You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

552 lines
21KB

  1. /*
  2. * HEVC video Decoder
  3. *
  4. * Copyright (C) 2012 - 2013 Guillaume Martres
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. #include "libavutil/pixdesc.h"
  23. #include "bit_depth_template.c"
  24. #include "hevcpred.h"
  25. #define POS(x, y) src[(x) + stride * (y)]
  26. static void FUNC(intra_pred)(HEVCContext *s, int x0, int y0, int log2_size, int c_idx)
  27. {
  28. #define PU(x) \
  29. ((x) >> s->sps->log2_min_pu_size)
  30. #define MVF(x, y) \
  31. (s->ref->tab_mvf[(x) + (y) * pic_width_in_min_pu])
  32. #define MVF_PU(x, y) \
  33. MVF(PU(x0 + ((x) << hshift)), PU(y0 + ((y) << vshift)))
  34. #define IS_INTRA(x, y) \
  35. MVF_PU(x, y).is_intra
  36. #define MIN_TB_ADDR_ZS(x, y) \
  37. s->pps->min_tb_addr_zs[(y) * s->sps->min_tb_width + (x)]
  38. #define EXTEND_LEFT(ptr, start, length) \
  39. for (i = (start); i > (start) - (length); i--) \
  40. ptr[i - 1] = ptr[i]
  41. #define EXTEND_RIGHT(ptr, start, length) \
  42. for (i = (start); i < (start) + (length); i++) \
  43. ptr[i] = ptr[i - 1]
  44. #define EXTEND_UP(ptr, start, length) EXTEND_LEFT(ptr, start, length)
  45. #define EXTEND_DOWN(ptr, start, length) EXTEND_RIGHT(ptr, start, length)
  46. #define EXTEND_LEFT_CIP(ptr, start, length) \
  47. for (i = (start); i > (start) - (length); i--) \
  48. if (!IS_INTRA(i - 1, -1)) \
  49. ptr[i - 1] = ptr[i]
  50. #define EXTEND_RIGHT_CIP(ptr, start, length) \
  51. for (i = (start); i < (start) + (length); i++) \
  52. if (!IS_INTRA(i, -1)) \
  53. ptr[i] = ptr[i - 1]
  54. #define EXTEND_UP_CIP(ptr, start, length) \
  55. for (i = (start); i > (start) - (length); i--) \
  56. if (!IS_INTRA(-1, i - 1)) \
  57. ptr[i - 1] = ptr[i]
  58. #define EXTEND_UP_CIP_0(ptr, start, length) \
  59. for (i = (start); i > (start) - (length); i--) \
  60. ptr[i - 1] = ptr[i]
  61. #define EXTEND_DOWN_CIP(ptr, start, length) \
  62. for (i = (start); i < (start) + (length); i++) \
  63. if (!IS_INTRA(-1, i)) \
  64. ptr[i] = ptr[i - 1]
  65. HEVCLocalContext *lc = s->HEVClc;
  66. int i;
  67. int hshift = s->sps->hshift[c_idx];
  68. int vshift = s->sps->vshift[c_idx];
  69. int size = (1 << log2_size);
  70. int size_in_luma = size << hshift;
  71. int size_in_tbs = size_in_luma >> s->sps->log2_min_transform_block_size;
  72. int x = x0 >> hshift;
  73. int y = y0 >> vshift;
  74. int x_tb = x0 >> s->sps->log2_min_transform_block_size;
  75. int y_tb = y0 >> s->sps->log2_min_transform_block_size;
  76. int cur_tb_addr = MIN_TB_ADDR_ZS(x_tb, y_tb);
  77. ptrdiff_t stride = s->frame->linesize[c_idx] / sizeof(pixel);
  78. pixel *src = (pixel*)s->frame->data[c_idx] + x + y * stride;
  79. int pic_width_in_min_pu = PU(s->sps->width);
  80. enum IntraPredMode mode = c_idx ? lc->pu.intra_pred_mode_c :
  81. lc->tu.cur_intra_pred_mode;
  82. pixel left_array[2 * MAX_TB_SIZE + 1];
  83. pixel filtered_left_array[2 * MAX_TB_SIZE + 1];
  84. pixel top_array[2 * MAX_TB_SIZE + 1];
  85. pixel filtered_top_array[2 * MAX_TB_SIZE + 1];
  86. pixel *left = left_array + 1;
  87. pixel *top = top_array + 1;
  88. pixel *filtered_left = filtered_left_array + 1;
  89. pixel *filtered_top = filtered_top_array + 1;
  90. int cand_bottom_left = lc->na.cand_bottom_left && cur_tb_addr > MIN_TB_ADDR_ZS(x_tb - 1, y_tb + size_in_tbs);
  91. int cand_left = lc->na.cand_left;
  92. int cand_up_left = lc->na.cand_up_left;
  93. int cand_up = lc->na.cand_up;
  94. int cand_up_right = lc->na.cand_up_right && cur_tb_addr > MIN_TB_ADDR_ZS(x_tb + size_in_tbs, y_tb - 1);
  95. int bottom_left_size = (FFMIN(y0 + 2 * size_in_luma, s->sps->height) -
  96. (y0 + size_in_luma)) >> vshift;
  97. int top_right_size = (FFMIN(x0 + 2 * size_in_luma, s->sps->width) -
  98. (x0 + size_in_luma)) >> hshift;
  99. if (s->pps->constrained_intra_pred_flag == 1) {
  100. int size_in_luma_pu = PU(size_in_luma);
  101. int on_pu_edge_x = !(x0 & ((1 << s->sps->log2_min_pu_size) - 1));
  102. int on_pu_edge_y = !(y0 & ((1 << s->sps->log2_min_pu_size) - 1));
  103. if(!size_in_luma_pu)
  104. size_in_luma_pu++;
  105. if (cand_bottom_left == 1 && on_pu_edge_x) {
  106. int x_left_pu = PU(x0 - 1);
  107. int y_bottom_pu = PU(y0 + size_in_luma);
  108. cand_bottom_left = 0;
  109. for(i = 0; i < size_in_luma_pu; i++)
  110. cand_bottom_left |= MVF(x_left_pu, y_bottom_pu + i).is_intra;
  111. }
  112. if (cand_left == 1 && on_pu_edge_x) {
  113. int x_left_pu = PU(x0 - 1);
  114. int y_left_pu = PU(y0);
  115. cand_left = 0;
  116. for(i = 0; i < size_in_luma_pu; i++)
  117. cand_left |= MVF(x_left_pu, y_left_pu + i).is_intra;
  118. }
  119. if (cand_up_left == 1) {
  120. int x_left_pu = PU(x0 - 1);
  121. int y_top_pu = PU(y0 - 1);
  122. cand_up_left = MVF(x_left_pu, y_top_pu).is_intra;
  123. }
  124. if (cand_up == 1 && on_pu_edge_y) {
  125. int x_top_pu = PU(x0);
  126. int y_top_pu = PU(y0 - 1);
  127. cand_up = 0;
  128. for(i = 0; i < size_in_luma_pu; i++)
  129. cand_up |= MVF(x_top_pu + i, y_top_pu).is_intra;
  130. }
  131. if (cand_up_right == 1 && on_pu_edge_y) {
  132. int y_top_pu = PU(y0 - 1);
  133. int x_right_pu = PU(x0 + size_in_luma);
  134. cand_up_right = 0;
  135. for(i = 0; i < size_in_luma_pu; i++)
  136. cand_up_right |= MVF(x_right_pu + i, y_top_pu).is_intra;
  137. }
  138. for (i = 0; i < 2 * MAX_TB_SIZE; i++) {
  139. left[i] = 128;
  140. top[i] = 128;
  141. }
  142. }
  143. if (cand_bottom_left) {
  144. for (i = size + bottom_left_size; i < (size << 1); i++)
  145. if (IS_INTRA(-1, size + bottom_left_size - 1) || !s->pps->constrained_intra_pred_flag)
  146. left[i] = POS(-1, size + bottom_left_size - 1);
  147. for (i = size + bottom_left_size - 1; i >= size; i--)
  148. if (IS_INTRA(-1, i) || !s->pps->constrained_intra_pred_flag)
  149. left[i] = POS(-1, i);
  150. }
  151. if (cand_left)
  152. for (i = size - 1; i >= 0; i--)
  153. if (IS_INTRA(-1, i) || !s->pps->constrained_intra_pred_flag)
  154. left[i] = POS(-1, i);
  155. if (cand_up_left)
  156. if (IS_INTRA(-1, -1) || !s->pps->constrained_intra_pred_flag) {
  157. left[-1] = POS(-1, -1);
  158. top[-1] = left[-1];
  159. }
  160. if (cand_up)
  161. for (i = size - 1; i >= 0; i--)
  162. if (IS_INTRA(i, -1) || !s->pps->constrained_intra_pred_flag)
  163. top[i] = POS(i, -1);
  164. if (cand_up_right) {
  165. for (i = size + top_right_size; i < (size << 1); i++)
  166. if (IS_INTRA(size + top_right_size - 1, -1) || !s->pps->constrained_intra_pred_flag)
  167. top[i] = POS(size + top_right_size - 1, -1);
  168. for (i = size + top_right_size - 1; i >= size; i--)
  169. if (IS_INTRA(i, -1) || !s->pps->constrained_intra_pred_flag)
  170. top[i] = POS(i, -1);
  171. }
  172. if (s->pps->constrained_intra_pred_flag == 1) {
  173. if (cand_bottom_left || cand_left || cand_up_left || cand_up || cand_up_right) {
  174. int size_max_x = x0 + ((2 * size) << hshift) < s->sps->width ?
  175. 2 * size : (s->sps->width - x0) >> hshift;
  176. int size_max_y = y0 + ((2 * size) << vshift) < s->sps->height ?
  177. 2 * size : (s->sps->height - y0) >> vshift;
  178. int j = size + (cand_bottom_left? bottom_left_size: 0) -1;
  179. if (!cand_up_right) {
  180. size_max_x = x0 + ((size) << hshift) < s->sps->width ?
  181. size : (s->sps->width - x0) >> hshift;
  182. }
  183. if (!cand_bottom_left) {
  184. size_max_y = y0 + (( size) << vshift) < s->sps->height ?
  185. size : (s->sps->height - y0) >> vshift;
  186. }
  187. if (cand_bottom_left || cand_left || cand_up_left) {
  188. while (j>-1 && !IS_INTRA(-1, j)) j--;
  189. if (!IS_INTRA(-1, j)) {
  190. j = 0;
  191. while(j < size_max_x && !IS_INTRA(j, -1)) j++;
  192. EXTEND_LEFT_CIP(top, j, j+1);
  193. left[-1] = top[-1];
  194. j = 0;
  195. }
  196. } else {
  197. j = 0;
  198. while (j < size_max_x && !IS_INTRA(j, -1)) j++;
  199. if (j > 0)
  200. if (x0 > 0) {
  201. EXTEND_LEFT_CIP(top, j, j+1);
  202. } else {
  203. EXTEND_LEFT_CIP(top, j, j);
  204. top[-1] = top[0];
  205. }
  206. left[-1] = top[-1];
  207. j = 0;
  208. }
  209. if (cand_bottom_left || cand_left) {
  210. EXTEND_DOWN_CIP(left, j, size_max_y-j);
  211. }
  212. if (!cand_left) {
  213. EXTEND_DOWN(left, 0, size);
  214. }
  215. if (!cand_bottom_left) {
  216. EXTEND_DOWN(left, size, size);
  217. }
  218. if (x0 != 0 && y0 != 0) {
  219. EXTEND_UP_CIP(left, size_max_y - 1, size_max_y);
  220. } else if( x0 == 0) {
  221. EXTEND_UP_CIP_0(left, size_max_y - 1, size_max_y);
  222. } else{
  223. EXTEND_UP_CIP(left, size_max_y - 1, size_max_y-1);
  224. }
  225. top[-1] = left[-1];
  226. if (y0 != 0) {
  227. EXTEND_RIGHT_CIP(top, 0, size_max_x);
  228. }
  229. }
  230. }
  231. // Infer the unavailable samples
  232. if (!cand_bottom_left) {
  233. if (cand_left) {
  234. EXTEND_DOWN(left, size, size);
  235. } else if (cand_up_left) {
  236. EXTEND_DOWN(left, 0, 2 * size);
  237. cand_left = 1;
  238. } else if (cand_up) {
  239. left[-1] = top[0];
  240. EXTEND_DOWN(left, 0, 2 * size);
  241. cand_up_left = 1;
  242. cand_left = 1;
  243. } else if (cand_up_right) {
  244. EXTEND_LEFT(top, size, size);
  245. left[-1] = top[0];
  246. EXTEND_DOWN(left ,0 , 2 * size);
  247. cand_up = 1;
  248. cand_up_left = 1;
  249. cand_left = 1;
  250. } else { // No samples available
  251. top[0] = left[-1] = (1 << (BIT_DEPTH - 1));
  252. EXTEND_RIGHT(top, 1, 2 * size - 1);
  253. EXTEND_DOWN(left, 0, 2 * size);
  254. }
  255. }
  256. if (!cand_left) {
  257. EXTEND_UP(left, size, size);
  258. }
  259. if (!cand_up_left) {
  260. left[-1] = left[0];
  261. }
  262. if (!cand_up) {
  263. top[0] = left[-1];
  264. EXTEND_RIGHT(top, 1, size-1);
  265. }
  266. if (!cand_up_right) {
  267. EXTEND_RIGHT(top, size, size);
  268. }
  269. top[-1] = left[-1];
  270. #undef EXTEND_LEFT_CIP
  271. #undef EXTEND_RIGHT_CIP
  272. #undef EXTEND_UP_CIP
  273. #undef EXTEND_DOWN_CIP
  274. #undef IS_INTRA
  275. #undef MVF_PU
  276. #undef MVF
  277. #undef PU
  278. #undef EXTEND_LEFT
  279. #undef EXTEND_RIGHT
  280. #undef EXTEND_UP
  281. #undef EXTEND_DOWN
  282. #undef MIN_TB_ADDR_ZS
  283. // Filtering process
  284. if (c_idx == 0 && mode != INTRA_DC && size != 4) {
  285. int intra_hor_ver_dist_thresh[] = { 7, 1, 0 };
  286. int min_dist_vert_hor = FFMIN(FFABS((int)mode - 26),
  287. FFABS((int)mode - 10));
  288. if (min_dist_vert_hor > intra_hor_ver_dist_thresh[log2_size - 3]) {
  289. int threshold = 1 << (BIT_DEPTH - 5);
  290. if (s->sps->sps_strong_intra_smoothing_enable_flag &&
  291. log2_size == 5 &&
  292. FFABS(top[-1] + top[63] - 2 * top[31]) < threshold &&
  293. FFABS(left[-1] + left[63] - 2 * left[31]) < threshold) {
  294. // We can't just overwrite values in top because it could be
  295. // a pointer into src
  296. filtered_top[-1] = top[-1];
  297. filtered_top[63] = top[63];
  298. for (i = 0; i < 63; i++)
  299. filtered_top[i] = ((64 - (i + 1)) * top[-1] +
  300. (i + 1) * top[63] + 32) >> 6;
  301. for (i = 0; i < 63; i++)
  302. left[i] = ((64 - (i + 1)) * left[-1] +
  303. (i + 1) * left[63] + 32) >> 6;
  304. top = filtered_top;
  305. } else {
  306. filtered_left[2 * size - 1] = left[2 * size - 1];
  307. filtered_top[2 * size - 1] = top[2 * size - 1];
  308. for (i = 2 * size - 2; i >= 0; i--)
  309. filtered_left[i] = (left[i + 1] + 2 * left[i] +
  310. left[i - 1] + 2) >> 2;
  311. filtered_top[-1] =
  312. filtered_left[-1] = (left[0] + 2 * left[-1] +
  313. top[0] + 2) >> 2;
  314. for (i = 2 * size - 2; i >= 0; i--)
  315. filtered_top[i] = (top[i + 1] + 2 * top[i] +
  316. top[i - 1] + 2) >> 2;
  317. left = filtered_left;
  318. top = filtered_top;
  319. }
  320. }
  321. }
  322. switch (mode) {
  323. case INTRA_PLANAR:
  324. s->hpc.pred_planar[log2_size - 2]((uint8_t*)src, (uint8_t*)top,
  325. (uint8_t*)left, stride);
  326. break;
  327. case INTRA_DC:
  328. s->hpc.pred_dc((uint8_t*)src, (uint8_t*)top,
  329. (uint8_t*)left, stride, log2_size, c_idx);
  330. break;
  331. default:
  332. s->hpc.pred_angular[log2_size - 2]((uint8_t*)src, (uint8_t*)top,
  333. (uint8_t*)left, stride, c_idx, mode);
  334. break;
  335. }
  336. }
  337. static void FUNC(pred_planar_0)(uint8_t *_src, const uint8_t *_top,
  338. const uint8_t *_left,
  339. ptrdiff_t stride)
  340. {
  341. int x, y;
  342. pixel *src = (pixel*)_src;
  343. const pixel *top = (const pixel*)_top;
  344. const pixel *left = (const pixel*)_left;
  345. for (y = 0; y < 4; y++)
  346. for (x = 0; x < 4; x++)
  347. POS(x, y) = ((3 - x) * left[y] + (x + 1) * top[4] +
  348. (3 - y) * top[x] + (y + 1) * left[4] + 4) >> 3;
  349. }
  350. static void FUNC(pred_planar_1)(uint8_t *_src, const uint8_t *_top,
  351. const uint8_t *_left, ptrdiff_t stride)
  352. {
  353. int x, y;
  354. pixel *src = (pixel*)_src;
  355. const pixel *top = (const pixel*)_top;
  356. const pixel *left = (const pixel*)_left;
  357. for (y = 0; y < 8; y++)
  358. for (x = 0; x < 8; x++)
  359. POS(x, y) = ((7 - x) * left[y] + (x + 1) * top[8] +
  360. (7 - y) * top[x] + (y + 1) * left[8] + 8) >> 4;
  361. }
  362. static void FUNC(pred_planar_2)(uint8_t *_src, const uint8_t *_top,
  363. const uint8_t *_left, ptrdiff_t stride)
  364. {
  365. int x, y;
  366. pixel *src = (pixel*)_src;
  367. const pixel *top = (const pixel*)_top;
  368. const pixel *left = (const pixel*)_left;
  369. for (y = 0; y < 16; y++)
  370. for (x = 0; x < 16; x++)
  371. POS(x, y) = ((15 - x) * left[y] + (x + 1) * top[16] +
  372. (15 - y) * top[x] + (y + 1) * left[16] + 16) >> 5;
  373. }
  374. static void FUNC(pred_planar_3)(uint8_t *_src, const uint8_t *_top,
  375. const uint8_t *_left, ptrdiff_t stride)
  376. {
  377. int x, y;
  378. pixel *src = (pixel*)_src;
  379. const pixel *top = (const pixel*)_top;
  380. const pixel *left = (const pixel*)_left;
  381. for (y = 0; y < 32; y++)
  382. for (x = 0; x < 32; x++)
  383. POS(x, y) = ((31 - x) * left[y] + (x + 1) * top[32] +
  384. (31 - y) * top[x] + (y + 1) * left[32] + 32) >> 6;
  385. }
  386. static void FUNC(pred_dc)(uint8_t *_src, const uint8_t *_top,
  387. const uint8_t *_left,
  388. ptrdiff_t stride, int log2_size, int c_idx)
  389. {
  390. int i, j, x, y;
  391. int size = (1 << log2_size);
  392. pixel *src = (pixel*)_src;
  393. const pixel *top = (const pixel*)_top;
  394. const pixel *left = (const pixel*)_left;
  395. int dc = size;
  396. pixel4 a;
  397. for (i = 0; i < size; i++)
  398. dc += left[i] + top[i];
  399. dc >>= log2_size + 1;
  400. a = PIXEL_SPLAT_X4(dc);
  401. for (i = 0; i < size; i++)
  402. for (j = 0; j < size / 4; j++)
  403. AV_WN4PA(&POS(j * 4, i), a);
  404. if (c_idx == 0 && size < 32) {
  405. POS(0, 0) = (left[0] + 2 * dc + top[0] + 2) >> 2;
  406. for (x = 1; x < size; x++)
  407. POS(x, 0) = (top[x] + 3 * dc + 2) >> 2;
  408. for (y = 1; y < size; y++)
  409. POS(0, y) = (left[y] + 3 * dc + 2) >> 2;
  410. }
  411. }
  412. static av_always_inline void FUNC(pred_angular)(uint8_t *_src,
  413. const uint8_t *_top,
  414. const uint8_t *_left,
  415. ptrdiff_t stride, int c_idx,
  416. int mode, int size)
  417. {
  418. int x, y;
  419. pixel *src = (pixel*)_src;
  420. const pixel *top = (const pixel*)_top;
  421. const pixel *left = (const pixel*)_left;
  422. static const int intra_pred_angle[] = {
  423. 32, 26, 21, 17, 13, 9, 5, 2, 0, -2, -5, -9, -13, -17, -21, -26, -32,
  424. -26, -21, -17, -13, -9, -5, -2, 0, 2, 5, 9, 13, 17, 21, 26, 32
  425. };
  426. static const int inv_angle[] = {
  427. -4096, -1638, -910, -630, -482, -390, -315, -256, -315, -390, -482,
  428. -630, -910, -1638, -4096
  429. };
  430. int angle = intra_pred_angle[mode - 2];
  431. pixel ref_array[3 * MAX_TB_SIZE + 1];
  432. pixel *ref_tmp = ref_array + size;
  433. const pixel *ref;
  434. int last = (size * angle) >> 5;
  435. if (mode >= 18) {
  436. ref = top - 1;
  437. if (angle < 0 && last < -1) {
  438. for (x = 0; x <= size; x++)
  439. ref_tmp[x] = top[x - 1];
  440. for (x = last; x <= -1; x++)
  441. ref_tmp[x] = left[-1 + ((x * inv_angle[mode-11] + 128) >> 8)];
  442. ref = ref_tmp;
  443. }
  444. for (y = 0; y < size; y++) {
  445. int idx = ((y + 1) * angle) >> 5;
  446. int fact = ((y + 1) * angle) & 31;
  447. if (fact) {
  448. for (x = 0; x < size; x++) {
  449. POS(x, y) = ((32 - fact) * ref[x + idx + 1] +
  450. fact * ref[x + idx + 2] + 16) >> 5;
  451. }
  452. } else {
  453. for (x = 0; x < size; x++) {
  454. POS(x, y) = ref[x + idx + 1];
  455. }
  456. }
  457. }
  458. if (mode == 26 && c_idx == 0 && size < 32) {
  459. for (y = 0; y < size; y++)
  460. POS(0, y) = av_clip_pixel(top[0] + ((left[y] - left[-1]) >> 1));
  461. }
  462. } else {
  463. ref = left - 1;
  464. if (angle < 0 && last < -1) {
  465. for (x = 0; x <= size; x++)
  466. ref_tmp[x] = left[x - 1];
  467. for (x = last; x <= -1; x++)
  468. ref_tmp[x] = top[-1 + ((x * inv_angle[mode-11] + 128) >> 8)];
  469. ref = ref_tmp;
  470. }
  471. for (x = 0; x < size; x++) {
  472. int idx = ((x + 1) * angle) >> 5;
  473. int fact = ((x + 1) * angle) & 31;
  474. if (fact) {
  475. for (y = 0; y < size; y++) {
  476. POS(x, y) = ((32 - fact) * ref[y + idx + 1] +
  477. fact * ref[y + idx + 2] + 16) >> 5;
  478. }
  479. } else {
  480. for (y = 0; y < size; y++) {
  481. POS(x, y) = ref[y + idx + 1];
  482. }
  483. }
  484. }
  485. if (mode == 10 && c_idx == 0 && size < 32) {
  486. for (x = 0; x < size; x++)
  487. POS(x, 0) = av_clip_pixel(left[0] + ((top[x] - top[-1]) >> 1));
  488. }
  489. }
  490. }
  491. static void FUNC(pred_angular_0)(uint8_t *src, const uint8_t *top,
  492. const uint8_t *left,
  493. ptrdiff_t stride, int c_idx, int mode)
  494. {
  495. FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 2);
  496. }
  497. static void FUNC(pred_angular_1)(uint8_t *src, const uint8_t *top,
  498. const uint8_t *left,
  499. ptrdiff_t stride, int c_idx, int mode)
  500. {
  501. FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 3);
  502. }
  503. static void FUNC(pred_angular_2)(uint8_t *src, const uint8_t *top,
  504. const uint8_t *left,
  505. ptrdiff_t stride, int c_idx, int mode)
  506. {
  507. FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 4);
  508. }
  509. static void FUNC(pred_angular_3)(uint8_t *src, const uint8_t *top,
  510. const uint8_t *left,
  511. ptrdiff_t stride, int c_idx, int mode)
  512. {
  513. FUNC(pred_angular)(src, top, left, stride, c_idx, mode, 1 << 5);
  514. }
  515. #undef POS