You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

327 lines
11KB

  1. /*
  2. * audio resampling
  3. * Copyright (c) 2004 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. *
  21. */
  22. /**
  23. * @file resample2.c
  24. * audio resampling
  25. * @author Michael Niedermayer <michaelni@gmx.at>
  26. */
  27. #include "avcodec.h"
  28. #include "common.h"
  29. #include "dsputil.h"
  30. #ifndef CONFIG_RESAMPLE_HP
  31. #define FILTER_SHIFT 15
  32. #define FELEM int16_t
  33. #define FELEM2 int32_t
  34. #define FELEML int64_t
  35. #define FELEM_MAX INT16_MAX
  36. #define FELEM_MIN INT16_MIN
  37. #define WINDOW_TYPE 9
  38. #elif !defined(CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE)
  39. #define FILTER_SHIFT 30
  40. #define FELEM int32_t
  41. #define FELEM2 int64_t
  42. #define FELEML int64_t
  43. #define FELEM_MAX INT32_MAX
  44. #define FELEM_MIN INT32_MIN
  45. #define WINDOW_TYPE 12
  46. #else
  47. #define FILTER_SHIFT 0
  48. #define FELEM double
  49. #define FELEM2 double
  50. #define FELEML double
  51. #define WINDOW_TYPE 24
  52. #endif
  53. typedef struct AVResampleContext{
  54. FELEM *filter_bank;
  55. int filter_length;
  56. int ideal_dst_incr;
  57. int dst_incr;
  58. int index;
  59. int frac;
  60. int src_incr;
  61. int compensation_distance;
  62. int phase_shift;
  63. int phase_mask;
  64. int linear;
  65. }AVResampleContext;
  66. /**
  67. * 0th order modified bessel function of the first kind.
  68. */
  69. static double bessel(double x){
  70. double v=1;
  71. double t=1;
  72. int i;
  73. x= x*x/4;
  74. for(i=1; i<50; i++){
  75. t *= x/(i*i);
  76. v += t;
  77. }
  78. return v;
  79. }
  80. /**
  81. * builds a polyphase filterbank.
  82. * @param factor resampling factor
  83. * @param scale wanted sum of coefficients for each filter
  84. * @param type 0->cubic, 1->blackman nuttall windowed sinc, 2..16->kaiser windowed sinc beta=2..16
  85. */
  86. void av_build_filter(FELEM *filter, double factor, int tap_count, int phase_count, int scale, int type){
  87. int ph, i;
  88. double x, y, w, tab[tap_count];
  89. const int center= (tap_count-1)/2;
  90. /* if upsampling, only need to interpolate, no filter */
  91. if (factor > 1.0)
  92. factor = 1.0;
  93. for(ph=0;ph<phase_count;ph++) {
  94. double norm = 0;
  95. for(i=0;i<tap_count;i++) {
  96. x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
  97. if (x == 0) y = 1.0;
  98. else y = sin(x) / x;
  99. switch(type){
  100. case 0:{
  101. const float d= -0.5; //first order derivative = -0.5
  102. x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
  103. if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*( -x*x + x*x*x);
  104. else y= d*(-4 + 8*x - 5*x*x + x*x*x);
  105. break;}
  106. case 1:
  107. w = 2.0*x / (factor*tap_count) + M_PI;
  108. y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
  109. break;
  110. default:
  111. w = 2.0*x / (factor*tap_count*M_PI);
  112. y *= bessel(type*sqrt(FFMAX(1-w*w, 0)));
  113. break;
  114. }
  115. tab[i] = y;
  116. norm += y;
  117. }
  118. /* normalize so that an uniform color remains the same */
  119. for(i=0;i<tap_count;i++) {
  120. #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
  121. filter[ph * tap_count + i] = tab[i] / norm;
  122. #else
  123. filter[ph * tap_count + i] = av_clip(lrintf(tab[i] * scale / norm), FELEM_MIN, FELEM_MAX);
  124. #endif
  125. }
  126. }
  127. #if 0
  128. {
  129. #define LEN 1024
  130. int j,k;
  131. double sine[LEN + tap_count];
  132. double filtered[LEN];
  133. double maxff=-2, minff=2, maxsf=-2, minsf=2;
  134. for(i=0; i<LEN; i++){
  135. double ss=0, sf=0, ff=0;
  136. for(j=0; j<LEN+tap_count; j++)
  137. sine[j]= cos(i*j*M_PI/LEN);
  138. for(j=0; j<LEN; j++){
  139. double sum=0;
  140. ph=0;
  141. for(k=0; k<tap_count; k++)
  142. sum += filter[ph * tap_count + k] * sine[k+j];
  143. filtered[j]= sum / (1<<FILTER_SHIFT);
  144. ss+= sine[j + center] * sine[j + center];
  145. ff+= filtered[j] * filtered[j];
  146. sf+= sine[j + center] * filtered[j];
  147. }
  148. ss= sqrt(2*ss/LEN);
  149. ff= sqrt(2*ff/LEN);
  150. sf= 2*sf/LEN;
  151. maxff= FFMAX(maxff, ff);
  152. minff= FFMIN(minff, ff);
  153. maxsf= FFMAX(maxsf, sf);
  154. minsf= FFMIN(minsf, sf);
  155. if(i%11==0){
  156. av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
  157. minff=minsf= 2;
  158. maxff=maxsf= -2;
  159. }
  160. }
  161. }
  162. #endif
  163. }
  164. /**
  165. * initalizes a audio resampler.
  166. * note, if either rate is not a integer then simply scale both rates up so they are
  167. */
  168. AVResampleContext *av_resample_init(int out_rate, int in_rate, int filter_size, int phase_shift, int linear, double cutoff){
  169. AVResampleContext *c= av_mallocz(sizeof(AVResampleContext));
  170. double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
  171. int phase_count= 1<<phase_shift;
  172. c->phase_shift= phase_shift;
  173. c->phase_mask= phase_count-1;
  174. c->linear= linear;
  175. c->filter_length= FFMAX((int)ceil(filter_size/factor), 1);
  176. c->filter_bank= av_mallocz(c->filter_length*(phase_count+1)*sizeof(FELEM));
  177. av_build_filter(c->filter_bank, factor, c->filter_length, phase_count, 1<<FILTER_SHIFT, WINDOW_TYPE);
  178. memcpy(&c->filter_bank[c->filter_length*phase_count+1], c->filter_bank, (c->filter_length-1)*sizeof(FELEM));
  179. c->filter_bank[c->filter_length*phase_count]= c->filter_bank[c->filter_length - 1];
  180. c->src_incr= out_rate;
  181. c->ideal_dst_incr= c->dst_incr= in_rate * phase_count;
  182. c->index= -phase_count*((c->filter_length-1)/2);
  183. return c;
  184. }
  185. void av_resample_close(AVResampleContext *c){
  186. av_freep(&c->filter_bank);
  187. av_freep(&c);
  188. }
  189. /**
  190. * Compensates samplerate/timestamp drift. The compensation is done by changing
  191. * the resampler parameters, so no audible clicks or similar distortions ocur
  192. * @param compensation_distance distance in output samples over which the compensation should be performed
  193. * @param sample_delta number of output samples which should be output less
  194. *
  195. * example: av_resample_compensate(c, 10, 500)
  196. * here instead of 510 samples only 500 samples would be output
  197. *
  198. * note, due to rounding the actual compensation might be slightly different,
  199. * especially if the compensation_distance is large and the in_rate used during init is small
  200. */
  201. void av_resample_compensate(AVResampleContext *c, int sample_delta, int compensation_distance){
  202. // sample_delta += (c->ideal_dst_incr - c->dst_incr)*(int64_t)c->compensation_distance / c->ideal_dst_incr;
  203. c->compensation_distance= compensation_distance;
  204. c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
  205. }
  206. /**
  207. * resamples.
  208. * @param src an array of unconsumed samples
  209. * @param consumed the number of samples of src which have been consumed are returned here
  210. * @param src_size the number of unconsumed samples available
  211. * @param dst_size the amount of space in samples available in dst
  212. * @param update_ctx if this is 0 then the context wont be modified, that way several channels can be resampled with the same context
  213. * @return the number of samples written in dst or -1 if an error occured
  214. */
  215. int av_resample(AVResampleContext *c, short *dst, short *src, int *consumed, int src_size, int dst_size, int update_ctx){
  216. int dst_index, i;
  217. int index= c->index;
  218. int frac= c->frac;
  219. int dst_incr_frac= c->dst_incr % c->src_incr;
  220. int dst_incr= c->dst_incr / c->src_incr;
  221. int compensation_distance= c->compensation_distance;
  222. if(compensation_distance == 0 && c->filter_length == 1 && c->phase_shift==0){
  223. int64_t index2= ((int64_t)index)<<32;
  224. int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
  225. dst_size= FFMIN(dst_size, (src_size-1-index) * (int64_t)c->src_incr / c->dst_incr);
  226. for(dst_index=0; dst_index < dst_size; dst_index++){
  227. dst[dst_index] = src[index2>>32];
  228. index2 += incr;
  229. }
  230. frac += dst_index * dst_incr_frac;
  231. index += dst_index * dst_incr;
  232. index += frac / c->src_incr;
  233. frac %= c->src_incr;
  234. }else{
  235. for(dst_index=0; dst_index < dst_size; dst_index++){
  236. FELEM *filter= c->filter_bank + c->filter_length*(index & c->phase_mask);
  237. int sample_index= index >> c->phase_shift;
  238. FELEM2 val=0;
  239. if(sample_index < 0){
  240. for(i=0; i<c->filter_length; i++)
  241. val += src[FFABS(sample_index + i) % src_size] * filter[i];
  242. }else if(sample_index + c->filter_length > src_size){
  243. break;
  244. }else if(c->linear){
  245. FELEM2 v2=0;
  246. for(i=0; i<c->filter_length; i++){
  247. val += src[sample_index + i] * (FELEM2)filter[i];
  248. v2 += src[sample_index + i] * (FELEM2)filter[i + c->filter_length];
  249. }
  250. val+=(v2-val)*(FELEML)frac / c->src_incr;
  251. }else{
  252. for(i=0; i<c->filter_length; i++){
  253. val += src[sample_index + i] * (FELEM2)filter[i];
  254. }
  255. }
  256. #ifdef CONFIG_RESAMPLE_AUDIOPHILE_KIDDY_MODE
  257. dst[dst_index] = av_clip(lrintf(val), -32768, 32767);
  258. #else
  259. val = (val + (1<<(FILTER_SHIFT-1)))>>FILTER_SHIFT;
  260. dst[dst_index] = (unsigned)(val + 32768) > 65535 ? (val>>31) ^ 32767 : val;
  261. #endif
  262. frac += dst_incr_frac;
  263. index += dst_incr;
  264. if(frac >= c->src_incr){
  265. frac -= c->src_incr;
  266. index++;
  267. }
  268. if(dst_index + 1 == compensation_distance){
  269. compensation_distance= 0;
  270. dst_incr_frac= c->ideal_dst_incr % c->src_incr;
  271. dst_incr= c->ideal_dst_incr / c->src_incr;
  272. }
  273. }
  274. }
  275. *consumed= FFMAX(index, 0) >> c->phase_shift;
  276. if(index>=0) index &= c->phase_mask;
  277. if(compensation_distance){
  278. compensation_distance -= dst_index;
  279. assert(compensation_distance > 0);
  280. }
  281. if(update_ctx){
  282. c->frac= frac;
  283. c->index= index;
  284. c->dst_incr= dst_incr_frac + c->src_incr*dst_incr;
  285. c->compensation_distance= compensation_distance;
  286. }
  287. #if 0
  288. if(update_ctx && !c->compensation_distance){
  289. #undef rand
  290. av_resample_compensate(c, rand() % (8000*2) - 8000, 8000*2);
  291. av_log(NULL, AV_LOG_DEBUG, "%d %d %d\n", c->dst_incr, c->ideal_dst_incr, c->compensation_distance);
  292. }
  293. #endif
  294. return dst_index;
  295. }