You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

322 lines
9.2KB

  1. /*
  2. * LPC utility code
  3. * Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/common.h"
  22. #include "libavutil/lls.h"
  23. #define LPC_USE_DOUBLE
  24. #include "lpc.h"
  25. #include "libavutil/avassert.h"
  26. /**
  27. * Apply Welch window function to audio block
  28. */
  29. static void lpc_apply_welch_window_c(const int32_t *data, int len,
  30. double *w_data)
  31. {
  32. int i, n2;
  33. double w;
  34. double c;
  35. n2 = (len >> 1);
  36. c = 2.0 / (len - 1.0);
  37. if (len & 1) {
  38. for(i=0; i<n2; i++) {
  39. w = c - i - 1.0;
  40. w = 1.0 - (w * w);
  41. w_data[i] = data[i] * w;
  42. w_data[len-1-i] = data[len-1-i] * w;
  43. }
  44. return;
  45. }
  46. w_data+=n2;
  47. data+=n2;
  48. for(i=0; i<n2; i++) {
  49. w = c - n2 + i;
  50. w = 1.0 - (w * w);
  51. w_data[-i-1] = data[-i-1] * w;
  52. w_data[+i ] = data[+i ] * w;
  53. }
  54. }
  55. /**
  56. * Calculate autocorrelation data from audio samples
  57. * A Welch window function is applied before calculation.
  58. */
  59. static void lpc_compute_autocorr_c(const double *data, int len, int lag,
  60. double *autoc)
  61. {
  62. int i, j;
  63. for(j=0; j<lag; j+=2){
  64. double sum0 = 1.0, sum1 = 1.0;
  65. for(i=j; i<len; i++){
  66. sum0 += data[i] * data[i-j];
  67. sum1 += data[i] * data[i-j-1];
  68. }
  69. autoc[j ] = sum0;
  70. autoc[j+1] = sum1;
  71. }
  72. if(j==lag){
  73. double sum = 1.0;
  74. for(i=j-1; i<len; i+=2){
  75. sum += data[i ] * data[i-j ]
  76. + data[i+1] * data[i-j+1];
  77. }
  78. autoc[j] = sum;
  79. }
  80. }
  81. /**
  82. * Quantize LPC coefficients
  83. */
  84. static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
  85. int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
  86. {
  87. int i;
  88. double cmax, error;
  89. int32_t qmax;
  90. int sh;
  91. /* define maximum levels */
  92. qmax = (1 << (precision - 1)) - 1;
  93. /* find maximum coefficient value */
  94. cmax = 0.0;
  95. for(i=0; i<order; i++) {
  96. cmax= FFMAX(cmax, fabs(lpc_in[i]));
  97. }
  98. /* if maximum value quantizes to zero, return all zeros */
  99. if(cmax * (1 << max_shift) < 1.0) {
  100. *shift = zero_shift;
  101. memset(lpc_out, 0, sizeof(int32_t) * order);
  102. return;
  103. }
  104. /* calculate level shift which scales max coeff to available bits */
  105. sh = max_shift;
  106. while((cmax * (1 << sh) > qmax) && (sh > 0)) {
  107. sh--;
  108. }
  109. /* since negative shift values are unsupported in decoder, scale down
  110. coefficients instead */
  111. if(sh == 0 && cmax > qmax) {
  112. double scale = ((double)qmax) / cmax;
  113. for(i=0; i<order; i++) {
  114. lpc_in[i] *= scale;
  115. }
  116. }
  117. /* output quantized coefficients and level shift */
  118. error=0;
  119. for(i=0; i<order; i++) {
  120. error -= lpc_in[i] * (1 << sh);
  121. lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
  122. error -= lpc_out[i];
  123. }
  124. *shift = sh;
  125. }
  126. static int estimate_best_order(double *ref, int min_order, int max_order)
  127. {
  128. int i, est;
  129. est = min_order;
  130. for(i=max_order-1; i>=min_order-1; i--) {
  131. if(ref[i] > 0.10) {
  132. est = i+1;
  133. break;
  134. }
  135. }
  136. return est;
  137. }
  138. int ff_lpc_calc_ref_coefs(LPCContext *s,
  139. const int32_t *samples, int order, double *ref)
  140. {
  141. double autoc[MAX_LPC_ORDER + 1];
  142. s->lpc_apply_welch_window(samples, s->blocksize, s->windowed_samples);
  143. s->lpc_compute_autocorr(s->windowed_samples, s->blocksize, order, autoc);
  144. compute_ref_coefs(autoc, order, ref, NULL);
  145. return order;
  146. }
  147. double ff_lpc_calc_ref_coefs_f(LPCContext *s, const float *samples, int len,
  148. int order, double *ref)
  149. {
  150. int i;
  151. double signal = 0.0f, avg_err = 0.0f;
  152. double autoc[MAX_LPC_ORDER+1] = {0}, error[MAX_LPC_ORDER+1] = {0};
  153. const double a = 0.5f, b = 1.0f - a;
  154. /* Apply windowing */
  155. for (i = 0; i < len; i++) {
  156. double weight = a - b*cos((2*M_PI*i)/(len - 1));
  157. s->windowed_samples[i] = weight*samples[i];
  158. }
  159. s->lpc_compute_autocorr(s->windowed_samples, len, order, autoc);
  160. signal = autoc[0];
  161. compute_ref_coefs(autoc, order, ref, error);
  162. for (i = 0; i < order; i++)
  163. avg_err = (avg_err + error[i])/2.0f;
  164. return signal/avg_err;
  165. }
  166. /**
  167. * Calculate LPC coefficients for multiple orders
  168. *
  169. * @param lpc_type LPC method for determining coefficients,
  170. * see #FFLPCType for details
  171. */
  172. int ff_lpc_calc_coefs(LPCContext *s,
  173. const int32_t *samples, int blocksize, int min_order,
  174. int max_order, int precision,
  175. int32_t coefs[][MAX_LPC_ORDER], int *shift,
  176. enum FFLPCType lpc_type, int lpc_passes,
  177. int omethod, int max_shift, int zero_shift)
  178. {
  179. double autoc[MAX_LPC_ORDER+1];
  180. double ref[MAX_LPC_ORDER] = { 0 };
  181. double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
  182. int i, j, pass = 0;
  183. int opt_order;
  184. av_assert2(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
  185. lpc_type > FF_LPC_TYPE_FIXED);
  186. av_assert0(lpc_type == FF_LPC_TYPE_CHOLESKY || lpc_type == FF_LPC_TYPE_LEVINSON);
  187. /* reinit LPC context if parameters have changed */
  188. if (blocksize != s->blocksize || max_order != s->max_order ||
  189. lpc_type != s->lpc_type) {
  190. ff_lpc_end(s);
  191. ff_lpc_init(s, blocksize, max_order, lpc_type);
  192. }
  193. if(lpc_passes <= 0)
  194. lpc_passes = 2;
  195. if (lpc_type == FF_LPC_TYPE_LEVINSON || (lpc_type == FF_LPC_TYPE_CHOLESKY && lpc_passes > 1)) {
  196. s->lpc_apply_welch_window(samples, blocksize, s->windowed_samples);
  197. s->lpc_compute_autocorr(s->windowed_samples, blocksize, max_order, autoc);
  198. compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
  199. for(i=0; i<max_order; i++)
  200. ref[i] = fabs(lpc[i][i]);
  201. pass++;
  202. }
  203. if (lpc_type == FF_LPC_TYPE_CHOLESKY) {
  204. LLSModel *m = s->lls_models;
  205. LOCAL_ALIGNED(32, double, var, [FFALIGN(MAX_LPC_ORDER+1,4)]);
  206. double av_uninit(weight);
  207. memset(var, 0, FFALIGN(MAX_LPC_ORDER+1,4)*sizeof(*var));
  208. for(j=0; j<max_order; j++)
  209. m[0].coeff[max_order-1][j] = -lpc[max_order-1][j];
  210. for(; pass<lpc_passes; pass++){
  211. avpriv_init_lls(&m[pass&1], max_order);
  212. weight=0;
  213. for(i=max_order; i<blocksize; i++){
  214. for(j=0; j<=max_order; j++)
  215. var[j]= samples[i-j];
  216. if(pass){
  217. double eval, inv, rinv;
  218. eval= m[pass&1].evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
  219. eval= (512>>pass) + fabs(eval - var[0]);
  220. inv = 1/eval;
  221. rinv = sqrt(inv);
  222. for(j=0; j<=max_order; j++)
  223. var[j] *= rinv;
  224. weight += inv;
  225. }else
  226. weight++;
  227. m[pass&1].update_lls(&m[pass&1], var);
  228. }
  229. avpriv_solve_lls(&m[pass&1], 0.001, 0);
  230. }
  231. for(i=0; i<max_order; i++){
  232. for(j=0; j<max_order; j++)
  233. lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
  234. ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
  235. }
  236. for(i=max_order-1; i>0; i--)
  237. ref[i] = ref[i-1] - ref[i];
  238. }
  239. opt_order = max_order;
  240. if(omethod == ORDER_METHOD_EST) {
  241. opt_order = estimate_best_order(ref, min_order, max_order);
  242. i = opt_order-1;
  243. quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
  244. } else {
  245. for(i=min_order-1; i<max_order; i++) {
  246. quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
  247. }
  248. }
  249. return opt_order;
  250. }
  251. av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
  252. enum FFLPCType lpc_type)
  253. {
  254. s->blocksize = blocksize;
  255. s->max_order = max_order;
  256. s->lpc_type = lpc_type;
  257. s->windowed_buffer = av_mallocz((blocksize + 2 + FFALIGN(max_order, 4)) *
  258. sizeof(*s->windowed_samples));
  259. if (!s->windowed_buffer)
  260. return AVERROR(ENOMEM);
  261. s->windowed_samples = s->windowed_buffer + FFALIGN(max_order, 4);
  262. s->lpc_apply_welch_window = lpc_apply_welch_window_c;
  263. s->lpc_compute_autocorr = lpc_compute_autocorr_c;
  264. if (ARCH_X86)
  265. ff_lpc_init_x86(s);
  266. return 0;
  267. }
  268. av_cold void ff_lpc_end(LPCContext *s)
  269. {
  270. av_freep(&s->windowed_buffer);
  271. }