You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2593 lines
92KB

  1. /*
  2. * AAC decoder
  3. * Copyright (c) 2005-2006 Oded Shimon ( ods15 ods15 dyndns org )
  4. * Copyright (c) 2006-2007 Maxim Gavrilov ( maxim.gavrilov gmail com )
  5. *
  6. * AAC LATM decoder
  7. * Copyright (c) 2008-2010 Paul Kendall <paul@kcbbs.gen.nz>
  8. * Copyright (c) 2010 Janne Grunau <janne-ffmpeg@jannau.net>
  9. *
  10. * This file is part of FFmpeg.
  11. *
  12. * FFmpeg is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU Lesser General Public
  14. * License as published by the Free Software Foundation; either
  15. * version 2.1 of the License, or (at your option) any later version.
  16. *
  17. * FFmpeg is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  20. * Lesser General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU Lesser General Public
  23. * License along with FFmpeg; if not, write to the Free Software
  24. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  25. */
  26. /**
  27. * @file
  28. * AAC decoder
  29. * @author Oded Shimon ( ods15 ods15 dyndns org )
  30. * @author Maxim Gavrilov ( maxim.gavrilov gmail com )
  31. */
  32. /*
  33. * supported tools
  34. *
  35. * Support? Name
  36. * N (code in SoC repo) gain control
  37. * Y block switching
  38. * Y window shapes - standard
  39. * N window shapes - Low Delay
  40. * Y filterbank - standard
  41. * N (code in SoC repo) filterbank - Scalable Sample Rate
  42. * Y Temporal Noise Shaping
  43. * Y Long Term Prediction
  44. * Y intensity stereo
  45. * Y channel coupling
  46. * Y frequency domain prediction
  47. * Y Perceptual Noise Substitution
  48. * Y Mid/Side stereo
  49. * N Scalable Inverse AAC Quantization
  50. * N Frequency Selective Switch
  51. * N upsampling filter
  52. * Y quantization & coding - AAC
  53. * N quantization & coding - TwinVQ
  54. * N quantization & coding - BSAC
  55. * N AAC Error Resilience tools
  56. * N Error Resilience payload syntax
  57. * N Error Protection tool
  58. * N CELP
  59. * N Silence Compression
  60. * N HVXC
  61. * N HVXC 4kbits/s VR
  62. * N Structured Audio tools
  63. * N Structured Audio Sample Bank Format
  64. * N MIDI
  65. * N Harmonic and Individual Lines plus Noise
  66. * N Text-To-Speech Interface
  67. * Y Spectral Band Replication
  68. * Y (not in this code) Layer-1
  69. * Y (not in this code) Layer-2
  70. * Y (not in this code) Layer-3
  71. * N SinuSoidal Coding (Transient, Sinusoid, Noise)
  72. * Y Parametric Stereo
  73. * N Direct Stream Transfer
  74. *
  75. * Note: - HE AAC v1 comprises LC AAC with Spectral Band Replication.
  76. * - HE AAC v2 comprises LC AAC with Spectral Band Replication and
  77. Parametric Stereo.
  78. */
  79. #include "avcodec.h"
  80. #include "internal.h"
  81. #include "get_bits.h"
  82. #include "dsputil.h"
  83. #include "fft.h"
  84. #include "fmtconvert.h"
  85. #include "lpc.h"
  86. #include "kbdwin.h"
  87. #include "sinewin.h"
  88. #include "aac.h"
  89. #include "aactab.h"
  90. #include "aacdectab.h"
  91. #include "cbrt_tablegen.h"
  92. #include "sbr.h"
  93. #include "aacsbr.h"
  94. #include "mpeg4audio.h"
  95. #include "aacadtsdec.h"
  96. #include <assert.h>
  97. #include <errno.h>
  98. #include <math.h>
  99. #include <string.h>
  100. #if ARCH_ARM
  101. # include "arm/aac.h"
  102. #endif
  103. union float754 {
  104. float f;
  105. uint32_t i;
  106. };
  107. static VLC vlc_scalefactors;
  108. static VLC vlc_spectral[11];
  109. static const char overread_err[] = "Input buffer exhausted before END element found\n";
  110. static ChannelElement *get_che(AACContext *ac, int type, int elem_id)
  111. {
  112. // For PCE based channel configurations map the channels solely based on tags.
  113. if (!ac->m4ac.chan_config) {
  114. return ac->tag_che_map[type][elem_id];
  115. }
  116. // For indexed channel configurations map the channels solely based on position.
  117. switch (ac->m4ac.chan_config) {
  118. case 7:
  119. if (ac->tags_mapped == 3 && type == TYPE_CPE) {
  120. ac->tags_mapped++;
  121. return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][2];
  122. }
  123. case 6:
  124. /* Some streams incorrectly code 5.1 audio as SCE[0] CPE[0] CPE[1] SCE[1]
  125. instead of SCE[0] CPE[0] CPE[1] LFE[0]. If we seem to have
  126. encountered such a stream, transfer the LFE[0] element to the SCE[1]'s mapping */
  127. if (ac->tags_mapped == tags_per_config[ac->m4ac.chan_config] - 1 && (type == TYPE_LFE || type == TYPE_SCE)) {
  128. ac->tags_mapped++;
  129. return ac->tag_che_map[type][elem_id] = ac->che[TYPE_LFE][0];
  130. }
  131. case 5:
  132. if (ac->tags_mapped == 2 && type == TYPE_CPE) {
  133. ac->tags_mapped++;
  134. return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][1];
  135. }
  136. case 4:
  137. if (ac->tags_mapped == 2 && ac->m4ac.chan_config == 4 && type == TYPE_SCE) {
  138. ac->tags_mapped++;
  139. return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][1];
  140. }
  141. case 3:
  142. case 2:
  143. if (ac->tags_mapped == (ac->m4ac.chan_config != 2) && type == TYPE_CPE) {
  144. ac->tags_mapped++;
  145. return ac->tag_che_map[TYPE_CPE][elem_id] = ac->che[TYPE_CPE][0];
  146. } else if (ac->m4ac.chan_config == 2) {
  147. return NULL;
  148. }
  149. case 1:
  150. if (!ac->tags_mapped && type == TYPE_SCE) {
  151. ac->tags_mapped++;
  152. return ac->tag_che_map[TYPE_SCE][elem_id] = ac->che[TYPE_SCE][0];
  153. }
  154. default:
  155. return NULL;
  156. }
  157. }
  158. /**
  159. * Check for the channel element in the current channel position configuration.
  160. * If it exists, make sure the appropriate element is allocated and map the
  161. * channel order to match the internal FFmpeg channel layout.
  162. *
  163. * @param che_pos current channel position configuration
  164. * @param type channel element type
  165. * @param id channel element id
  166. * @param channels count of the number of channels in the configuration
  167. *
  168. * @return Returns error status. 0 - OK, !0 - error
  169. */
  170. static av_cold int che_configure(AACContext *ac,
  171. enum ChannelPosition che_pos[4][MAX_ELEM_ID],
  172. int type, int id, int *channels)
  173. {
  174. if (che_pos[type][id]) {
  175. if (!ac->che[type][id]) {
  176. if (!(ac->che[type][id] = av_mallocz(sizeof(ChannelElement))))
  177. return AVERROR(ENOMEM);
  178. ff_aac_sbr_ctx_init(ac, &ac->che[type][id]->sbr);
  179. }
  180. if (type != TYPE_CCE) {
  181. ac->output_data[(*channels)++] = ac->che[type][id]->ch[0].ret;
  182. if (type == TYPE_CPE ||
  183. (type == TYPE_SCE && ac->m4ac.ps == 1)) {
  184. ac->output_data[(*channels)++] = ac->che[type][id]->ch[1].ret;
  185. }
  186. }
  187. } else {
  188. if (ac->che[type][id])
  189. ff_aac_sbr_ctx_close(&ac->che[type][id]->sbr);
  190. av_freep(&ac->che[type][id]);
  191. }
  192. return 0;
  193. }
  194. /**
  195. * Configure output channel order based on the current program configuration element.
  196. *
  197. * @param che_pos current channel position configuration
  198. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  199. *
  200. * @return Returns error status. 0 - OK, !0 - error
  201. */
  202. static av_cold int output_configure(AACContext *ac,
  203. enum ChannelPosition che_pos[4][MAX_ELEM_ID],
  204. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
  205. int channel_config, enum OCStatus oc_type)
  206. {
  207. AVCodecContext *avctx = ac->avctx;
  208. int i, type, channels = 0, ret;
  209. if (new_che_pos != che_pos)
  210. memcpy(che_pos, new_che_pos, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  211. if (channel_config) {
  212. for (i = 0; i < tags_per_config[channel_config]; i++) {
  213. if ((ret = che_configure(ac, che_pos,
  214. aac_channel_layout_map[channel_config - 1][i][0],
  215. aac_channel_layout_map[channel_config - 1][i][1],
  216. &channels)))
  217. return ret;
  218. }
  219. memset(ac->tag_che_map, 0, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
  220. avctx->channel_layout = aac_channel_layout[channel_config - 1];
  221. } else {
  222. /* Allocate or free elements depending on if they are in the
  223. * current program configuration.
  224. *
  225. * Set up default 1:1 output mapping.
  226. *
  227. * For a 5.1 stream the output order will be:
  228. * [ Center ] [ Front Left ] [ Front Right ] [ LFE ] [ Surround Left ] [ Surround Right ]
  229. */
  230. for (i = 0; i < MAX_ELEM_ID; i++) {
  231. for (type = 0; type < 4; type++) {
  232. if ((ret = che_configure(ac, che_pos, type, i, &channels)))
  233. return ret;
  234. }
  235. }
  236. memcpy(ac->tag_che_map, ac->che, 4 * MAX_ELEM_ID * sizeof(ac->che[0][0]));
  237. }
  238. avctx->channels = channels;
  239. ac->output_configured = oc_type;
  240. return 0;
  241. }
  242. /**
  243. * Decode an array of 4 bit element IDs, optionally interleaved with a stereo/mono switching bit.
  244. *
  245. * @param cpe_map Stereo (Channel Pair Element) map, NULL if stereo bit is not present.
  246. * @param sce_map mono (Single Channel Element) map
  247. * @param type speaker type/position for these channels
  248. */
  249. static void decode_channel_map(enum ChannelPosition *cpe_map,
  250. enum ChannelPosition *sce_map,
  251. enum ChannelPosition type,
  252. GetBitContext *gb, int n)
  253. {
  254. while (n--) {
  255. enum ChannelPosition *map = cpe_map && get_bits1(gb) ? cpe_map : sce_map; // stereo or mono map
  256. map[get_bits(gb, 4)] = type;
  257. }
  258. }
  259. /**
  260. * Decode program configuration element; reference: table 4.2.
  261. *
  262. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  263. *
  264. * @return Returns error status. 0 - OK, !0 - error
  265. */
  266. static int decode_pce(AVCodecContext *avctx, MPEG4AudioConfig *m4ac,
  267. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
  268. GetBitContext *gb)
  269. {
  270. int num_front, num_side, num_back, num_lfe, num_assoc_data, num_cc, sampling_index;
  271. int comment_len;
  272. skip_bits(gb, 2); // object_type
  273. sampling_index = get_bits(gb, 4);
  274. if (m4ac->sampling_index != sampling_index)
  275. av_log(avctx, AV_LOG_WARNING, "Sample rate index in program config element does not match the sample rate index configured by the container.\n");
  276. num_front = get_bits(gb, 4);
  277. num_side = get_bits(gb, 4);
  278. num_back = get_bits(gb, 4);
  279. num_lfe = get_bits(gb, 2);
  280. num_assoc_data = get_bits(gb, 3);
  281. num_cc = get_bits(gb, 4);
  282. if (get_bits1(gb))
  283. skip_bits(gb, 4); // mono_mixdown_tag
  284. if (get_bits1(gb))
  285. skip_bits(gb, 4); // stereo_mixdown_tag
  286. if (get_bits1(gb))
  287. skip_bits(gb, 3); // mixdown_coeff_index and pseudo_surround
  288. if (get_bits_left(gb) < 4 * (num_front + num_side + num_back + num_lfe + num_assoc_data + num_cc)) {
  289. av_log(avctx, AV_LOG_ERROR, overread_err);
  290. return -1;
  291. }
  292. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_FRONT, gb, num_front);
  293. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_SIDE, gb, num_side );
  294. decode_channel_map(new_che_pos[TYPE_CPE], new_che_pos[TYPE_SCE], AAC_CHANNEL_BACK, gb, num_back );
  295. decode_channel_map(NULL, new_che_pos[TYPE_LFE], AAC_CHANNEL_LFE, gb, num_lfe );
  296. skip_bits_long(gb, 4 * num_assoc_data);
  297. decode_channel_map(new_che_pos[TYPE_CCE], new_che_pos[TYPE_CCE], AAC_CHANNEL_CC, gb, num_cc );
  298. align_get_bits(gb);
  299. /* comment field, first byte is length */
  300. comment_len = get_bits(gb, 8) * 8;
  301. if (get_bits_left(gb) < comment_len) {
  302. av_log(avctx, AV_LOG_ERROR, overread_err);
  303. return -1;
  304. }
  305. skip_bits_long(gb, comment_len);
  306. return 0;
  307. }
  308. /**
  309. * Set up channel positions based on a default channel configuration
  310. * as specified in table 1.17.
  311. *
  312. * @param new_che_pos New channel position configuration - we only do something if it differs from the current one.
  313. *
  314. * @return Returns error status. 0 - OK, !0 - error
  315. */
  316. static av_cold int set_default_channel_config(AVCodecContext *avctx,
  317. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID],
  318. int channel_config)
  319. {
  320. if (channel_config < 1 || channel_config > 7) {
  321. av_log(avctx, AV_LOG_ERROR, "invalid default channel configuration (%d)\n",
  322. channel_config);
  323. return -1;
  324. }
  325. /* default channel configurations:
  326. *
  327. * 1ch : front center (mono)
  328. * 2ch : L + R (stereo)
  329. * 3ch : front center + L + R
  330. * 4ch : front center + L + R + back center
  331. * 5ch : front center + L + R + back stereo
  332. * 6ch : front center + L + R + back stereo + LFE
  333. * 7ch : front center + L + R + outer front left + outer front right + back stereo + LFE
  334. */
  335. if (channel_config != 2)
  336. new_che_pos[TYPE_SCE][0] = AAC_CHANNEL_FRONT; // front center (or mono)
  337. if (channel_config > 1)
  338. new_che_pos[TYPE_CPE][0] = AAC_CHANNEL_FRONT; // L + R (or stereo)
  339. if (channel_config == 4)
  340. new_che_pos[TYPE_SCE][1] = AAC_CHANNEL_BACK; // back center
  341. if (channel_config > 4)
  342. new_che_pos[TYPE_CPE][(channel_config == 7) + 1]
  343. = AAC_CHANNEL_BACK; // back stereo
  344. if (channel_config > 5)
  345. new_che_pos[TYPE_LFE][0] = AAC_CHANNEL_LFE; // LFE
  346. if (channel_config == 7)
  347. new_che_pos[TYPE_CPE][1] = AAC_CHANNEL_FRONT; // outer front left + outer front right
  348. return 0;
  349. }
  350. /**
  351. * Decode GA "General Audio" specific configuration; reference: table 4.1.
  352. *
  353. * @param ac pointer to AACContext, may be null
  354. * @param avctx pointer to AVCCodecContext, used for logging
  355. *
  356. * @return Returns error status. 0 - OK, !0 - error
  357. */
  358. static int decode_ga_specific_config(AACContext *ac, AVCodecContext *avctx,
  359. GetBitContext *gb,
  360. MPEG4AudioConfig *m4ac,
  361. int channel_config)
  362. {
  363. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  364. int extension_flag, ret;
  365. if (get_bits1(gb)) { // frameLengthFlag
  366. av_log_missing_feature(avctx, "960/120 MDCT window is", 1);
  367. return -1;
  368. }
  369. if (get_bits1(gb)) // dependsOnCoreCoder
  370. skip_bits(gb, 14); // coreCoderDelay
  371. extension_flag = get_bits1(gb);
  372. if (m4ac->object_type == AOT_AAC_SCALABLE ||
  373. m4ac->object_type == AOT_ER_AAC_SCALABLE)
  374. skip_bits(gb, 3); // layerNr
  375. memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  376. if (channel_config == 0) {
  377. skip_bits(gb, 4); // element_instance_tag
  378. if ((ret = decode_pce(avctx, m4ac, new_che_pos, gb)))
  379. return ret;
  380. } else {
  381. if ((ret = set_default_channel_config(avctx, new_che_pos, channel_config)))
  382. return ret;
  383. }
  384. if (ac && (ret = output_configure(ac, ac->che_pos, new_che_pos, channel_config, OC_GLOBAL_HDR)))
  385. return ret;
  386. if (extension_flag) {
  387. switch (m4ac->object_type) {
  388. case AOT_ER_BSAC:
  389. skip_bits(gb, 5); // numOfSubFrame
  390. skip_bits(gb, 11); // layer_length
  391. break;
  392. case AOT_ER_AAC_LC:
  393. case AOT_ER_AAC_LTP:
  394. case AOT_ER_AAC_SCALABLE:
  395. case AOT_ER_AAC_LD:
  396. skip_bits(gb, 3); /* aacSectionDataResilienceFlag
  397. * aacScalefactorDataResilienceFlag
  398. * aacSpectralDataResilienceFlag
  399. */
  400. break;
  401. }
  402. skip_bits1(gb); // extensionFlag3 (TBD in version 3)
  403. }
  404. return 0;
  405. }
  406. /**
  407. * Decode audio specific configuration; reference: table 1.13.
  408. *
  409. * @param ac pointer to AACContext, may be null
  410. * @param avctx pointer to AVCCodecContext, used for logging
  411. * @param m4ac pointer to MPEG4AudioConfig, used for parsing
  412. * @param data pointer to AVCodecContext extradata
  413. * @param data_size size of AVCCodecContext extradata
  414. *
  415. * @return Returns error status or number of consumed bits. <0 - error
  416. */
  417. static int decode_audio_specific_config(AACContext *ac,
  418. AVCodecContext *avctx,
  419. MPEG4AudioConfig *m4ac,
  420. const uint8_t *data, int data_size, int asclen)
  421. {
  422. GetBitContext gb;
  423. int i;
  424. av_dlog(avctx, "extradata size %d\n", avctx->extradata_size);
  425. for (i = 0; i < avctx->extradata_size; i++)
  426. av_dlog(avctx, "%02x ", avctx->extradata[i]);
  427. av_dlog(avctx, "\n");
  428. init_get_bits(&gb, data, data_size * 8);
  429. if ((i = avpriv_mpeg4audio_get_config(m4ac, data, asclen/8)) < 0)
  430. return -1;
  431. if (m4ac->sampling_index > 12) {
  432. av_log(avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", m4ac->sampling_index);
  433. return -1;
  434. }
  435. if (m4ac->sbr == 1 && m4ac->ps == -1)
  436. m4ac->ps = 1;
  437. skip_bits_long(&gb, i);
  438. switch (m4ac->object_type) {
  439. case AOT_AAC_MAIN:
  440. case AOT_AAC_LC:
  441. case AOT_AAC_LTP:
  442. if (decode_ga_specific_config(ac, avctx, &gb, m4ac, m4ac->chan_config))
  443. return -1;
  444. break;
  445. default:
  446. av_log(avctx, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n",
  447. m4ac->sbr == 1? "SBR+" : "", m4ac->object_type);
  448. return -1;
  449. }
  450. av_dlog(avctx, "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n",
  451. m4ac->object_type, m4ac->chan_config, m4ac->sampling_index,
  452. m4ac->sample_rate, m4ac->sbr, m4ac->ps);
  453. return get_bits_count(&gb);
  454. }
  455. /**
  456. * linear congruential pseudorandom number generator
  457. *
  458. * @param previous_val pointer to the current state of the generator
  459. *
  460. * @return Returns a 32-bit pseudorandom integer
  461. */
  462. static av_always_inline int lcg_random(int previous_val)
  463. {
  464. return previous_val * 1664525 + 1013904223;
  465. }
  466. static av_always_inline void reset_predict_state(PredictorState *ps)
  467. {
  468. ps->r0 = 0.0f;
  469. ps->r1 = 0.0f;
  470. ps->cor0 = 0.0f;
  471. ps->cor1 = 0.0f;
  472. ps->var0 = 1.0f;
  473. ps->var1 = 1.0f;
  474. }
  475. static void reset_all_predictors(PredictorState *ps)
  476. {
  477. int i;
  478. for (i = 0; i < MAX_PREDICTORS; i++)
  479. reset_predict_state(&ps[i]);
  480. }
  481. static int sample_rate_idx (int rate)
  482. {
  483. if (92017 <= rate) return 0;
  484. else if (75132 <= rate) return 1;
  485. else if (55426 <= rate) return 2;
  486. else if (46009 <= rate) return 3;
  487. else if (37566 <= rate) return 4;
  488. else if (27713 <= rate) return 5;
  489. else if (23004 <= rate) return 6;
  490. else if (18783 <= rate) return 7;
  491. else if (13856 <= rate) return 8;
  492. else if (11502 <= rate) return 9;
  493. else if (9391 <= rate) return 10;
  494. else return 11;
  495. }
  496. static void reset_predictor_group(PredictorState *ps, int group_num)
  497. {
  498. int i;
  499. for (i = group_num - 1; i < MAX_PREDICTORS; i += 30)
  500. reset_predict_state(&ps[i]);
  501. }
  502. #define AAC_INIT_VLC_STATIC(num, size) \
  503. INIT_VLC_STATIC(&vlc_spectral[num], 8, ff_aac_spectral_sizes[num], \
  504. ff_aac_spectral_bits[num], sizeof( ff_aac_spectral_bits[num][0]), sizeof( ff_aac_spectral_bits[num][0]), \
  505. ff_aac_spectral_codes[num], sizeof(ff_aac_spectral_codes[num][0]), sizeof(ff_aac_spectral_codes[num][0]), \
  506. size);
  507. static av_cold int aac_decode_init(AVCodecContext *avctx)
  508. {
  509. AACContext *ac = avctx->priv_data;
  510. float output_scale_factor;
  511. ac->avctx = avctx;
  512. ac->m4ac.sample_rate = avctx->sample_rate;
  513. if (avctx->extradata_size > 0) {
  514. if (decode_audio_specific_config(ac, ac->avctx, &ac->m4ac,
  515. avctx->extradata,
  516. avctx->extradata_size, 8*avctx->extradata_size) < 0)
  517. return -1;
  518. } else {
  519. int sr, i;
  520. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  521. sr = sample_rate_idx(avctx->sample_rate);
  522. ac->m4ac.sampling_index = sr;
  523. ac->m4ac.channels = avctx->channels;
  524. ac->m4ac.sbr = -1;
  525. ac->m4ac.ps = -1;
  526. for (i = 0; i < FF_ARRAY_ELEMS(ff_mpeg4audio_channels); i++)
  527. if (ff_mpeg4audio_channels[i] == avctx->channels)
  528. break;
  529. if (i == FF_ARRAY_ELEMS(ff_mpeg4audio_channels)) {
  530. i = 0;
  531. }
  532. ac->m4ac.chan_config = i;
  533. if (ac->m4ac.chan_config) {
  534. int ret = set_default_channel_config(avctx, new_che_pos, ac->m4ac.chan_config);
  535. if (!ret)
  536. output_configure(ac, ac->che_pos, new_che_pos, ac->m4ac.chan_config, OC_GLOBAL_HDR);
  537. else if (avctx->err_recognition & AV_EF_EXPLODE)
  538. return AVERROR_INVALIDDATA;
  539. }
  540. }
  541. if (avctx->request_sample_fmt == AV_SAMPLE_FMT_FLT) {
  542. avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  543. output_scale_factor = 1.0 / 32768.0;
  544. } else {
  545. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  546. output_scale_factor = 1.0;
  547. }
  548. AAC_INIT_VLC_STATIC( 0, 304);
  549. AAC_INIT_VLC_STATIC( 1, 270);
  550. AAC_INIT_VLC_STATIC( 2, 550);
  551. AAC_INIT_VLC_STATIC( 3, 300);
  552. AAC_INIT_VLC_STATIC( 4, 328);
  553. AAC_INIT_VLC_STATIC( 5, 294);
  554. AAC_INIT_VLC_STATIC( 6, 306);
  555. AAC_INIT_VLC_STATIC( 7, 268);
  556. AAC_INIT_VLC_STATIC( 8, 510);
  557. AAC_INIT_VLC_STATIC( 9, 366);
  558. AAC_INIT_VLC_STATIC(10, 462);
  559. ff_aac_sbr_init();
  560. dsputil_init(&ac->dsp, avctx);
  561. ff_fmt_convert_init(&ac->fmt_conv, avctx);
  562. ac->random_state = 0x1f2e3d4c;
  563. ff_aac_tableinit();
  564. INIT_VLC_STATIC(&vlc_scalefactors,7,FF_ARRAY_ELEMS(ff_aac_scalefactor_code),
  565. ff_aac_scalefactor_bits, sizeof(ff_aac_scalefactor_bits[0]), sizeof(ff_aac_scalefactor_bits[0]),
  566. ff_aac_scalefactor_code, sizeof(ff_aac_scalefactor_code[0]), sizeof(ff_aac_scalefactor_code[0]),
  567. 352);
  568. ff_mdct_init(&ac->mdct, 11, 1, output_scale_factor/1024.0);
  569. ff_mdct_init(&ac->mdct_small, 8, 1, output_scale_factor/128.0);
  570. ff_mdct_init(&ac->mdct_ltp, 11, 0, -2.0/output_scale_factor);
  571. // window initialization
  572. ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
  573. ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
  574. ff_init_ff_sine_windows(10);
  575. ff_init_ff_sine_windows( 7);
  576. cbrt_tableinit();
  577. return 0;
  578. }
  579. /**
  580. * Skip data_stream_element; reference: table 4.10.
  581. */
  582. static int skip_data_stream_element(AACContext *ac, GetBitContext *gb)
  583. {
  584. int byte_align = get_bits1(gb);
  585. int count = get_bits(gb, 8);
  586. if (count == 255)
  587. count += get_bits(gb, 8);
  588. if (byte_align)
  589. align_get_bits(gb);
  590. if (get_bits_left(gb) < 8 * count) {
  591. av_log(ac->avctx, AV_LOG_ERROR, overread_err);
  592. return -1;
  593. }
  594. skip_bits_long(gb, 8 * count);
  595. return 0;
  596. }
  597. static int decode_prediction(AACContext *ac, IndividualChannelStream *ics,
  598. GetBitContext *gb)
  599. {
  600. int sfb;
  601. if (get_bits1(gb)) {
  602. ics->predictor_reset_group = get_bits(gb, 5);
  603. if (ics->predictor_reset_group == 0 || ics->predictor_reset_group > 30) {
  604. av_log(ac->avctx, AV_LOG_ERROR, "Invalid Predictor Reset Group.\n");
  605. return -1;
  606. }
  607. }
  608. for (sfb = 0; sfb < FFMIN(ics->max_sfb, ff_aac_pred_sfb_max[ac->m4ac.sampling_index]); sfb++) {
  609. ics->prediction_used[sfb] = get_bits1(gb);
  610. }
  611. return 0;
  612. }
  613. /**
  614. * Decode Long Term Prediction data; reference: table 4.xx.
  615. */
  616. static void decode_ltp(AACContext *ac, LongTermPrediction *ltp,
  617. GetBitContext *gb, uint8_t max_sfb)
  618. {
  619. int sfb;
  620. ltp->lag = get_bits(gb, 11);
  621. ltp->coef = ltp_coef[get_bits(gb, 3)];
  622. for (sfb = 0; sfb < FFMIN(max_sfb, MAX_LTP_LONG_SFB); sfb++)
  623. ltp->used[sfb] = get_bits1(gb);
  624. }
  625. /**
  626. * Decode Individual Channel Stream info; reference: table 4.6.
  627. *
  628. * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
  629. */
  630. static int decode_ics_info(AACContext *ac, IndividualChannelStream *ics,
  631. GetBitContext *gb, int common_window)
  632. {
  633. if (get_bits1(gb)) {
  634. av_log(ac->avctx, AV_LOG_ERROR, "Reserved bit set.\n");
  635. memset(ics, 0, sizeof(IndividualChannelStream));
  636. return -1;
  637. }
  638. ics->window_sequence[1] = ics->window_sequence[0];
  639. ics->window_sequence[0] = get_bits(gb, 2);
  640. ics->use_kb_window[1] = ics->use_kb_window[0];
  641. ics->use_kb_window[0] = get_bits1(gb);
  642. ics->num_window_groups = 1;
  643. ics->group_len[0] = 1;
  644. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  645. int i;
  646. ics->max_sfb = get_bits(gb, 4);
  647. for (i = 0; i < 7; i++) {
  648. if (get_bits1(gb)) {
  649. ics->group_len[ics->num_window_groups - 1]++;
  650. } else {
  651. ics->num_window_groups++;
  652. ics->group_len[ics->num_window_groups - 1] = 1;
  653. }
  654. }
  655. ics->num_windows = 8;
  656. ics->swb_offset = ff_swb_offset_128[ac->m4ac.sampling_index];
  657. ics->num_swb = ff_aac_num_swb_128[ac->m4ac.sampling_index];
  658. ics->tns_max_bands = ff_tns_max_bands_128[ac->m4ac.sampling_index];
  659. ics->predictor_present = 0;
  660. } else {
  661. ics->max_sfb = get_bits(gb, 6);
  662. ics->num_windows = 1;
  663. ics->swb_offset = ff_swb_offset_1024[ac->m4ac.sampling_index];
  664. ics->num_swb = ff_aac_num_swb_1024[ac->m4ac.sampling_index];
  665. ics->tns_max_bands = ff_tns_max_bands_1024[ac->m4ac.sampling_index];
  666. ics->predictor_present = get_bits1(gb);
  667. ics->predictor_reset_group = 0;
  668. if (ics->predictor_present) {
  669. if (ac->m4ac.object_type == AOT_AAC_MAIN) {
  670. if (decode_prediction(ac, ics, gb)) {
  671. memset(ics, 0, sizeof(IndividualChannelStream));
  672. return -1;
  673. }
  674. } else if (ac->m4ac.object_type == AOT_AAC_LC) {
  675. av_log(ac->avctx, AV_LOG_ERROR, "Prediction is not allowed in AAC-LC.\n");
  676. memset(ics, 0, sizeof(IndividualChannelStream));
  677. return -1;
  678. } else {
  679. if ((ics->ltp.present = get_bits(gb, 1)))
  680. decode_ltp(ac, &ics->ltp, gb, ics->max_sfb);
  681. }
  682. }
  683. }
  684. if (ics->max_sfb > ics->num_swb) {
  685. av_log(ac->avctx, AV_LOG_ERROR,
  686. "Number of scalefactor bands in group (%d) exceeds limit (%d).\n",
  687. ics->max_sfb, ics->num_swb);
  688. memset(ics, 0, sizeof(IndividualChannelStream));
  689. return -1;
  690. }
  691. return 0;
  692. }
  693. /**
  694. * Decode band types (section_data payload); reference: table 4.46.
  695. *
  696. * @param band_type array of the used band type
  697. * @param band_type_run_end array of the last scalefactor band of a band type run
  698. *
  699. * @return Returns error status. 0 - OK, !0 - error
  700. */
  701. static int decode_band_types(AACContext *ac, enum BandType band_type[120],
  702. int band_type_run_end[120], GetBitContext *gb,
  703. IndividualChannelStream *ics)
  704. {
  705. int g, idx = 0;
  706. const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5;
  707. for (g = 0; g < ics->num_window_groups; g++) {
  708. int k = 0;
  709. while (k < ics->max_sfb) {
  710. uint8_t sect_end = k;
  711. int sect_len_incr;
  712. int sect_band_type = get_bits(gb, 4);
  713. if (sect_band_type == 12) {
  714. av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n");
  715. return -1;
  716. }
  717. while ((sect_len_incr = get_bits(gb, bits)) == (1 << bits) - 1)
  718. sect_end += sect_len_incr;
  719. sect_end += sect_len_incr;
  720. if (get_bits_left(gb) < 0) {
  721. av_log(ac->avctx, AV_LOG_ERROR, overread_err);
  722. return -1;
  723. }
  724. if (sect_end > ics->max_sfb) {
  725. av_log(ac->avctx, AV_LOG_ERROR,
  726. "Number of bands (%d) exceeds limit (%d).\n",
  727. sect_end, ics->max_sfb);
  728. return -1;
  729. }
  730. for (; k < sect_end; k++) {
  731. band_type [idx] = sect_band_type;
  732. band_type_run_end[idx++] = sect_end;
  733. }
  734. }
  735. }
  736. return 0;
  737. }
  738. /**
  739. * Decode scalefactors; reference: table 4.47.
  740. *
  741. * @param global_gain first scalefactor value as scalefactors are differentially coded
  742. * @param band_type array of the used band type
  743. * @param band_type_run_end array of the last scalefactor band of a band type run
  744. * @param sf array of scalefactors or intensity stereo positions
  745. *
  746. * @return Returns error status. 0 - OK, !0 - error
  747. */
  748. static int decode_scalefactors(AACContext *ac, float sf[120], GetBitContext *gb,
  749. unsigned int global_gain,
  750. IndividualChannelStream *ics,
  751. enum BandType band_type[120],
  752. int band_type_run_end[120])
  753. {
  754. int g, i, idx = 0;
  755. int offset[3] = { global_gain, global_gain - 90, 0 };
  756. int clipped_offset;
  757. int noise_flag = 1;
  758. static const char *sf_str[3] = { "Global gain", "Noise gain", "Intensity stereo position" };
  759. for (g = 0; g < ics->num_window_groups; g++) {
  760. for (i = 0; i < ics->max_sfb;) {
  761. int run_end = band_type_run_end[idx];
  762. if (band_type[idx] == ZERO_BT) {
  763. for (; i < run_end; i++, idx++)
  764. sf[idx] = 0.;
  765. } else if ((band_type[idx] == INTENSITY_BT) || (band_type[idx] == INTENSITY_BT2)) {
  766. for (; i < run_end; i++, idx++) {
  767. offset[2] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  768. clipped_offset = av_clip(offset[2], -155, 100);
  769. if (offset[2] != clipped_offset) {
  770. av_log_ask_for_sample(ac->avctx, "Intensity stereo "
  771. "position clipped (%d -> %d).\nIf you heard an "
  772. "audible artifact, there may be a bug in the "
  773. "decoder. ", offset[2], clipped_offset);
  774. }
  775. sf[idx] = ff_aac_pow2sf_tab[-clipped_offset + POW_SF2_ZERO];
  776. }
  777. } else if (band_type[idx] == NOISE_BT) {
  778. for (; i < run_end; i++, idx++) {
  779. if (noise_flag-- > 0)
  780. offset[1] += get_bits(gb, 9) - 256;
  781. else
  782. offset[1] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  783. clipped_offset = av_clip(offset[1], -100, 155);
  784. if (offset[1] != clipped_offset) {
  785. av_log_ask_for_sample(ac->avctx, "Noise gain clipped "
  786. "(%d -> %d).\nIf you heard an audible "
  787. "artifact, there may be a bug in the decoder. ",
  788. offset[1], clipped_offset);
  789. }
  790. sf[idx] = -ff_aac_pow2sf_tab[clipped_offset + POW_SF2_ZERO];
  791. }
  792. } else {
  793. for (; i < run_end; i++, idx++) {
  794. offset[0] += get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  795. if (offset[0] > 255U) {
  796. av_log(ac->avctx, AV_LOG_ERROR,
  797. "%s (%d) out of range.\n", sf_str[0], offset[0]);
  798. return -1;
  799. }
  800. sf[idx] = -ff_aac_pow2sf_tab[offset[0] - 100 + POW_SF2_ZERO];
  801. }
  802. }
  803. }
  804. }
  805. return 0;
  806. }
  807. /**
  808. * Decode pulse data; reference: table 4.7.
  809. */
  810. static int decode_pulses(Pulse *pulse, GetBitContext *gb,
  811. const uint16_t *swb_offset, int num_swb)
  812. {
  813. int i, pulse_swb;
  814. pulse->num_pulse = get_bits(gb, 2) + 1;
  815. pulse_swb = get_bits(gb, 6);
  816. if (pulse_swb >= num_swb)
  817. return -1;
  818. pulse->pos[0] = swb_offset[pulse_swb];
  819. pulse->pos[0] += get_bits(gb, 5);
  820. if (pulse->pos[0] > 1023)
  821. return -1;
  822. pulse->amp[0] = get_bits(gb, 4);
  823. for (i = 1; i < pulse->num_pulse; i++) {
  824. pulse->pos[i] = get_bits(gb, 5) + pulse->pos[i - 1];
  825. if (pulse->pos[i] > 1023)
  826. return -1;
  827. pulse->amp[i] = get_bits(gb, 4);
  828. }
  829. return 0;
  830. }
  831. /**
  832. * Decode Temporal Noise Shaping data; reference: table 4.48.
  833. *
  834. * @return Returns error status. 0 - OK, !0 - error
  835. */
  836. static int decode_tns(AACContext *ac, TemporalNoiseShaping *tns,
  837. GetBitContext *gb, const IndividualChannelStream *ics)
  838. {
  839. int w, filt, i, coef_len, coef_res, coef_compress;
  840. const int is8 = ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE;
  841. const int tns_max_order = is8 ? 7 : ac->m4ac.object_type == AOT_AAC_MAIN ? 20 : 12;
  842. for (w = 0; w < ics->num_windows; w++) {
  843. if ((tns->n_filt[w] = get_bits(gb, 2 - is8))) {
  844. coef_res = get_bits1(gb);
  845. for (filt = 0; filt < tns->n_filt[w]; filt++) {
  846. int tmp2_idx;
  847. tns->length[w][filt] = get_bits(gb, 6 - 2 * is8);
  848. if ((tns->order[w][filt] = get_bits(gb, 5 - 2 * is8)) > tns_max_order) {
  849. av_log(ac->avctx, AV_LOG_ERROR, "TNS filter order %d is greater than maximum %d.\n",
  850. tns->order[w][filt], tns_max_order);
  851. tns->order[w][filt] = 0;
  852. return -1;
  853. }
  854. if (tns->order[w][filt]) {
  855. tns->direction[w][filt] = get_bits1(gb);
  856. coef_compress = get_bits1(gb);
  857. coef_len = coef_res + 3 - coef_compress;
  858. tmp2_idx = 2 * coef_compress + coef_res;
  859. for (i = 0; i < tns->order[w][filt]; i++)
  860. tns->coef[w][filt][i] = tns_tmp2_map[tmp2_idx][get_bits(gb, coef_len)];
  861. }
  862. }
  863. }
  864. }
  865. return 0;
  866. }
  867. /**
  868. * Decode Mid/Side data; reference: table 4.54.
  869. *
  870. * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
  871. * [1] mask is decoded from bitstream; [2] mask is all 1s;
  872. * [3] reserved for scalable AAC
  873. */
  874. static void decode_mid_side_stereo(ChannelElement *cpe, GetBitContext *gb,
  875. int ms_present)
  876. {
  877. int idx;
  878. if (ms_present == 1) {
  879. for (idx = 0; idx < cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb; idx++)
  880. cpe->ms_mask[idx] = get_bits1(gb);
  881. } else if (ms_present == 2) {
  882. memset(cpe->ms_mask, 1, cpe->ch[0].ics.num_window_groups * cpe->ch[0].ics.max_sfb * sizeof(cpe->ms_mask[0]));
  883. }
  884. }
  885. #ifndef VMUL2
  886. static inline float *VMUL2(float *dst, const float *v, unsigned idx,
  887. const float *scale)
  888. {
  889. float s = *scale;
  890. *dst++ = v[idx & 15] * s;
  891. *dst++ = v[idx>>4 & 15] * s;
  892. return dst;
  893. }
  894. #endif
  895. #ifndef VMUL4
  896. static inline float *VMUL4(float *dst, const float *v, unsigned idx,
  897. const float *scale)
  898. {
  899. float s = *scale;
  900. *dst++ = v[idx & 3] * s;
  901. *dst++ = v[idx>>2 & 3] * s;
  902. *dst++ = v[idx>>4 & 3] * s;
  903. *dst++ = v[idx>>6 & 3] * s;
  904. return dst;
  905. }
  906. #endif
  907. #ifndef VMUL2S
  908. static inline float *VMUL2S(float *dst, const float *v, unsigned idx,
  909. unsigned sign, const float *scale)
  910. {
  911. union float754 s0, s1;
  912. s0.f = s1.f = *scale;
  913. s0.i ^= sign >> 1 << 31;
  914. s1.i ^= sign << 31;
  915. *dst++ = v[idx & 15] * s0.f;
  916. *dst++ = v[idx>>4 & 15] * s1.f;
  917. return dst;
  918. }
  919. #endif
  920. #ifndef VMUL4S
  921. static inline float *VMUL4S(float *dst, const float *v, unsigned idx,
  922. unsigned sign, const float *scale)
  923. {
  924. unsigned nz = idx >> 12;
  925. union float754 s = { .f = *scale };
  926. union float754 t;
  927. t.i = s.i ^ (sign & 1U<<31);
  928. *dst++ = v[idx & 3] * t.f;
  929. sign <<= nz & 1; nz >>= 1;
  930. t.i = s.i ^ (sign & 1U<<31);
  931. *dst++ = v[idx>>2 & 3] * t.f;
  932. sign <<= nz & 1; nz >>= 1;
  933. t.i = s.i ^ (sign & 1U<<31);
  934. *dst++ = v[idx>>4 & 3] * t.f;
  935. sign <<= nz & 1; nz >>= 1;
  936. t.i = s.i ^ (sign & 1U<<31);
  937. *dst++ = v[idx>>6 & 3] * t.f;
  938. return dst;
  939. }
  940. #endif
  941. /**
  942. * Decode spectral data; reference: table 4.50.
  943. * Dequantize and scale spectral data; reference: 4.6.3.3.
  944. *
  945. * @param coef array of dequantized, scaled spectral data
  946. * @param sf array of scalefactors or intensity stereo positions
  947. * @param pulse_present set if pulses are present
  948. * @param pulse pointer to pulse data struct
  949. * @param band_type array of the used band type
  950. *
  951. * @return Returns error status. 0 - OK, !0 - error
  952. */
  953. static int decode_spectrum_and_dequant(AACContext *ac, float coef[1024],
  954. GetBitContext *gb, const float sf[120],
  955. int pulse_present, const Pulse *pulse,
  956. const IndividualChannelStream *ics,
  957. enum BandType band_type[120])
  958. {
  959. int i, k, g, idx = 0;
  960. const int c = 1024 / ics->num_windows;
  961. const uint16_t *offsets = ics->swb_offset;
  962. float *coef_base = coef;
  963. for (g = 0; g < ics->num_windows; g++)
  964. memset(coef + g * 128 + offsets[ics->max_sfb], 0, sizeof(float) * (c - offsets[ics->max_sfb]));
  965. for (g = 0; g < ics->num_window_groups; g++) {
  966. unsigned g_len = ics->group_len[g];
  967. for (i = 0; i < ics->max_sfb; i++, idx++) {
  968. const unsigned cbt_m1 = band_type[idx] - 1;
  969. float *cfo = coef + offsets[i];
  970. int off_len = offsets[i + 1] - offsets[i];
  971. int group;
  972. if (cbt_m1 >= INTENSITY_BT2 - 1) {
  973. for (group = 0; group < g_len; group++, cfo+=128) {
  974. memset(cfo, 0, off_len * sizeof(float));
  975. }
  976. } else if (cbt_m1 == NOISE_BT - 1) {
  977. for (group = 0; group < g_len; group++, cfo+=128) {
  978. float scale;
  979. float band_energy;
  980. for (k = 0; k < off_len; k++) {
  981. ac->random_state = lcg_random(ac->random_state);
  982. cfo[k] = ac->random_state;
  983. }
  984. band_energy = ac->dsp.scalarproduct_float(cfo, cfo, off_len);
  985. scale = sf[idx] / sqrtf(band_energy);
  986. ac->dsp.vector_fmul_scalar(cfo, cfo, scale, off_len);
  987. }
  988. } else {
  989. const float *vq = ff_aac_codebook_vector_vals[cbt_m1];
  990. const uint16_t *cb_vector_idx = ff_aac_codebook_vector_idx[cbt_m1];
  991. VLC_TYPE (*vlc_tab)[2] = vlc_spectral[cbt_m1].table;
  992. OPEN_READER(re, gb);
  993. switch (cbt_m1 >> 1) {
  994. case 0:
  995. for (group = 0; group < g_len; group++, cfo+=128) {
  996. float *cf = cfo;
  997. int len = off_len;
  998. do {
  999. int code;
  1000. unsigned cb_idx;
  1001. UPDATE_CACHE(re, gb);
  1002. GET_VLC(code, re, gb, vlc_tab, 8, 2);
  1003. cb_idx = cb_vector_idx[code];
  1004. cf = VMUL4(cf, vq, cb_idx, sf + idx);
  1005. } while (len -= 4);
  1006. }
  1007. break;
  1008. case 1:
  1009. for (group = 0; group < g_len; group++, cfo+=128) {
  1010. float *cf = cfo;
  1011. int len = off_len;
  1012. do {
  1013. int code;
  1014. unsigned nnz;
  1015. unsigned cb_idx;
  1016. uint32_t bits;
  1017. UPDATE_CACHE(re, gb);
  1018. GET_VLC(code, re, gb, vlc_tab, 8, 2);
  1019. cb_idx = cb_vector_idx[code];
  1020. nnz = cb_idx >> 8 & 15;
  1021. bits = nnz ? GET_CACHE(re, gb) : 0;
  1022. LAST_SKIP_BITS(re, gb, nnz);
  1023. cf = VMUL4S(cf, vq, cb_idx, bits, sf + idx);
  1024. } while (len -= 4);
  1025. }
  1026. break;
  1027. case 2:
  1028. for (group = 0; group < g_len; group++, cfo+=128) {
  1029. float *cf = cfo;
  1030. int len = off_len;
  1031. do {
  1032. int code;
  1033. unsigned cb_idx;
  1034. UPDATE_CACHE(re, gb);
  1035. GET_VLC(code, re, gb, vlc_tab, 8, 2);
  1036. cb_idx = cb_vector_idx[code];
  1037. cf = VMUL2(cf, vq, cb_idx, sf + idx);
  1038. } while (len -= 2);
  1039. }
  1040. break;
  1041. case 3:
  1042. case 4:
  1043. for (group = 0; group < g_len; group++, cfo+=128) {
  1044. float *cf = cfo;
  1045. int len = off_len;
  1046. do {
  1047. int code;
  1048. unsigned nnz;
  1049. unsigned cb_idx;
  1050. unsigned sign;
  1051. UPDATE_CACHE(re, gb);
  1052. GET_VLC(code, re, gb, vlc_tab, 8, 2);
  1053. cb_idx = cb_vector_idx[code];
  1054. nnz = cb_idx >> 8 & 15;
  1055. sign = nnz ? SHOW_UBITS(re, gb, nnz) << (cb_idx >> 12) : 0;
  1056. LAST_SKIP_BITS(re, gb, nnz);
  1057. cf = VMUL2S(cf, vq, cb_idx, sign, sf + idx);
  1058. } while (len -= 2);
  1059. }
  1060. break;
  1061. default:
  1062. for (group = 0; group < g_len; group++, cfo+=128) {
  1063. float *cf = cfo;
  1064. uint32_t *icf = (uint32_t *) cf;
  1065. int len = off_len;
  1066. do {
  1067. int code;
  1068. unsigned nzt, nnz;
  1069. unsigned cb_idx;
  1070. uint32_t bits;
  1071. int j;
  1072. UPDATE_CACHE(re, gb);
  1073. GET_VLC(code, re, gb, vlc_tab, 8, 2);
  1074. if (!code) {
  1075. *icf++ = 0;
  1076. *icf++ = 0;
  1077. continue;
  1078. }
  1079. cb_idx = cb_vector_idx[code];
  1080. nnz = cb_idx >> 12;
  1081. nzt = cb_idx >> 8;
  1082. bits = SHOW_UBITS(re, gb, nnz) << (32-nnz);
  1083. LAST_SKIP_BITS(re, gb, nnz);
  1084. for (j = 0; j < 2; j++) {
  1085. if (nzt & 1<<j) {
  1086. uint32_t b;
  1087. int n;
  1088. /* The total length of escape_sequence must be < 22 bits according
  1089. to the specification (i.e. max is 111111110xxxxxxxxxxxx). */
  1090. UPDATE_CACHE(re, gb);
  1091. b = GET_CACHE(re, gb);
  1092. b = 31 - av_log2(~b);
  1093. if (b > 8) {
  1094. av_log(ac->avctx, AV_LOG_ERROR, "error in spectral data, ESC overflow\n");
  1095. return -1;
  1096. }
  1097. SKIP_BITS(re, gb, b + 1);
  1098. b += 4;
  1099. n = (1 << b) + SHOW_UBITS(re, gb, b);
  1100. LAST_SKIP_BITS(re, gb, b);
  1101. *icf++ = cbrt_tab[n] | (bits & 1U<<31);
  1102. bits <<= 1;
  1103. } else {
  1104. unsigned v = ((const uint32_t*)vq)[cb_idx & 15];
  1105. *icf++ = (bits & 1U<<31) | v;
  1106. bits <<= !!v;
  1107. }
  1108. cb_idx >>= 4;
  1109. }
  1110. } while (len -= 2);
  1111. ac->dsp.vector_fmul_scalar(cfo, cfo, sf[idx], off_len);
  1112. }
  1113. }
  1114. CLOSE_READER(re, gb);
  1115. }
  1116. }
  1117. coef += g_len << 7;
  1118. }
  1119. if (pulse_present) {
  1120. idx = 0;
  1121. for (i = 0; i < pulse->num_pulse; i++) {
  1122. float co = coef_base[ pulse->pos[i] ];
  1123. while (offsets[idx + 1] <= pulse->pos[i])
  1124. idx++;
  1125. if (band_type[idx] != NOISE_BT && sf[idx]) {
  1126. float ico = -pulse->amp[i];
  1127. if (co) {
  1128. co /= sf[idx];
  1129. ico = co / sqrtf(sqrtf(fabsf(co))) + (co > 0 ? -ico : ico);
  1130. }
  1131. coef_base[ pulse->pos[i] ] = cbrtf(fabsf(ico)) * ico * sf[idx];
  1132. }
  1133. }
  1134. }
  1135. return 0;
  1136. }
  1137. static av_always_inline float flt16_round(float pf)
  1138. {
  1139. union float754 tmp;
  1140. tmp.f = pf;
  1141. tmp.i = (tmp.i + 0x00008000U) & 0xFFFF0000U;
  1142. return tmp.f;
  1143. }
  1144. static av_always_inline float flt16_even(float pf)
  1145. {
  1146. union float754 tmp;
  1147. tmp.f = pf;
  1148. tmp.i = (tmp.i + 0x00007FFFU + (tmp.i & 0x00010000U >> 16)) & 0xFFFF0000U;
  1149. return tmp.f;
  1150. }
  1151. static av_always_inline float flt16_trunc(float pf)
  1152. {
  1153. union float754 pun;
  1154. pun.f = pf;
  1155. pun.i &= 0xFFFF0000U;
  1156. return pun.f;
  1157. }
  1158. static av_always_inline void predict(PredictorState *ps, float *coef,
  1159. int output_enable)
  1160. {
  1161. const float a = 0.953125; // 61.0 / 64
  1162. const float alpha = 0.90625; // 29.0 / 32
  1163. float e0, e1;
  1164. float pv;
  1165. float k1, k2;
  1166. float r0 = ps->r0, r1 = ps->r1;
  1167. float cor0 = ps->cor0, cor1 = ps->cor1;
  1168. float var0 = ps->var0, var1 = ps->var1;
  1169. k1 = var0 > 1 ? cor0 * flt16_even(a / var0) : 0;
  1170. k2 = var1 > 1 ? cor1 * flt16_even(a / var1) : 0;
  1171. pv = flt16_round(k1 * r0 + k2 * r1);
  1172. if (output_enable)
  1173. *coef += pv;
  1174. e0 = *coef;
  1175. e1 = e0 - k1 * r0;
  1176. ps->cor1 = flt16_trunc(alpha * cor1 + r1 * e1);
  1177. ps->var1 = flt16_trunc(alpha * var1 + 0.5f * (r1 * r1 + e1 * e1));
  1178. ps->cor0 = flt16_trunc(alpha * cor0 + r0 * e0);
  1179. ps->var0 = flt16_trunc(alpha * var0 + 0.5f * (r0 * r0 + e0 * e0));
  1180. ps->r1 = flt16_trunc(a * (r0 - k1 * e0));
  1181. ps->r0 = flt16_trunc(a * e0);
  1182. }
  1183. /**
  1184. * Apply AAC-Main style frequency domain prediction.
  1185. */
  1186. static void apply_prediction(AACContext *ac, SingleChannelElement *sce)
  1187. {
  1188. int sfb, k;
  1189. if (!sce->ics.predictor_initialized) {
  1190. reset_all_predictors(sce->predictor_state);
  1191. sce->ics.predictor_initialized = 1;
  1192. }
  1193. if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
  1194. for (sfb = 0; sfb < ff_aac_pred_sfb_max[ac->m4ac.sampling_index]; sfb++) {
  1195. for (k = sce->ics.swb_offset[sfb]; k < sce->ics.swb_offset[sfb + 1]; k++) {
  1196. predict(&sce->predictor_state[k], &sce->coeffs[k],
  1197. sce->ics.predictor_present && sce->ics.prediction_used[sfb]);
  1198. }
  1199. }
  1200. if (sce->ics.predictor_reset_group)
  1201. reset_predictor_group(sce->predictor_state, sce->ics.predictor_reset_group);
  1202. } else
  1203. reset_all_predictors(sce->predictor_state);
  1204. }
  1205. /**
  1206. * Decode an individual_channel_stream payload; reference: table 4.44.
  1207. *
  1208. * @param common_window Channels have independent [0], or shared [1], Individual Channel Stream information.
  1209. * @param scale_flag scalable [1] or non-scalable [0] AAC (Unused until scalable AAC is implemented.)
  1210. *
  1211. * @return Returns error status. 0 - OK, !0 - error
  1212. */
  1213. static int decode_ics(AACContext *ac, SingleChannelElement *sce,
  1214. GetBitContext *gb, int common_window, int scale_flag)
  1215. {
  1216. Pulse pulse;
  1217. TemporalNoiseShaping *tns = &sce->tns;
  1218. IndividualChannelStream *ics = &sce->ics;
  1219. float *out = sce->coeffs;
  1220. int global_gain, pulse_present = 0;
  1221. /* This assignment is to silence a GCC warning about the variable being used
  1222. * uninitialized when in fact it always is.
  1223. */
  1224. pulse.num_pulse = 0;
  1225. global_gain = get_bits(gb, 8);
  1226. if (!common_window && !scale_flag) {
  1227. if (decode_ics_info(ac, ics, gb, 0) < 0)
  1228. return -1;
  1229. }
  1230. if (decode_band_types(ac, sce->band_type, sce->band_type_run_end, gb, ics) < 0)
  1231. return -1;
  1232. if (decode_scalefactors(ac, sce->sf, gb, global_gain, ics, sce->band_type, sce->band_type_run_end) < 0)
  1233. return -1;
  1234. pulse_present = 0;
  1235. if (!scale_flag) {
  1236. if ((pulse_present = get_bits1(gb))) {
  1237. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1238. av_log(ac->avctx, AV_LOG_ERROR, "Pulse tool not allowed in eight short sequence.\n");
  1239. return -1;
  1240. }
  1241. if (decode_pulses(&pulse, gb, ics->swb_offset, ics->num_swb)) {
  1242. av_log(ac->avctx, AV_LOG_ERROR, "Pulse data corrupt or invalid.\n");
  1243. return -1;
  1244. }
  1245. }
  1246. if ((tns->present = get_bits1(gb)) && decode_tns(ac, tns, gb, ics))
  1247. return -1;
  1248. if (get_bits1(gb)) {
  1249. av_log_missing_feature(ac->avctx, "SSR", 1);
  1250. return -1;
  1251. }
  1252. }
  1253. if (decode_spectrum_and_dequant(ac, out, gb, sce->sf, pulse_present, &pulse, ics, sce->band_type) < 0)
  1254. return -1;
  1255. if (ac->m4ac.object_type == AOT_AAC_MAIN && !common_window)
  1256. apply_prediction(ac, sce);
  1257. return 0;
  1258. }
  1259. /**
  1260. * Mid/Side stereo decoding; reference: 4.6.8.1.3.
  1261. */
  1262. static void apply_mid_side_stereo(AACContext *ac, ChannelElement *cpe)
  1263. {
  1264. const IndividualChannelStream *ics = &cpe->ch[0].ics;
  1265. float *ch0 = cpe->ch[0].coeffs;
  1266. float *ch1 = cpe->ch[1].coeffs;
  1267. int g, i, group, idx = 0;
  1268. const uint16_t *offsets = ics->swb_offset;
  1269. for (g = 0; g < ics->num_window_groups; g++) {
  1270. for (i = 0; i < ics->max_sfb; i++, idx++) {
  1271. if (cpe->ms_mask[idx] &&
  1272. cpe->ch[0].band_type[idx] < NOISE_BT && cpe->ch[1].band_type[idx] < NOISE_BT) {
  1273. for (group = 0; group < ics->group_len[g]; group++) {
  1274. ac->dsp.butterflies_float(ch0 + group * 128 + offsets[i],
  1275. ch1 + group * 128 + offsets[i],
  1276. offsets[i+1] - offsets[i]);
  1277. }
  1278. }
  1279. }
  1280. ch0 += ics->group_len[g] * 128;
  1281. ch1 += ics->group_len[g] * 128;
  1282. }
  1283. }
  1284. /**
  1285. * intensity stereo decoding; reference: 4.6.8.2.3
  1286. *
  1287. * @param ms_present Indicates mid/side stereo presence. [0] mask is all 0s;
  1288. * [1] mask is decoded from bitstream; [2] mask is all 1s;
  1289. * [3] reserved for scalable AAC
  1290. */
  1291. static void apply_intensity_stereo(AACContext *ac, ChannelElement *cpe, int ms_present)
  1292. {
  1293. const IndividualChannelStream *ics = &cpe->ch[1].ics;
  1294. SingleChannelElement *sce1 = &cpe->ch[1];
  1295. float *coef0 = cpe->ch[0].coeffs, *coef1 = cpe->ch[1].coeffs;
  1296. const uint16_t *offsets = ics->swb_offset;
  1297. int g, group, i, idx = 0;
  1298. int c;
  1299. float scale;
  1300. for (g = 0; g < ics->num_window_groups; g++) {
  1301. for (i = 0; i < ics->max_sfb;) {
  1302. if (sce1->band_type[idx] == INTENSITY_BT || sce1->band_type[idx] == INTENSITY_BT2) {
  1303. const int bt_run_end = sce1->band_type_run_end[idx];
  1304. for (; i < bt_run_end; i++, idx++) {
  1305. c = -1 + 2 * (sce1->band_type[idx] - 14);
  1306. if (ms_present)
  1307. c *= 1 - 2 * cpe->ms_mask[idx];
  1308. scale = c * sce1->sf[idx];
  1309. for (group = 0; group < ics->group_len[g]; group++)
  1310. ac->dsp.vector_fmul_scalar(coef1 + group * 128 + offsets[i],
  1311. coef0 + group * 128 + offsets[i],
  1312. scale,
  1313. offsets[i + 1] - offsets[i]);
  1314. }
  1315. } else {
  1316. int bt_run_end = sce1->band_type_run_end[idx];
  1317. idx += bt_run_end - i;
  1318. i = bt_run_end;
  1319. }
  1320. }
  1321. coef0 += ics->group_len[g] * 128;
  1322. coef1 += ics->group_len[g] * 128;
  1323. }
  1324. }
  1325. /**
  1326. * Decode a channel_pair_element; reference: table 4.4.
  1327. *
  1328. * @return Returns error status. 0 - OK, !0 - error
  1329. */
  1330. static int decode_cpe(AACContext *ac, GetBitContext *gb, ChannelElement *cpe)
  1331. {
  1332. int i, ret, common_window, ms_present = 0;
  1333. common_window = get_bits1(gb);
  1334. if (common_window) {
  1335. if (decode_ics_info(ac, &cpe->ch[0].ics, gb, 1))
  1336. return -1;
  1337. i = cpe->ch[1].ics.use_kb_window[0];
  1338. cpe->ch[1].ics = cpe->ch[0].ics;
  1339. cpe->ch[1].ics.use_kb_window[1] = i;
  1340. if (cpe->ch[1].ics.predictor_present && (ac->m4ac.object_type != AOT_AAC_MAIN))
  1341. if ((cpe->ch[1].ics.ltp.present = get_bits(gb, 1)))
  1342. decode_ltp(ac, &cpe->ch[1].ics.ltp, gb, cpe->ch[1].ics.max_sfb);
  1343. ms_present = get_bits(gb, 2);
  1344. if (ms_present == 3) {
  1345. av_log(ac->avctx, AV_LOG_ERROR, "ms_present = 3 is reserved.\n");
  1346. return -1;
  1347. } else if (ms_present)
  1348. decode_mid_side_stereo(cpe, gb, ms_present);
  1349. }
  1350. if ((ret = decode_ics(ac, &cpe->ch[0], gb, common_window, 0)))
  1351. return ret;
  1352. if ((ret = decode_ics(ac, &cpe->ch[1], gb, common_window, 0)))
  1353. return ret;
  1354. if (common_window) {
  1355. if (ms_present)
  1356. apply_mid_side_stereo(ac, cpe);
  1357. if (ac->m4ac.object_type == AOT_AAC_MAIN) {
  1358. apply_prediction(ac, &cpe->ch[0]);
  1359. apply_prediction(ac, &cpe->ch[1]);
  1360. }
  1361. }
  1362. apply_intensity_stereo(ac, cpe, ms_present);
  1363. return 0;
  1364. }
  1365. static const float cce_scale[] = {
  1366. 1.09050773266525765921, //2^(1/8)
  1367. 1.18920711500272106672, //2^(1/4)
  1368. M_SQRT2,
  1369. 2,
  1370. };
  1371. /**
  1372. * Decode coupling_channel_element; reference: table 4.8.
  1373. *
  1374. * @return Returns error status. 0 - OK, !0 - error
  1375. */
  1376. static int decode_cce(AACContext *ac, GetBitContext *gb, ChannelElement *che)
  1377. {
  1378. int num_gain = 0;
  1379. int c, g, sfb, ret;
  1380. int sign;
  1381. float scale;
  1382. SingleChannelElement *sce = &che->ch[0];
  1383. ChannelCoupling *coup = &che->coup;
  1384. coup->coupling_point = 2 * get_bits1(gb);
  1385. coup->num_coupled = get_bits(gb, 3);
  1386. for (c = 0; c <= coup->num_coupled; c++) {
  1387. num_gain++;
  1388. coup->type[c] = get_bits1(gb) ? TYPE_CPE : TYPE_SCE;
  1389. coup->id_select[c] = get_bits(gb, 4);
  1390. if (coup->type[c] == TYPE_CPE) {
  1391. coup->ch_select[c] = get_bits(gb, 2);
  1392. if (coup->ch_select[c] == 3)
  1393. num_gain++;
  1394. } else
  1395. coup->ch_select[c] = 2;
  1396. }
  1397. coup->coupling_point += get_bits1(gb) || (coup->coupling_point >> 1);
  1398. sign = get_bits(gb, 1);
  1399. scale = cce_scale[get_bits(gb, 2)];
  1400. if ((ret = decode_ics(ac, sce, gb, 0, 0)))
  1401. return ret;
  1402. for (c = 0; c < num_gain; c++) {
  1403. int idx = 0;
  1404. int cge = 1;
  1405. int gain = 0;
  1406. float gain_cache = 1.;
  1407. if (c) {
  1408. cge = coup->coupling_point == AFTER_IMDCT ? 1 : get_bits1(gb);
  1409. gain = cge ? get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60: 0;
  1410. gain_cache = powf(scale, -gain);
  1411. }
  1412. if (coup->coupling_point == AFTER_IMDCT) {
  1413. coup->gain[c][0] = gain_cache;
  1414. } else {
  1415. for (g = 0; g < sce->ics.num_window_groups; g++) {
  1416. for (sfb = 0; sfb < sce->ics.max_sfb; sfb++, idx++) {
  1417. if (sce->band_type[idx] != ZERO_BT) {
  1418. if (!cge) {
  1419. int t = get_vlc2(gb, vlc_scalefactors.table, 7, 3) - 60;
  1420. if (t) {
  1421. int s = 1;
  1422. t = gain += t;
  1423. if (sign) {
  1424. s -= 2 * (t & 0x1);
  1425. t >>= 1;
  1426. }
  1427. gain_cache = powf(scale, -t) * s;
  1428. }
  1429. }
  1430. coup->gain[c][idx] = gain_cache;
  1431. }
  1432. }
  1433. }
  1434. }
  1435. }
  1436. return 0;
  1437. }
  1438. /**
  1439. * Parse whether channels are to be excluded from Dynamic Range Compression; reference: table 4.53.
  1440. *
  1441. * @return Returns number of bytes consumed.
  1442. */
  1443. static int decode_drc_channel_exclusions(DynamicRangeControl *che_drc,
  1444. GetBitContext *gb)
  1445. {
  1446. int i;
  1447. int num_excl_chan = 0;
  1448. do {
  1449. for (i = 0; i < 7; i++)
  1450. che_drc->exclude_mask[num_excl_chan++] = get_bits1(gb);
  1451. } while (num_excl_chan < MAX_CHANNELS - 7 && get_bits1(gb));
  1452. return num_excl_chan / 7;
  1453. }
  1454. /**
  1455. * Decode dynamic range information; reference: table 4.52.
  1456. *
  1457. * @param cnt length of TYPE_FIL syntactic element in bytes
  1458. *
  1459. * @return Returns number of bytes consumed.
  1460. */
  1461. static int decode_dynamic_range(DynamicRangeControl *che_drc,
  1462. GetBitContext *gb, int cnt)
  1463. {
  1464. int n = 1;
  1465. int drc_num_bands = 1;
  1466. int i;
  1467. /* pce_tag_present? */
  1468. if (get_bits1(gb)) {
  1469. che_drc->pce_instance_tag = get_bits(gb, 4);
  1470. skip_bits(gb, 4); // tag_reserved_bits
  1471. n++;
  1472. }
  1473. /* excluded_chns_present? */
  1474. if (get_bits1(gb)) {
  1475. n += decode_drc_channel_exclusions(che_drc, gb);
  1476. }
  1477. /* drc_bands_present? */
  1478. if (get_bits1(gb)) {
  1479. che_drc->band_incr = get_bits(gb, 4);
  1480. che_drc->interpolation_scheme = get_bits(gb, 4);
  1481. n++;
  1482. drc_num_bands += che_drc->band_incr;
  1483. for (i = 0; i < drc_num_bands; i++) {
  1484. che_drc->band_top[i] = get_bits(gb, 8);
  1485. n++;
  1486. }
  1487. }
  1488. /* prog_ref_level_present? */
  1489. if (get_bits1(gb)) {
  1490. che_drc->prog_ref_level = get_bits(gb, 7);
  1491. skip_bits1(gb); // prog_ref_level_reserved_bits
  1492. n++;
  1493. }
  1494. for (i = 0; i < drc_num_bands; i++) {
  1495. che_drc->dyn_rng_sgn[i] = get_bits1(gb);
  1496. che_drc->dyn_rng_ctl[i] = get_bits(gb, 7);
  1497. n++;
  1498. }
  1499. return n;
  1500. }
  1501. /**
  1502. * Decode extension data (incomplete); reference: table 4.51.
  1503. *
  1504. * @param cnt length of TYPE_FIL syntactic element in bytes
  1505. *
  1506. * @return Returns number of bytes consumed
  1507. */
  1508. static int decode_extension_payload(AACContext *ac, GetBitContext *gb, int cnt,
  1509. ChannelElement *che, enum RawDataBlockType elem_type)
  1510. {
  1511. int crc_flag = 0;
  1512. int res = cnt;
  1513. switch (get_bits(gb, 4)) { // extension type
  1514. case EXT_SBR_DATA_CRC:
  1515. crc_flag++;
  1516. case EXT_SBR_DATA:
  1517. if (!che) {
  1518. av_log(ac->avctx, AV_LOG_ERROR, "SBR was found before the first channel element.\n");
  1519. return res;
  1520. } else if (!ac->m4ac.sbr) {
  1521. av_log(ac->avctx, AV_LOG_ERROR, "SBR signaled to be not-present but was found in the bitstream.\n");
  1522. skip_bits_long(gb, 8 * cnt - 4);
  1523. return res;
  1524. } else if (ac->m4ac.sbr == -1 && ac->output_configured == OC_LOCKED) {
  1525. av_log(ac->avctx, AV_LOG_ERROR, "Implicit SBR was found with a first occurrence after the first frame.\n");
  1526. skip_bits_long(gb, 8 * cnt - 4);
  1527. return res;
  1528. } else if (ac->m4ac.ps == -1 && ac->output_configured < OC_LOCKED && ac->avctx->channels == 1) {
  1529. ac->m4ac.sbr = 1;
  1530. ac->m4ac.ps = 1;
  1531. output_configure(ac, ac->che_pos, ac->che_pos, ac->m4ac.chan_config, ac->output_configured);
  1532. } else {
  1533. ac->m4ac.sbr = 1;
  1534. }
  1535. res = ff_decode_sbr_extension(ac, &che->sbr, gb, crc_flag, cnt, elem_type);
  1536. break;
  1537. case EXT_DYNAMIC_RANGE:
  1538. res = decode_dynamic_range(&ac->che_drc, gb, cnt);
  1539. break;
  1540. case EXT_FILL:
  1541. case EXT_FILL_DATA:
  1542. case EXT_DATA_ELEMENT:
  1543. default:
  1544. skip_bits_long(gb, 8 * cnt - 4);
  1545. break;
  1546. };
  1547. return res;
  1548. }
  1549. /**
  1550. * Decode Temporal Noise Shaping filter coefficients and apply all-pole filters; reference: 4.6.9.3.
  1551. *
  1552. * @param decode 1 if tool is used normally, 0 if tool is used in LTP.
  1553. * @param coef spectral coefficients
  1554. */
  1555. static void apply_tns(float coef[1024], TemporalNoiseShaping *tns,
  1556. IndividualChannelStream *ics, int decode)
  1557. {
  1558. const int mmm = FFMIN(ics->tns_max_bands, ics->max_sfb);
  1559. int w, filt, m, i;
  1560. int bottom, top, order, start, end, size, inc;
  1561. float lpc[TNS_MAX_ORDER];
  1562. float tmp[TNS_MAX_ORDER];
  1563. for (w = 0; w < ics->num_windows; w++) {
  1564. bottom = ics->num_swb;
  1565. for (filt = 0; filt < tns->n_filt[w]; filt++) {
  1566. top = bottom;
  1567. bottom = FFMAX(0, top - tns->length[w][filt]);
  1568. order = tns->order[w][filt];
  1569. if (order == 0)
  1570. continue;
  1571. // tns_decode_coef
  1572. compute_lpc_coefs(tns->coef[w][filt], order, lpc, 0, 0, 0);
  1573. start = ics->swb_offset[FFMIN(bottom, mmm)];
  1574. end = ics->swb_offset[FFMIN( top, mmm)];
  1575. if ((size = end - start) <= 0)
  1576. continue;
  1577. if (tns->direction[w][filt]) {
  1578. inc = -1;
  1579. start = end - 1;
  1580. } else {
  1581. inc = 1;
  1582. }
  1583. start += w * 128;
  1584. if (decode) {
  1585. // ar filter
  1586. for (m = 0; m < size; m++, start += inc)
  1587. for (i = 1; i <= FFMIN(m, order); i++)
  1588. coef[start] -= coef[start - i * inc] * lpc[i - 1];
  1589. } else {
  1590. // ma filter
  1591. for (m = 0; m < size; m++, start += inc) {
  1592. tmp[0] = coef[start];
  1593. for (i = 1; i <= FFMIN(m, order); i++)
  1594. coef[start] += tmp[i] * lpc[i - 1];
  1595. for (i = order; i > 0; i--)
  1596. tmp[i] = tmp[i - 1];
  1597. }
  1598. }
  1599. }
  1600. }
  1601. }
  1602. /**
  1603. * Apply windowing and MDCT to obtain the spectral
  1604. * coefficient from the predicted sample by LTP.
  1605. */
  1606. static void windowing_and_mdct_ltp(AACContext *ac, float *out,
  1607. float *in, IndividualChannelStream *ics)
  1608. {
  1609. const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  1610. const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  1611. const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  1612. const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  1613. if (ics->window_sequence[0] != LONG_STOP_SEQUENCE) {
  1614. ac->dsp.vector_fmul(in, in, lwindow_prev, 1024);
  1615. } else {
  1616. memset(in, 0, 448 * sizeof(float));
  1617. ac->dsp.vector_fmul(in + 448, in + 448, swindow_prev, 128);
  1618. }
  1619. if (ics->window_sequence[0] != LONG_START_SEQUENCE) {
  1620. ac->dsp.vector_fmul_reverse(in + 1024, in + 1024, lwindow, 1024);
  1621. } else {
  1622. ac->dsp.vector_fmul_reverse(in + 1024 + 448, in + 1024 + 448, swindow, 128);
  1623. memset(in + 1024 + 576, 0, 448 * sizeof(float));
  1624. }
  1625. ac->mdct_ltp.mdct_calc(&ac->mdct_ltp, out, in);
  1626. }
  1627. /**
  1628. * Apply the long term prediction
  1629. */
  1630. static void apply_ltp(AACContext *ac, SingleChannelElement *sce)
  1631. {
  1632. const LongTermPrediction *ltp = &sce->ics.ltp;
  1633. const uint16_t *offsets = sce->ics.swb_offset;
  1634. int i, sfb;
  1635. if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
  1636. float *predTime = sce->ret;
  1637. float *predFreq = ac->buf_mdct;
  1638. int16_t num_samples = 2048;
  1639. if (ltp->lag < 1024)
  1640. num_samples = ltp->lag + 1024;
  1641. for (i = 0; i < num_samples; i++)
  1642. predTime[i] = sce->ltp_state[i + 2048 - ltp->lag] * ltp->coef;
  1643. memset(&predTime[i], 0, (2048 - i) * sizeof(float));
  1644. windowing_and_mdct_ltp(ac, predFreq, predTime, &sce->ics);
  1645. if (sce->tns.present)
  1646. apply_tns(predFreq, &sce->tns, &sce->ics, 0);
  1647. for (sfb = 0; sfb < FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++)
  1648. if (ltp->used[sfb])
  1649. for (i = offsets[sfb]; i < offsets[sfb + 1]; i++)
  1650. sce->coeffs[i] += predFreq[i];
  1651. }
  1652. }
  1653. /**
  1654. * Update the LTP buffer for next frame
  1655. */
  1656. static void update_ltp(AACContext *ac, SingleChannelElement *sce)
  1657. {
  1658. IndividualChannelStream *ics = &sce->ics;
  1659. float *saved = sce->saved;
  1660. float *saved_ltp = sce->coeffs;
  1661. const float *lwindow = ics->use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  1662. const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  1663. int i;
  1664. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1665. memcpy(saved_ltp, saved, 512 * sizeof(float));
  1666. memset(saved_ltp + 576, 0, 448 * sizeof(float));
  1667. ac->dsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64);
  1668. for (i = 0; i < 64; i++)
  1669. saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i];
  1670. } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
  1671. memcpy(saved_ltp, ac->buf_mdct + 512, 448 * sizeof(float));
  1672. memset(saved_ltp + 576, 0, 448 * sizeof(float));
  1673. ac->dsp.vector_fmul_reverse(saved_ltp + 448, ac->buf_mdct + 960, &swindow[64], 64);
  1674. for (i = 0; i < 64; i++)
  1675. saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * swindow[63 - i];
  1676. } else { // LONG_STOP or ONLY_LONG
  1677. ac->dsp.vector_fmul_reverse(saved_ltp, ac->buf_mdct + 512, &lwindow[512], 512);
  1678. for (i = 0; i < 512; i++)
  1679. saved_ltp[i + 512] = ac->buf_mdct[1023 - i] * lwindow[511 - i];
  1680. }
  1681. memcpy(sce->ltp_state, sce->ltp_state+1024, 1024 * sizeof(*sce->ltp_state));
  1682. memcpy(sce->ltp_state+1024, sce->ret, 1024 * sizeof(*sce->ltp_state));
  1683. memcpy(sce->ltp_state+2048, saved_ltp, 1024 * sizeof(*sce->ltp_state));
  1684. }
  1685. /**
  1686. * Conduct IMDCT and windowing.
  1687. */
  1688. static void imdct_and_windowing(AACContext *ac, SingleChannelElement *sce)
  1689. {
  1690. IndividualChannelStream *ics = &sce->ics;
  1691. float *in = sce->coeffs;
  1692. float *out = sce->ret;
  1693. float *saved = sce->saved;
  1694. const float *swindow = ics->use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  1695. const float *lwindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  1696. const float *swindow_prev = ics->use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  1697. float *buf = ac->buf_mdct;
  1698. float *temp = ac->temp;
  1699. int i;
  1700. // imdct
  1701. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1702. for (i = 0; i < 1024; i += 128)
  1703. ac->mdct_small.imdct_half(&ac->mdct_small, buf + i, in + i);
  1704. } else
  1705. ac->mdct.imdct_half(&ac->mdct, buf, in);
  1706. /* window overlapping
  1707. * NOTE: To simplify the overlapping code, all 'meaningless' short to long
  1708. * and long to short transitions are considered to be short to short
  1709. * transitions. This leaves just two cases (long to long and short to short)
  1710. * with a little special sauce for EIGHT_SHORT_SEQUENCE.
  1711. */
  1712. if ((ics->window_sequence[1] == ONLY_LONG_SEQUENCE || ics->window_sequence[1] == LONG_STOP_SEQUENCE) &&
  1713. (ics->window_sequence[0] == ONLY_LONG_SEQUENCE || ics->window_sequence[0] == LONG_START_SEQUENCE)) {
  1714. ac->dsp.vector_fmul_window( out, saved, buf, lwindow_prev, 512);
  1715. } else {
  1716. memcpy( out, saved, 448 * sizeof(float));
  1717. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1718. ac->dsp.vector_fmul_window(out + 448 + 0*128, saved + 448, buf + 0*128, swindow_prev, 64);
  1719. ac->dsp.vector_fmul_window(out + 448 + 1*128, buf + 0*128 + 64, buf + 1*128, swindow, 64);
  1720. ac->dsp.vector_fmul_window(out + 448 + 2*128, buf + 1*128 + 64, buf + 2*128, swindow, 64);
  1721. ac->dsp.vector_fmul_window(out + 448 + 3*128, buf + 2*128 + 64, buf + 3*128, swindow, 64);
  1722. ac->dsp.vector_fmul_window(temp, buf + 3*128 + 64, buf + 4*128, swindow, 64);
  1723. memcpy( out + 448 + 4*128, temp, 64 * sizeof(float));
  1724. } else {
  1725. ac->dsp.vector_fmul_window(out + 448, saved + 448, buf, swindow_prev, 64);
  1726. memcpy( out + 576, buf + 64, 448 * sizeof(float));
  1727. }
  1728. }
  1729. // buffer update
  1730. if (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
  1731. memcpy( saved, temp + 64, 64 * sizeof(float));
  1732. ac->dsp.vector_fmul_window(saved + 64, buf + 4*128 + 64, buf + 5*128, swindow, 64);
  1733. ac->dsp.vector_fmul_window(saved + 192, buf + 5*128 + 64, buf + 6*128, swindow, 64);
  1734. ac->dsp.vector_fmul_window(saved + 320, buf + 6*128 + 64, buf + 7*128, swindow, 64);
  1735. memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  1736. } else if (ics->window_sequence[0] == LONG_START_SEQUENCE) {
  1737. memcpy( saved, buf + 512, 448 * sizeof(float));
  1738. memcpy( saved + 448, buf + 7*128 + 64, 64 * sizeof(float));
  1739. } else { // LONG_STOP or ONLY_LONG
  1740. memcpy( saved, buf + 512, 512 * sizeof(float));
  1741. }
  1742. }
  1743. /**
  1744. * Apply dependent channel coupling (applied before IMDCT).
  1745. *
  1746. * @param index index into coupling gain array
  1747. */
  1748. static void apply_dependent_coupling(AACContext *ac,
  1749. SingleChannelElement *target,
  1750. ChannelElement *cce, int index)
  1751. {
  1752. IndividualChannelStream *ics = &cce->ch[0].ics;
  1753. const uint16_t *offsets = ics->swb_offset;
  1754. float *dest = target->coeffs;
  1755. const float *src = cce->ch[0].coeffs;
  1756. int g, i, group, k, idx = 0;
  1757. if (ac->m4ac.object_type == AOT_AAC_LTP) {
  1758. av_log(ac->avctx, AV_LOG_ERROR,
  1759. "Dependent coupling is not supported together with LTP\n");
  1760. return;
  1761. }
  1762. for (g = 0; g < ics->num_window_groups; g++) {
  1763. for (i = 0; i < ics->max_sfb; i++, idx++) {
  1764. if (cce->ch[0].band_type[idx] != ZERO_BT) {
  1765. const float gain = cce->coup.gain[index][idx];
  1766. for (group = 0; group < ics->group_len[g]; group++) {
  1767. for (k = offsets[i]; k < offsets[i + 1]; k++) {
  1768. // XXX dsputil-ize
  1769. dest[group * 128 + k] += gain * src[group * 128 + k];
  1770. }
  1771. }
  1772. }
  1773. }
  1774. dest += ics->group_len[g] * 128;
  1775. src += ics->group_len[g] * 128;
  1776. }
  1777. }
  1778. /**
  1779. * Apply independent channel coupling (applied after IMDCT).
  1780. *
  1781. * @param index index into coupling gain array
  1782. */
  1783. static void apply_independent_coupling(AACContext *ac,
  1784. SingleChannelElement *target,
  1785. ChannelElement *cce, int index)
  1786. {
  1787. int i;
  1788. const float gain = cce->coup.gain[index][0];
  1789. const float *src = cce->ch[0].ret;
  1790. float *dest = target->ret;
  1791. const int len = 1024 << (ac->m4ac.sbr == 1);
  1792. for (i = 0; i < len; i++)
  1793. dest[i] += gain * src[i];
  1794. }
  1795. /**
  1796. * channel coupling transformation interface
  1797. *
  1798. * @param apply_coupling_method pointer to (in)dependent coupling function
  1799. */
  1800. static void apply_channel_coupling(AACContext *ac, ChannelElement *cc,
  1801. enum RawDataBlockType type, int elem_id,
  1802. enum CouplingPoint coupling_point,
  1803. void (*apply_coupling_method)(AACContext *ac, SingleChannelElement *target, ChannelElement *cce, int index))
  1804. {
  1805. int i, c;
  1806. for (i = 0; i < MAX_ELEM_ID; i++) {
  1807. ChannelElement *cce = ac->che[TYPE_CCE][i];
  1808. int index = 0;
  1809. if (cce && cce->coup.coupling_point == coupling_point) {
  1810. ChannelCoupling *coup = &cce->coup;
  1811. for (c = 0; c <= coup->num_coupled; c++) {
  1812. if (coup->type[c] == type && coup->id_select[c] == elem_id) {
  1813. if (coup->ch_select[c] != 1) {
  1814. apply_coupling_method(ac, &cc->ch[0], cce, index);
  1815. if (coup->ch_select[c] != 0)
  1816. index++;
  1817. }
  1818. if (coup->ch_select[c] != 2)
  1819. apply_coupling_method(ac, &cc->ch[1], cce, index++);
  1820. } else
  1821. index += 1 + (coup->ch_select[c] == 3);
  1822. }
  1823. }
  1824. }
  1825. }
  1826. /**
  1827. * Convert spectral data to float samples, applying all supported tools as appropriate.
  1828. */
  1829. static void spectral_to_sample(AACContext *ac)
  1830. {
  1831. int i, type;
  1832. for (type = 3; type >= 0; type--) {
  1833. for (i = 0; i < MAX_ELEM_ID; i++) {
  1834. ChannelElement *che = ac->che[type][i];
  1835. if (che) {
  1836. if (type <= TYPE_CPE)
  1837. apply_channel_coupling(ac, che, type, i, BEFORE_TNS, apply_dependent_coupling);
  1838. if (ac->m4ac.object_type == AOT_AAC_LTP) {
  1839. if (che->ch[0].ics.predictor_present) {
  1840. if (che->ch[0].ics.ltp.present)
  1841. apply_ltp(ac, &che->ch[0]);
  1842. if (che->ch[1].ics.ltp.present && type == TYPE_CPE)
  1843. apply_ltp(ac, &che->ch[1]);
  1844. }
  1845. }
  1846. if (che->ch[0].tns.present)
  1847. apply_tns(che->ch[0].coeffs, &che->ch[0].tns, &che->ch[0].ics, 1);
  1848. if (che->ch[1].tns.present)
  1849. apply_tns(che->ch[1].coeffs, &che->ch[1].tns, &che->ch[1].ics, 1);
  1850. if (type <= TYPE_CPE)
  1851. apply_channel_coupling(ac, che, type, i, BETWEEN_TNS_AND_IMDCT, apply_dependent_coupling);
  1852. if (type != TYPE_CCE || che->coup.coupling_point == AFTER_IMDCT) {
  1853. imdct_and_windowing(ac, &che->ch[0]);
  1854. if (ac->m4ac.object_type == AOT_AAC_LTP)
  1855. update_ltp(ac, &che->ch[0]);
  1856. if (type == TYPE_CPE) {
  1857. imdct_and_windowing(ac, &che->ch[1]);
  1858. if (ac->m4ac.object_type == AOT_AAC_LTP)
  1859. update_ltp(ac, &che->ch[1]);
  1860. }
  1861. if (ac->m4ac.sbr > 0) {
  1862. ff_sbr_apply(ac, &che->sbr, type, che->ch[0].ret, che->ch[1].ret);
  1863. }
  1864. }
  1865. if (type <= TYPE_CCE)
  1866. apply_channel_coupling(ac, che, type, i, AFTER_IMDCT, apply_independent_coupling);
  1867. }
  1868. }
  1869. }
  1870. }
  1871. static int parse_adts_frame_header(AACContext *ac, GetBitContext *gb)
  1872. {
  1873. int size;
  1874. AACADTSHeaderInfo hdr_info;
  1875. size = avpriv_aac_parse_header(gb, &hdr_info);
  1876. if (size > 0) {
  1877. if (hdr_info.chan_config && (hdr_info.chan_config!=ac->m4ac.chan_config || ac->m4ac.sample_rate!=hdr_info.sample_rate)) {
  1878. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  1879. memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  1880. ac->m4ac.chan_config = hdr_info.chan_config;
  1881. if (set_default_channel_config(ac->avctx, new_che_pos, hdr_info.chan_config))
  1882. return -7;
  1883. if (output_configure(ac, ac->che_pos, new_che_pos, hdr_info.chan_config,
  1884. FFMAX(ac->output_configured, OC_TRIAL_FRAME)))
  1885. return -7;
  1886. } else if (ac->output_configured != OC_LOCKED) {
  1887. ac->m4ac.chan_config = 0;
  1888. ac->output_configured = OC_NONE;
  1889. }
  1890. if (ac->output_configured != OC_LOCKED) {
  1891. ac->m4ac.sbr = -1;
  1892. ac->m4ac.ps = -1;
  1893. ac->m4ac.sample_rate = hdr_info.sample_rate;
  1894. ac->m4ac.sampling_index = hdr_info.sampling_index;
  1895. ac->m4ac.object_type = hdr_info.object_type;
  1896. }
  1897. if (!ac->avctx->sample_rate)
  1898. ac->avctx->sample_rate = hdr_info.sample_rate;
  1899. if (hdr_info.num_aac_frames == 1) {
  1900. if (!hdr_info.crc_absent)
  1901. skip_bits(gb, 16);
  1902. } else {
  1903. av_log_missing_feature(ac->avctx, "More than one AAC RDB per ADTS frame is", 0);
  1904. return -1;
  1905. }
  1906. }
  1907. return size;
  1908. }
  1909. static int aac_decode_frame_int(AVCodecContext *avctx, void *data,
  1910. int *data_size, GetBitContext *gb)
  1911. {
  1912. AACContext *ac = avctx->priv_data;
  1913. ChannelElement *che = NULL, *che_prev = NULL;
  1914. enum RawDataBlockType elem_type, elem_type_prev = TYPE_END;
  1915. int err, elem_id, data_size_tmp;
  1916. int samples = 0, multiplier, audio_found = 0;
  1917. if (show_bits(gb, 12) == 0xfff) {
  1918. if (parse_adts_frame_header(ac, gb) < 0) {
  1919. av_log(avctx, AV_LOG_ERROR, "Error decoding AAC frame header.\n");
  1920. return -1;
  1921. }
  1922. if (ac->m4ac.sampling_index > 12) {
  1923. av_log(ac->avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", ac->m4ac.sampling_index);
  1924. return -1;
  1925. }
  1926. }
  1927. ac->tags_mapped = 0;
  1928. // parse
  1929. while ((elem_type = get_bits(gb, 3)) != TYPE_END) {
  1930. elem_id = get_bits(gb, 4);
  1931. if (elem_type < TYPE_DSE) {
  1932. if (!ac->tags_mapped && elem_type == TYPE_CPE && ac->m4ac.chan_config==1) {
  1933. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID]= {0};
  1934. ac->m4ac.chan_config=2;
  1935. if (set_default_channel_config(ac->avctx, new_che_pos, 2)<0)
  1936. return -1;
  1937. if (output_configure(ac, ac->che_pos, new_che_pos, 2, OC_TRIAL_FRAME)<0)
  1938. return -1;
  1939. }
  1940. if (!(che=get_che(ac, elem_type, elem_id))) {
  1941. av_log(ac->avctx, AV_LOG_ERROR, "channel element %d.%d is not allocated\n",
  1942. elem_type, elem_id);
  1943. return -1;
  1944. }
  1945. samples = 1024;
  1946. }
  1947. switch (elem_type) {
  1948. case TYPE_SCE:
  1949. err = decode_ics(ac, &che->ch[0], gb, 0, 0);
  1950. audio_found = 1;
  1951. break;
  1952. case TYPE_CPE:
  1953. err = decode_cpe(ac, gb, che);
  1954. audio_found = 1;
  1955. break;
  1956. case TYPE_CCE:
  1957. err = decode_cce(ac, gb, che);
  1958. break;
  1959. case TYPE_LFE:
  1960. err = decode_ics(ac, &che->ch[0], gb, 0, 0);
  1961. audio_found = 1;
  1962. break;
  1963. case TYPE_DSE:
  1964. err = skip_data_stream_element(ac, gb);
  1965. break;
  1966. case TYPE_PCE: {
  1967. enum ChannelPosition new_che_pos[4][MAX_ELEM_ID];
  1968. memset(new_che_pos, 0, 4 * MAX_ELEM_ID * sizeof(new_che_pos[0][0]));
  1969. if ((err = decode_pce(avctx, &ac->m4ac, new_che_pos, gb)))
  1970. break;
  1971. if (ac->output_configured > OC_TRIAL_PCE)
  1972. av_log(avctx, AV_LOG_ERROR,
  1973. "Not evaluating a further program_config_element as this construct is dubious at best.\n");
  1974. else
  1975. err = output_configure(ac, ac->che_pos, new_che_pos, 0, OC_TRIAL_PCE);
  1976. break;
  1977. }
  1978. case TYPE_FIL:
  1979. if (elem_id == 15)
  1980. elem_id += get_bits(gb, 8) - 1;
  1981. if (get_bits_left(gb) < 8 * elem_id) {
  1982. av_log(avctx, AV_LOG_ERROR, overread_err);
  1983. return -1;
  1984. }
  1985. while (elem_id > 0)
  1986. elem_id -= decode_extension_payload(ac, gb, elem_id, che_prev, elem_type_prev);
  1987. err = 0; /* FIXME */
  1988. break;
  1989. default:
  1990. err = -1; /* should not happen, but keeps compiler happy */
  1991. break;
  1992. }
  1993. che_prev = che;
  1994. elem_type_prev = elem_type;
  1995. if (err)
  1996. return err;
  1997. if (get_bits_left(gb) < 3) {
  1998. av_log(avctx, AV_LOG_ERROR, overread_err);
  1999. return -1;
  2000. }
  2001. }
  2002. spectral_to_sample(ac);
  2003. multiplier = (ac->m4ac.sbr == 1) ? ac->m4ac.ext_sample_rate > ac->m4ac.sample_rate : 0;
  2004. samples <<= multiplier;
  2005. if (ac->output_configured < OC_LOCKED) {
  2006. avctx->sample_rate = ac->m4ac.sample_rate << multiplier;
  2007. avctx->frame_size = samples;
  2008. }
  2009. data_size_tmp = samples * avctx->channels *
  2010. av_get_bytes_per_sample(avctx->sample_fmt);
  2011. if (*data_size < data_size_tmp) {
  2012. av_log(avctx, AV_LOG_ERROR,
  2013. "Output buffer too small (%d) or trying to output too many samples (%d) for this frame.\n",
  2014. *data_size, data_size_tmp);
  2015. return -1;
  2016. }
  2017. *data_size = data_size_tmp;
  2018. if (samples) {
  2019. if (avctx->sample_fmt == AV_SAMPLE_FMT_FLT)
  2020. ac->fmt_conv.float_interleave(data, (const float **)ac->output_data,
  2021. samples, avctx->channels);
  2022. else
  2023. ac->fmt_conv.float_to_int16_interleave(data, (const float **)ac->output_data,
  2024. samples, avctx->channels);
  2025. }
  2026. if (ac->output_configured && audio_found)
  2027. ac->output_configured = OC_LOCKED;
  2028. return 0;
  2029. }
  2030. static int aac_decode_frame(AVCodecContext *avctx, void *data,
  2031. int *data_size, AVPacket *avpkt)
  2032. {
  2033. const uint8_t *buf = avpkt->data;
  2034. int buf_size = avpkt->size;
  2035. GetBitContext gb;
  2036. int buf_consumed;
  2037. int buf_offset;
  2038. int err;
  2039. init_get_bits(&gb, buf, buf_size * 8);
  2040. if ((err = aac_decode_frame_int(avctx, data, data_size, &gb)) < 0)
  2041. return err;
  2042. buf_consumed = (get_bits_count(&gb) + 7) >> 3;
  2043. for (buf_offset = buf_consumed; buf_offset < buf_size; buf_offset++)
  2044. if (buf[buf_offset])
  2045. break;
  2046. return buf_size > buf_offset ? buf_consumed : buf_size;
  2047. }
  2048. static av_cold int aac_decode_close(AVCodecContext *avctx)
  2049. {
  2050. AACContext *ac = avctx->priv_data;
  2051. int i, type;
  2052. for (i = 0; i < MAX_ELEM_ID; i++) {
  2053. for (type = 0; type < 4; type++) {
  2054. if (ac->che[type][i])
  2055. ff_aac_sbr_ctx_close(&ac->che[type][i]->sbr);
  2056. av_freep(&ac->che[type][i]);
  2057. }
  2058. }
  2059. ff_mdct_end(&ac->mdct);
  2060. ff_mdct_end(&ac->mdct_small);
  2061. ff_mdct_end(&ac->mdct_ltp);
  2062. return 0;
  2063. }
  2064. #define LOAS_SYNC_WORD 0x2b7 ///< 11 bits LOAS sync word
  2065. struct LATMContext {
  2066. AACContext aac_ctx; ///< containing AACContext
  2067. int initialized; ///< initilized after a valid extradata was seen
  2068. // parser data
  2069. int audio_mux_version_A; ///< LATM syntax version
  2070. int frame_length_type; ///< 0/1 variable/fixed frame length
  2071. int frame_length; ///< frame length for fixed frame length
  2072. };
  2073. static inline uint32_t latm_get_value(GetBitContext *b)
  2074. {
  2075. int length = get_bits(b, 2);
  2076. return get_bits_long(b, (length+1)*8);
  2077. }
  2078. static int latm_decode_audio_specific_config(struct LATMContext *latmctx,
  2079. GetBitContext *gb, int asclen)
  2080. {
  2081. AVCodecContext *avctx = latmctx->aac_ctx.avctx;
  2082. AACContext *ac= &latmctx->aac_ctx;
  2083. MPEG4AudioConfig m4ac=ac->m4ac;
  2084. int config_start_bit = get_bits_count(gb);
  2085. int bits_consumed, esize;
  2086. if (config_start_bit % 8) {
  2087. av_log_missing_feature(latmctx->aac_ctx.avctx, "audio specific "
  2088. "config not byte aligned.\n", 1);
  2089. return AVERROR_INVALIDDATA;
  2090. } else {
  2091. bits_consumed =
  2092. decode_audio_specific_config(ac, avctx, &m4ac,
  2093. gb->buffer + (config_start_bit / 8),
  2094. get_bits_left(gb) / 8, asclen);
  2095. if (bits_consumed < 0)
  2096. return AVERROR_INVALIDDATA;
  2097. if(ac->m4ac.sample_rate != m4ac.sample_rate || m4ac.chan_config != ac->m4ac.chan_config)
  2098. ac->m4ac= m4ac;
  2099. esize = (bits_consumed+7) / 8;
  2100. if (avctx->extradata_size <= esize) {
  2101. av_free(avctx->extradata);
  2102. avctx->extradata = av_malloc(esize + FF_INPUT_BUFFER_PADDING_SIZE);
  2103. if (!avctx->extradata)
  2104. return AVERROR(ENOMEM);
  2105. }
  2106. avctx->extradata_size = esize;
  2107. memcpy(avctx->extradata, gb->buffer + (config_start_bit/8), esize);
  2108. memset(avctx->extradata+esize, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  2109. skip_bits_long(gb, bits_consumed);
  2110. }
  2111. return bits_consumed;
  2112. }
  2113. static int read_stream_mux_config(struct LATMContext *latmctx,
  2114. GetBitContext *gb)
  2115. {
  2116. int ret, audio_mux_version = get_bits(gb, 1);
  2117. latmctx->audio_mux_version_A = 0;
  2118. if (audio_mux_version)
  2119. latmctx->audio_mux_version_A = get_bits(gb, 1);
  2120. if (!latmctx->audio_mux_version_A) {
  2121. if (audio_mux_version)
  2122. latm_get_value(gb); // taraFullness
  2123. skip_bits(gb, 1); // allStreamSameTimeFraming
  2124. skip_bits(gb, 6); // numSubFrames
  2125. // numPrograms
  2126. if (get_bits(gb, 4)) { // numPrograms
  2127. av_log_missing_feature(latmctx->aac_ctx.avctx,
  2128. "multiple programs are not supported\n", 1);
  2129. return AVERROR_PATCHWELCOME;
  2130. }
  2131. // for each program (which there is only on in DVB)
  2132. // for each layer (which there is only on in DVB)
  2133. if (get_bits(gb, 3)) { // numLayer
  2134. av_log_missing_feature(latmctx->aac_ctx.avctx,
  2135. "multiple layers are not supported\n", 1);
  2136. return AVERROR_PATCHWELCOME;
  2137. }
  2138. // for all but first stream: use_same_config = get_bits(gb, 1);
  2139. if (!audio_mux_version) {
  2140. if ((ret = latm_decode_audio_specific_config(latmctx, gb, 0)) < 0)
  2141. return ret;
  2142. } else {
  2143. int ascLen = latm_get_value(gb);
  2144. if ((ret = latm_decode_audio_specific_config(latmctx, gb, ascLen)) < 0)
  2145. return ret;
  2146. ascLen -= ret;
  2147. skip_bits_long(gb, ascLen);
  2148. }
  2149. latmctx->frame_length_type = get_bits(gb, 3);
  2150. switch (latmctx->frame_length_type) {
  2151. case 0:
  2152. skip_bits(gb, 8); // latmBufferFullness
  2153. break;
  2154. case 1:
  2155. latmctx->frame_length = get_bits(gb, 9);
  2156. break;
  2157. case 3:
  2158. case 4:
  2159. case 5:
  2160. skip_bits(gb, 6); // CELP frame length table index
  2161. break;
  2162. case 6:
  2163. case 7:
  2164. skip_bits(gb, 1); // HVXC frame length table index
  2165. break;
  2166. }
  2167. if (get_bits(gb, 1)) { // other data
  2168. if (audio_mux_version) {
  2169. latm_get_value(gb); // other_data_bits
  2170. } else {
  2171. int esc;
  2172. do {
  2173. esc = get_bits(gb, 1);
  2174. skip_bits(gb, 8);
  2175. } while (esc);
  2176. }
  2177. }
  2178. if (get_bits(gb, 1)) // crc present
  2179. skip_bits(gb, 8); // config_crc
  2180. }
  2181. return 0;
  2182. }
  2183. static int read_payload_length_info(struct LATMContext *ctx, GetBitContext *gb)
  2184. {
  2185. uint8_t tmp;
  2186. if (ctx->frame_length_type == 0) {
  2187. int mux_slot_length = 0;
  2188. do {
  2189. tmp = get_bits(gb, 8);
  2190. mux_slot_length += tmp;
  2191. } while (tmp == 255);
  2192. return mux_slot_length;
  2193. } else if (ctx->frame_length_type == 1) {
  2194. return ctx->frame_length;
  2195. } else if (ctx->frame_length_type == 3 ||
  2196. ctx->frame_length_type == 5 ||
  2197. ctx->frame_length_type == 7) {
  2198. skip_bits(gb, 2); // mux_slot_length_coded
  2199. }
  2200. return 0;
  2201. }
  2202. static int read_audio_mux_element(struct LATMContext *latmctx,
  2203. GetBitContext *gb)
  2204. {
  2205. int err;
  2206. uint8_t use_same_mux = get_bits(gb, 1);
  2207. if (!use_same_mux) {
  2208. if ((err = read_stream_mux_config(latmctx, gb)) < 0)
  2209. return err;
  2210. } else if (!latmctx->aac_ctx.avctx->extradata) {
  2211. av_log(latmctx->aac_ctx.avctx, AV_LOG_DEBUG,
  2212. "no decoder config found\n");
  2213. return AVERROR(EAGAIN);
  2214. }
  2215. if (latmctx->audio_mux_version_A == 0) {
  2216. int mux_slot_length_bytes = read_payload_length_info(latmctx, gb);
  2217. if (mux_slot_length_bytes * 8 > get_bits_left(gb)) {
  2218. av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR, "incomplete frame\n");
  2219. return AVERROR_INVALIDDATA;
  2220. } else if (mux_slot_length_bytes * 8 + 256 < get_bits_left(gb)) {
  2221. av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
  2222. "frame length mismatch %d << %d\n",
  2223. mux_slot_length_bytes * 8, get_bits_left(gb));
  2224. return AVERROR_INVALIDDATA;
  2225. }
  2226. }
  2227. return 0;
  2228. }
  2229. static int latm_decode_frame(AVCodecContext *avctx, void *out, int *out_size,
  2230. AVPacket *avpkt)
  2231. {
  2232. struct LATMContext *latmctx = avctx->priv_data;
  2233. int muxlength, err;
  2234. GetBitContext gb;
  2235. init_get_bits(&gb, avpkt->data, avpkt->size * 8);
  2236. // check for LOAS sync word
  2237. if (get_bits(&gb, 11) != LOAS_SYNC_WORD)
  2238. return AVERROR_INVALIDDATA;
  2239. muxlength = get_bits(&gb, 13) + 3;
  2240. // not enough data, the parser should have sorted this
  2241. if (muxlength > avpkt->size)
  2242. return AVERROR_INVALIDDATA;
  2243. if ((err = read_audio_mux_element(latmctx, &gb)) < 0)
  2244. return err;
  2245. if (!latmctx->initialized) {
  2246. if (!avctx->extradata) {
  2247. *out_size = 0;
  2248. return avpkt->size;
  2249. } else {
  2250. if ((err = decode_audio_specific_config(
  2251. &latmctx->aac_ctx, avctx, &latmctx->aac_ctx.m4ac,
  2252. avctx->extradata, avctx->extradata_size, 8*avctx->extradata_size)) < 0)
  2253. return err;
  2254. latmctx->initialized = 1;
  2255. }
  2256. }
  2257. if (show_bits(&gb, 12) == 0xfff) {
  2258. av_log(latmctx->aac_ctx.avctx, AV_LOG_ERROR,
  2259. "ADTS header detected, probably as result of configuration "
  2260. "misparsing\n");
  2261. return AVERROR_INVALIDDATA;
  2262. }
  2263. if ((err = aac_decode_frame_int(avctx, out, out_size, &gb)) < 0)
  2264. return err;
  2265. return muxlength;
  2266. }
  2267. av_cold static int latm_decode_init(AVCodecContext *avctx)
  2268. {
  2269. struct LATMContext *latmctx = avctx->priv_data;
  2270. int ret = aac_decode_init(avctx);
  2271. if (avctx->extradata_size > 0)
  2272. latmctx->initialized = !ret;
  2273. return ret;
  2274. }
  2275. AVCodec ff_aac_decoder = {
  2276. .name = "aac",
  2277. .type = AVMEDIA_TYPE_AUDIO,
  2278. .id = CODEC_ID_AAC,
  2279. .priv_data_size = sizeof(AACContext),
  2280. .init = aac_decode_init,
  2281. .close = aac_decode_close,
  2282. .decode = aac_decode_frame,
  2283. .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
  2284. .sample_fmts = (const enum AVSampleFormat[]) {
  2285. AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
  2286. },
  2287. .capabilities = CODEC_CAP_CHANNEL_CONF,
  2288. .channel_layouts = aac_channel_layout,
  2289. };
  2290. /*
  2291. Note: This decoder filter is intended to decode LATM streams transferred
  2292. in MPEG transport streams which only contain one program.
  2293. To do a more complex LATM demuxing a separate LATM demuxer should be used.
  2294. */
  2295. AVCodec ff_aac_latm_decoder = {
  2296. .name = "aac_latm",
  2297. .type = AVMEDIA_TYPE_AUDIO,
  2298. .id = CODEC_ID_AAC_LATM,
  2299. .priv_data_size = sizeof(struct LATMContext),
  2300. .init = latm_decode_init,
  2301. .close = aac_decode_close,
  2302. .decode = latm_decode_frame,
  2303. .long_name = NULL_IF_CONFIG_SMALL("AAC LATM (Advanced Audio Codec LATM syntax)"),
  2304. .sample_fmts = (const enum AVSampleFormat[]) {
  2305. AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_NONE
  2306. },
  2307. .capabilities = CODEC_CAP_CHANNEL_CONF,
  2308. .channel_layouts = aac_channel_layout,
  2309. };