You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2610 lines
78KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/mpegaudiodec.c
  23. * MPEG Audio decoder.
  24. */
  25. #include "avcodec.h"
  26. #include "get_bits.h"
  27. #include "dsputil.h"
  28. /*
  29. * TODO:
  30. * - in low precision mode, use more 16 bit multiplies in synth filter
  31. * - test lsf / mpeg25 extensively.
  32. */
  33. #include "mpegaudio.h"
  34. #include "mpegaudiodecheader.h"
  35. #include "mathops.h"
  36. /* WARNING: only correct for posititive numbers */
  37. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  38. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  39. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  40. /****************/
  41. #define HEADER_SIZE 4
  42. /* layer 3 "granule" */
  43. typedef struct GranuleDef {
  44. uint8_t scfsi;
  45. int part2_3_length;
  46. int big_values;
  47. int global_gain;
  48. int scalefac_compress;
  49. uint8_t block_type;
  50. uint8_t switch_point;
  51. int table_select[3];
  52. int subblock_gain[3];
  53. uint8_t scalefac_scale;
  54. uint8_t count1table_select;
  55. int region_size[3]; /* number of huffman codes in each region */
  56. int preflag;
  57. int short_start, long_end; /* long/short band indexes */
  58. uint8_t scale_factors[40];
  59. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  60. } GranuleDef;
  61. #include "mpegaudiodata.h"
  62. #include "mpegaudiodectab.h"
  63. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  64. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  65. /* vlc structure for decoding layer 3 huffman tables */
  66. static VLC huff_vlc[16];
  67. static VLC_TYPE huff_vlc_tables[
  68. 0+128+128+128+130+128+154+166+
  69. 142+204+190+170+542+460+662+414
  70. ][2];
  71. static const int huff_vlc_tables_sizes[16] = {
  72. 0, 128, 128, 128, 130, 128, 154, 166,
  73. 142, 204, 190, 170, 542, 460, 662, 414
  74. };
  75. static VLC huff_quad_vlc[2];
  76. static VLC_TYPE huff_quad_vlc_tables[128+16][2];
  77. static const int huff_quad_vlc_tables_sizes[2] = {
  78. 128, 16
  79. };
  80. /* computed from band_size_long */
  81. static uint16_t band_index_long[9][23];
  82. /* XXX: free when all decoders are closed */
  83. #define TABLE_4_3_SIZE (8191 + 16)*4
  84. static int8_t table_4_3_exp[TABLE_4_3_SIZE];
  85. static uint32_t table_4_3_value[TABLE_4_3_SIZE];
  86. static uint32_t exp_table[512];
  87. static uint32_t expval_table[512][16];
  88. /* intensity stereo coef table */
  89. static int32_t is_table[2][16];
  90. static int32_t is_table_lsf[2][2][16];
  91. static int32_t csa_table[8][4];
  92. static float csa_table_float[8][4];
  93. static int32_t mdct_win[8][36];
  94. /* lower 2 bits: modulo 3, higher bits: shift */
  95. static uint16_t scale_factor_modshift[64];
  96. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  97. static int32_t scale_factor_mult[15][3];
  98. /* mult table for layer 2 group quantization */
  99. #define SCALE_GEN(v) \
  100. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  101. static const int32_t scale_factor_mult2[3][3] = {
  102. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  103. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  104. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  105. };
  106. static DECLARE_ALIGNED_16(MPA_INT, window[512]);
  107. /**
  108. * Convert region offsets to region sizes and truncate
  109. * size to big_values.
  110. */
  111. void ff_region_offset2size(GranuleDef *g){
  112. int i, k, j=0;
  113. g->region_size[2] = (576 / 2);
  114. for(i=0;i<3;i++) {
  115. k = FFMIN(g->region_size[i], g->big_values);
  116. g->region_size[i] = k - j;
  117. j = k;
  118. }
  119. }
  120. void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
  121. if (g->block_type == 2)
  122. g->region_size[0] = (36 / 2);
  123. else {
  124. if (s->sample_rate_index <= 2)
  125. g->region_size[0] = (36 / 2);
  126. else if (s->sample_rate_index != 8)
  127. g->region_size[0] = (54 / 2);
  128. else
  129. g->region_size[0] = (108 / 2);
  130. }
  131. g->region_size[1] = (576 / 2);
  132. }
  133. void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
  134. int l;
  135. g->region_size[0] =
  136. band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  137. /* should not overflow */
  138. l = FFMIN(ra1 + ra2 + 2, 22);
  139. g->region_size[1] =
  140. band_index_long[s->sample_rate_index][l] >> 1;
  141. }
  142. void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
  143. if (g->block_type == 2) {
  144. if (g->switch_point) {
  145. /* if switched mode, we handle the 36 first samples as
  146. long blocks. For 8000Hz, we handle the 48 first
  147. exponents as long blocks (XXX: check this!) */
  148. if (s->sample_rate_index <= 2)
  149. g->long_end = 8;
  150. else if (s->sample_rate_index != 8)
  151. g->long_end = 6;
  152. else
  153. g->long_end = 4; /* 8000 Hz */
  154. g->short_start = 2 + (s->sample_rate_index != 8);
  155. } else {
  156. g->long_end = 0;
  157. g->short_start = 0;
  158. }
  159. } else {
  160. g->short_start = 13;
  161. g->long_end = 22;
  162. }
  163. }
  164. /* layer 1 unscaling */
  165. /* n = number of bits of the mantissa minus 1 */
  166. static inline int l1_unscale(int n, int mant, int scale_factor)
  167. {
  168. int shift, mod;
  169. int64_t val;
  170. shift = scale_factor_modshift[scale_factor];
  171. mod = shift & 3;
  172. shift >>= 2;
  173. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  174. shift += n;
  175. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  176. return (int)((val + (1LL << (shift - 1))) >> shift);
  177. }
  178. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  179. {
  180. int shift, mod, val;
  181. shift = scale_factor_modshift[scale_factor];
  182. mod = shift & 3;
  183. shift >>= 2;
  184. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  185. /* NOTE: at this point, 0 <= shift <= 21 */
  186. if (shift > 0)
  187. val = (val + (1 << (shift - 1))) >> shift;
  188. return val;
  189. }
  190. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  191. static inline int l3_unscale(int value, int exponent)
  192. {
  193. unsigned int m;
  194. int e;
  195. e = table_4_3_exp [4*value + (exponent&3)];
  196. m = table_4_3_value[4*value + (exponent&3)];
  197. e -= (exponent >> 2);
  198. assert(e>=1);
  199. if (e > 31)
  200. return 0;
  201. m = (m + (1 << (e-1))) >> e;
  202. return m;
  203. }
  204. /* all integer n^(4/3) computation code */
  205. #define DEV_ORDER 13
  206. #define POW_FRAC_BITS 24
  207. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  208. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  209. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  210. static int dev_4_3_coefs[DEV_ORDER];
  211. #if 0 /* unused */
  212. static int pow_mult3[3] = {
  213. POW_FIX(1.0),
  214. POW_FIX(1.25992104989487316476),
  215. POW_FIX(1.58740105196819947474),
  216. };
  217. #endif
  218. static av_cold void int_pow_init(void)
  219. {
  220. int i, a;
  221. a = POW_FIX(1.0);
  222. for(i=0;i<DEV_ORDER;i++) {
  223. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  224. dev_4_3_coefs[i] = a;
  225. }
  226. }
  227. #if 0 /* unused, remove? */
  228. /* return the mantissa and the binary exponent */
  229. static int int_pow(int i, int *exp_ptr)
  230. {
  231. int e, er, eq, j;
  232. int a, a1;
  233. /* renormalize */
  234. a = i;
  235. e = POW_FRAC_BITS;
  236. while (a < (1 << (POW_FRAC_BITS - 1))) {
  237. a = a << 1;
  238. e--;
  239. }
  240. a -= (1 << POW_FRAC_BITS);
  241. a1 = 0;
  242. for(j = DEV_ORDER - 1; j >= 0; j--)
  243. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  244. a = (1 << POW_FRAC_BITS) + a1;
  245. /* exponent compute (exact) */
  246. e = e * 4;
  247. er = e % 3;
  248. eq = e / 3;
  249. a = POW_MULL(a, pow_mult3[er]);
  250. while (a >= 2 * POW_FRAC_ONE) {
  251. a = a >> 1;
  252. eq++;
  253. }
  254. /* convert to float */
  255. while (a < POW_FRAC_ONE) {
  256. a = a << 1;
  257. eq--;
  258. }
  259. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  260. #if POW_FRAC_BITS > FRAC_BITS
  261. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  262. /* correct overflow */
  263. if (a >= 2 * (1 << FRAC_BITS)) {
  264. a = a >> 1;
  265. eq++;
  266. }
  267. #endif
  268. *exp_ptr = eq;
  269. return a;
  270. }
  271. #endif
  272. static av_cold int decode_init(AVCodecContext * avctx)
  273. {
  274. MPADecodeContext *s = avctx->priv_data;
  275. static int init=0;
  276. int i, j, k;
  277. s->avctx = avctx;
  278. avctx->sample_fmt= OUT_FMT;
  279. s->error_recognition= avctx->error_recognition;
  280. if(avctx->antialias_algo != FF_AA_FLOAT)
  281. s->compute_antialias= compute_antialias_integer;
  282. else
  283. s->compute_antialias= compute_antialias_float;
  284. if (!init && !avctx->parse_only) {
  285. int offset;
  286. /* scale factors table for layer 1/2 */
  287. for(i=0;i<64;i++) {
  288. int shift, mod;
  289. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  290. shift = (i / 3);
  291. mod = i % 3;
  292. scale_factor_modshift[i] = mod | (shift << 2);
  293. }
  294. /* scale factor multiply for layer 1 */
  295. for(i=0;i<15;i++) {
  296. int n, norm;
  297. n = i + 2;
  298. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  299. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm, FRAC_BITS);
  300. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm, FRAC_BITS);
  301. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm, FRAC_BITS);
  302. dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
  303. i, norm,
  304. scale_factor_mult[i][0],
  305. scale_factor_mult[i][1],
  306. scale_factor_mult[i][2]);
  307. }
  308. ff_mpa_synth_init(window);
  309. /* huffman decode tables */
  310. offset = 0;
  311. for(i=1;i<16;i++) {
  312. const HuffTable *h = &mpa_huff_tables[i];
  313. int xsize, x, y;
  314. uint8_t tmp_bits [512];
  315. uint16_t tmp_codes[512];
  316. memset(tmp_bits , 0, sizeof(tmp_bits ));
  317. memset(tmp_codes, 0, sizeof(tmp_codes));
  318. xsize = h->xsize;
  319. j = 0;
  320. for(x=0;x<xsize;x++) {
  321. for(y=0;y<xsize;y++){
  322. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  323. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  324. }
  325. }
  326. /* XXX: fail test */
  327. huff_vlc[i].table = huff_vlc_tables+offset;
  328. huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
  329. init_vlc(&huff_vlc[i], 7, 512,
  330. tmp_bits, 1, 1, tmp_codes, 2, 2,
  331. INIT_VLC_USE_NEW_STATIC);
  332. offset += huff_vlc_tables_sizes[i];
  333. }
  334. assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
  335. offset = 0;
  336. for(i=0;i<2;i++) {
  337. huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
  338. huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
  339. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  340. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
  341. INIT_VLC_USE_NEW_STATIC);
  342. offset += huff_quad_vlc_tables_sizes[i];
  343. }
  344. assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
  345. for(i=0;i<9;i++) {
  346. k = 0;
  347. for(j=0;j<22;j++) {
  348. band_index_long[i][j] = k;
  349. k += band_size_long[i][j];
  350. }
  351. band_index_long[i][22] = k;
  352. }
  353. /* compute n ^ (4/3) and store it in mantissa/exp format */
  354. int_pow_init();
  355. for(i=1;i<TABLE_4_3_SIZE;i++) {
  356. double f, fm;
  357. int e, m;
  358. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  359. fm = frexp(f, &e);
  360. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  361. e+= FRAC_BITS - 31 + 5 - 100;
  362. /* normalized to FRAC_BITS */
  363. table_4_3_value[i] = m;
  364. table_4_3_exp[i] = -e;
  365. }
  366. for(i=0; i<512*16; i++){
  367. int exponent= (i>>4);
  368. double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
  369. expval_table[exponent][i&15]= llrint(f);
  370. if((i&15)==1)
  371. exp_table[exponent]= llrint(f);
  372. }
  373. for(i=0;i<7;i++) {
  374. float f;
  375. int v;
  376. if (i != 6) {
  377. f = tan((double)i * M_PI / 12.0);
  378. v = FIXR(f / (1.0 + f));
  379. } else {
  380. v = FIXR(1.0);
  381. }
  382. is_table[0][i] = v;
  383. is_table[1][6 - i] = v;
  384. }
  385. /* invalid values */
  386. for(i=7;i<16;i++)
  387. is_table[0][i] = is_table[1][i] = 0.0;
  388. for(i=0;i<16;i++) {
  389. double f;
  390. int e, k;
  391. for(j=0;j<2;j++) {
  392. e = -(j + 1) * ((i + 1) >> 1);
  393. f = pow(2.0, e / 4.0);
  394. k = i & 1;
  395. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  396. is_table_lsf[j][k][i] = FIXR(1.0);
  397. dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
  398. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  399. }
  400. }
  401. for(i=0;i<8;i++) {
  402. float ci, cs, ca;
  403. ci = ci_table[i];
  404. cs = 1.0 / sqrt(1.0 + ci * ci);
  405. ca = cs * ci;
  406. csa_table[i][0] = FIXHR(cs/4);
  407. csa_table[i][1] = FIXHR(ca/4);
  408. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  409. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  410. csa_table_float[i][0] = cs;
  411. csa_table_float[i][1] = ca;
  412. csa_table_float[i][2] = ca + cs;
  413. csa_table_float[i][3] = ca - cs;
  414. }
  415. /* compute mdct windows */
  416. for(i=0;i<36;i++) {
  417. for(j=0; j<4; j++){
  418. double d;
  419. if(j==2 && i%3 != 1)
  420. continue;
  421. d= sin(M_PI * (i + 0.5) / 36.0);
  422. if(j==1){
  423. if (i>=30) d= 0;
  424. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  425. else if(i>=18) d= 1;
  426. }else if(j==3){
  427. if (i< 6) d= 0;
  428. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  429. else if(i< 18) d= 1;
  430. }
  431. //merge last stage of imdct into the window coefficients
  432. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  433. if(j==2)
  434. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  435. else
  436. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  437. }
  438. }
  439. /* NOTE: we do frequency inversion adter the MDCT by changing
  440. the sign of the right window coefs */
  441. for(j=0;j<4;j++) {
  442. for(i=0;i<36;i+=2) {
  443. mdct_win[j + 4][i] = mdct_win[j][i];
  444. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  445. }
  446. }
  447. init = 1;
  448. }
  449. if (avctx->codec_id == CODEC_ID_MP3ADU)
  450. s->adu_mode = 1;
  451. return 0;
  452. }
  453. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  454. /* cos(i*pi/64) */
  455. #define COS0_0 FIXHR(0.50060299823519630134/2)
  456. #define COS0_1 FIXHR(0.50547095989754365998/2)
  457. #define COS0_2 FIXHR(0.51544730992262454697/2)
  458. #define COS0_3 FIXHR(0.53104259108978417447/2)
  459. #define COS0_4 FIXHR(0.55310389603444452782/2)
  460. #define COS0_5 FIXHR(0.58293496820613387367/2)
  461. #define COS0_6 FIXHR(0.62250412303566481615/2)
  462. #define COS0_7 FIXHR(0.67480834145500574602/2)
  463. #define COS0_8 FIXHR(0.74453627100229844977/2)
  464. #define COS0_9 FIXHR(0.83934964541552703873/2)
  465. #define COS0_10 FIXHR(0.97256823786196069369/2)
  466. #define COS0_11 FIXHR(1.16943993343288495515/4)
  467. #define COS0_12 FIXHR(1.48416461631416627724/4)
  468. #define COS0_13 FIXHR(2.05778100995341155085/8)
  469. #define COS0_14 FIXHR(3.40760841846871878570/8)
  470. #define COS0_15 FIXHR(10.19000812354805681150/32)
  471. #define COS1_0 FIXHR(0.50241928618815570551/2)
  472. #define COS1_1 FIXHR(0.52249861493968888062/2)
  473. #define COS1_2 FIXHR(0.56694403481635770368/2)
  474. #define COS1_3 FIXHR(0.64682178335999012954/2)
  475. #define COS1_4 FIXHR(0.78815462345125022473/2)
  476. #define COS1_5 FIXHR(1.06067768599034747134/4)
  477. #define COS1_6 FIXHR(1.72244709823833392782/4)
  478. #define COS1_7 FIXHR(5.10114861868916385802/16)
  479. #define COS2_0 FIXHR(0.50979557910415916894/2)
  480. #define COS2_1 FIXHR(0.60134488693504528054/2)
  481. #define COS2_2 FIXHR(0.89997622313641570463/2)
  482. #define COS2_3 FIXHR(2.56291544774150617881/8)
  483. #define COS3_0 FIXHR(0.54119610014619698439/2)
  484. #define COS3_1 FIXHR(1.30656296487637652785/4)
  485. #define COS4_0 FIXHR(0.70710678118654752439/2)
  486. /* butterfly operator */
  487. #define BF(a, b, c, s)\
  488. {\
  489. tmp0 = tab[a] + tab[b];\
  490. tmp1 = tab[a] - tab[b];\
  491. tab[a] = tmp0;\
  492. tab[b] = MULH(tmp1<<(s), c);\
  493. }
  494. #define BF1(a, b, c, d)\
  495. {\
  496. BF(a, b, COS4_0, 1);\
  497. BF(c, d,-COS4_0, 1);\
  498. tab[c] += tab[d];\
  499. }
  500. #define BF2(a, b, c, d)\
  501. {\
  502. BF(a, b, COS4_0, 1);\
  503. BF(c, d,-COS4_0, 1);\
  504. tab[c] += tab[d];\
  505. tab[a] += tab[c];\
  506. tab[c] += tab[b];\
  507. tab[b] += tab[d];\
  508. }
  509. #define ADD(a, b) tab[a] += tab[b]
  510. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  511. static void dct32(int32_t *out, int32_t *tab)
  512. {
  513. int tmp0, tmp1;
  514. /* pass 1 */
  515. BF( 0, 31, COS0_0 , 1);
  516. BF(15, 16, COS0_15, 5);
  517. /* pass 2 */
  518. BF( 0, 15, COS1_0 , 1);
  519. BF(16, 31,-COS1_0 , 1);
  520. /* pass 1 */
  521. BF( 7, 24, COS0_7 , 1);
  522. BF( 8, 23, COS0_8 , 1);
  523. /* pass 2 */
  524. BF( 7, 8, COS1_7 , 4);
  525. BF(23, 24,-COS1_7 , 4);
  526. /* pass 3 */
  527. BF( 0, 7, COS2_0 , 1);
  528. BF( 8, 15,-COS2_0 , 1);
  529. BF(16, 23, COS2_0 , 1);
  530. BF(24, 31,-COS2_0 , 1);
  531. /* pass 1 */
  532. BF( 3, 28, COS0_3 , 1);
  533. BF(12, 19, COS0_12, 2);
  534. /* pass 2 */
  535. BF( 3, 12, COS1_3 , 1);
  536. BF(19, 28,-COS1_3 , 1);
  537. /* pass 1 */
  538. BF( 4, 27, COS0_4 , 1);
  539. BF(11, 20, COS0_11, 2);
  540. /* pass 2 */
  541. BF( 4, 11, COS1_4 , 1);
  542. BF(20, 27,-COS1_4 , 1);
  543. /* pass 3 */
  544. BF( 3, 4, COS2_3 , 3);
  545. BF(11, 12,-COS2_3 , 3);
  546. BF(19, 20, COS2_3 , 3);
  547. BF(27, 28,-COS2_3 , 3);
  548. /* pass 4 */
  549. BF( 0, 3, COS3_0 , 1);
  550. BF( 4, 7,-COS3_0 , 1);
  551. BF( 8, 11, COS3_0 , 1);
  552. BF(12, 15,-COS3_0 , 1);
  553. BF(16, 19, COS3_0 , 1);
  554. BF(20, 23,-COS3_0 , 1);
  555. BF(24, 27, COS3_0 , 1);
  556. BF(28, 31,-COS3_0 , 1);
  557. /* pass 1 */
  558. BF( 1, 30, COS0_1 , 1);
  559. BF(14, 17, COS0_14, 3);
  560. /* pass 2 */
  561. BF( 1, 14, COS1_1 , 1);
  562. BF(17, 30,-COS1_1 , 1);
  563. /* pass 1 */
  564. BF( 6, 25, COS0_6 , 1);
  565. BF( 9, 22, COS0_9 , 1);
  566. /* pass 2 */
  567. BF( 6, 9, COS1_6 , 2);
  568. BF(22, 25,-COS1_6 , 2);
  569. /* pass 3 */
  570. BF( 1, 6, COS2_1 , 1);
  571. BF( 9, 14,-COS2_1 , 1);
  572. BF(17, 22, COS2_1 , 1);
  573. BF(25, 30,-COS2_1 , 1);
  574. /* pass 1 */
  575. BF( 2, 29, COS0_2 , 1);
  576. BF(13, 18, COS0_13, 3);
  577. /* pass 2 */
  578. BF( 2, 13, COS1_2 , 1);
  579. BF(18, 29,-COS1_2 , 1);
  580. /* pass 1 */
  581. BF( 5, 26, COS0_5 , 1);
  582. BF(10, 21, COS0_10, 1);
  583. /* pass 2 */
  584. BF( 5, 10, COS1_5 , 2);
  585. BF(21, 26,-COS1_5 , 2);
  586. /* pass 3 */
  587. BF( 2, 5, COS2_2 , 1);
  588. BF(10, 13,-COS2_2 , 1);
  589. BF(18, 21, COS2_2 , 1);
  590. BF(26, 29,-COS2_2 , 1);
  591. /* pass 4 */
  592. BF( 1, 2, COS3_1 , 2);
  593. BF( 5, 6,-COS3_1 , 2);
  594. BF( 9, 10, COS3_1 , 2);
  595. BF(13, 14,-COS3_1 , 2);
  596. BF(17, 18, COS3_1 , 2);
  597. BF(21, 22,-COS3_1 , 2);
  598. BF(25, 26, COS3_1 , 2);
  599. BF(29, 30,-COS3_1 , 2);
  600. /* pass 5 */
  601. BF1( 0, 1, 2, 3);
  602. BF2( 4, 5, 6, 7);
  603. BF1( 8, 9, 10, 11);
  604. BF2(12, 13, 14, 15);
  605. BF1(16, 17, 18, 19);
  606. BF2(20, 21, 22, 23);
  607. BF1(24, 25, 26, 27);
  608. BF2(28, 29, 30, 31);
  609. /* pass 6 */
  610. ADD( 8, 12);
  611. ADD(12, 10);
  612. ADD(10, 14);
  613. ADD(14, 9);
  614. ADD( 9, 13);
  615. ADD(13, 11);
  616. ADD(11, 15);
  617. out[ 0] = tab[0];
  618. out[16] = tab[1];
  619. out[ 8] = tab[2];
  620. out[24] = tab[3];
  621. out[ 4] = tab[4];
  622. out[20] = tab[5];
  623. out[12] = tab[6];
  624. out[28] = tab[7];
  625. out[ 2] = tab[8];
  626. out[18] = tab[9];
  627. out[10] = tab[10];
  628. out[26] = tab[11];
  629. out[ 6] = tab[12];
  630. out[22] = tab[13];
  631. out[14] = tab[14];
  632. out[30] = tab[15];
  633. ADD(24, 28);
  634. ADD(28, 26);
  635. ADD(26, 30);
  636. ADD(30, 25);
  637. ADD(25, 29);
  638. ADD(29, 27);
  639. ADD(27, 31);
  640. out[ 1] = tab[16] + tab[24];
  641. out[17] = tab[17] + tab[25];
  642. out[ 9] = tab[18] + tab[26];
  643. out[25] = tab[19] + tab[27];
  644. out[ 5] = tab[20] + tab[28];
  645. out[21] = tab[21] + tab[29];
  646. out[13] = tab[22] + tab[30];
  647. out[29] = tab[23] + tab[31];
  648. out[ 3] = tab[24] + tab[20];
  649. out[19] = tab[25] + tab[21];
  650. out[11] = tab[26] + tab[22];
  651. out[27] = tab[27] + tab[23];
  652. out[ 7] = tab[28] + tab[18];
  653. out[23] = tab[29] + tab[19];
  654. out[15] = tab[30] + tab[17];
  655. out[31] = tab[31];
  656. }
  657. #if FRAC_BITS <= 15
  658. static inline int round_sample(int *sum)
  659. {
  660. int sum1;
  661. sum1 = (*sum) >> OUT_SHIFT;
  662. *sum &= (1<<OUT_SHIFT)-1;
  663. if (sum1 < OUT_MIN)
  664. sum1 = OUT_MIN;
  665. else if (sum1 > OUT_MAX)
  666. sum1 = OUT_MAX;
  667. return sum1;
  668. }
  669. /* signed 16x16 -> 32 multiply add accumulate */
  670. #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
  671. /* signed 16x16 -> 32 multiply */
  672. #define MULS(ra, rb) MUL16(ra, rb)
  673. #define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
  674. #else
  675. static inline int round_sample(int64_t *sum)
  676. {
  677. int sum1;
  678. sum1 = (int)((*sum) >> OUT_SHIFT);
  679. *sum &= (1<<OUT_SHIFT)-1;
  680. if (sum1 < OUT_MIN)
  681. sum1 = OUT_MIN;
  682. else if (sum1 > OUT_MAX)
  683. sum1 = OUT_MAX;
  684. return sum1;
  685. }
  686. # define MULS(ra, rb) MUL64(ra, rb)
  687. # define MACS(rt, ra, rb) MAC64(rt, ra, rb)
  688. # define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
  689. #endif
  690. #define SUM8(op, sum, w, p) \
  691. { \
  692. op(sum, (w)[0 * 64], p[0 * 64]); \
  693. op(sum, (w)[1 * 64], p[1 * 64]); \
  694. op(sum, (w)[2 * 64], p[2 * 64]); \
  695. op(sum, (w)[3 * 64], p[3 * 64]); \
  696. op(sum, (w)[4 * 64], p[4 * 64]); \
  697. op(sum, (w)[5 * 64], p[5 * 64]); \
  698. op(sum, (w)[6 * 64], p[6 * 64]); \
  699. op(sum, (w)[7 * 64], p[7 * 64]); \
  700. }
  701. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  702. { \
  703. int tmp;\
  704. tmp = p[0 * 64];\
  705. op1(sum1, (w1)[0 * 64], tmp);\
  706. op2(sum2, (w2)[0 * 64], tmp);\
  707. tmp = p[1 * 64];\
  708. op1(sum1, (w1)[1 * 64], tmp);\
  709. op2(sum2, (w2)[1 * 64], tmp);\
  710. tmp = p[2 * 64];\
  711. op1(sum1, (w1)[2 * 64], tmp);\
  712. op2(sum2, (w2)[2 * 64], tmp);\
  713. tmp = p[3 * 64];\
  714. op1(sum1, (w1)[3 * 64], tmp);\
  715. op2(sum2, (w2)[3 * 64], tmp);\
  716. tmp = p[4 * 64];\
  717. op1(sum1, (w1)[4 * 64], tmp);\
  718. op2(sum2, (w2)[4 * 64], tmp);\
  719. tmp = p[5 * 64];\
  720. op1(sum1, (w1)[5 * 64], tmp);\
  721. op2(sum2, (w2)[5 * 64], tmp);\
  722. tmp = p[6 * 64];\
  723. op1(sum1, (w1)[6 * 64], tmp);\
  724. op2(sum2, (w2)[6 * 64], tmp);\
  725. tmp = p[7 * 64];\
  726. op1(sum1, (w1)[7 * 64], tmp);\
  727. op2(sum2, (w2)[7 * 64], tmp);\
  728. }
  729. void av_cold ff_mpa_synth_init(MPA_INT *window)
  730. {
  731. int i;
  732. /* max = 18760, max sum over all 16 coefs : 44736 */
  733. for(i=0;i<257;i++) {
  734. int v;
  735. v = ff_mpa_enwindow[i];
  736. #if WFRAC_BITS < 16
  737. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  738. #endif
  739. window[i] = v;
  740. if ((i & 63) != 0)
  741. v = -v;
  742. if (i != 0)
  743. window[512 - i] = v;
  744. }
  745. }
  746. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  747. 32 samples. */
  748. /* XXX: optimize by avoiding ring buffer usage */
  749. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  750. MPA_INT *window, int *dither_state,
  751. OUT_INT *samples, int incr,
  752. int32_t sb_samples[SBLIMIT])
  753. {
  754. int32_t tmp[32];
  755. register MPA_INT *synth_buf;
  756. register const MPA_INT *w, *w2, *p;
  757. int j, offset, v;
  758. OUT_INT *samples2;
  759. #if FRAC_BITS <= 15
  760. int sum, sum2;
  761. #else
  762. int64_t sum, sum2;
  763. #endif
  764. dct32(tmp, sb_samples);
  765. offset = *synth_buf_offset;
  766. synth_buf = synth_buf_ptr + offset;
  767. for(j=0;j<32;j++) {
  768. v = tmp[j];
  769. #if FRAC_BITS <= 15
  770. /* NOTE: can cause a loss in precision if very high amplitude
  771. sound */
  772. v = av_clip_int16(v);
  773. #endif
  774. synth_buf[j] = v;
  775. }
  776. /* copy to avoid wrap */
  777. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  778. samples2 = samples + 31 * incr;
  779. w = window;
  780. w2 = window + 31;
  781. sum = *dither_state;
  782. p = synth_buf + 16;
  783. SUM8(MACS, sum, w, p);
  784. p = synth_buf + 48;
  785. SUM8(MLSS, sum, w + 32, p);
  786. *samples = round_sample(&sum);
  787. samples += incr;
  788. w++;
  789. /* we calculate two samples at the same time to avoid one memory
  790. access per two sample */
  791. for(j=1;j<16;j++) {
  792. sum2 = 0;
  793. p = synth_buf + 16 + j;
  794. SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
  795. p = synth_buf + 48 - j;
  796. SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
  797. *samples = round_sample(&sum);
  798. samples += incr;
  799. sum += sum2;
  800. *samples2 = round_sample(&sum);
  801. samples2 -= incr;
  802. w++;
  803. w2--;
  804. }
  805. p = synth_buf + 32;
  806. SUM8(MLSS, sum, w + 32, p);
  807. *samples = round_sample(&sum);
  808. *dither_state= sum;
  809. offset = (offset - 32) & 511;
  810. *synth_buf_offset = offset;
  811. }
  812. #define C3 FIXHR(0.86602540378443864676/2)
  813. /* 0.5 / cos(pi*(2*i+1)/36) */
  814. static const int icos36[9] = {
  815. FIXR(0.50190991877167369479),
  816. FIXR(0.51763809020504152469), //0
  817. FIXR(0.55168895948124587824),
  818. FIXR(0.61038729438072803416),
  819. FIXR(0.70710678118654752439), //1
  820. FIXR(0.87172339781054900991),
  821. FIXR(1.18310079157624925896),
  822. FIXR(1.93185165257813657349), //2
  823. FIXR(5.73685662283492756461),
  824. };
  825. /* 0.5 / cos(pi*(2*i+1)/36) */
  826. static const int icos36h[9] = {
  827. FIXHR(0.50190991877167369479/2),
  828. FIXHR(0.51763809020504152469/2), //0
  829. FIXHR(0.55168895948124587824/2),
  830. FIXHR(0.61038729438072803416/2),
  831. FIXHR(0.70710678118654752439/2), //1
  832. FIXHR(0.87172339781054900991/2),
  833. FIXHR(1.18310079157624925896/4),
  834. FIXHR(1.93185165257813657349/4), //2
  835. // FIXHR(5.73685662283492756461),
  836. };
  837. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  838. cases. */
  839. static void imdct12(int *out, int *in)
  840. {
  841. int in0, in1, in2, in3, in4, in5, t1, t2;
  842. in0= in[0*3];
  843. in1= in[1*3] + in[0*3];
  844. in2= in[2*3] + in[1*3];
  845. in3= in[3*3] + in[2*3];
  846. in4= in[4*3] + in[3*3];
  847. in5= in[5*3] + in[4*3];
  848. in5 += in3;
  849. in3 += in1;
  850. in2= MULH(2*in2, C3);
  851. in3= MULH(4*in3, C3);
  852. t1 = in0 - in4;
  853. t2 = MULH(2*(in1 - in5), icos36h[4]);
  854. out[ 7]=
  855. out[10]= t1 + t2;
  856. out[ 1]=
  857. out[ 4]= t1 - t2;
  858. in0 += in4>>1;
  859. in4 = in0 + in2;
  860. in5 += 2*in1;
  861. in1 = MULH(in5 + in3, icos36h[1]);
  862. out[ 8]=
  863. out[ 9]= in4 + in1;
  864. out[ 2]=
  865. out[ 3]= in4 - in1;
  866. in0 -= in2;
  867. in5 = MULH(2*(in5 - in3), icos36h[7]);
  868. out[ 0]=
  869. out[ 5]= in0 - in5;
  870. out[ 6]=
  871. out[11]= in0 + in5;
  872. }
  873. /* cos(pi*i/18) */
  874. #define C1 FIXHR(0.98480775301220805936/2)
  875. #define C2 FIXHR(0.93969262078590838405/2)
  876. #define C3 FIXHR(0.86602540378443864676/2)
  877. #define C4 FIXHR(0.76604444311897803520/2)
  878. #define C5 FIXHR(0.64278760968653932632/2)
  879. #define C6 FIXHR(0.5/2)
  880. #define C7 FIXHR(0.34202014332566873304/2)
  881. #define C8 FIXHR(0.17364817766693034885/2)
  882. /* using Lee like decomposition followed by hand coded 9 points DCT */
  883. static void imdct36(int *out, int *buf, int *in, int *win)
  884. {
  885. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  886. int tmp[18], *tmp1, *in1;
  887. for(i=17;i>=1;i--)
  888. in[i] += in[i-1];
  889. for(i=17;i>=3;i-=2)
  890. in[i] += in[i-2];
  891. for(j=0;j<2;j++) {
  892. tmp1 = tmp + j;
  893. in1 = in + j;
  894. #if 0
  895. //more accurate but slower
  896. int64_t t0, t1, t2, t3;
  897. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  898. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  899. t1 = in1[2*0] - in1[2*6];
  900. tmp1[ 6] = t1 - (t2>>1);
  901. tmp1[16] = t1 + t2;
  902. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  903. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  904. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  905. tmp1[10] = (t3 - t0 - t2) >> 32;
  906. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  907. tmp1[14] = (t3 + t2 - t1) >> 32;
  908. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  909. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  910. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  911. t0 = MUL64(2*in1[2*3], C3);
  912. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  913. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  914. tmp1[12] = (t2 + t1 - t0) >> 32;
  915. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  916. #else
  917. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  918. t3 = in1[2*0] + (in1[2*6]>>1);
  919. t1 = in1[2*0] - in1[2*6];
  920. tmp1[ 6] = t1 - (t2>>1);
  921. tmp1[16] = t1 + t2;
  922. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  923. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  924. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  925. tmp1[10] = t3 - t0 - t2;
  926. tmp1[ 2] = t3 + t0 + t1;
  927. tmp1[14] = t3 + t2 - t1;
  928. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  929. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  930. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  931. t0 = MULH(2*in1[2*3], C3);
  932. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  933. tmp1[ 0] = t2 + t3 + t0;
  934. tmp1[12] = t2 + t1 - t0;
  935. tmp1[ 8] = t3 - t1 - t0;
  936. #endif
  937. }
  938. i = 0;
  939. for(j=0;j<4;j++) {
  940. t0 = tmp[i];
  941. t1 = tmp[i + 2];
  942. s0 = t1 + t0;
  943. s2 = t1 - t0;
  944. t2 = tmp[i + 1];
  945. t3 = tmp[i + 3];
  946. s1 = MULH(2*(t3 + t2), icos36h[j]);
  947. s3 = MULL(t3 - t2, icos36[8 - j], FRAC_BITS);
  948. t0 = s0 + s1;
  949. t1 = s0 - s1;
  950. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  951. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  952. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  953. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  954. t0 = s2 + s3;
  955. t1 = s2 - s3;
  956. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  957. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  958. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  959. buf[ + j] = MULH(t0, win[18 + j]);
  960. i += 4;
  961. }
  962. s0 = tmp[16];
  963. s1 = MULH(2*tmp[17], icos36h[4]);
  964. t0 = s0 + s1;
  965. t1 = s0 - s1;
  966. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  967. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  968. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  969. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  970. }
  971. /* return the number of decoded frames */
  972. static int mp_decode_layer1(MPADecodeContext *s)
  973. {
  974. int bound, i, v, n, ch, j, mant;
  975. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  976. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  977. if (s->mode == MPA_JSTEREO)
  978. bound = (s->mode_ext + 1) * 4;
  979. else
  980. bound = SBLIMIT;
  981. /* allocation bits */
  982. for(i=0;i<bound;i++) {
  983. for(ch=0;ch<s->nb_channels;ch++) {
  984. allocation[ch][i] = get_bits(&s->gb, 4);
  985. }
  986. }
  987. for(i=bound;i<SBLIMIT;i++) {
  988. allocation[0][i] = get_bits(&s->gb, 4);
  989. }
  990. /* scale factors */
  991. for(i=0;i<bound;i++) {
  992. for(ch=0;ch<s->nb_channels;ch++) {
  993. if (allocation[ch][i])
  994. scale_factors[ch][i] = get_bits(&s->gb, 6);
  995. }
  996. }
  997. for(i=bound;i<SBLIMIT;i++) {
  998. if (allocation[0][i]) {
  999. scale_factors[0][i] = get_bits(&s->gb, 6);
  1000. scale_factors[1][i] = get_bits(&s->gb, 6);
  1001. }
  1002. }
  1003. /* compute samples */
  1004. for(j=0;j<12;j++) {
  1005. for(i=0;i<bound;i++) {
  1006. for(ch=0;ch<s->nb_channels;ch++) {
  1007. n = allocation[ch][i];
  1008. if (n) {
  1009. mant = get_bits(&s->gb, n + 1);
  1010. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1011. } else {
  1012. v = 0;
  1013. }
  1014. s->sb_samples[ch][j][i] = v;
  1015. }
  1016. }
  1017. for(i=bound;i<SBLIMIT;i++) {
  1018. n = allocation[0][i];
  1019. if (n) {
  1020. mant = get_bits(&s->gb, n + 1);
  1021. v = l1_unscale(n, mant, scale_factors[0][i]);
  1022. s->sb_samples[0][j][i] = v;
  1023. v = l1_unscale(n, mant, scale_factors[1][i]);
  1024. s->sb_samples[1][j][i] = v;
  1025. } else {
  1026. s->sb_samples[0][j][i] = 0;
  1027. s->sb_samples[1][j][i] = 0;
  1028. }
  1029. }
  1030. }
  1031. return 12;
  1032. }
  1033. static int mp_decode_layer2(MPADecodeContext *s)
  1034. {
  1035. int sblimit; /* number of used subbands */
  1036. const unsigned char *alloc_table;
  1037. int table, bit_alloc_bits, i, j, ch, bound, v;
  1038. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1039. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1040. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1041. int scale, qindex, bits, steps, k, l, m, b;
  1042. /* select decoding table */
  1043. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1044. s->sample_rate, s->lsf);
  1045. sblimit = ff_mpa_sblimit_table[table];
  1046. alloc_table = ff_mpa_alloc_tables[table];
  1047. if (s->mode == MPA_JSTEREO)
  1048. bound = (s->mode_ext + 1) * 4;
  1049. else
  1050. bound = sblimit;
  1051. dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  1052. /* sanity check */
  1053. if( bound > sblimit ) bound = sblimit;
  1054. /* parse bit allocation */
  1055. j = 0;
  1056. for(i=0;i<bound;i++) {
  1057. bit_alloc_bits = alloc_table[j];
  1058. for(ch=0;ch<s->nb_channels;ch++) {
  1059. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1060. }
  1061. j += 1 << bit_alloc_bits;
  1062. }
  1063. for(i=bound;i<sblimit;i++) {
  1064. bit_alloc_bits = alloc_table[j];
  1065. v = get_bits(&s->gb, bit_alloc_bits);
  1066. bit_alloc[0][i] = v;
  1067. bit_alloc[1][i] = v;
  1068. j += 1 << bit_alloc_bits;
  1069. }
  1070. /* scale codes */
  1071. for(i=0;i<sblimit;i++) {
  1072. for(ch=0;ch<s->nb_channels;ch++) {
  1073. if (bit_alloc[ch][i])
  1074. scale_code[ch][i] = get_bits(&s->gb, 2);
  1075. }
  1076. }
  1077. /* scale factors */
  1078. for(i=0;i<sblimit;i++) {
  1079. for(ch=0;ch<s->nb_channels;ch++) {
  1080. if (bit_alloc[ch][i]) {
  1081. sf = scale_factors[ch][i];
  1082. switch(scale_code[ch][i]) {
  1083. default:
  1084. case 0:
  1085. sf[0] = get_bits(&s->gb, 6);
  1086. sf[1] = get_bits(&s->gb, 6);
  1087. sf[2] = get_bits(&s->gb, 6);
  1088. break;
  1089. case 2:
  1090. sf[0] = get_bits(&s->gb, 6);
  1091. sf[1] = sf[0];
  1092. sf[2] = sf[0];
  1093. break;
  1094. case 1:
  1095. sf[0] = get_bits(&s->gb, 6);
  1096. sf[2] = get_bits(&s->gb, 6);
  1097. sf[1] = sf[0];
  1098. break;
  1099. case 3:
  1100. sf[0] = get_bits(&s->gb, 6);
  1101. sf[2] = get_bits(&s->gb, 6);
  1102. sf[1] = sf[2];
  1103. break;
  1104. }
  1105. }
  1106. }
  1107. }
  1108. /* samples */
  1109. for(k=0;k<3;k++) {
  1110. for(l=0;l<12;l+=3) {
  1111. j = 0;
  1112. for(i=0;i<bound;i++) {
  1113. bit_alloc_bits = alloc_table[j];
  1114. for(ch=0;ch<s->nb_channels;ch++) {
  1115. b = bit_alloc[ch][i];
  1116. if (b) {
  1117. scale = scale_factors[ch][i][k];
  1118. qindex = alloc_table[j+b];
  1119. bits = ff_mpa_quant_bits[qindex];
  1120. if (bits < 0) {
  1121. /* 3 values at the same time */
  1122. v = get_bits(&s->gb, -bits);
  1123. steps = ff_mpa_quant_steps[qindex];
  1124. s->sb_samples[ch][k * 12 + l + 0][i] =
  1125. l2_unscale_group(steps, v % steps, scale);
  1126. v = v / steps;
  1127. s->sb_samples[ch][k * 12 + l + 1][i] =
  1128. l2_unscale_group(steps, v % steps, scale);
  1129. v = v / steps;
  1130. s->sb_samples[ch][k * 12 + l + 2][i] =
  1131. l2_unscale_group(steps, v, scale);
  1132. } else {
  1133. for(m=0;m<3;m++) {
  1134. v = get_bits(&s->gb, bits);
  1135. v = l1_unscale(bits - 1, v, scale);
  1136. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1137. }
  1138. }
  1139. } else {
  1140. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1141. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1142. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1143. }
  1144. }
  1145. /* next subband in alloc table */
  1146. j += 1 << bit_alloc_bits;
  1147. }
  1148. /* XXX: find a way to avoid this duplication of code */
  1149. for(i=bound;i<sblimit;i++) {
  1150. bit_alloc_bits = alloc_table[j];
  1151. b = bit_alloc[0][i];
  1152. if (b) {
  1153. int mant, scale0, scale1;
  1154. scale0 = scale_factors[0][i][k];
  1155. scale1 = scale_factors[1][i][k];
  1156. qindex = alloc_table[j+b];
  1157. bits = ff_mpa_quant_bits[qindex];
  1158. if (bits < 0) {
  1159. /* 3 values at the same time */
  1160. v = get_bits(&s->gb, -bits);
  1161. steps = ff_mpa_quant_steps[qindex];
  1162. mant = v % steps;
  1163. v = v / steps;
  1164. s->sb_samples[0][k * 12 + l + 0][i] =
  1165. l2_unscale_group(steps, mant, scale0);
  1166. s->sb_samples[1][k * 12 + l + 0][i] =
  1167. l2_unscale_group(steps, mant, scale1);
  1168. mant = v % steps;
  1169. v = v / steps;
  1170. s->sb_samples[0][k * 12 + l + 1][i] =
  1171. l2_unscale_group(steps, mant, scale0);
  1172. s->sb_samples[1][k * 12 + l + 1][i] =
  1173. l2_unscale_group(steps, mant, scale1);
  1174. s->sb_samples[0][k * 12 + l + 2][i] =
  1175. l2_unscale_group(steps, v, scale0);
  1176. s->sb_samples[1][k * 12 + l + 2][i] =
  1177. l2_unscale_group(steps, v, scale1);
  1178. } else {
  1179. for(m=0;m<3;m++) {
  1180. mant = get_bits(&s->gb, bits);
  1181. s->sb_samples[0][k * 12 + l + m][i] =
  1182. l1_unscale(bits - 1, mant, scale0);
  1183. s->sb_samples[1][k * 12 + l + m][i] =
  1184. l1_unscale(bits - 1, mant, scale1);
  1185. }
  1186. }
  1187. } else {
  1188. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1189. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1190. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1191. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1192. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1193. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1194. }
  1195. /* next subband in alloc table */
  1196. j += 1 << bit_alloc_bits;
  1197. }
  1198. /* fill remaining samples to zero */
  1199. for(i=sblimit;i<SBLIMIT;i++) {
  1200. for(ch=0;ch<s->nb_channels;ch++) {
  1201. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1202. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1203. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1204. }
  1205. }
  1206. }
  1207. }
  1208. return 3 * 12;
  1209. }
  1210. static inline void lsf_sf_expand(int *slen,
  1211. int sf, int n1, int n2, int n3)
  1212. {
  1213. if (n3) {
  1214. slen[3] = sf % n3;
  1215. sf /= n3;
  1216. } else {
  1217. slen[3] = 0;
  1218. }
  1219. if (n2) {
  1220. slen[2] = sf % n2;
  1221. sf /= n2;
  1222. } else {
  1223. slen[2] = 0;
  1224. }
  1225. slen[1] = sf % n1;
  1226. sf /= n1;
  1227. slen[0] = sf;
  1228. }
  1229. static void exponents_from_scale_factors(MPADecodeContext *s,
  1230. GranuleDef *g,
  1231. int16_t *exponents)
  1232. {
  1233. const uint8_t *bstab, *pretab;
  1234. int len, i, j, k, l, v0, shift, gain, gains[3];
  1235. int16_t *exp_ptr;
  1236. exp_ptr = exponents;
  1237. gain = g->global_gain - 210;
  1238. shift = g->scalefac_scale + 1;
  1239. bstab = band_size_long[s->sample_rate_index];
  1240. pretab = mpa_pretab[g->preflag];
  1241. for(i=0;i<g->long_end;i++) {
  1242. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1243. len = bstab[i];
  1244. for(j=len;j>0;j--)
  1245. *exp_ptr++ = v0;
  1246. }
  1247. if (g->short_start < 13) {
  1248. bstab = band_size_short[s->sample_rate_index];
  1249. gains[0] = gain - (g->subblock_gain[0] << 3);
  1250. gains[1] = gain - (g->subblock_gain[1] << 3);
  1251. gains[2] = gain - (g->subblock_gain[2] << 3);
  1252. k = g->long_end;
  1253. for(i=g->short_start;i<13;i++) {
  1254. len = bstab[i];
  1255. for(l=0;l<3;l++) {
  1256. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1257. for(j=len;j>0;j--)
  1258. *exp_ptr++ = v0;
  1259. }
  1260. }
  1261. }
  1262. }
  1263. /* handle n = 0 too */
  1264. static inline int get_bitsz(GetBitContext *s, int n)
  1265. {
  1266. if (n == 0)
  1267. return 0;
  1268. else
  1269. return get_bits(s, n);
  1270. }
  1271. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
  1272. if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
  1273. s->gb= s->in_gb;
  1274. s->in_gb.buffer=NULL;
  1275. assert((get_bits_count(&s->gb) & 7) == 0);
  1276. skip_bits_long(&s->gb, *pos - *end_pos);
  1277. *end_pos2=
  1278. *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
  1279. *pos= get_bits_count(&s->gb);
  1280. }
  1281. }
  1282. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1283. int16_t *exponents, int end_pos2)
  1284. {
  1285. int s_index;
  1286. int i;
  1287. int last_pos, bits_left;
  1288. VLC *vlc;
  1289. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1290. /* low frequencies (called big values) */
  1291. s_index = 0;
  1292. for(i=0;i<3;i++) {
  1293. int j, k, l, linbits;
  1294. j = g->region_size[i];
  1295. if (j == 0)
  1296. continue;
  1297. /* select vlc table */
  1298. k = g->table_select[i];
  1299. l = mpa_huff_data[k][0];
  1300. linbits = mpa_huff_data[k][1];
  1301. vlc = &huff_vlc[l];
  1302. if(!l){
  1303. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1304. s_index += 2*j;
  1305. continue;
  1306. }
  1307. /* read huffcode and compute each couple */
  1308. for(;j>0;j--) {
  1309. int exponent, x, y, v;
  1310. int pos= get_bits_count(&s->gb);
  1311. if (pos >= end_pos){
  1312. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1313. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1314. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1315. if(pos >= end_pos)
  1316. break;
  1317. }
  1318. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1319. if(!y){
  1320. g->sb_hybrid[s_index ] =
  1321. g->sb_hybrid[s_index+1] = 0;
  1322. s_index += 2;
  1323. continue;
  1324. }
  1325. exponent= exponents[s_index];
  1326. dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  1327. i, g->region_size[i] - j, x, y, exponent);
  1328. if(y&16){
  1329. x = y >> 5;
  1330. y = y & 0x0f;
  1331. if (x < 15){
  1332. v = expval_table[ exponent ][ x ];
  1333. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1334. }else{
  1335. x += get_bitsz(&s->gb, linbits);
  1336. v = l3_unscale(x, exponent);
  1337. }
  1338. if (get_bits1(&s->gb))
  1339. v = -v;
  1340. g->sb_hybrid[s_index] = v;
  1341. if (y < 15){
  1342. v = expval_table[ exponent ][ y ];
  1343. }else{
  1344. y += get_bitsz(&s->gb, linbits);
  1345. v = l3_unscale(y, exponent);
  1346. }
  1347. if (get_bits1(&s->gb))
  1348. v = -v;
  1349. g->sb_hybrid[s_index+1] = v;
  1350. }else{
  1351. x = y >> 5;
  1352. y = y & 0x0f;
  1353. x += y;
  1354. if (x < 15){
  1355. v = expval_table[ exponent ][ x ];
  1356. }else{
  1357. x += get_bitsz(&s->gb, linbits);
  1358. v = l3_unscale(x, exponent);
  1359. }
  1360. if (get_bits1(&s->gb))
  1361. v = -v;
  1362. g->sb_hybrid[s_index+!!y] = v;
  1363. g->sb_hybrid[s_index+ !y] = 0;
  1364. }
  1365. s_index+=2;
  1366. }
  1367. }
  1368. /* high frequencies */
  1369. vlc = &huff_quad_vlc[g->count1table_select];
  1370. last_pos=0;
  1371. while (s_index <= 572) {
  1372. int pos, code;
  1373. pos = get_bits_count(&s->gb);
  1374. if (pos >= end_pos) {
  1375. if (pos > end_pos2 && last_pos){
  1376. /* some encoders generate an incorrect size for this
  1377. part. We must go back into the data */
  1378. s_index -= 4;
  1379. skip_bits_long(&s->gb, last_pos - pos);
  1380. av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1381. if(s->error_recognition >= FF_ER_COMPLIANT)
  1382. s_index=0;
  1383. break;
  1384. }
  1385. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1386. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1387. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1388. if(pos >= end_pos)
  1389. break;
  1390. }
  1391. last_pos= pos;
  1392. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1393. dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  1394. g->sb_hybrid[s_index+0]=
  1395. g->sb_hybrid[s_index+1]=
  1396. g->sb_hybrid[s_index+2]=
  1397. g->sb_hybrid[s_index+3]= 0;
  1398. while(code){
  1399. static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1400. int v;
  1401. int pos= s_index+idxtab[code];
  1402. code ^= 8>>idxtab[code];
  1403. v = exp_table[ exponents[pos] ];
  1404. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1405. if(get_bits1(&s->gb))
  1406. v = -v;
  1407. g->sb_hybrid[pos] = v;
  1408. }
  1409. s_index+=4;
  1410. }
  1411. /* skip extension bits */
  1412. bits_left = end_pos2 - get_bits_count(&s->gb);
  1413. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1414. if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
  1415. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1416. s_index=0;
  1417. }else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
  1418. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1419. s_index=0;
  1420. }
  1421. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1422. skip_bits_long(&s->gb, bits_left);
  1423. i= get_bits_count(&s->gb);
  1424. switch_buffer(s, &i, &end_pos, &end_pos2);
  1425. return 0;
  1426. }
  1427. /* Reorder short blocks from bitstream order to interleaved order. It
  1428. would be faster to do it in parsing, but the code would be far more
  1429. complicated */
  1430. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1431. {
  1432. int i, j, len;
  1433. int32_t *ptr, *dst, *ptr1;
  1434. int32_t tmp[576];
  1435. if (g->block_type != 2)
  1436. return;
  1437. if (g->switch_point) {
  1438. if (s->sample_rate_index != 8) {
  1439. ptr = g->sb_hybrid + 36;
  1440. } else {
  1441. ptr = g->sb_hybrid + 48;
  1442. }
  1443. } else {
  1444. ptr = g->sb_hybrid;
  1445. }
  1446. for(i=g->short_start;i<13;i++) {
  1447. len = band_size_short[s->sample_rate_index][i];
  1448. ptr1 = ptr;
  1449. dst = tmp;
  1450. for(j=len;j>0;j--) {
  1451. *dst++ = ptr[0*len];
  1452. *dst++ = ptr[1*len];
  1453. *dst++ = ptr[2*len];
  1454. ptr++;
  1455. }
  1456. ptr+=2*len;
  1457. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1458. }
  1459. }
  1460. #define ISQRT2 FIXR(0.70710678118654752440)
  1461. static void compute_stereo(MPADecodeContext *s,
  1462. GranuleDef *g0, GranuleDef *g1)
  1463. {
  1464. int i, j, k, l;
  1465. int32_t v1, v2;
  1466. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1467. int32_t (*is_tab)[16];
  1468. int32_t *tab0, *tab1;
  1469. int non_zero_found_short[3];
  1470. /* intensity stereo */
  1471. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1472. if (!s->lsf) {
  1473. is_tab = is_table;
  1474. sf_max = 7;
  1475. } else {
  1476. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1477. sf_max = 16;
  1478. }
  1479. tab0 = g0->sb_hybrid + 576;
  1480. tab1 = g1->sb_hybrid + 576;
  1481. non_zero_found_short[0] = 0;
  1482. non_zero_found_short[1] = 0;
  1483. non_zero_found_short[2] = 0;
  1484. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1485. for(i = 12;i >= g1->short_start;i--) {
  1486. /* for last band, use previous scale factor */
  1487. if (i != 11)
  1488. k -= 3;
  1489. len = band_size_short[s->sample_rate_index][i];
  1490. for(l=2;l>=0;l--) {
  1491. tab0 -= len;
  1492. tab1 -= len;
  1493. if (!non_zero_found_short[l]) {
  1494. /* test if non zero band. if so, stop doing i-stereo */
  1495. for(j=0;j<len;j++) {
  1496. if (tab1[j] != 0) {
  1497. non_zero_found_short[l] = 1;
  1498. goto found1;
  1499. }
  1500. }
  1501. sf = g1->scale_factors[k + l];
  1502. if (sf >= sf_max)
  1503. goto found1;
  1504. v1 = is_tab[0][sf];
  1505. v2 = is_tab[1][sf];
  1506. for(j=0;j<len;j++) {
  1507. tmp0 = tab0[j];
  1508. tab0[j] = MULL(tmp0, v1, FRAC_BITS);
  1509. tab1[j] = MULL(tmp0, v2, FRAC_BITS);
  1510. }
  1511. } else {
  1512. found1:
  1513. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1514. /* lower part of the spectrum : do ms stereo
  1515. if enabled */
  1516. for(j=0;j<len;j++) {
  1517. tmp0 = tab0[j];
  1518. tmp1 = tab1[j];
  1519. tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1520. tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1521. }
  1522. }
  1523. }
  1524. }
  1525. }
  1526. non_zero_found = non_zero_found_short[0] |
  1527. non_zero_found_short[1] |
  1528. non_zero_found_short[2];
  1529. for(i = g1->long_end - 1;i >= 0;i--) {
  1530. len = band_size_long[s->sample_rate_index][i];
  1531. tab0 -= len;
  1532. tab1 -= len;
  1533. /* test if non zero band. if so, stop doing i-stereo */
  1534. if (!non_zero_found) {
  1535. for(j=0;j<len;j++) {
  1536. if (tab1[j] != 0) {
  1537. non_zero_found = 1;
  1538. goto found2;
  1539. }
  1540. }
  1541. /* for last band, use previous scale factor */
  1542. k = (i == 21) ? 20 : i;
  1543. sf = g1->scale_factors[k];
  1544. if (sf >= sf_max)
  1545. goto found2;
  1546. v1 = is_tab[0][sf];
  1547. v2 = is_tab[1][sf];
  1548. for(j=0;j<len;j++) {
  1549. tmp0 = tab0[j];
  1550. tab0[j] = MULL(tmp0, v1, FRAC_BITS);
  1551. tab1[j] = MULL(tmp0, v2, FRAC_BITS);
  1552. }
  1553. } else {
  1554. found2:
  1555. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1556. /* lower part of the spectrum : do ms stereo
  1557. if enabled */
  1558. for(j=0;j<len;j++) {
  1559. tmp0 = tab0[j];
  1560. tmp1 = tab1[j];
  1561. tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1562. tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1563. }
  1564. }
  1565. }
  1566. }
  1567. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1568. /* ms stereo ONLY */
  1569. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1570. global gain */
  1571. tab0 = g0->sb_hybrid;
  1572. tab1 = g1->sb_hybrid;
  1573. for(i=0;i<576;i++) {
  1574. tmp0 = tab0[i];
  1575. tmp1 = tab1[i];
  1576. tab0[i] = tmp0 + tmp1;
  1577. tab1[i] = tmp0 - tmp1;
  1578. }
  1579. }
  1580. }
  1581. static void compute_antialias_integer(MPADecodeContext *s,
  1582. GranuleDef *g)
  1583. {
  1584. int32_t *ptr, *csa;
  1585. int n, i;
  1586. /* we antialias only "long" bands */
  1587. if (g->block_type == 2) {
  1588. if (!g->switch_point)
  1589. return;
  1590. /* XXX: check this for 8000Hz case */
  1591. n = 1;
  1592. } else {
  1593. n = SBLIMIT - 1;
  1594. }
  1595. ptr = g->sb_hybrid + 18;
  1596. for(i = n;i > 0;i--) {
  1597. int tmp0, tmp1, tmp2;
  1598. csa = &csa_table[0][0];
  1599. #define INT_AA(j) \
  1600. tmp0 = ptr[-1-j];\
  1601. tmp1 = ptr[ j];\
  1602. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1603. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1604. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1605. INT_AA(0)
  1606. INT_AA(1)
  1607. INT_AA(2)
  1608. INT_AA(3)
  1609. INT_AA(4)
  1610. INT_AA(5)
  1611. INT_AA(6)
  1612. INT_AA(7)
  1613. ptr += 18;
  1614. }
  1615. }
  1616. static void compute_antialias_float(MPADecodeContext *s,
  1617. GranuleDef *g)
  1618. {
  1619. int32_t *ptr;
  1620. int n, i;
  1621. /* we antialias only "long" bands */
  1622. if (g->block_type == 2) {
  1623. if (!g->switch_point)
  1624. return;
  1625. /* XXX: check this for 8000Hz case */
  1626. n = 1;
  1627. } else {
  1628. n = SBLIMIT - 1;
  1629. }
  1630. ptr = g->sb_hybrid + 18;
  1631. for(i = n;i > 0;i--) {
  1632. float tmp0, tmp1;
  1633. float *csa = &csa_table_float[0][0];
  1634. #define FLOAT_AA(j)\
  1635. tmp0= ptr[-1-j];\
  1636. tmp1= ptr[ j];\
  1637. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1638. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1639. FLOAT_AA(0)
  1640. FLOAT_AA(1)
  1641. FLOAT_AA(2)
  1642. FLOAT_AA(3)
  1643. FLOAT_AA(4)
  1644. FLOAT_AA(5)
  1645. FLOAT_AA(6)
  1646. FLOAT_AA(7)
  1647. ptr += 18;
  1648. }
  1649. }
  1650. static void compute_imdct(MPADecodeContext *s,
  1651. GranuleDef *g,
  1652. int32_t *sb_samples,
  1653. int32_t *mdct_buf)
  1654. {
  1655. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1656. int32_t out2[12];
  1657. int i, j, mdct_long_end, v, sblimit;
  1658. /* find last non zero block */
  1659. ptr = g->sb_hybrid + 576;
  1660. ptr1 = g->sb_hybrid + 2 * 18;
  1661. while (ptr >= ptr1) {
  1662. ptr -= 6;
  1663. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1664. if (v != 0)
  1665. break;
  1666. }
  1667. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1668. if (g->block_type == 2) {
  1669. /* XXX: check for 8000 Hz */
  1670. if (g->switch_point)
  1671. mdct_long_end = 2;
  1672. else
  1673. mdct_long_end = 0;
  1674. } else {
  1675. mdct_long_end = sblimit;
  1676. }
  1677. buf = mdct_buf;
  1678. ptr = g->sb_hybrid;
  1679. for(j=0;j<mdct_long_end;j++) {
  1680. /* apply window & overlap with previous buffer */
  1681. out_ptr = sb_samples + j;
  1682. /* select window */
  1683. if (g->switch_point && j < 2)
  1684. win1 = mdct_win[0];
  1685. else
  1686. win1 = mdct_win[g->block_type];
  1687. /* select frequency inversion */
  1688. win = win1 + ((4 * 36) & -(j & 1));
  1689. imdct36(out_ptr, buf, ptr, win);
  1690. out_ptr += 18*SBLIMIT;
  1691. ptr += 18;
  1692. buf += 18;
  1693. }
  1694. for(j=mdct_long_end;j<sblimit;j++) {
  1695. /* select frequency inversion */
  1696. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1697. out_ptr = sb_samples + j;
  1698. for(i=0; i<6; i++){
  1699. *out_ptr = buf[i];
  1700. out_ptr += SBLIMIT;
  1701. }
  1702. imdct12(out2, ptr + 0);
  1703. for(i=0;i<6;i++) {
  1704. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1705. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1706. out_ptr += SBLIMIT;
  1707. }
  1708. imdct12(out2, ptr + 1);
  1709. for(i=0;i<6;i++) {
  1710. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1711. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1712. out_ptr += SBLIMIT;
  1713. }
  1714. imdct12(out2, ptr + 2);
  1715. for(i=0;i<6;i++) {
  1716. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1717. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1718. buf[i + 6*2] = 0;
  1719. }
  1720. ptr += 18;
  1721. buf += 18;
  1722. }
  1723. /* zero bands */
  1724. for(j=sblimit;j<SBLIMIT;j++) {
  1725. /* overlap */
  1726. out_ptr = sb_samples + j;
  1727. for(i=0;i<18;i++) {
  1728. *out_ptr = buf[i];
  1729. buf[i] = 0;
  1730. out_ptr += SBLIMIT;
  1731. }
  1732. buf += 18;
  1733. }
  1734. }
  1735. /* main layer3 decoding function */
  1736. static int mp_decode_layer3(MPADecodeContext *s)
  1737. {
  1738. int nb_granules, main_data_begin, private_bits;
  1739. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1740. GranuleDef granules[2][2], *g;
  1741. int16_t exponents[576];
  1742. /* read side info */
  1743. if (s->lsf) {
  1744. main_data_begin = get_bits(&s->gb, 8);
  1745. private_bits = get_bits(&s->gb, s->nb_channels);
  1746. nb_granules = 1;
  1747. } else {
  1748. main_data_begin = get_bits(&s->gb, 9);
  1749. if (s->nb_channels == 2)
  1750. private_bits = get_bits(&s->gb, 3);
  1751. else
  1752. private_bits = get_bits(&s->gb, 5);
  1753. nb_granules = 2;
  1754. for(ch=0;ch<s->nb_channels;ch++) {
  1755. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1756. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1757. }
  1758. }
  1759. for(gr=0;gr<nb_granules;gr++) {
  1760. for(ch=0;ch<s->nb_channels;ch++) {
  1761. dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1762. g = &granules[ch][gr];
  1763. g->part2_3_length = get_bits(&s->gb, 12);
  1764. g->big_values = get_bits(&s->gb, 9);
  1765. if(g->big_values > 288){
  1766. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1767. return -1;
  1768. }
  1769. g->global_gain = get_bits(&s->gb, 8);
  1770. /* if MS stereo only is selected, we precompute the
  1771. 1/sqrt(2) renormalization factor */
  1772. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1773. MODE_EXT_MS_STEREO)
  1774. g->global_gain -= 2;
  1775. if (s->lsf)
  1776. g->scalefac_compress = get_bits(&s->gb, 9);
  1777. else
  1778. g->scalefac_compress = get_bits(&s->gb, 4);
  1779. blocksplit_flag = get_bits1(&s->gb);
  1780. if (blocksplit_flag) {
  1781. g->block_type = get_bits(&s->gb, 2);
  1782. if (g->block_type == 0){
  1783. av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
  1784. return -1;
  1785. }
  1786. g->switch_point = get_bits1(&s->gb);
  1787. for(i=0;i<2;i++)
  1788. g->table_select[i] = get_bits(&s->gb, 5);
  1789. for(i=0;i<3;i++)
  1790. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1791. ff_init_short_region(s, g);
  1792. } else {
  1793. int region_address1, region_address2;
  1794. g->block_type = 0;
  1795. g->switch_point = 0;
  1796. for(i=0;i<3;i++)
  1797. g->table_select[i] = get_bits(&s->gb, 5);
  1798. /* compute huffman coded region sizes */
  1799. region_address1 = get_bits(&s->gb, 4);
  1800. region_address2 = get_bits(&s->gb, 3);
  1801. dprintf(s->avctx, "region1=%d region2=%d\n",
  1802. region_address1, region_address2);
  1803. ff_init_long_region(s, g, region_address1, region_address2);
  1804. }
  1805. ff_region_offset2size(g);
  1806. ff_compute_band_indexes(s, g);
  1807. g->preflag = 0;
  1808. if (!s->lsf)
  1809. g->preflag = get_bits1(&s->gb);
  1810. g->scalefac_scale = get_bits1(&s->gb);
  1811. g->count1table_select = get_bits1(&s->gb);
  1812. dprintf(s->avctx, "block_type=%d switch_point=%d\n",
  1813. g->block_type, g->switch_point);
  1814. }
  1815. }
  1816. if (!s->adu_mode) {
  1817. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1818. assert((get_bits_count(&s->gb) & 7) == 0);
  1819. /* now we get bits from the main_data_begin offset */
  1820. dprintf(s->avctx, "seekback: %d\n", main_data_begin);
  1821. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  1822. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  1823. s->in_gb= s->gb;
  1824. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1825. skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
  1826. }
  1827. for(gr=0;gr<nb_granules;gr++) {
  1828. for(ch=0;ch<s->nb_channels;ch++) {
  1829. g = &granules[ch][gr];
  1830. if(get_bits_count(&s->gb)<0){
  1831. av_log(s->avctx, AV_LOG_ERROR, "mdb:%d, lastbuf:%d skipping granule %d\n",
  1832. main_data_begin, s->last_buf_size, gr);
  1833. skip_bits_long(&s->gb, g->part2_3_length);
  1834. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1835. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
  1836. skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
  1837. s->gb= s->in_gb;
  1838. s->in_gb.buffer=NULL;
  1839. }
  1840. continue;
  1841. }
  1842. bits_pos = get_bits_count(&s->gb);
  1843. if (!s->lsf) {
  1844. uint8_t *sc;
  1845. int slen, slen1, slen2;
  1846. /* MPEG1 scale factors */
  1847. slen1 = slen_table[0][g->scalefac_compress];
  1848. slen2 = slen_table[1][g->scalefac_compress];
  1849. dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1850. if (g->block_type == 2) {
  1851. n = g->switch_point ? 17 : 18;
  1852. j = 0;
  1853. if(slen1){
  1854. for(i=0;i<n;i++)
  1855. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1856. }else{
  1857. for(i=0;i<n;i++)
  1858. g->scale_factors[j++] = 0;
  1859. }
  1860. if(slen2){
  1861. for(i=0;i<18;i++)
  1862. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1863. for(i=0;i<3;i++)
  1864. g->scale_factors[j++] = 0;
  1865. }else{
  1866. for(i=0;i<21;i++)
  1867. g->scale_factors[j++] = 0;
  1868. }
  1869. } else {
  1870. sc = granules[ch][0].scale_factors;
  1871. j = 0;
  1872. for(k=0;k<4;k++) {
  1873. n = (k == 0 ? 6 : 5);
  1874. if ((g->scfsi & (0x8 >> k)) == 0) {
  1875. slen = (k < 2) ? slen1 : slen2;
  1876. if(slen){
  1877. for(i=0;i<n;i++)
  1878. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1879. }else{
  1880. for(i=0;i<n;i++)
  1881. g->scale_factors[j++] = 0;
  1882. }
  1883. } else {
  1884. /* simply copy from last granule */
  1885. for(i=0;i<n;i++) {
  1886. g->scale_factors[j] = sc[j];
  1887. j++;
  1888. }
  1889. }
  1890. }
  1891. g->scale_factors[j++] = 0;
  1892. }
  1893. } else {
  1894. int tindex, tindex2, slen[4], sl, sf;
  1895. /* LSF scale factors */
  1896. if (g->block_type == 2) {
  1897. tindex = g->switch_point ? 2 : 1;
  1898. } else {
  1899. tindex = 0;
  1900. }
  1901. sf = g->scalefac_compress;
  1902. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1903. /* intensity stereo case */
  1904. sf >>= 1;
  1905. if (sf < 180) {
  1906. lsf_sf_expand(slen, sf, 6, 6, 0);
  1907. tindex2 = 3;
  1908. } else if (sf < 244) {
  1909. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1910. tindex2 = 4;
  1911. } else {
  1912. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1913. tindex2 = 5;
  1914. }
  1915. } else {
  1916. /* normal case */
  1917. if (sf < 400) {
  1918. lsf_sf_expand(slen, sf, 5, 4, 4);
  1919. tindex2 = 0;
  1920. } else if (sf < 500) {
  1921. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1922. tindex2 = 1;
  1923. } else {
  1924. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1925. tindex2 = 2;
  1926. g->preflag = 1;
  1927. }
  1928. }
  1929. j = 0;
  1930. for(k=0;k<4;k++) {
  1931. n = lsf_nsf_table[tindex2][tindex][k];
  1932. sl = slen[k];
  1933. if(sl){
  1934. for(i=0;i<n;i++)
  1935. g->scale_factors[j++] = get_bits(&s->gb, sl);
  1936. }else{
  1937. for(i=0;i<n;i++)
  1938. g->scale_factors[j++] = 0;
  1939. }
  1940. }
  1941. /* XXX: should compute exact size */
  1942. for(;j<40;j++)
  1943. g->scale_factors[j] = 0;
  1944. }
  1945. exponents_from_scale_factors(s, g, exponents);
  1946. /* read Huffman coded residue */
  1947. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  1948. } /* ch */
  1949. if (s->nb_channels == 2)
  1950. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  1951. for(ch=0;ch<s->nb_channels;ch++) {
  1952. g = &granules[ch][gr];
  1953. reorder_block(s, g);
  1954. s->compute_antialias(s, g);
  1955. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1956. }
  1957. } /* gr */
  1958. if(get_bits_count(&s->gb)<0)
  1959. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  1960. return nb_granules * 18;
  1961. }
  1962. static int mp_decode_frame(MPADecodeContext *s,
  1963. OUT_INT *samples, const uint8_t *buf, int buf_size)
  1964. {
  1965. int i, nb_frames, ch;
  1966. OUT_INT *samples_ptr;
  1967. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  1968. /* skip error protection field */
  1969. if (s->error_protection)
  1970. skip_bits(&s->gb, 16);
  1971. dprintf(s->avctx, "frame %d:\n", s->frame_count);
  1972. switch(s->layer) {
  1973. case 1:
  1974. s->avctx->frame_size = 384;
  1975. nb_frames = mp_decode_layer1(s);
  1976. break;
  1977. case 2:
  1978. s->avctx->frame_size = 1152;
  1979. nb_frames = mp_decode_layer2(s);
  1980. break;
  1981. case 3:
  1982. s->avctx->frame_size = s->lsf ? 576 : 1152;
  1983. default:
  1984. nb_frames = mp_decode_layer3(s);
  1985. s->last_buf_size=0;
  1986. if(s->in_gb.buffer){
  1987. align_get_bits(&s->gb);
  1988. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  1989. if(i >= 0 && i <= BACKSTEP_SIZE){
  1990. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  1991. s->last_buf_size=i;
  1992. }else
  1993. av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  1994. s->gb= s->in_gb;
  1995. s->in_gb.buffer= NULL;
  1996. }
  1997. align_get_bits(&s->gb);
  1998. assert((get_bits_count(&s->gb) & 7) == 0);
  1999. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2000. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  2001. if(i<0)
  2002. av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  2003. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  2004. }
  2005. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  2006. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  2007. s->last_buf_size += i;
  2008. break;
  2009. }
  2010. /* apply the synthesis filter */
  2011. for(ch=0;ch<s->nb_channels;ch++) {
  2012. samples_ptr = samples + ch;
  2013. for(i=0;i<nb_frames;i++) {
  2014. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2015. window, &s->dither_state,
  2016. samples_ptr, s->nb_channels,
  2017. s->sb_samples[ch][i]);
  2018. samples_ptr += 32 * s->nb_channels;
  2019. }
  2020. }
  2021. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2022. }
  2023. static int decode_frame(AVCodecContext * avctx,
  2024. void *data, int *data_size,
  2025. AVPacket *avpkt)
  2026. {
  2027. const uint8_t *buf = avpkt->data;
  2028. int buf_size = avpkt->size;
  2029. MPADecodeContext *s = avctx->priv_data;
  2030. uint32_t header;
  2031. int out_size;
  2032. OUT_INT *out_samples = data;
  2033. retry:
  2034. if(buf_size < HEADER_SIZE)
  2035. return -1;
  2036. header = AV_RB32(buf);
  2037. if(ff_mpa_check_header(header) < 0){
  2038. buf++;
  2039. // buf_size--;
  2040. av_log(avctx, AV_LOG_ERROR, "Header missing skipping one byte.\n");
  2041. goto retry;
  2042. }
  2043. if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
  2044. /* free format: prepare to compute frame size */
  2045. s->frame_size = -1;
  2046. return -1;
  2047. }
  2048. /* update codec info */
  2049. avctx->channels = s->nb_channels;
  2050. avctx->bit_rate = s->bit_rate;
  2051. avctx->sub_id = s->layer;
  2052. if(s->frame_size<=0 || s->frame_size > buf_size){
  2053. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2054. return -1;
  2055. }else if(s->frame_size < buf_size){
  2056. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2057. buf_size= s->frame_size;
  2058. }
  2059. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2060. if(out_size>=0){
  2061. *data_size = out_size;
  2062. avctx->sample_rate = s->sample_rate;
  2063. //FIXME maybe move the other codec info stuff from above here too
  2064. }else
  2065. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  2066. s->frame_size = 0;
  2067. return buf_size;
  2068. }
  2069. static void flush(AVCodecContext *avctx){
  2070. MPADecodeContext *s = avctx->priv_data;
  2071. memset(s->synth_buf, 0, sizeof(s->synth_buf));
  2072. s->last_buf_size= 0;
  2073. }
  2074. #if CONFIG_MP3ADU_DECODER
  2075. static int decode_frame_adu(AVCodecContext * avctx,
  2076. void *data, int *data_size,
  2077. AVPacket *avpkt)
  2078. {
  2079. const uint8_t *buf = avpkt->data;
  2080. int buf_size = avpkt->size;
  2081. MPADecodeContext *s = avctx->priv_data;
  2082. uint32_t header;
  2083. int len, out_size;
  2084. OUT_INT *out_samples = data;
  2085. len = buf_size;
  2086. // Discard too short frames
  2087. if (buf_size < HEADER_SIZE) {
  2088. *data_size = 0;
  2089. return buf_size;
  2090. }
  2091. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2092. len = MPA_MAX_CODED_FRAME_SIZE;
  2093. // Get header and restore sync word
  2094. header = AV_RB32(buf) | 0xffe00000;
  2095. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2096. *data_size = 0;
  2097. return buf_size;
  2098. }
  2099. ff_mpegaudio_decode_header((MPADecodeHeader *)s, header);
  2100. /* update codec info */
  2101. avctx->sample_rate = s->sample_rate;
  2102. avctx->channels = s->nb_channels;
  2103. avctx->bit_rate = s->bit_rate;
  2104. avctx->sub_id = s->layer;
  2105. s->frame_size = len;
  2106. if (avctx->parse_only) {
  2107. out_size = buf_size;
  2108. } else {
  2109. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2110. }
  2111. *data_size = out_size;
  2112. return buf_size;
  2113. }
  2114. #endif /* CONFIG_MP3ADU_DECODER */
  2115. #if CONFIG_MP3ON4_DECODER
  2116. /**
  2117. * Context for MP3On4 decoder
  2118. */
  2119. typedef struct MP3On4DecodeContext {
  2120. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  2121. int syncword; ///< syncword patch
  2122. const uint8_t *coff; ///< channels offsets in output buffer
  2123. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  2124. } MP3On4DecodeContext;
  2125. #include "mpeg4audio.h"
  2126. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2127. static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */
  2128. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2129. static const uint8_t chan_offset[8][5] = {
  2130. {0},
  2131. {0}, // C
  2132. {0}, // FLR
  2133. {2,0}, // C FLR
  2134. {2,0,3}, // C FLR BS
  2135. {4,0,2}, // C FLR BLRS
  2136. {4,0,2,5}, // C FLR BLRS LFE
  2137. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2138. };
  2139. static int decode_init_mp3on4(AVCodecContext * avctx)
  2140. {
  2141. MP3On4DecodeContext *s = avctx->priv_data;
  2142. MPEG4AudioConfig cfg;
  2143. int i;
  2144. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2145. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2146. return -1;
  2147. }
  2148. ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
  2149. if (!cfg.chan_config || cfg.chan_config > 7) {
  2150. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2151. return -1;
  2152. }
  2153. s->frames = mp3Frames[cfg.chan_config];
  2154. s->coff = chan_offset[cfg.chan_config];
  2155. avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
  2156. if (cfg.sample_rate < 16000)
  2157. s->syncword = 0xffe00000;
  2158. else
  2159. s->syncword = 0xfff00000;
  2160. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2161. * We replace avctx->priv_data with the context of the first decoder so that
  2162. * decode_init() does not have to be changed.
  2163. * Other decoders will be initialized here copying data from the first context
  2164. */
  2165. // Allocate zeroed memory for the first decoder context
  2166. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2167. // Put decoder context in place to make init_decode() happy
  2168. avctx->priv_data = s->mp3decctx[0];
  2169. decode_init(avctx);
  2170. // Restore mp3on4 context pointer
  2171. avctx->priv_data = s;
  2172. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2173. /* Create a separate codec/context for each frame (first is already ok).
  2174. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2175. */
  2176. for (i = 1; i < s->frames; i++) {
  2177. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2178. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2179. s->mp3decctx[i]->adu_mode = 1;
  2180. s->mp3decctx[i]->avctx = avctx;
  2181. }
  2182. return 0;
  2183. }
  2184. static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
  2185. {
  2186. MP3On4DecodeContext *s = avctx->priv_data;
  2187. int i;
  2188. for (i = 0; i < s->frames; i++)
  2189. if (s->mp3decctx[i])
  2190. av_free(s->mp3decctx[i]);
  2191. return 0;
  2192. }
  2193. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2194. void *data, int *data_size,
  2195. AVPacket *avpkt)
  2196. {
  2197. const uint8_t *buf = avpkt->data;
  2198. int buf_size = avpkt->size;
  2199. MP3On4DecodeContext *s = avctx->priv_data;
  2200. MPADecodeContext *m;
  2201. int fsize, len = buf_size, out_size = 0;
  2202. uint32_t header;
  2203. OUT_INT *out_samples = data;
  2204. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2205. OUT_INT *outptr, *bp;
  2206. int fr, j, n;
  2207. *data_size = 0;
  2208. // Discard too short frames
  2209. if (buf_size < HEADER_SIZE)
  2210. return -1;
  2211. // If only one decoder interleave is not needed
  2212. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2213. avctx->bit_rate = 0;
  2214. for (fr = 0; fr < s->frames; fr++) {
  2215. fsize = AV_RB16(buf) >> 4;
  2216. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  2217. m = s->mp3decctx[fr];
  2218. assert (m != NULL);
  2219. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  2220. if (ff_mpa_check_header(header) < 0) // Bad header, discard block
  2221. break;
  2222. ff_mpegaudio_decode_header((MPADecodeHeader *)m, header);
  2223. out_size += mp_decode_frame(m, outptr, buf, fsize);
  2224. buf += fsize;
  2225. len -= fsize;
  2226. if(s->frames > 1) {
  2227. n = m->avctx->frame_size*m->nb_channels;
  2228. /* interleave output data */
  2229. bp = out_samples + s->coff[fr];
  2230. if(m->nb_channels == 1) {
  2231. for(j = 0; j < n; j++) {
  2232. *bp = decoded_buf[j];
  2233. bp += avctx->channels;
  2234. }
  2235. } else {
  2236. for(j = 0; j < n; j++) {
  2237. bp[0] = decoded_buf[j++];
  2238. bp[1] = decoded_buf[j];
  2239. bp += avctx->channels;
  2240. }
  2241. }
  2242. }
  2243. avctx->bit_rate += m->bit_rate;
  2244. }
  2245. /* update codec info */
  2246. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2247. *data_size = out_size;
  2248. return buf_size;
  2249. }
  2250. #endif /* CONFIG_MP3ON4_DECODER */
  2251. #if CONFIG_MP1_DECODER
  2252. AVCodec mp1_decoder =
  2253. {
  2254. "mp1",
  2255. CODEC_TYPE_AUDIO,
  2256. CODEC_ID_MP1,
  2257. sizeof(MPADecodeContext),
  2258. decode_init,
  2259. NULL,
  2260. NULL,
  2261. decode_frame,
  2262. CODEC_CAP_PARSE_ONLY,
  2263. .flush= flush,
  2264. .long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
  2265. };
  2266. #endif
  2267. #if CONFIG_MP2_DECODER
  2268. AVCodec mp2_decoder =
  2269. {
  2270. "mp2",
  2271. CODEC_TYPE_AUDIO,
  2272. CODEC_ID_MP2,
  2273. sizeof(MPADecodeContext),
  2274. decode_init,
  2275. NULL,
  2276. NULL,
  2277. decode_frame,
  2278. CODEC_CAP_PARSE_ONLY,
  2279. .flush= flush,
  2280. .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  2281. };
  2282. #endif
  2283. #if CONFIG_MP3_DECODER
  2284. AVCodec mp3_decoder =
  2285. {
  2286. "mp3",
  2287. CODEC_TYPE_AUDIO,
  2288. CODEC_ID_MP3,
  2289. sizeof(MPADecodeContext),
  2290. decode_init,
  2291. NULL,
  2292. NULL,
  2293. decode_frame,
  2294. CODEC_CAP_PARSE_ONLY,
  2295. .flush= flush,
  2296. .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
  2297. };
  2298. #endif
  2299. #if CONFIG_MP3ADU_DECODER
  2300. AVCodec mp3adu_decoder =
  2301. {
  2302. "mp3adu",
  2303. CODEC_TYPE_AUDIO,
  2304. CODEC_ID_MP3ADU,
  2305. sizeof(MPADecodeContext),
  2306. decode_init,
  2307. NULL,
  2308. NULL,
  2309. decode_frame_adu,
  2310. CODEC_CAP_PARSE_ONLY,
  2311. .flush= flush,
  2312. .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
  2313. };
  2314. #endif
  2315. #if CONFIG_MP3ON4_DECODER
  2316. AVCodec mp3on4_decoder =
  2317. {
  2318. "mp3on4",
  2319. CODEC_TYPE_AUDIO,
  2320. CODEC_ID_MP3ON4,
  2321. sizeof(MP3On4DecodeContext),
  2322. decode_init_mp3on4,
  2323. NULL,
  2324. decode_close_mp3on4,
  2325. decode_frame_mp3on4,
  2326. .flush= flush,
  2327. .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
  2328. };
  2329. #endif