You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1121 lines
36KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. *
  20. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  21. * the algorithm used
  22. */
  23. /**
  24. * @file huffyuv.c
  25. * huffyuv codec for libavcodec.
  26. */
  27. #include "common.h"
  28. #include "avcodec.h"
  29. #include "dsputil.h"
  30. #define VLC_BITS 11
  31. #ifdef WORDS_BIGENDIAN
  32. #define B 3
  33. #define G 2
  34. #define R 1
  35. #else
  36. #define B 0
  37. #define G 1
  38. #define R 2
  39. #endif
  40. typedef enum Predictor{
  41. LEFT= 0,
  42. PLANE,
  43. MEDIAN,
  44. } Predictor;
  45. typedef struct HYuvContext{
  46. AVCodecContext *avctx;
  47. Predictor predictor;
  48. GetBitContext gb;
  49. PutBitContext pb;
  50. int interlaced;
  51. int decorrelate;
  52. int bitstream_bpp;
  53. int version;
  54. int yuy2; //use yuy2 instead of 422P
  55. int bgr32; //use bgr32 instead of bgr24
  56. int width, height;
  57. int flags;
  58. int picture_number;
  59. int last_slice_end;
  60. uint8_t __align8 temp[3][2560];
  61. uint64_t stats[3][256];
  62. uint8_t len[3][256];
  63. uint32_t bits[3][256];
  64. VLC vlc[3];
  65. AVFrame picture;
  66. uint8_t __align8 bitstream_buffer[1024*1024*3]; //FIXME dynamic alloc or some other solution
  67. DSPContext dsp;
  68. }HYuvContext;
  69. static const unsigned char classic_shift_luma[] = {
  70. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  71. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  72. 69,68, 0
  73. };
  74. static const unsigned char classic_shift_chroma[] = {
  75. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  76. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  77. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  78. };
  79. static const unsigned char classic_add_luma[256] = {
  80. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  81. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  82. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  83. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  84. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  85. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  86. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  87. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  88. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  89. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  90. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  91. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  92. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  93. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  94. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  95. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  96. };
  97. static const unsigned char classic_add_chroma[256] = {
  98. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  99. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  100. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  101. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  102. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  103. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  104. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  105. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  106. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  107. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  108. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  109. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  110. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  111. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  112. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  113. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  114. };
  115. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  116. int i;
  117. for(i=0; i<w-1; i++){
  118. acc+= src[i];
  119. dst[i]= acc;
  120. i++;
  121. acc+= src[i];
  122. dst[i]= acc;
  123. }
  124. for(; i<w; i++){
  125. acc+= src[i];
  126. dst[i]= acc;
  127. }
  128. return acc;
  129. }
  130. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  131. int i;
  132. uint8_t l, lt;
  133. l= *left;
  134. lt= *left_top;
  135. for(i=0; i<w; i++){
  136. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  137. lt= src1[i];
  138. dst[i]= l;
  139. }
  140. *left= l;
  141. *left_top= lt;
  142. }
  143. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  144. int i;
  145. int r,g,b;
  146. r= *red;
  147. g= *green;
  148. b= *blue;
  149. for(i=0; i<w; i++){
  150. b+= src[4*i+B];
  151. g+= src[4*i+G];
  152. r+= src[4*i+R];
  153. dst[4*i+B]= b;
  154. dst[4*i+G]= g;
  155. dst[4*i+R]= r;
  156. }
  157. *red= r;
  158. *green= g;
  159. *blue= b;
  160. }
  161. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  162. int i;
  163. if(w<32){
  164. for(i=0; i<w; i++){
  165. const int temp= src[i];
  166. dst[i]= temp - left;
  167. left= temp;
  168. }
  169. return left;
  170. }else{
  171. for(i=0; i<16; i++){
  172. const int temp= src[i];
  173. dst[i]= temp - left;
  174. left= temp;
  175. }
  176. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  177. return src[w-1];
  178. }
  179. }
  180. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  181. int i, val, repeat;
  182. for(i=0; i<256;){
  183. repeat= get_bits(gb, 3);
  184. val = get_bits(gb, 5);
  185. if(repeat==0)
  186. repeat= get_bits(gb, 8);
  187. //printf("%d %d\n", val, repeat);
  188. while (repeat--)
  189. dst[i++] = val;
  190. }
  191. }
  192. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  193. int len, index;
  194. uint32_t bits=0;
  195. for(len=32; len>0; len--){
  196. for(index=0; index<256; index++){
  197. if(len_table[index]==len)
  198. dst[index]= bits++;
  199. }
  200. if(bits & 1){
  201. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  202. return -1;
  203. }
  204. bits >>= 1;
  205. }
  206. return 0;
  207. }
  208. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  209. uint64_t counts[2*size];
  210. int up[2*size];
  211. int offset, i, next;
  212. for(offset=1; ; offset<<=1){
  213. for(i=0; i<size; i++){
  214. counts[i]= stats[i] + offset - 1;
  215. }
  216. for(next=size; next<size*2; next++){
  217. uint64_t min1, min2;
  218. int min1_i, min2_i;
  219. min1=min2= INT64_MAX;
  220. min1_i= min2_i=-1;
  221. for(i=0; i<next; i++){
  222. if(min2 > counts[i]){
  223. if(min1 > counts[i]){
  224. min2= min1;
  225. min2_i= min1_i;
  226. min1= counts[i];
  227. min1_i= i;
  228. }else{
  229. min2= counts[i];
  230. min2_i= i;
  231. }
  232. }
  233. }
  234. if(min2==INT64_MAX) break;
  235. counts[next]= min1 + min2;
  236. counts[min1_i]=
  237. counts[min2_i]= INT64_MAX;
  238. up[min1_i]=
  239. up[min2_i]= next;
  240. up[next]= -1;
  241. }
  242. for(i=0; i<size; i++){
  243. int len;
  244. int index=i;
  245. for(len=0; up[index] != -1; len++)
  246. index= up[index];
  247. if(len > 32) break;
  248. dst[i]= len;
  249. }
  250. if(i==size) break;
  251. }
  252. }
  253. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  254. GetBitContext gb;
  255. int i;
  256. init_get_bits(&gb, src, length*8);
  257. for(i=0; i<3; i++){
  258. read_len_table(s->len[i], &gb);
  259. if(generate_bits_table(s->bits[i], s->len[i])<0){
  260. return -1;
  261. }
  262. #if 0
  263. for(j=0; j<256; j++){
  264. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  265. }
  266. #endif
  267. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  268. }
  269. return 0;
  270. }
  271. static int read_old_huffman_tables(HYuvContext *s){
  272. #if 1
  273. GetBitContext gb;
  274. int i;
  275. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  276. read_len_table(s->len[0], &gb);
  277. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  278. read_len_table(s->len[1], &gb);
  279. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  280. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  281. if(s->bitstream_bpp >= 24){
  282. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  283. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  284. }
  285. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  286. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  287. for(i=0; i<3; i++)
  288. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4);
  289. return 0;
  290. #else
  291. fprintf(stderr, "v1 huffyuv is not supported \n");
  292. return -1;
  293. #endif
  294. }
  295. static int decode_init(AVCodecContext *avctx)
  296. {
  297. HYuvContext *s = avctx->priv_data;
  298. int width, height;
  299. s->avctx= avctx;
  300. s->flags= avctx->flags;
  301. dsputil_init(&s->dsp, avctx);
  302. width= s->width= avctx->width;
  303. height= s->height= avctx->height;
  304. avctx->coded_frame= &s->picture;
  305. s->bgr32=1;
  306. assert(width && height);
  307. //if(avctx->extradata)
  308. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  309. if(avctx->extradata_size){
  310. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  311. s->version=1; // do such files exist at all?
  312. else
  313. s->version=2;
  314. }else
  315. s->version=0;
  316. if(s->version==2){
  317. int method;
  318. method= ((uint8_t*)avctx->extradata)[0];
  319. s->decorrelate= method&64 ? 1 : 0;
  320. s->predictor= method&63;
  321. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  322. if(s->bitstream_bpp==0)
  323. s->bitstream_bpp= avctx->bits_per_sample&~7;
  324. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  325. return -1;
  326. }else{
  327. switch(avctx->bits_per_sample&7){
  328. case 1:
  329. s->predictor= LEFT;
  330. s->decorrelate= 0;
  331. break;
  332. case 2:
  333. s->predictor= LEFT;
  334. s->decorrelate= 1;
  335. break;
  336. case 3:
  337. s->predictor= PLANE;
  338. s->decorrelate= avctx->bits_per_sample >= 24;
  339. break;
  340. case 4:
  341. s->predictor= MEDIAN;
  342. s->decorrelate= 0;
  343. break;
  344. default:
  345. s->predictor= LEFT; //OLD
  346. s->decorrelate= 0;
  347. break;
  348. }
  349. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  350. if(read_old_huffman_tables(s) < 0)
  351. return -1;
  352. }
  353. s->interlaced= height > 288;
  354. switch(s->bitstream_bpp){
  355. case 12:
  356. avctx->pix_fmt = PIX_FMT_YUV420P;
  357. break;
  358. case 16:
  359. if(s->yuy2){
  360. avctx->pix_fmt = PIX_FMT_YUV422;
  361. }else{
  362. avctx->pix_fmt = PIX_FMT_YUV422P;
  363. }
  364. break;
  365. case 24:
  366. case 32:
  367. if(s->bgr32){
  368. avctx->pix_fmt = PIX_FMT_RGBA32;
  369. }else{
  370. avctx->pix_fmt = PIX_FMT_BGR24;
  371. }
  372. break;
  373. default:
  374. assert(0);
  375. }
  376. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  377. return 0;
  378. }
  379. static void store_table(HYuvContext *s, uint8_t *len){
  380. int i;
  381. int index= s->avctx->extradata_size;
  382. for(i=0; i<256;){
  383. int val= len[i];
  384. int repeat=0;
  385. for(; i<256 && len[i]==val && repeat<255; i++)
  386. repeat++;
  387. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  388. if(repeat>7){
  389. ((uint8_t*)s->avctx->extradata)[index++]= val;
  390. ((uint8_t*)s->avctx->extradata)[index++]= repeat;
  391. }else{
  392. ((uint8_t*)s->avctx->extradata)[index++]= val | (repeat<<5);
  393. }
  394. }
  395. s->avctx->extradata_size= index;
  396. }
  397. static int encode_init(AVCodecContext *avctx)
  398. {
  399. HYuvContext *s = avctx->priv_data;
  400. int i, j, width, height;
  401. s->avctx= avctx;
  402. s->flags= avctx->flags;
  403. dsputil_init(&s->dsp, avctx);
  404. width= s->width= avctx->width;
  405. height= s->height= avctx->height;
  406. assert(width && height);
  407. avctx->extradata= av_mallocz(1024*30);
  408. avctx->stats_out= av_mallocz(1024*30);
  409. s->version=2;
  410. avctx->coded_frame= &s->picture;
  411. switch(avctx->pix_fmt){
  412. case PIX_FMT_YUV420P:
  413. s->bitstream_bpp= 12;
  414. break;
  415. case PIX_FMT_YUV422P:
  416. s->bitstream_bpp= 16;
  417. break;
  418. default:
  419. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  420. return -1;
  421. }
  422. avctx->bits_per_sample= s->bitstream_bpp;
  423. s->decorrelate= s->bitstream_bpp >= 24;
  424. s->predictor= avctx->prediction_method;
  425. ((uint8_t*)avctx->extradata)[0]= s->predictor;
  426. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  427. ((uint8_t*)avctx->extradata)[2]=
  428. ((uint8_t*)avctx->extradata)[3]= 0;
  429. s->avctx->extradata_size= 4;
  430. if(avctx->stats_in){
  431. char *p= avctx->stats_in;
  432. for(i=0; i<3; i++)
  433. for(j=0; j<256; j++)
  434. s->stats[i][j]= 1;
  435. for(;;){
  436. for(i=0; i<3; i++){
  437. char *next;
  438. for(j=0; j<256; j++){
  439. s->stats[i][j]+= strtol(p, &next, 0);
  440. if(next==p) return -1;
  441. p=next;
  442. }
  443. }
  444. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  445. }
  446. }else{
  447. for(i=0; i<3; i++)
  448. for(j=0; j<256; j++){
  449. int d= FFMIN(j, 256-j);
  450. s->stats[i][j]= 100000000/(d+1);
  451. }
  452. }
  453. for(i=0; i<3; i++){
  454. generate_len_table(s->len[i], s->stats[i], 256);
  455. if(generate_bits_table(s->bits[i], s->len[i])<0){
  456. return -1;
  457. }
  458. store_table(s, s->len[i]);
  459. }
  460. for(i=0; i<3; i++)
  461. for(j=0; j<256; j++)
  462. s->stats[i][j]= 0;
  463. s->interlaced= height > 288;
  464. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  465. s->picture_number=0;
  466. return 0;
  467. }
  468. static void decode_422_bitstream(HYuvContext *s, int count){
  469. int i;
  470. count/=2;
  471. for(i=0; i<count; i++){
  472. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  473. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  474. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  475. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  476. }
  477. }
  478. static void decode_gray_bitstream(HYuvContext *s, int count){
  479. int i;
  480. count/=2;
  481. for(i=0; i<count; i++){
  482. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  483. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  484. }
  485. }
  486. static void encode_422_bitstream(HYuvContext *s, int count){
  487. int i;
  488. count/=2;
  489. if(s->flags&CODEC_FLAG_PASS1){
  490. for(i=0; i<count; i++){
  491. s->stats[0][ s->temp[0][2*i ] ]++;
  492. s->stats[1][ s->temp[1][ i ] ]++;
  493. s->stats[0][ s->temp[0][2*i+1] ]++;
  494. s->stats[2][ s->temp[2][ i ] ]++;
  495. }
  496. }else{
  497. for(i=0; i<count; i++){
  498. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  499. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  500. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  501. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  502. }
  503. }
  504. }
  505. static void encode_gray_bitstream(HYuvContext *s, int count){
  506. int i;
  507. count/=2;
  508. if(s->flags&CODEC_FLAG_PASS1){
  509. for(i=0; i<count; i++){
  510. s->stats[0][ s->temp[0][2*i ] ]++;
  511. s->stats[0][ s->temp[0][2*i+1] ]++;
  512. }
  513. }else{
  514. for(i=0; i<count; i++){
  515. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  516. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  517. }
  518. }
  519. }
  520. static void decode_bgr_bitstream(HYuvContext *s, int count){
  521. int i;
  522. if(s->decorrelate){
  523. if(s->bitstream_bpp==24){
  524. for(i=0; i<count; i++){
  525. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  526. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  527. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  528. }
  529. }else{
  530. for(i=0; i<count; i++){
  531. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  532. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  533. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  534. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  535. }
  536. }
  537. }else{
  538. if(s->bitstream_bpp==24){
  539. for(i=0; i<count; i++){
  540. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  541. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  542. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  543. }
  544. }else{
  545. for(i=0; i<count; i++){
  546. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  547. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  548. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  549. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  550. }
  551. }
  552. }
  553. }
  554. static void draw_slice(HYuvContext *s, int y){
  555. int h, cy;
  556. int offset[4];
  557. if(s->avctx->draw_horiz_band==NULL)
  558. return;
  559. h= y - s->last_slice_end;
  560. y -= h;
  561. if(s->bitstream_bpp==12){
  562. cy= y>>1;
  563. }else{
  564. cy= y;
  565. }
  566. offset[0] = s->picture.linesize[0]*y;
  567. offset[1] = s->picture.linesize[1]*cy;
  568. offset[2] = s->picture.linesize[2]*cy;
  569. offset[3] = 0;
  570. emms_c();
  571. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  572. s->last_slice_end= y + h;
  573. }
  574. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  575. HYuvContext *s = avctx->priv_data;
  576. const int width= s->width;
  577. const int width2= s->width>>1;
  578. const int height= s->height;
  579. int fake_ystride, fake_ustride, fake_vstride;
  580. AVFrame * const p= &s->picture;
  581. AVFrame *picture = data;
  582. /* no supplementary picture */
  583. if (buf_size == 0)
  584. return 0;
  585. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  586. init_get_bits(&s->gb, s->bitstream_buffer, buf_size*8);
  587. if(p->data[0])
  588. avctx->release_buffer(avctx, p);
  589. p->reference= 0;
  590. if(avctx->get_buffer(avctx, p) < 0){
  591. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  592. return -1;
  593. }
  594. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  595. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  596. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  597. s->last_slice_end= 0;
  598. if(s->bitstream_bpp<24){
  599. int y, cy;
  600. int lefty, leftu, leftv;
  601. int lefttopy, lefttopu, lefttopv;
  602. if(s->yuy2){
  603. p->data[0][3]= get_bits(&s->gb, 8);
  604. p->data[0][2]= get_bits(&s->gb, 8);
  605. p->data[0][1]= get_bits(&s->gb, 8);
  606. p->data[0][0]= get_bits(&s->gb, 8);
  607. av_log(avctx, AV_LOG_ERROR, "YUY2 output isnt implemenetd yet\n");
  608. return -1;
  609. }else{
  610. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  611. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  612. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  613. p->data[0][0]= get_bits(&s->gb, 8);
  614. switch(s->predictor){
  615. case LEFT:
  616. case PLANE:
  617. decode_422_bitstream(s, width-2);
  618. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  619. if(!(s->flags&CODEC_FLAG_GRAY)){
  620. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  621. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  622. }
  623. for(cy=y=1; y<s->height; y++,cy++){
  624. uint8_t *ydst, *udst, *vdst;
  625. if(s->bitstream_bpp==12){
  626. decode_gray_bitstream(s, width);
  627. ydst= p->data[0] + p->linesize[0]*y;
  628. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  629. if(s->predictor == PLANE){
  630. if(y>s->interlaced)
  631. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  632. }
  633. y++;
  634. if(y>=s->height) break;
  635. }
  636. draw_slice(s, y);
  637. ydst= p->data[0] + p->linesize[0]*y;
  638. udst= p->data[1] + p->linesize[1]*cy;
  639. vdst= p->data[2] + p->linesize[2]*cy;
  640. decode_422_bitstream(s, width);
  641. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  642. if(!(s->flags&CODEC_FLAG_GRAY)){
  643. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  644. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  645. }
  646. if(s->predictor == PLANE){
  647. if(cy>s->interlaced){
  648. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  649. if(!(s->flags&CODEC_FLAG_GRAY)){
  650. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  651. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  652. }
  653. }
  654. }
  655. }
  656. draw_slice(s, height);
  657. break;
  658. case MEDIAN:
  659. /* first line except first 2 pixels is left predicted */
  660. decode_422_bitstream(s, width-2);
  661. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  662. if(!(s->flags&CODEC_FLAG_GRAY)){
  663. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  664. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  665. }
  666. cy=y=1;
  667. /* second line is left predicted for interlaced case */
  668. if(s->interlaced){
  669. decode_422_bitstream(s, width);
  670. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  671. if(!(s->flags&CODEC_FLAG_GRAY)){
  672. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  673. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  674. }
  675. y++; cy++;
  676. }
  677. /* next 4 pixels are left predicted too */
  678. decode_422_bitstream(s, 4);
  679. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  680. if(!(s->flags&CODEC_FLAG_GRAY)){
  681. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  682. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  683. }
  684. /* next line except the first 4 pixels is median predicted */
  685. lefttopy= p->data[0][3];
  686. decode_422_bitstream(s, width-4);
  687. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  688. if(!(s->flags&CODEC_FLAG_GRAY)){
  689. lefttopu= p->data[1][1];
  690. lefttopv= p->data[2][1];
  691. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  692. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  693. }
  694. y++; cy++;
  695. for(; y<height; y++,cy++){
  696. uint8_t *ydst, *udst, *vdst;
  697. if(s->bitstream_bpp==12){
  698. while(2*cy > y){
  699. decode_gray_bitstream(s, width);
  700. ydst= p->data[0] + p->linesize[0]*y;
  701. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  702. y++;
  703. }
  704. if(y>=height) break;
  705. }
  706. draw_slice(s, y);
  707. decode_422_bitstream(s, width);
  708. ydst= p->data[0] + p->linesize[0]*y;
  709. udst= p->data[1] + p->linesize[1]*cy;
  710. vdst= p->data[2] + p->linesize[2]*cy;
  711. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  712. if(!(s->flags&CODEC_FLAG_GRAY)){
  713. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  714. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  715. }
  716. }
  717. draw_slice(s, height);
  718. break;
  719. }
  720. }
  721. }else{
  722. int y;
  723. int leftr, leftg, leftb;
  724. const int last_line= (height-1)*p->linesize[0];
  725. if(s->bitstream_bpp==32){
  726. skip_bits(&s->gb, 8);
  727. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  728. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  729. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  730. }else{
  731. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  732. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  733. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  734. skip_bits(&s->gb, 8);
  735. }
  736. if(s->bgr32){
  737. switch(s->predictor){
  738. case LEFT:
  739. case PLANE:
  740. decode_bgr_bitstream(s, width-1);
  741. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  742. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  743. decode_bgr_bitstream(s, width);
  744. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  745. if(s->predictor == PLANE){
  746. if((y&s->interlaced)==0 && y<s->height-2){
  747. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  748. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  749. }
  750. }
  751. }
  752. draw_slice(s, height); // just 1 large slice as this isnt possible in reverse order
  753. break;
  754. default:
  755. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  756. }
  757. }else{
  758. av_log(avctx, AV_LOG_ERROR, "BGR24 output isnt implemenetd yet\n");
  759. return -1;
  760. }
  761. }
  762. emms_c();
  763. *picture= *p;
  764. *data_size = sizeof(AVFrame);
  765. return (get_bits_count(&s->gb)+31)/32*4;
  766. }
  767. static int decode_end(AVCodecContext *avctx)
  768. {
  769. HYuvContext *s = avctx->priv_data;
  770. int i;
  771. for(i=0; i<3; i++){
  772. free_vlc(&s->vlc[i]);
  773. }
  774. return 0;
  775. }
  776. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  777. HYuvContext *s = avctx->priv_data;
  778. AVFrame *pict = data;
  779. const int width= s->width;
  780. const int width2= s->width>>1;
  781. const int height= s->height;
  782. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  783. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  784. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  785. AVFrame * const p= &s->picture;
  786. int i, size;
  787. init_put_bits(&s->pb, buf, buf_size);
  788. *p = *pict;
  789. p->pict_type= FF_I_TYPE;
  790. p->key_frame= 1;
  791. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  792. int lefty, leftu, leftv, y, cy;
  793. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  794. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  795. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  796. put_bits(&s->pb, 8, p->data[0][0]);
  797. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  798. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  799. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  800. encode_422_bitstream(s, width-2);
  801. if(s->predictor==MEDIAN){
  802. int lefttopy, lefttopu, lefttopv;
  803. cy=y=1;
  804. if(s->interlaced){
  805. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  806. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  807. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  808. encode_422_bitstream(s, width);
  809. y++; cy++;
  810. }
  811. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  812. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ystride, 2, leftu);
  813. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_ystride, 2, leftv);
  814. encode_422_bitstream(s, 4);
  815. lefttopy= p->data[0][3];
  816. lefttopu= p->data[1][1];
  817. lefttopv= p->data[2][1];
  818. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  819. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  820. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  821. encode_422_bitstream(s, width-4);
  822. y++; cy++;
  823. for(; y<height; y++,cy++){
  824. uint8_t *ydst, *udst, *vdst;
  825. if(s->bitstream_bpp==12){
  826. while(2*cy > y){
  827. ydst= p->data[0] + p->linesize[0]*y;
  828. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  829. encode_gray_bitstream(s, width);
  830. y++;
  831. }
  832. if(y>=height) break;
  833. }
  834. ydst= p->data[0] + p->linesize[0]*y;
  835. udst= p->data[1] + p->linesize[1]*cy;
  836. vdst= p->data[2] + p->linesize[2]*cy;
  837. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  838. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  839. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  840. encode_422_bitstream(s, width);
  841. }
  842. }else{
  843. for(cy=y=1; y<height; y++,cy++){
  844. uint8_t *ydst, *udst, *vdst;
  845. /* encode a luma only line & y++ */
  846. if(s->bitstream_bpp==12){
  847. ydst= p->data[0] + p->linesize[0]*y;
  848. if(s->predictor == PLANE && s->interlaced < y){
  849. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  850. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  851. }else{
  852. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  853. }
  854. encode_gray_bitstream(s, width);
  855. y++;
  856. if(y>=height) break;
  857. }
  858. ydst= p->data[0] + p->linesize[0]*y;
  859. udst= p->data[1] + p->linesize[1]*cy;
  860. vdst= p->data[2] + p->linesize[2]*cy;
  861. if(s->predictor == PLANE && s->interlaced < cy){
  862. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  863. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  864. s->dsp.diff_bytes(s->temp[2] + 1250, vdst, vdst - fake_vstride, width2);
  865. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  866. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  867. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + 1250, width2, leftv);
  868. }else{
  869. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  870. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  871. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  872. }
  873. encode_422_bitstream(s, width);
  874. }
  875. }
  876. }else{
  877. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  878. }
  879. emms_c();
  880. size= (put_bits_count(&s->pb)+31)/32;
  881. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  882. int j;
  883. char *p= avctx->stats_out;
  884. for(i=0; i<3; i++){
  885. for(j=0; j<256; j++){
  886. sprintf(p, "%llu ", s->stats[i][j]);
  887. p+= strlen(p);
  888. s->stats[i][j]= 0;
  889. }
  890. sprintf(p, "\n");
  891. p++;
  892. }
  893. }else{
  894. flush_put_bits(&s->pb);
  895. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  896. }
  897. s->picture_number++;
  898. return size*4;
  899. }
  900. static int encode_end(AVCodecContext *avctx)
  901. {
  902. // HYuvContext *s = avctx->priv_data;
  903. av_freep(&avctx->extradata);
  904. av_freep(&avctx->stats_out);
  905. return 0;
  906. }
  907. static const AVOption huffyuv_options[] =
  908. {
  909. AVOPTION_CODEC_INT("prediction_method", "prediction_method", prediction_method, 0, 2, 0),
  910. AVOPTION_END()
  911. };
  912. AVCodec huffyuv_decoder = {
  913. "huffyuv",
  914. CODEC_TYPE_VIDEO,
  915. CODEC_ID_HUFFYUV,
  916. sizeof(HYuvContext),
  917. decode_init,
  918. NULL,
  919. decode_end,
  920. decode_frame,
  921. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  922. NULL
  923. };
  924. #ifdef CONFIG_ENCODERS
  925. AVCodec huffyuv_encoder = {
  926. "huffyuv",
  927. CODEC_TYPE_VIDEO,
  928. CODEC_ID_HUFFYUV,
  929. sizeof(HYuvContext),
  930. encode_init,
  931. encode_frame,
  932. encode_end,
  933. .options = huffyuv_options,
  934. };
  935. #endif //CONFIG_ENCODERS