2339. int a_avail = v->a_avail, c_avail = v->c_avail;
  2340. int use_pred = s->ac_pred;
  2341. int scale;
  2342. int q1, q2 = 0;
  2343. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2344. /* Get DC differential */
  2345. if (n < 4) {
  2346. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2347. } else {
  2348. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2349. }
  2350. if (dcdiff < 0){
  2351. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2352. return -1;
  2353. }
  2354. if (dcdiff)
  2355. {
  2356. if (dcdiff == 119 /* ESC index value */)
  2357. {
  2358. /* TODO: Optimize */
  2359. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2360. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2361. else dcdiff = get_bits(gb, 8);
  2362. }
  2363. else
  2364. {
  2365. if (mquant == 1)
  2366. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2367. else if (mquant == 2)
  2368. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2369. }
  2370. if (get_bits(gb, 1))
  2371. dcdiff = -dcdiff;
  2372. }
  2373. /* Prediction */
  2374. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2375. *dc_val = dcdiff;
  2376. /* Store the quantized DC coeff, used for prediction */
  2377. if (n < 4) {
  2378. block[0] = dcdiff * s->y_dc_scale;
  2379. } else {
  2380. block[0] = dcdiff * s->c_dc_scale;
  2381. }
  2382. /* Skip ? */
  2383. run_diff = 0;
  2384. i = 0;
  2385. //AC Decoding
  2386. i = 1;
  2387. /* check if AC is needed at all and adjust direction if needed */
  2388. if(!a_avail) dc_pred_dir = 1;
  2389. if(!c_avail) dc_pred_dir = 0;
  2390. if(!a_avail && !c_avail) use_pred = 0;
  2391. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2392. ac_val2 = ac_val;
  2393. scale = mquant * 2 + v->halfpq;
  2394. if(dc_pred_dir) //left
  2395. ac_val -= 16;
  2396. else //top
  2397. ac_val -= 16 * s->block_wrap[n];
  2398. q1 = s->current_picture.qscale_table[mb_pos];
  2399. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2400. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2401. if(dc_pred_dir && n==1) q2 = q1;
  2402. if(!dc_pred_dir && n==2) q2 = q1;
  2403. if(n==3) q2 = q1;
  2404. if(coded) {
  2405. int last = 0, skip, value;
  2406. const int8_t *zz_table;
  2407. int k;
  2408. if(v->s.ac_pred) {
  2409. if(!dc_pred_dir)
  2410. zz_table = vc1_horizontal_zz;
  2411. else
  2412. zz_table = vc1_vertical_zz;
  2413. } else
  2414. zz_table = vc1_normal_zz;
  2415. while (!last) {
  2416. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2417. i += skip;
  2418. if(i > 63)
  2419. break;
  2420. block[zz_table[i++]] = value;
  2421. }
  2422. /* apply AC prediction if needed */
  2423. if(use_pred) {
  2424. /* scale predictors if needed*/
  2425. if(q2 && q1!=q2) {
  2426. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2427. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2428. if(dc_pred_dir) { //left
  2429. for(k = 1; k < 8; k++)
  2430. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2431. } else { //top
  2432. for(k = 1; k < 8; k++)
  2433. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2434. }
  2435. } else {
  2436. if(dc_pred_dir) { //left
  2437. for(k = 1; k < 8; k++)
  2438. block[k << 3] += ac_val[k];
  2439. } else { //top
  2440. for(k = 1; k < 8; k++)
  2441. block[k] += ac_val[k + 8];
  2442. }
  2443. }
  2444. }
  2445. /* save AC coeffs for further prediction */
  2446. for(k = 1; k < 8; k++) {
  2447. ac_val2[k] = block[k << 3];
  2448. ac_val2[k + 8] = block[k];
  2449. }
  2450. /* scale AC coeffs */
  2451. for(k = 1; k < 64; k++)
  2452. if(block[k]) {
  2453. block[k] *= scale;
  2454. if(!v->pquantizer)
  2455. block[k] += (block[k] < 0) ? -mquant : mquant;
  2456. }
  2457. if(use_pred) i = 63;
  2458. } else { // no AC coeffs
  2459. int k;
  2460. memset(ac_val2, 0, 16 * 2);
  2461. if(dc_pred_dir) {//left
  2462. if(use_pred) {
  2463. memcpy(ac_val2, ac_val, 8 * 2);
  2464. if(q2 && q1!=q2) {
  2465. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2466. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2467. for(k = 1; k < 8; k++)
  2468. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2469. }
  2470. }
  2471. } else {//top
  2472. if(use_pred) {
  2473. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2474. if(q2 && q1!=q2) {
  2475. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2476. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2477. for(k = 1; k < 8; k++)
  2478. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2479. }
  2480. }
  2481. }
  2482. /* apply AC prediction if needed */
  2483. if(use_pred) {
  2484. if(dc_pred_dir) { //left
  2485. for(k = 1; k < 8; k++) {
  2486. block[k << 3] = ac_val2[k] * scale;
  2487. if(!v->pquantizer && block[k << 3])
  2488. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2489. }
  2490. } else { //top
  2491. for(k = 1; k < 8; k++) {
  2492. block[k] = ac_val2[k + 8] * scale;
  2493. if(!v->pquantizer && block[k])
  2494. block[k] += (block[k] < 0) ? -mquant : mquant;
  2495. }
  2496. }
  2497. i = 63;
  2498. }
  2499. }
  2500. s->block_last_index[n] = i;
  2501. return 0;
  2502. }
  2503. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2504. * @param v VC1Context
  2505. * @param block block to decode
  2506. * @param coded are AC coeffs present or not
  2507. * @param mquant block quantizer
  2508. * @param codingset set of VLC to decode data
  2509. */
  2510. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2511. {
  2512. GetBitContext *gb = &v->s.gb;
  2513. MpegEncContext *s = &v->s;
  2514. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2515. int run_diff, i;
  2516. int16_t *dc_val;
  2517. int16_t *ac_val, *ac_val2;
  2518. int dcdiff;
  2519. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2520. int a_avail = v->a_avail, c_avail = v->c_avail;
  2521. int use_pred = s->ac_pred;
  2522. int scale;
  2523. int q1, q2 = 0;
  2524. /* XXX: Guard against dumb values of mquant */
  2525. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2526. /* Set DC scale - y and c use the same */
  2527. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2528. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2529. /* Get DC differential */
  2530. if (n < 4) {
  2531. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2532. } else {
  2533. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2534. }
  2535. if (dcdiff < 0){
  2536. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2537. return -1;
  2538. }
  2539. if (dcdiff)
  2540. {
  2541. if (dcdiff == 119 /* ESC index value */)
  2542. {
  2543. /* TODO: Optimize */
  2544. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2545. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2546. else dcdiff = get_bits(gb, 8);
  2547. }
  2548. else
  2549. {
  2550. if (mquant == 1)
  2551. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2552. else if (mquant == 2)
  2553. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2554. }
  2555. if (get_bits(gb, 1))
  2556. dcdiff = -dcdiff;
  2557. }
  2558. /* Prediction */
  2559. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2560. *dc_val = dcdiff;
  2561. /* Store the quantized DC coeff, used for prediction */
  2562. if (n < 4) {
  2563. block[0] = dcdiff * s->y_dc_scale;
  2564. } else {
  2565. block[0] = dcdiff * s->c_dc_scale;
  2566. }
  2567. /* Skip ? */
  2568. run_diff = 0;
  2569. i = 0;
  2570. //AC Decoding
  2571. i = 1;
  2572. /* check if AC is needed at all and adjust direction if needed */
  2573. if(!a_avail) dc_pred_dir = 1;
  2574. if(!c_avail) dc_pred_dir = 0;
  2575. if(!a_avail && !c_avail) use_pred = 0;
  2576. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2577. ac_val2 = ac_val;
  2578. scale = mquant * 2 + v->halfpq;
  2579. if(dc_pred_dir) //left
  2580. ac_val -= 16;
  2581. else //top
  2582. ac_val -= 16 * s->block_wrap[n];
  2583. q1 = s->current_picture.qscale_table[mb_pos];
  2584. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2585. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2586. if(dc_pred_dir && n==1) q2 = q1;
  2587. if(!dc_pred_dir && n==2) q2 = q1;
  2588. if(n==3) q2 = q1;
  2589. if(coded) {
  2590. int last = 0, skip, value;
  2591. const int8_t *zz_table;
  2592. int k;
  2593. zz_table = vc1_simple_progressive_8x8_zz;
  2594. while (!last) {
  2595. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2596. i += skip;
  2597. if(i > 63)
  2598. break;
  2599. block[zz_table[i++]] = value;
  2600. }
  2601. /* apply AC prediction if needed */
  2602. if(use_pred) {
  2603. /* scale predictors if needed*/
  2604. if(q2 && q1!=q2) {
  2605. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2606. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2607. if(dc_pred_dir) { //left
  2608. for(k = 1; k < 8; k++)
  2609. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2610. } else { //top
  2611. for(k = 1; k < 8; k++)
  2612. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2613. }
  2614. } else {
  2615. if(dc_pred_dir) { //left
  2616. for(k = 1; k < 8; k++)
  2617. block[k << 3] += ac_val[k];
  2618. } else { //top
  2619. for(k = 1; k < 8; k++)
  2620. block[k] += ac_val[k + 8];
  2621. }
  2622. }
  2623. }
  2624. /* save AC coeffs for further prediction */
  2625. for(k = 1; k < 8; k++) {
  2626. ac_val2[k] = block[k << 3];
  2627. ac_val2[k + 8] = block[k];
  2628. }
  2629. /* scale AC coeffs */
  2630. for(k = 1; k < 64; k++)
  2631. if(block[k]) {
  2632. block[k] *= scale;
  2633. if(!v->pquantizer)
  2634. block[k] += (block[k] < 0) ? -mquant : mquant;
  2635. }
  2636. if(use_pred) i = 63;
  2637. } else { // no AC coeffs
  2638. int k;
  2639. memset(ac_val2, 0, 16 * 2);
  2640. if(dc_pred_dir) {//left
  2641. if(use_pred) {
  2642. memcpy(ac_val2, ac_val, 8 * 2);
  2643. if(q2 && q1!=q2) {
  2644. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2645. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2646. for(k = 1; k < 8; k++)
  2647. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2648. }
  2649. }
  2650. } else {//top
  2651. if(use_pred) {
  2652. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2653. if(q2 && q1!=q2) {
  2654. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  2655. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  2656. for(k = 1; k < 8; k++)
  2657. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2658. }
  2659. }
  2660. }
  2661. /* apply AC prediction if needed */
  2662. if(use_pred) {
  2663. if(dc_pred_dir) { //left
  2664. for(k = 1; k < 8; k++) {
  2665. block[k << 3] = ac_val2[k] * scale;
  2666. if(!v->pquantizer && block[k << 3])
  2667. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2668. }
  2669. } else { //top
  2670. for(k = 1; k < 8; k++) {
  2671. block[k] = ac_val2[k + 8] * scale;
  2672. if(!v->pquantizer && block[k])
  2673. block[k] += (block[k] < 0) ? -mquant : mquant;
  2674. }
  2675. }
  2676. i = 63;
  2677. }
  2678. }
  2679. s->block_last_index[n] = i;
  2680. return 0;
  2681. }
  2682. /** Decode P block
  2683. */
  2684. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2685. {
  2686. MpegEncContext *s = &v->s;
  2687. GetBitContext *gb = &s->gb;
  2688. int i, j;
  2689. int subblkpat = 0;
  2690. int scale, off, idx, last, skip, value;
  2691. int ttblk = ttmb & 7;
  2692. if(ttmb == -1) {
  2693. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2694. }
  2695. if(ttblk == TT_4X4) {
  2696. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2697. }
  2698. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2699. subblkpat = decode012(gb);
  2700. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2701. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2702. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2703. }
  2704. scale = 2 * mquant + v->halfpq;
  2705. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2706. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2707. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2708. ttblk = TT_8X4;
  2709. }
  2710. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2711. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2712. ttblk = TT_4X8;
  2713. }
  2714. switch(ttblk) {
  2715. case TT_8X8:
  2716. i = 0;
  2717. last = 0;
  2718. while (!last) {
  2719. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2720. i += skip;
  2721. if(i > 63)
  2722. break;
  2723. idx = vc1_simple_progressive_8x8_zz[i++];
  2724. block[idx] = value * scale;
  2725. if(!v->pquantizer)
  2726. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2727. }
  2728. s->dsp.vc1_inv_trans_8x8(block);
  2729. break;
  2730. case TT_4X4:
  2731. for(j = 0; j < 4; j++) {
  2732. last = subblkpat & (1 << (3 - j));
  2733. i = 0;
  2734. off = (j & 1) * 4 + (j & 2) * 16;
  2735. while (!last) {
  2736. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2737. i += skip;
  2738. if(i > 15)
  2739. break;
  2740. idx = vc1_simple_progressive_4x4_zz[i++];
  2741. block[idx + off] = value * scale;
  2742. if(!v->pquantizer)
  2743. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2744. }
  2745. if(!(subblkpat & (1 << (3 - j))))
  2746. s->dsp.vc1_inv_trans_4x4(block, j);
  2747. }
  2748. break;
  2749. case TT_8X4:
  2750. for(j = 0; j < 2; j++) {
  2751. last = subblkpat & (1 << (1 - j));
  2752. i = 0;
  2753. off = j * 32;
  2754. while (!last) {
  2755. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2756. i += skip;
  2757. if(i > 31)
  2758. break;
  2759. if(v->profile < PROFILE_ADVANCED)
  2760. idx = vc1_simple_progressive_8x4_zz[i++];
  2761. else
  2762. idx = vc1_adv_progressive_8x4_zz[i++];
  2763. block[idx + off] = value * scale;
  2764. if(!v->pquantizer)
  2765. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2766. }
  2767. if(!(subblkpat & (1 << (1 - j))))
  2768. s->dsp.vc1_inv_trans_8x4(block, j);
  2769. }
  2770. break;
  2771. case TT_4X8:
  2772. for(j = 0; j < 2; j++) {
  2773. last = subblkpat & (1 << (1 - j));
  2774. i = 0;
  2775. off = j * 4;
  2776. while (!last) {
  2777. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2778. i += skip;
  2779. if(i > 31)
  2780. break;
  2781. if(v->profile < PROFILE_ADVANCED)
  2782. idx = vc1_simple_progressive_4x8_zz[i++];
  2783. else
  2784. idx = vc1_adv_progressive_4x8_zz[i++];
  2785. block[idx + off] = value * scale;
  2786. if(!v->pquantizer)
  2787. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2788. }
  2789. if(!(subblkpat & (1 << (1 - j))))
  2790. s->dsp.vc1_inv_trans_4x8(block, j);
  2791. }
  2792. break;
  2793. }
  2794. return 0;
  2795. }
  2796. /** Decode one P-frame MB (in Simple/Main profile)
  2797. */
  2798. static int vc1_decode_p_mb(VC1Context *v)
  2799. {
  2800. MpegEncContext *s = &v->s;
  2801. GetBitContext *gb = &s->gb;
  2802. int i, j;
  2803. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2804. int cbp; /* cbp decoding stuff */
  2805. int mqdiff, mquant; /* MB quantization */
  2806. int ttmb = v->ttfrm; /* MB Transform type */
  2807. int status;
  2808. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2809. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2810. int mb_has_coeffs = 1; /* last_flag */
  2811. int dmv_x, dmv_y; /* Differential MV components */
  2812. int index, index1; /* LUT indices */
  2813. int val, sign; /* temp values */
  2814. int first_block = 1;
  2815. int dst_idx, off;
  2816. int skipped, fourmv;
  2817. mquant = v->pq; /* Loosy initialization */
  2818. if (v->mv_type_is_raw)
  2819. fourmv = get_bits1(gb);
  2820. else
  2821. fourmv = v->mv_type_mb_plane[mb_pos];
  2822. if (v->skip_is_raw)
  2823. skipped = get_bits1(gb);
  2824. else
  2825. skipped = v->s.mbskip_table[mb_pos];
  2826. s->dsp.clear_blocks(s->block[0]);
  2827. if (!fourmv) /* 1MV mode */
  2828. {
  2829. if (!skipped)
  2830. {
  2831. GET_MVDATA(dmv_x, dmv_y);
  2832. if (s->mb_intra) {
  2833. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2834. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2835. }
  2836. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  2837. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  2838. /* FIXME Set DC val for inter block ? */
  2839. if (s->mb_intra && !mb_has_coeffs)
  2840. {
  2841. GET_MQUANT();
  2842. s->ac_pred = get_bits(gb, 1);
  2843. cbp = 0;
  2844. }
  2845. else if (mb_has_coeffs)
  2846. {
  2847. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  2848. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2849. GET_MQUANT();
  2850. }
  2851. else
  2852. {
  2853. mquant = v->pq;
  2854. cbp = 0;
  2855. }
  2856. s->current_picture.qscale_table[mb_pos] = mquant;
  2857. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2858. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  2859. VC1_TTMB_VLC_BITS, 2);
  2860. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  2861. dst_idx = 0;
  2862. for (i=0; i<6; i++)
  2863. {
  2864. s->dc_val[0][s->block_index[i]] = 0;
  2865. dst_idx += i >> 2;
  2866. val = ((cbp >> (5 - i)) & 1);
  2867. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2868. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2869. if(s->mb_intra) {
  2870. /* check if prediction blocks A and C are available */
  2871. v->a_avail = v->c_avail = 0;
  2872. if(i == 2 || i == 3 || !s->first_slice_line)
  2873. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2874. if(i == 1 || i == 3 || s->mb_x)
  2875. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2876. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2877. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2878. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2879. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2880. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2881. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  2882. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2883. if(v->pq >= 9 && v->overlap) {
  2884. if(v->c_avail)
  2885. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2886. if(v->a_avail)
  2887. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2888. }
  2889. } else if(val) {
  2890. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2891. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2892. first_block = 0;
  2893. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2894. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2895. }
  2896. }
  2897. }
  2898. else //Skipped
  2899. {
  2900. s->mb_intra = 0;
  2901. for(i = 0; i < 6; i++) {
  2902. v->mb_type[0][s->block_index[i]] = 0;
  2903. s->dc_val[0][s->block_index[i]] = 0;
  2904. }
  2905. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2906. s->current_picture.qscale_table[mb_pos] = 0;
  2907. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2908. vc1_mc_1mv(v, 0);
  2909. return 0;
  2910. }
  2911. } //1MV mode
  2912. else //4MV mode
  2913. {
  2914. if (!skipped /* unskipped MB */)
  2915. {
  2916. int intra_count = 0, coded_inter = 0;
  2917. int is_intra[6], is_coded[6];
  2918. /* Get CBPCY */
  2919. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2920. for (i=0; i<6; i++)
  2921. {
  2922. val = ((cbp >> (5 - i)) & 1);
  2923. s->dc_val[0][s->block_index[i]] = 0;
  2924. s->mb_intra = 0;
  2925. if(i < 4) {
  2926. dmv_x = dmv_y = 0;
  2927. s->mb_intra = 0;
  2928. mb_has_coeffs = 0;
  2929. if(val) {
  2930. GET_MVDATA(dmv_x, dmv_y);
  2931. }
  2932. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2933. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2934. intra_count += s->mb_intra;
  2935. is_intra[i] = s->mb_intra;
  2936. is_coded[i] = mb_has_coeffs;
  2937. }
  2938. if(i&4){
  2939. is_intra[i] = (intra_count >= 3);
  2940. is_coded[i] = val;
  2941. }
  2942. if(i == 4) vc1_mc_4mv_chroma(v);
  2943. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2944. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2945. }
  2946. // if there are no coded blocks then don't do anything more
  2947. if(!intra_count && !coded_inter) return 0;
  2948. dst_idx = 0;
  2949. GET_MQUANT();
  2950. s->current_picture.qscale_table[mb_pos] = mquant;
  2951. /* test if block is intra and has pred */
  2952. {
  2953. int intrapred = 0;
  2954. for(i=0; i<6; i++)
  2955. if(is_intra[i]) {
  2956. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2957. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2958. intrapred = 1;
  2959. break;
  2960. }
  2961. }
  2962. if(intrapred)s->ac_pred = get_bits(gb, 1);
  2963. else s->ac_pred = 0;
  2964. }
  2965. if (!v->ttmbf && coded_inter)
  2966. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2967. for (i=0; i<6; i++)
  2968. {
  2969. dst_idx += i >> 2;
  2970. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2971. s->mb_intra = is_intra[i];
  2972. if (is_intra[i]) {
  2973. /* check if prediction blocks A and C are available */
  2974. v->a_avail = v->c_avail = 0;
  2975. if(i == 2 || i == 3 || !s->first_slice_line)
  2976. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2977. if(i == 1 || i == 3 || s->mb_x)
  2978. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2979. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2980. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2981. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  2982. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  2983. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  2984. if(!v->res_fasttx && v->res_x8) for(j = 0; j < 64; j++) s->block[i][j] += 16;
  2985. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2986. if(v->pq >= 9 && v->overlap) {
  2987. if(v->c_avail)
  2988. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2989. if(v->a_avail)
  2990. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  2991. }
  2992. } else if(is_coded[i]) {
  2993. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  2994. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2995. first_block = 0;
  2996. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  2997. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  2998. }
  2999. }
  3000. return status;
  3001. }
  3002. else //Skipped MB
  3003. {
  3004. s->mb_intra = 0;
  3005. s->current_picture.qscale_table[mb_pos] = 0;
  3006. for (i=0; i<6; i++) {
  3007. v->mb_type[0][s->block_index[i]] = 0;
  3008. s->dc_val[0][s->block_index[i]] = 0;
  3009. }
  3010. for (i=0; i<4; i++)
  3011. {
  3012. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3013. vc1_mc_4mv_luma(v, i);
  3014. }
  3015. vc1_mc_4mv_chroma(v);
  3016. s->current_picture.qscale_table[mb_pos] = 0;
  3017. return 0;
  3018. }
  3019. }
  3020. /* Should never happen */
  3021. return -1;
  3022. }
  3023. /** Decode one B-frame MB (in Main profile)
  3024. */
  3025. static void vc1_decode_b_mb(VC1Context *v)
  3026. {
  3027. MpegEncContext *s = &v->s;
  3028. GetBitContext *gb = &s->gb;
  3029. int i, j;
  3030. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3031. int cbp = 0; /* cbp decoding stuff */
  3032. int mqdiff, mquant; /* MB quantization */
  3033. int ttmb = v->ttfrm; /* MB Transform type */
  3034. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3035. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3036. int mb_has_coeffs = 0; /* last_flag */
  3037. int index, index1; /* LUT indices */
  3038. int val, sign; /* temp values */
  3039. int first_block = 1;
  3040. int dst_idx, off;
  3041. int skipped, direct;
  3042. int dmv_x[2], dmv_y[2];
  3043. int bmvtype = BMV_TYPE_BACKWARD;
  3044. mquant = v->pq; /* Loosy initialization */
  3045. s->mb_intra = 0;
  3046. if (v->dmb_is_raw)
  3047. direct = get_bits1(gb);
  3048. else
  3049. direct = v->direct_mb_plane[mb_pos];
  3050. if (v->skip_is_raw)
  3051. skipped = get_bits1(gb);
  3052. else
  3053. skipped = v->s.mbskip_table[mb_pos];
  3054. s->dsp.clear_blocks(s->block[0]);
  3055. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3056. for(i = 0; i < 6; i++) {
  3057. v->mb_type[0][s->block_index[i]] = 0;
  3058. s->dc_val[0][s->block_index[i]] = 0;
  3059. }
  3060. s->current_picture.qscale_table[mb_pos] = 0;
  3061. if (!direct) {
  3062. if (!skipped) {
  3063. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3064. dmv_x[1] = dmv_x[0];
  3065. dmv_y[1] = dmv_y[0];
  3066. }
  3067. if(skipped || !s->mb_intra) {
  3068. bmvtype = decode012(gb);
  3069. switch(bmvtype) {
  3070. case 0:
  3071. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3072. break;
  3073. case 1:
  3074. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3075. break;
  3076. case 2:
  3077. bmvtype = BMV_TYPE_INTERPOLATED;
  3078. dmv_x[0] = dmv_y[0] = 0;
  3079. }
  3080. }
  3081. }
  3082. for(i = 0; i < 6; i++)
  3083. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3084. if (skipped) {
  3085. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3086. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3087. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3088. return;
  3089. }
  3090. if (direct) {
  3091. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3092. GET_MQUANT();
  3093. s->mb_intra = 0;
  3094. mb_has_coeffs = 0;
  3095. s->current_picture.qscale_table[mb_pos] = mquant;
  3096. if(!v->ttmbf)
  3097. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3098. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3099. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3100. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3101. } else {
  3102. if(!mb_has_coeffs && !s->mb_intra) {
  3103. /* no coded blocks - effectively skipped */
  3104. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3105. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3106. return;
  3107. }
  3108. if(s->mb_intra && !mb_has_coeffs) {
  3109. GET_MQUANT();
  3110. s->current_picture.qscale_table[mb_pos] = mquant;
  3111. s->ac_pred = get_bits1(gb);
  3112. cbp = 0;
  3113. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3114. } else {
  3115. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3116. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3117. if(!mb_has_coeffs) {
  3118. /* interpolated skipped block */
  3119. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3120. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3121. return;
  3122. }
  3123. }
  3124. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3125. if(!s->mb_intra) {
  3126. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3127. }
  3128. if(s->mb_intra)
  3129. s->ac_pred = get_bits1(gb);
  3130. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3131. GET_MQUANT();
  3132. s->current_picture.qscale_table[mb_pos] = mquant;
  3133. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3134. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3135. }
  3136. }
  3137. dst_idx = 0;
  3138. for (i=0; i<6; i++)
  3139. {
  3140. s->dc_val[0][s->block_index[i]] = 0;
  3141. dst_idx += i >> 2;
  3142. val = ((cbp >> (5 - i)) & 1);
  3143. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3144. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3145. if(s->mb_intra) {
  3146. /* check if prediction blocks A and C are available */
  3147. v->a_avail = v->c_avail = 0;
  3148. if(i == 2 || i == 3 || !s->first_slice_line)
  3149. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3150. if(i == 1 || i == 3 || s->mb_x)
  3151. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3152. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3153. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3154. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3155. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3156. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3157. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3158. } else if(val) {
  3159. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3160. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3161. first_block = 0;
  3162. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3163. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3164. }
  3165. }
  3166. }
  3167. /** Decode blocks of I-frame
  3168. */
  3169. static void vc1_decode_i_blocks(VC1Context *v)
  3170. {
  3171. int k, j;
  3172. MpegEncContext *s = &v->s;
  3173. int cbp, val;
  3174. uint8_t *coded_val;
  3175. int mb_pos;
  3176. /* select codingmode used for VLC tables selection */
  3177. switch(v->y_ac_table_index){
  3178. case 0:
  3179. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3180. break;
  3181. case 1:
  3182. v->codingset = CS_HIGH_MOT_INTRA;
  3183. break;
  3184. case 2:
  3185. v->codingset = CS_MID_RATE_INTRA;
  3186. break;
  3187. }
  3188. switch(v->c_ac_table_index){
  3189. case 0:
  3190. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3191. break;
  3192. case 1:
  3193. v->codingset2 = CS_HIGH_MOT_INTER;
  3194. break;
  3195. case 2:
  3196. v->codingset2 = CS_MID_RATE_INTER;
  3197. break;
  3198. }
  3199. /* Set DC scale - y and c use the same */
  3200. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3201. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3202. //do frame decode
  3203. s->mb_x = s->mb_y = 0;
  3204. s->mb_intra = 1;
  3205. s->first_slice_line = 1;
  3206. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3207. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3208. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3209. ff_init_block_index(s);
  3210. ff_update_block_index(s);
  3211. s->dsp.clear_blocks(s->block[0]);
  3212. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3213. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3214. s->current_picture.qscale_table[mb_pos] = v->pq;
  3215. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3216. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3217. // do actual MB decoding and displaying
  3218. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3219. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3220. for(k = 0; k < 6; k++) {
  3221. val = ((cbp >> (5 - k)) & 1);
  3222. if (k < 4) {
  3223. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3224. val = val ^ pred;
  3225. *coded_val = val;
  3226. }
  3227. cbp |= val << (5 - k);
  3228. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3229. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3230. if(!v->res_fasttx && !v->res_x8) for(j = 0; j < 64; j++) s->block[k][j] -= 16;
  3231. if(v->pq >= 9 && v->overlap) {
  3232. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3233. }
  3234. }
  3235. vc1_put_block(v, s->block);
  3236. if(v->pq >= 9 && v->overlap) {
  3237. if(s->mb_x) {
  3238. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3239. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3240. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3241. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3242. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3243. }
  3244. }
  3245. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3246. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3247. if(!s->first_slice_line) {
  3248. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3249. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3250. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3251. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3252. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3253. }
  3254. }
  3255. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3256. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3257. }
  3258. if(get_bits_count(&s->gb) > v->bits) {
  3259. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3260. return;
  3261. }
  3262. }
  3263. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3264. s->first_slice_line = 0;
  3265. }
  3266. }
  3267. /** Decode blocks of I-frame for advanced profile
  3268. */
  3269. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3270. {
  3271. int k, j;
  3272. MpegEncContext *s = &v->s;
  3273. int cbp, val;
  3274. uint8_t *coded_val;
  3275. int mb_pos;
  3276. int mquant = v->pq;
  3277. int mqdiff;
  3278. int overlap;
  3279. GetBitContext *gb = &s->gb;
  3280. /* select codingmode used for VLC tables selection */
  3281. switch(v->y_ac_table_index){
  3282. case 0:
  3283. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3284. break;
  3285. case 1:
  3286. v->codingset = CS_HIGH_MOT_INTRA;
  3287. break;
  3288. case 2:
  3289. v->codingset = CS_MID_RATE_INTRA;
  3290. break;
  3291. }
  3292. switch(v->c_ac_table_index){
  3293. case 0:
  3294. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3295. break;
  3296. case 1:
  3297. v->codingset2 = CS_HIGH_MOT_INTER;
  3298. break;
  3299. case 2:
  3300. v->codingset2 = CS_MID_RATE_INTER;
  3301. break;
  3302. }
  3303. //do frame decode
  3304. s->mb_x = s->mb_y = 0;
  3305. s->mb_intra = 1;
  3306. s->first_slice_line = 1;
  3307. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3308. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3309. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3310. ff_init_block_index(s);
  3311. ff_update_block_index(s);
  3312. s->dsp.clear_blocks(s->block[0]);
  3313. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3314. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3315. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3316. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3317. // do actual MB decoding and displaying
  3318. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3319. if(v->acpred_is_raw)
  3320. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3321. else
  3322. v->s.ac_pred = v->acpred_plane[mb_pos];
  3323. if(v->condover == CONDOVER_SELECT) {
  3324. if(v->overflg_is_raw)
  3325. overlap = get_bits(&v->s.gb, 1);
  3326. else
  3327. overlap = v->over_flags_plane[mb_pos];
  3328. } else
  3329. overlap = (v->condover == CONDOVER_ALL);
  3330. GET_MQUANT();
  3331. s->current_picture.qscale_table[mb_pos] = mquant;
  3332. /* Set DC scale - y and c use the same */
  3333. s->y_dc_scale = s->y_dc_scale_table[mquant];
  3334. s->c_dc_scale = s->c_dc_scale_table[mquant];
  3335. for(k = 0; k < 6; k++) {
  3336. val = ((cbp >> (5 - k)) & 1);
  3337. if (k < 4) {
  3338. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3339. val = val ^ pred;
  3340. *coded_val = val;
  3341. }
  3342. cbp |= val << (5 - k);
  3343. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3344. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3345. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3346. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3347. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3348. }
  3349. vc1_put_block(v, s->block);
  3350. if(overlap) {
  3351. if(s->mb_x) {
  3352. s->dsp.vc1_h_overlap(s->dest[0], s->linesize);
  3353. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3354. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3355. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  3356. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  3357. }
  3358. }
  3359. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  3360. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3361. if(!s->first_slice_line) {
  3362. s->dsp.vc1_v_overlap(s->dest[0], s->linesize);
  3363. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  3364. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3365. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  3366. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  3367. }
  3368. }
  3369. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  3370. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  3371. }
  3372. if(get_bits_count(&s->gb) > v->bits) {
  3373. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3374. return;
  3375. }
  3376. }
  3377. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3378. s->first_slice_line = 0;
  3379. }
  3380. }
  3381. static void vc1_decode_p_blocks(VC1Context *v)
  3382. {
  3383. MpegEncContext *s = &v->s;
  3384. /* select codingmode used for VLC tables selection */
  3385. switch(v->c_ac_table_index){
  3386. case 0:
  3387. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3388. break;
  3389. case 1:
  3390. v->codingset = CS_HIGH_MOT_INTRA;
  3391. break;
  3392. case 2:
  3393. v->codingset = CS_MID_RATE_INTRA;
  3394. break;
  3395. }
  3396. switch(v->c_ac_table_index){
  3397. case 0:
  3398. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3399. break;
  3400. case 1:
  3401. v->codingset2 = CS_HIGH_MOT_INTER;
  3402. break;
  3403. case 2:
  3404. v->codingset2 = CS_MID_RATE_INTER;
  3405. break;
  3406. }
  3407. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3408. s->first_slice_line = 1;
  3409. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3410. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3411. ff_init_block_index(s);
  3412. ff_update_block_index(s);
  3413. s->dsp.clear_blocks(s->block[0]);
  3414. vc1_decode_p_mb(v);
  3415. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3416. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3417. return;
  3418. }
  3419. }
  3420. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3421. s->first_slice_line = 0;
  3422. }
  3423. }
  3424. static void vc1_decode_b_blocks(VC1Context *v)
  3425. {
  3426. MpegEncContext *s = &v->s;
  3427. /* select codingmode used for VLC tables selection */
  3428. switch(v->c_ac_table_index){
  3429. case 0:
  3430. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3431. break;
  3432. case 1:
  3433. v->codingset = CS_HIGH_MOT_INTRA;
  3434. break;
  3435. case 2:
  3436. v->codingset = CS_MID_RATE_INTRA;
  3437. break;
  3438. }
  3439. switch(v->c_ac_table_index){
  3440. case 0:
  3441. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3442. break;
  3443. case 1:
  3444. v->codingset2 = CS_HIGH_MOT_INTER;
  3445. break;
  3446. case 2:
  3447. v->codingset2 = CS_MID_RATE_INTER;
  3448. break;
  3449. }
  3450. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3451. s->first_slice_line = 1;
  3452. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3453. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3454. ff_init_block_index(s);
  3455. ff_update_block_index(s);
  3456. s->dsp.clear_blocks(s->block[0]);
  3457. vc1_decode_b_mb(v);
  3458. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3459. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3460. return;
  3461. }
  3462. }
  3463. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3464. s->first_slice_line = 0;
  3465. }
  3466. }
  3467. static void vc1_decode_skip_blocks(VC1Context *v)
  3468. {
  3469. MpegEncContext *s = &v->s;
  3470. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3471. s->first_slice_line = 1;
  3472. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3473. s->mb_x = 0;
  3474. ff_init_block_index(s);
  3475. ff_update_block_index(s);
  3476. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3477. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3478. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3479. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3480. s->first_slice_line = 0;
  3481. }
  3482. s->pict_type = P_TYPE;
  3483. }
  3484. static void vc1_decode_blocks(VC1Context *v)
  3485. {
  3486. v->s.esc3_level_length = 0;
  3487. switch(v->s.pict_type) {
  3488. case I_TYPE:
  3489. if(v->profile == PROFILE_ADVANCED)
  3490. vc1_decode_i_blocks_adv(v);
  3491. else
  3492. vc1_decode_i_blocks(v);
  3493. break;
  3494. case P_TYPE:
  3495. if(v->p_frame_skipped)
  3496. vc1_decode_skip_blocks(v);
  3497. else
  3498. vc1_decode_p_blocks(v);
  3499. break;
  3500. case B_TYPE:
  3501. if(v->bi_type){
  3502. if(v->profile == PROFILE_ADVANCED)
  3503. vc1_decode_i_blocks_adv(v);
  3504. else
  3505. vc1_decode_i_blocks(v);
  3506. }else
  3507. vc1_decode_b_blocks(v);
  3508. break;
  3509. }
  3510. }
  3511. /** Find VC-1 marker in buffer
  3512. * @return position where next marker starts or end of buffer if no marker found
  3513. */
  3514. static av_always_inline uint8_t* find_next_marker(uint8_t *src, uint8_t *end)
  3515. {
  3516. uint32_t mrk = 0xFFFFFFFF;
  3517. if(end-src < 4) return end;
  3518. while(src < end){
  3519. mrk = (mrk << 8) | *src++;
  3520. if(IS_MARKER(mrk))
  3521. return src-4;
  3522. }
  3523. return end;
  3524. }
  3525. static av_always_inline int vc1_unescape_buffer(uint8_t *src, int size, uint8_t *dst)
  3526. {
  3527. int dsize = 0, i;
  3528. if(size < 4){
  3529. for(dsize = 0; dsize < size; dsize++) *dst++ = *src++;
  3530. return size;
  3531. }
  3532. for(i = 0; i < size; i++, src++) {
  3533. if(src[0] == 3 && i >= 2 && !src[-1] && !src[-2] && i < size-1 && src[1] < 4) {
  3534. dst[dsize++] = src[1];
  3535. src++;
  3536. i++;
  3537. } else
  3538. dst[dsize++] = *src;
  3539. }
  3540. return dsize;
  3541. }
  3542. /** Initialize a VC1/WMV3 decoder
  3543. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3544. * @todo TODO: Decypher remaining bits in extra_data
  3545. */
  3546. static int vc1_decode_init(AVCodecContext *avctx)
  3547. {
  3548. VC1Context *v = avctx->priv_data;
  3549. MpegEncContext *s = &v->s;
  3550. GetBitContext gb;
  3551. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3552. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3553. avctx->pix_fmt = PIX_FMT_YUV420P;
  3554. else
  3555. avctx->pix_fmt = PIX_FMT_GRAY8;
  3556. v->s.avctx = avctx;
  3557. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3558. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3559. if(ff_h263_decode_init(avctx) < 0)
  3560. return -1;
  3561. if (vc1_init_common(v) < 0) return -1;
  3562. avctx->coded_width = avctx->width;
  3563. avctx->coded_height = avctx->height;
  3564. if (avctx->codec_id == CODEC_ID_WMV3)
  3565. {
  3566. int count = 0;
  3567. // looks like WMV3 has a sequence header stored in the extradata
  3568. // advanced sequence header may be before the first frame
  3569. // the last byte of the extradata is a version number, 1 for the
  3570. // samples we can decode
  3571. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3572. if (decode_sequence_header(avctx, &gb) < 0)
  3573. return -1;
  3574. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3575. if (count>0)
  3576. {
  3577. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3578. count, get_bits(&gb, count));
  3579. }
  3580. else if (count < 0)
  3581. {
  3582. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3583. }
  3584. } else { // VC1/WVC1
  3585. uint8_t *start = avctx->extradata, *end = avctx->extradata + avctx->extradata_size;
  3586. uint8_t *next; int size, buf2_size;
  3587. uint8_t *buf2 = NULL;
  3588. int seq_inited = 0, ep_inited = 0;
  3589. if(avctx->extradata_size < 16) {
  3590. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  3591. return -1;
  3592. }
  3593. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3594. if(start[0]) start++; // in WVC1 extradata first byte is its size
  3595. next = start;
  3596. for(; next < end; start = next){
  3597. next = find_next_marker(start + 4, end);
  3598. size = next - start - 4;
  3599. if(size <= 0) continue;
  3600. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  3601. init_get_bits(&gb, buf2, buf2_size * 8);
  3602. switch(AV_RB32(start)){
  3603. case VC1_CODE_SEQHDR:
  3604. if(decode_sequence_header(avctx, &gb) < 0){
  3605. av_free(buf2);
  3606. return -1;
  3607. }
  3608. seq_inited = 1;
  3609. break;
  3610. case VC1_CODE_ENTRYPOINT:
  3611. if(decode_entry_point(avctx, &gb) < 0){
  3612. av_free(buf2);
  3613. return -1;
  3614. }
  3615. ep_inited = 1;
  3616. break;
  3617. }
  3618. }
  3619. av_free(buf2);
  3620. if(!seq_inited || !ep_inited){
  3621. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  3622. return -1;
  3623. }
  3624. }
  3625. avctx->has_b_frames= !!(avctx->max_b_frames);
  3626. s->low_delay = !avctx->has_b_frames;
  3627. s->mb_width = (avctx->coded_width+15)>>4;
  3628. s->mb_height = (avctx->coded_height+15)>>4;
  3629. /* Allocate mb bitplanes */
  3630. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3631. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3632. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3633. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3634. /* allocate block type info in that way so it could be used with s->block_index[] */
  3635. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3636. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3637. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3638. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3639. /* Init coded blocks info */
  3640. if (v->profile == PROFILE_ADVANCED)
  3641. {
  3642. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3643. // return -1;
  3644. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3645. // return -1;
  3646. }
  3647. return 0;
  3648. }
  3649. /** Decode a VC1/WMV3 frame
  3650. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3651. */
  3652. static int vc1_decode_frame(AVCodecContext *avctx,
  3653. void *data, int *data_size,
  3654. uint8_t *buf, int buf_size)
  3655. {
  3656. VC1Context *v = avctx->priv_data;
  3657. MpegEncContext *s = &v->s;
  3658. AVFrame *pict = data;
  3659. uint8_t *buf2 = NULL;
  3660. /* no supplementary picture */
  3661. if (buf_size == 0) {
  3662. /* special case for last picture */
  3663. if (s->low_delay==0 && s->next_picture_ptr) {
  3664. *pict= *(AVFrame*)s->next_picture_ptr;
  3665. s->next_picture_ptr= NULL;
  3666. *data_size = sizeof(AVFrame);
  3667. }
  3668. return 0;
  3669. }
  3670. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  3671. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3672. int i= ff_find_unused_picture(s, 0);
  3673. s->current_picture_ptr= &s->picture[i];
  3674. }
  3675. //for advanced profile we may need to parse and unescape data
  3676. if (avctx->codec_id == CODEC_ID_VC1) {
  3677. int buf_size2 = 0;
  3678. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3679. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  3680. uint8_t *start, *end, *next;
  3681. int size;
  3682. next = buf;
  3683. for(start = buf, end = buf + buf_size; next < end; start = next){
  3684. next = find_next_marker(start + 4, end);
  3685. size = next - start - 4;
  3686. if(size <= 0) continue;
  3687. switch(AV_RB32(start)){
  3688. case VC1_CODE_FRAME:
  3689. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3690. break;
  3691. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  3692. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  3693. init_get_bits(&s->gb, buf2, buf_size2*8);
  3694. decode_entry_point(avctx, &s->gb);
  3695. break;
  3696. case VC1_CODE_SLICE:
  3697. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  3698. av_free(buf2);
  3699. return -1;
  3700. }
  3701. }
  3702. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  3703. uint8_t *divider;
  3704. divider = find_next_marker(buf, buf + buf_size);
  3705. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  3706. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  3707. return -1;
  3708. }
  3709. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  3710. // TODO
  3711. av_free(buf2);return -1;
  3712. }else{
  3713. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  3714. }
  3715. init_get_bits(&s->gb, buf2, buf_size2*8);
  3716. } else
  3717. init_get_bits(&s->gb, buf, buf_size*8);
  3718. // do parse frame header
  3719. if(v->profile < PROFILE_ADVANCED) {
  3720. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3721. av_free(buf2);
  3722. return -1;
  3723. }
  3724. } else {
  3725. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3726. av_free(buf2);
  3727. return -1;
  3728. }
  3729. }
  3730. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3731. av_free(buf2);
  3732. return -1;
  3733. }
  3734. // for hurry_up==5
  3735. s->current_picture.pict_type= s->pict_type;
  3736. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3737. /* skip B-frames if we don't have reference frames */
  3738. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3739. av_free(buf2);
  3740. return -1;//buf_size;
  3741. }
  3742. /* skip b frames if we are in a hurry */
  3743. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3744. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3745. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3746. || avctx->skip_frame >= AVDISCARD_ALL) {
  3747. av_free(buf2);
  3748. return buf_size;
  3749. }
  3750. /* skip everything if we are in a hurry>=5 */
  3751. if(avctx->hurry_up>=5) {
  3752. av_free(buf2);
  3753. return -1;//buf_size;
  3754. }
  3755. if(s->next_p_frame_damaged){
  3756. if(s->pict_type==B_TYPE)
  3757. return buf_size;
  3758. else
  3759. s->next_p_frame_damaged=0;
  3760. }
  3761. if(MPV_frame_start(s, avctx) < 0) {
  3762. av_free(buf2);
  3763. return -1;
  3764. }
  3765. ff_er_frame_start(s);
  3766. v->bits = buf_size * 8;
  3767. vc1_decode_blocks(v);
  3768. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3769. // if(get_bits_count(&s->gb) > buf_size * 8)
  3770. // return -1;
  3771. ff_er_frame_end(s);
  3772. MPV_frame_end(s);
  3773. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3774. assert(s->current_picture.pict_type == s->pict_type);
  3775. if (s->pict_type == B_TYPE || s->low_delay) {
  3776. *pict= *(AVFrame*)s->current_picture_ptr;
  3777. } else if (s->last_picture_ptr != NULL) {
  3778. *pict= *(AVFrame*)s->last_picture_ptr;
  3779. }
  3780. if(s->last_picture_ptr || s->low_delay){
  3781. *data_size = sizeof(AVFrame);
  3782. ff_print_debug_info(s, pict);
  3783. }
  3784. /* Return the Picture timestamp as the frame number */
  3785. /* we substract 1 because it is added on utils.c */
  3786. avctx->frame_number = s->picture_number - 1;
  3787. av_free(buf2);
  3788. return buf_size;
  3789. }
  3790. /** Close a VC1/WMV3 decoder
  3791. * @warning Initial try at using MpegEncContext stuff
  3792. */
  3793. static int vc1_decode_end(AVCodecContext *avctx)
  3794. {
  3795. VC1Context *v = avctx->priv_data;
  3796. av_freep(&v->hrd_rate);
  3797. av_freep(&v->hrd_buffer);
  3798. MPV_common_end(&v->s);
  3799. av_freep(&v->mv_type_mb_plane);
  3800. av_freep(&v->direct_mb_plane);
  3801. av_freep(&v->acpred_plane);
  3802. av_freep(&v->over_flags_plane);
  3803. av_freep(&v->mb_type_base);
  3804. return 0;
  3805. }
  3806. AVCodec vc1_decoder = {
  3807. "vc1",
  3808. CODEC_TYPE_VIDEO,
  3809. CODEC_ID_VC1,
  3810. sizeof(VC1Context),
  3811. vc1_decode_init,
  3812. NULL,
  3813. vc1_decode_end,
  3814. vc1_decode_frame,
  3815. CODEC_CAP_DELAY,
  3816. NULL
  3817. };
  3818. AVCodec wmv3_decoder = {
  3819. "wmv3",
  3820. CODEC_TYPE_VIDEO,
  3821. CODEC_ID_WMV3,
  3822. sizeof(VC1Context),
  3823. vc1_decode_init,
  3824. NULL,
  3825. vc1_decode_end,
  3826. vc1_decode_frame,
  3827. CODEC_CAP_DELAY,
  3828. NULL
  3829. };