You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

529 lines
17KB

  1. /*
  2. * WMA compatible codec
  3. * Copyright (c) 2002-2007 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "sinewin.h"
  23. #include "wma.h"
  24. #include "wmadata.h"
  25. #undef NDEBUG
  26. #include <assert.h>
  27. /* XXX: use same run/length optimization as mpeg decoders */
  28. //FIXME maybe split decode / encode or pass flag
  29. static void init_coef_vlc(VLC *vlc, uint16_t **prun_table,
  30. float **plevel_table, uint16_t **pint_table,
  31. const CoefVLCTable *vlc_table)
  32. {
  33. int n = vlc_table->n;
  34. const uint8_t *table_bits = vlc_table->huffbits;
  35. const uint32_t *table_codes = vlc_table->huffcodes;
  36. const uint16_t *levels_table = vlc_table->levels;
  37. uint16_t *run_table, *level_table, *int_table;
  38. float *flevel_table;
  39. int i, l, j, k, level;
  40. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  41. run_table = av_malloc(n * sizeof(uint16_t));
  42. level_table = av_malloc(n * sizeof(uint16_t));
  43. flevel_table= av_malloc(n * sizeof(*flevel_table));
  44. int_table = av_malloc(n * sizeof(uint16_t));
  45. i = 2;
  46. level = 1;
  47. k = 0;
  48. while (i < n) {
  49. int_table[k] = i;
  50. l = levels_table[k++];
  51. for (j = 0; j < l; j++) {
  52. run_table[i] = j;
  53. level_table[i] = level;
  54. flevel_table[i]= level;
  55. i++;
  56. }
  57. level++;
  58. }
  59. *prun_table = run_table;
  60. *plevel_table = flevel_table;
  61. *pint_table = int_table;
  62. av_free(level_table);
  63. }
  64. /**
  65. *@brief Get the samples per frame for this stream.
  66. *@param sample_rate output sample_rate
  67. *@param version wma version
  68. *@param decode_flags codec compression features
  69. *@return log2 of the number of output samples per frame
  70. */
  71. int av_cold ff_wma_get_frame_len_bits(int sample_rate, int version,
  72. unsigned int decode_flags)
  73. {
  74. int frame_len_bits;
  75. if (sample_rate <= 16000) {
  76. frame_len_bits = 9;
  77. } else if (sample_rate <= 22050 ||
  78. (sample_rate <= 32000 && version == 1)) {
  79. frame_len_bits = 10;
  80. } else if (sample_rate <= 48000) {
  81. frame_len_bits = 11;
  82. } else if (sample_rate <= 96000) {
  83. frame_len_bits = 12;
  84. } else {
  85. frame_len_bits = 13;
  86. }
  87. if (version == 3) {
  88. int tmp = decode_flags & 0x6;
  89. if (tmp == 0x2) {
  90. ++frame_len_bits;
  91. } else if (tmp == 0x4) {
  92. --frame_len_bits;
  93. } else if (tmp == 0x6) {
  94. frame_len_bits -= 2;
  95. }
  96. }
  97. return frame_len_bits;
  98. }
  99. int ff_wma_init(AVCodecContext *avctx, int flags2)
  100. {
  101. WMACodecContext *s = avctx->priv_data;
  102. int i;
  103. float bps1, high_freq;
  104. volatile float bps;
  105. int sample_rate1;
  106. int coef_vlc_table;
  107. if ( avctx->sample_rate <= 0 || avctx->sample_rate > 50000
  108. || avctx->channels <= 0 || avctx->channels > 8
  109. || avctx->bit_rate <= 0)
  110. return -1;
  111. s->sample_rate = avctx->sample_rate;
  112. s->nb_channels = avctx->channels;
  113. s->bit_rate = avctx->bit_rate;
  114. s->block_align = avctx->block_align;
  115. dsputil_init(&s->dsp, avctx);
  116. ff_fmt_convert_init(&s->fmt_conv, avctx);
  117. if (avctx->codec->id == CODEC_ID_WMAV1) {
  118. s->version = 1;
  119. } else {
  120. s->version = 2;
  121. }
  122. /* compute MDCT block size */
  123. s->frame_len_bits = ff_wma_get_frame_len_bits(s->sample_rate, s->version, 0);
  124. s->next_block_len_bits = s->frame_len_bits;
  125. s->prev_block_len_bits = s->frame_len_bits;
  126. s->block_len_bits = s->frame_len_bits;
  127. s->frame_len = 1 << s->frame_len_bits;
  128. if (s->use_variable_block_len) {
  129. int nb_max, nb;
  130. nb = ((flags2 >> 3) & 3) + 1;
  131. if ((s->bit_rate / s->nb_channels) >= 32000)
  132. nb += 2;
  133. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  134. if (nb > nb_max)
  135. nb = nb_max;
  136. s->nb_block_sizes = nb + 1;
  137. } else {
  138. s->nb_block_sizes = 1;
  139. }
  140. /* init rate dependent parameters */
  141. s->use_noise_coding = 1;
  142. high_freq = s->sample_rate * 0.5;
  143. /* if version 2, then the rates are normalized */
  144. sample_rate1 = s->sample_rate;
  145. if (s->version == 2) {
  146. if (sample_rate1 >= 44100) {
  147. sample_rate1 = 44100;
  148. } else if (sample_rate1 >= 22050) {
  149. sample_rate1 = 22050;
  150. } else if (sample_rate1 >= 16000) {
  151. sample_rate1 = 16000;
  152. } else if (sample_rate1 >= 11025) {
  153. sample_rate1 = 11025;
  154. } else if (sample_rate1 >= 8000) {
  155. sample_rate1 = 8000;
  156. }
  157. }
  158. bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
  159. s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;
  160. /* compute high frequency value and choose if noise coding should
  161. be activated */
  162. bps1 = bps;
  163. if (s->nb_channels == 2)
  164. bps1 = bps * 1.6;
  165. if (sample_rate1 == 44100) {
  166. if (bps1 >= 0.61) {
  167. s->use_noise_coding = 0;
  168. } else {
  169. high_freq = high_freq * 0.4;
  170. }
  171. } else if (sample_rate1 == 22050) {
  172. if (bps1 >= 1.16) {
  173. s->use_noise_coding = 0;
  174. } else if (bps1 >= 0.72) {
  175. high_freq = high_freq * 0.7;
  176. } else {
  177. high_freq = high_freq * 0.6;
  178. }
  179. } else if (sample_rate1 == 16000) {
  180. if (bps > 0.5) {
  181. high_freq = high_freq * 0.5;
  182. } else {
  183. high_freq = high_freq * 0.3;
  184. }
  185. } else if (sample_rate1 == 11025) {
  186. high_freq = high_freq * 0.7;
  187. } else if (sample_rate1 == 8000) {
  188. if (bps <= 0.625) {
  189. high_freq = high_freq * 0.5;
  190. } else if (bps > 0.75) {
  191. s->use_noise_coding = 0;
  192. } else {
  193. high_freq = high_freq * 0.65;
  194. }
  195. } else {
  196. if (bps >= 0.8) {
  197. high_freq = high_freq * 0.75;
  198. } else if (bps >= 0.6) {
  199. high_freq = high_freq * 0.6;
  200. } else {
  201. high_freq = high_freq * 0.5;
  202. }
  203. }
  204. av_dlog(s->avctx, "flags2=0x%x\n", flags2);
  205. av_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  206. s->version, s->nb_channels, s->sample_rate, s->bit_rate,
  207. s->block_align);
  208. av_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  209. bps, bps1, high_freq, s->byte_offset_bits);
  210. av_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  211. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  212. /* compute the scale factor band sizes for each MDCT block size */
  213. {
  214. int a, b, pos, lpos, k, block_len, i, j, n;
  215. const uint8_t *table;
  216. if (s->version == 1) {
  217. s->coefs_start = 3;
  218. } else {
  219. s->coefs_start = 0;
  220. }
  221. for (k = 0; k < s->nb_block_sizes; k++) {
  222. block_len = s->frame_len >> k;
  223. if (s->version == 1) {
  224. lpos = 0;
  225. for (i = 0; i < 25; i++) {
  226. a = ff_wma_critical_freqs[i];
  227. b = s->sample_rate;
  228. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  229. if (pos > block_len)
  230. pos = block_len;
  231. s->exponent_bands[0][i] = pos - lpos;
  232. if (pos >= block_len) {
  233. i++;
  234. break;
  235. }
  236. lpos = pos;
  237. }
  238. s->exponent_sizes[0] = i;
  239. } else {
  240. /* hardcoded tables */
  241. table = NULL;
  242. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  243. if (a < 3) {
  244. if (s->sample_rate >= 44100) {
  245. table = exponent_band_44100[a];
  246. } else if (s->sample_rate >= 32000) {
  247. table = exponent_band_32000[a];
  248. } else if (s->sample_rate >= 22050) {
  249. table = exponent_band_22050[a];
  250. }
  251. }
  252. if (table) {
  253. n = *table++;
  254. for (i = 0; i < n; i++)
  255. s->exponent_bands[k][i] = table[i];
  256. s->exponent_sizes[k] = n;
  257. } else {
  258. j = 0;
  259. lpos = 0;
  260. for (i = 0; i < 25; i++) {
  261. a = ff_wma_critical_freqs[i];
  262. b = s->sample_rate;
  263. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  264. pos <<= 2;
  265. if (pos > block_len)
  266. pos = block_len;
  267. if (pos > lpos)
  268. s->exponent_bands[k][j++] = pos - lpos;
  269. if (pos >= block_len)
  270. break;
  271. lpos = pos;
  272. }
  273. s->exponent_sizes[k] = j;
  274. }
  275. }
  276. /* max number of coefs */
  277. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  278. /* high freq computation */
  279. s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
  280. s->sample_rate + 0.5);
  281. n = s->exponent_sizes[k];
  282. j = 0;
  283. pos = 0;
  284. for (i = 0; i < n; i++) {
  285. int start, end;
  286. start = pos;
  287. pos += s->exponent_bands[k][i];
  288. end = pos;
  289. if (start < s->high_band_start[k])
  290. start = s->high_band_start[k];
  291. if (end > s->coefs_end[k])
  292. end = s->coefs_end[k];
  293. if (end > start)
  294. s->exponent_high_bands[k][j++] = end - start;
  295. }
  296. s->exponent_high_sizes[k] = j;
  297. #if 0
  298. tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
  299. s->frame_len >> k,
  300. s->coefs_end[k],
  301. s->high_band_start[k],
  302. s->exponent_high_sizes[k]);
  303. for (j = 0; j < s->exponent_high_sizes[k]; j++)
  304. tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
  305. tprintf(s->avctx, "\n");
  306. #endif
  307. }
  308. }
  309. #ifdef TRACE
  310. {
  311. int i, j;
  312. for (i = 0; i < s->nb_block_sizes; i++) {
  313. tprintf(s->avctx, "%5d: n=%2d:",
  314. s->frame_len >> i,
  315. s->exponent_sizes[i]);
  316. for (j = 0; j < s->exponent_sizes[i]; j++)
  317. tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
  318. tprintf(s->avctx, "\n");
  319. }
  320. }
  321. #endif
  322. /* init MDCT windows : simple sinus window */
  323. for (i = 0; i < s->nb_block_sizes; i++) {
  324. ff_init_ff_sine_windows(s->frame_len_bits - i);
  325. s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
  326. }
  327. s->reset_block_lengths = 1;
  328. if (s->use_noise_coding) {
  329. /* init the noise generator */
  330. if (s->use_exp_vlc) {
  331. s->noise_mult = 0.02;
  332. } else {
  333. s->noise_mult = 0.04;
  334. }
  335. #ifdef TRACE
  336. for (i = 0; i < NOISE_TAB_SIZE; i++)
  337. s->noise_table[i] = 1.0 * s->noise_mult;
  338. #else
  339. {
  340. unsigned int seed;
  341. float norm;
  342. seed = 1;
  343. norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
  344. for (i = 0; i < NOISE_TAB_SIZE; i++) {
  345. seed = seed * 314159 + 1;
  346. s->noise_table[i] = (float)((int)seed) * norm;
  347. }
  348. }
  349. #endif
  350. }
  351. /* choose the VLC tables for the coefficients */
  352. coef_vlc_table = 2;
  353. if (s->sample_rate >= 32000) {
  354. if (bps1 < 0.72) {
  355. coef_vlc_table = 0;
  356. } else if (bps1 < 1.16) {
  357. coef_vlc_table = 1;
  358. }
  359. }
  360. s->coef_vlcs[0]= &coef_vlcs[coef_vlc_table * 2 ];
  361. s->coef_vlcs[1]= &coef_vlcs[coef_vlc_table * 2 + 1];
  362. init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0], &s->int_table[0],
  363. s->coef_vlcs[0]);
  364. init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1], &s->int_table[1],
  365. s->coef_vlcs[1]);
  366. return 0;
  367. }
  368. int ff_wma_total_gain_to_bits(int total_gain)
  369. {
  370. if (total_gain < 15) return 13;
  371. else if (total_gain < 32) return 12;
  372. else if (total_gain < 40) return 11;
  373. else if (total_gain < 45) return 10;
  374. else return 9;
  375. }
  376. int ff_wma_end(AVCodecContext *avctx)
  377. {
  378. WMACodecContext *s = avctx->priv_data;
  379. int i;
  380. for (i = 0; i < s->nb_block_sizes; i++)
  381. ff_mdct_end(&s->mdct_ctx[i]);
  382. if (s->use_exp_vlc) {
  383. free_vlc(&s->exp_vlc);
  384. }
  385. if (s->use_noise_coding) {
  386. free_vlc(&s->hgain_vlc);
  387. }
  388. for (i = 0; i < 2; i++) {
  389. free_vlc(&s->coef_vlc[i]);
  390. av_free(s->run_table[i]);
  391. av_free(s->level_table[i]);
  392. av_free(s->int_table[i]);
  393. }
  394. return 0;
  395. }
  396. /**
  397. * Decode an uncompressed coefficient.
  398. * @param gb GetBitContext
  399. * @return the decoded coefficient
  400. */
  401. unsigned int ff_wma_get_large_val(GetBitContext* gb)
  402. {
  403. /** consumes up to 34 bits */
  404. int n_bits = 8;
  405. /** decode length */
  406. if (get_bits1(gb)) {
  407. n_bits += 8;
  408. if (get_bits1(gb)) {
  409. n_bits += 8;
  410. if (get_bits1(gb)) {
  411. n_bits += 7;
  412. }
  413. }
  414. }
  415. return get_bits_long(gb, n_bits);
  416. }
  417. /**
  418. * Decode run level compressed coefficients.
  419. * @param avctx codec context
  420. * @param gb bitstream reader context
  421. * @param vlc vlc table for get_vlc2
  422. * @param level_table level codes
  423. * @param run_table run codes
  424. * @param version 0 for wma1,2 1 for wmapro
  425. * @param ptr output buffer
  426. * @param offset offset in the output buffer
  427. * @param num_coefs number of input coefficents
  428. * @param block_len input buffer length (2^n)
  429. * @param frame_len_bits number of bits for escaped run codes
  430. * @param coef_nb_bits number of bits for escaped level codes
  431. * @return 0 on success, -1 otherwise
  432. */
  433. int ff_wma_run_level_decode(AVCodecContext* avctx, GetBitContext* gb,
  434. VLC *vlc,
  435. const float *level_table, const uint16_t *run_table,
  436. int version, WMACoef *ptr, int offset,
  437. int num_coefs, int block_len, int frame_len_bits,
  438. int coef_nb_bits)
  439. {
  440. int code, level, sign;
  441. const uint32_t *ilvl = (const uint32_t*)level_table;
  442. uint32_t *iptr = (uint32_t*)ptr;
  443. const unsigned int coef_mask = block_len - 1;
  444. for (; offset < num_coefs; offset++) {
  445. code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
  446. if (code > 1) {
  447. /** normal code */
  448. offset += run_table[code];
  449. sign = get_bits1(gb) - 1;
  450. iptr[offset & coef_mask] = ilvl[code] ^ sign<<31;
  451. } else if (code == 1) {
  452. /** EOB */
  453. break;
  454. } else {
  455. /** escape */
  456. if (!version) {
  457. level = get_bits(gb, coef_nb_bits);
  458. /** NOTE: this is rather suboptimal. reading
  459. block_len_bits would be better */
  460. offset += get_bits(gb, frame_len_bits);
  461. } else {
  462. level = ff_wma_get_large_val(gb);
  463. /** escape decode */
  464. if (get_bits1(gb)) {
  465. if (get_bits1(gb)) {
  466. if (get_bits1(gb)) {
  467. av_log(avctx,AV_LOG_ERROR,
  468. "broken escape sequence\n");
  469. return -1;
  470. } else
  471. offset += get_bits(gb, frame_len_bits) + 4;
  472. } else
  473. offset += get_bits(gb, 2) + 1;
  474. }
  475. }
  476. sign = get_bits1(gb) - 1;
  477. ptr[offset & coef_mask] = (level^sign) - sign;
  478. }
  479. }
  480. /** NOTE: EOB can be omitted */
  481. if (offset > num_coefs) {
  482. av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  483. return -1;
  484. }
  485. return 0;
  486. }