You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2036 lines
80KB

  1. /*
  2. * Windows Media Audio Voice decoder.
  3. * Copyright (c) 2009 Ronald S. Bultje
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * @brief Windows Media Audio Voice compatible decoder
  24. * @author Ronald S. Bultje <rsbultje@gmail.com>
  25. */
  26. #include <math.h>
  27. #include "avcodec.h"
  28. #include "get_bits.h"
  29. #include "put_bits.h"
  30. #include "wmavoice_data.h"
  31. #include "celp_math.h"
  32. #include "celp_filters.h"
  33. #include "acelp_vectors.h"
  34. #include "acelp_filters.h"
  35. #include "lsp.h"
  36. #include "libavutil/lzo.h"
  37. #include "dct.h"
  38. #include "rdft.h"
  39. #include "sinewin.h"
  40. #define MAX_BLOCKS 8 ///< maximum number of blocks per frame
  41. #define MAX_LSPS 16 ///< maximum filter order
  42. #define MAX_LSPS_ALIGN16 16 ///< same as #MAX_LSPS; needs to be multiple
  43. ///< of 16 for ASM input buffer alignment
  44. #define MAX_FRAMES 3 ///< maximum number of frames per superframe
  45. #define MAX_FRAMESIZE 160 ///< maximum number of samples per frame
  46. #define MAX_SIGNAL_HISTORY 416 ///< maximum excitation signal history
  47. #define MAX_SFRAMESIZE (MAX_FRAMESIZE * MAX_FRAMES)
  48. ///< maximum number of samples per superframe
  49. #define SFRAME_CACHE_MAXSIZE 256 ///< maximum cache size for frame data that
  50. ///< was split over two packets
  51. #define VLC_NBITS 6 ///< number of bits to read per VLC iteration
  52. /**
  53. * Frame type VLC coding.
  54. */
  55. static VLC frame_type_vlc;
  56. /**
  57. * Adaptive codebook types.
  58. */
  59. enum {
  60. ACB_TYPE_NONE = 0, ///< no adaptive codebook (only hardcoded fixed)
  61. ACB_TYPE_ASYMMETRIC = 1, ///< adaptive codebook with per-frame pitch, which
  62. ///< we interpolate to get a per-sample pitch.
  63. ///< Signal is generated using an asymmetric sinc
  64. ///< window function
  65. ///< @note see #wmavoice_ipol1_coeffs
  66. ACB_TYPE_HAMMING = 2 ///< Per-block pitch with signal generation using
  67. ///< a Hamming sinc window function
  68. ///< @note see #wmavoice_ipol2_coeffs
  69. };
  70. /**
  71. * Fixed codebook types.
  72. */
  73. enum {
  74. FCB_TYPE_SILENCE = 0, ///< comfort noise during silence
  75. ///< generated from a hardcoded (fixed) codebook
  76. ///< with per-frame (low) gain values
  77. FCB_TYPE_HARDCODED = 1, ///< hardcoded (fixed) codebook with per-block
  78. ///< gain values
  79. FCB_TYPE_AW_PULSES = 2, ///< Pitch-adaptive window (AW) pulse signals,
  80. ///< used in particular for low-bitrate streams
  81. FCB_TYPE_EXC_PULSES = 3, ///< Innovation (fixed) codebook pulse sets in
  82. ///< combinations of either single pulses or
  83. ///< pulse pairs
  84. };
  85. /**
  86. * Description of frame types.
  87. */
  88. static const struct frame_type_desc {
  89. uint8_t n_blocks; ///< amount of blocks per frame (each block
  90. ///< (contains 160/#n_blocks samples)
  91. uint8_t log_n_blocks; ///< log2(#n_blocks)
  92. uint8_t acb_type; ///< Adaptive codebook type (ACB_TYPE_*)
  93. uint8_t fcb_type; ///< Fixed codebook type (FCB_TYPE_*)
  94. uint8_t dbl_pulses; ///< how many pulse vectors have pulse pairs
  95. ///< (rather than just one single pulse)
  96. ///< only if #fcb_type == #FCB_TYPE_EXC_PULSES
  97. uint16_t frame_size; ///< the amount of bits that make up the block
  98. ///< data (per frame)
  99. } frame_descs[17] = {
  100. { 1, 0, ACB_TYPE_NONE, FCB_TYPE_SILENCE, 0, 0 },
  101. { 2, 1, ACB_TYPE_NONE, FCB_TYPE_HARDCODED, 0, 28 },
  102. { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_AW_PULSES, 0, 46 },
  103. { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 2, 80 },
  104. { 2, 1, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 5, 104 },
  105. { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 0, 108 },
  106. { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 2, 132 },
  107. { 4, 2, ACB_TYPE_ASYMMETRIC, FCB_TYPE_EXC_PULSES, 5, 168 },
  108. { 2, 1, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 0, 64 },
  109. { 2, 1, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 2, 80 },
  110. { 2, 1, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 5, 104 },
  111. { 4, 2, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 0, 108 },
  112. { 4, 2, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 2, 132 },
  113. { 4, 2, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 5, 168 },
  114. { 8, 3, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 0, 176 },
  115. { 8, 3, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 2, 208 },
  116. { 8, 3, ACB_TYPE_HAMMING, FCB_TYPE_EXC_PULSES, 5, 256 }
  117. };
  118. /**
  119. * WMA Voice decoding context.
  120. */
  121. typedef struct {
  122. /**
  123. * @name Global values specified in the stream header / extradata or used all over.
  124. * @{
  125. */
  126. GetBitContext gb; ///< packet bitreader. During decoder init,
  127. ///< it contains the extradata from the
  128. ///< demuxer. During decoding, it contains
  129. ///< packet data.
  130. int8_t vbm_tree[25]; ///< converts VLC codes to frame type
  131. int spillover_bitsize; ///< number of bits used to specify
  132. ///< #spillover_nbits in the packet header
  133. ///< = ceil(log2(ctx->block_align << 3))
  134. int history_nsamples; ///< number of samples in history for signal
  135. ///< prediction (through ACB)
  136. /* postfilter specific values */
  137. int do_apf; ///< whether to apply the averaged
  138. ///< projection filter (APF)
  139. int denoise_strength; ///< strength of denoising in Wiener filter
  140. ///< [0-11]
  141. int denoise_tilt_corr; ///< Whether to apply tilt correction to the
  142. ///< Wiener filter coefficients (postfilter)
  143. int dc_level; ///< Predicted amount of DC noise, based
  144. ///< on which a DC removal filter is used
  145. int lsps; ///< number of LSPs per frame [10 or 16]
  146. int lsp_q_mode; ///< defines quantizer defaults [0, 1]
  147. int lsp_def_mode; ///< defines different sets of LSP defaults
  148. ///< [0, 1]
  149. int frame_lsp_bitsize; ///< size (in bits) of LSPs, when encoded
  150. ///< per-frame (independent coding)
  151. int sframe_lsp_bitsize; ///< size (in bits) of LSPs, when encoded
  152. ///< per superframe (residual coding)
  153. int min_pitch_val; ///< base value for pitch parsing code
  154. int max_pitch_val; ///< max value + 1 for pitch parsing
  155. int pitch_nbits; ///< number of bits used to specify the
  156. ///< pitch value in the frame header
  157. int block_pitch_nbits; ///< number of bits used to specify the
  158. ///< first block's pitch value
  159. int block_pitch_range; ///< range of the block pitch
  160. int block_delta_pitch_nbits; ///< number of bits used to specify the
  161. ///< delta pitch between this and the last
  162. ///< block's pitch value, used in all but
  163. ///< first block
  164. int block_delta_pitch_hrange; ///< 1/2 range of the delta (full range is
  165. ///< from -this to +this-1)
  166. uint16_t block_conv_table[4]; ///< boundaries for block pitch unit/scale
  167. ///< conversion
  168. /**
  169. * @}
  170. *
  171. * @name Packet values specified in the packet header or related to a packet.
  172. *
  173. * A packet is considered to be a single unit of data provided to this
  174. * decoder by the demuxer.
  175. * @{
  176. */
  177. int spillover_nbits; ///< number of bits of the previous packet's
  178. ///< last superframe preceeding this
  179. ///< packet's first full superframe (useful
  180. ///< for re-synchronization also)
  181. int has_residual_lsps; ///< if set, superframes contain one set of
  182. ///< LSPs that cover all frames, encoded as
  183. ///< independent and residual LSPs; if not
  184. ///< set, each frame contains its own, fully
  185. ///< independent, LSPs
  186. int skip_bits_next; ///< number of bits to skip at the next call
  187. ///< to #wmavoice_decode_packet() (since
  188. ///< they're part of the previous superframe)
  189. uint8_t sframe_cache[SFRAME_CACHE_MAXSIZE + FF_INPUT_BUFFER_PADDING_SIZE];
  190. ///< cache for superframe data split over
  191. ///< multiple packets
  192. int sframe_cache_size; ///< set to >0 if we have data from an
  193. ///< (incomplete) superframe from a previous
  194. ///< packet that spilled over in the current
  195. ///< packet; specifies the amount of bits in
  196. ///< #sframe_cache
  197. PutBitContext pb; ///< bitstream writer for #sframe_cache
  198. /**
  199. * @}
  200. *
  201. * @name Frame and superframe values
  202. * Superframe and frame data - these can change from frame to frame,
  203. * although some of them do in that case serve as a cache / history for
  204. * the next frame or superframe.
  205. * @{
  206. */
  207. double prev_lsps[MAX_LSPS]; ///< LSPs of the last frame of the previous
  208. ///< superframe
  209. int last_pitch_val; ///< pitch value of the previous frame
  210. int last_acb_type; ///< frame type [0-2] of the previous frame
  211. int pitch_diff_sh16; ///< ((cur_pitch_val - #last_pitch_val)
  212. ///< << 16) / #MAX_FRAMESIZE
  213. float silence_gain; ///< set for use in blocks if #ACB_TYPE_NONE
  214. int aw_idx_is_ext; ///< whether the AW index was encoded in
  215. ///< 8 bits (instead of 6)
  216. int aw_pulse_range; ///< the range over which #aw_pulse_set1()
  217. ///< can apply the pulse, relative to the
  218. ///< value in aw_first_pulse_off. The exact
  219. ///< position of the first AW-pulse is within
  220. ///< [pulse_off, pulse_off + this], and
  221. ///< depends on bitstream values; [16 or 24]
  222. int aw_n_pulses[2]; ///< number of AW-pulses in each block; note
  223. ///< that this number can be negative (in
  224. ///< which case it basically means "zero")
  225. int aw_first_pulse_off[2]; ///< index of first sample to which to
  226. ///< apply AW-pulses, or -0xff if unset
  227. int aw_next_pulse_off_cache; ///< the position (relative to start of the
  228. ///< second block) at which pulses should
  229. ///< start to be positioned, serves as a
  230. ///< cache for pitch-adaptive window pulses
  231. ///< between blocks
  232. int frame_cntr; ///< current frame index [0 - 0xFFFE]; is
  233. ///< only used for comfort noise in #pRNG()
  234. float gain_pred_err[6]; ///< cache for gain prediction
  235. float excitation_history[MAX_SIGNAL_HISTORY];
  236. ///< cache of the signal of previous
  237. ///< superframes, used as a history for
  238. ///< signal generation
  239. float synth_history[MAX_LSPS]; ///< see #excitation_history
  240. /**
  241. * @}
  242. *
  243. * @name Postfilter values
  244. *
  245. * Variables used for postfilter implementation, mostly history for
  246. * smoothing and so on, and context variables for FFT/iFFT.
  247. * @{
  248. */
  249. RDFTContext rdft, irdft; ///< contexts for FFT-calculation in the
  250. ///< postfilter (for denoise filter)
  251. DCTContext dct, dst; ///< contexts for phase shift (in Hilbert
  252. ///< transform, part of postfilter)
  253. float sin[511], cos[511]; ///< 8-bit cosine/sine windows over [-pi,pi]
  254. ///< range
  255. float postfilter_agc; ///< gain control memory, used in
  256. ///< #adaptive_gain_control()
  257. float dcf_mem[2]; ///< DC filter history
  258. float zero_exc_pf[MAX_SIGNAL_HISTORY + MAX_SFRAMESIZE];
  259. ///< zero filter output (i.e. excitation)
  260. ///< by postfilter
  261. float denoise_filter_cache[MAX_FRAMESIZE];
  262. int denoise_filter_cache_size; ///< samples in #denoise_filter_cache
  263. DECLARE_ALIGNED(32, float, tilted_lpcs_pf)[0x80];
  264. ///< aligned buffer for LPC tilting
  265. DECLARE_ALIGNED(32, float, denoise_coeffs_pf)[0x80];
  266. ///< aligned buffer for denoise coefficients
  267. DECLARE_ALIGNED(32, float, synth_filter_out_buf)[0x80 + MAX_LSPS_ALIGN16];
  268. ///< aligned buffer for postfilter speech
  269. ///< synthesis
  270. /**
  271. * @}
  272. */
  273. } WMAVoiceContext;
  274. /**
  275. * Set up the variable bit mode (VBM) tree from container extradata.
  276. * @param gb bit I/O context.
  277. * The bit context (s->gb) should be loaded with byte 23-46 of the
  278. * container extradata (i.e. the ones containing the VBM tree).
  279. * @param vbm_tree pointer to array to which the decoded VBM tree will be
  280. * written.
  281. * @return 0 on success, <0 on error.
  282. */
  283. static av_cold int decode_vbmtree(GetBitContext *gb, int8_t vbm_tree[25])
  284. {
  285. static const uint8_t bits[] = {
  286. 2, 2, 2, 4, 4, 4,
  287. 6, 6, 6, 8, 8, 8,
  288. 10, 10, 10, 12, 12, 12,
  289. 14, 14, 14, 14
  290. };
  291. static const uint16_t codes[] = {
  292. 0x0000, 0x0001, 0x0002, // 00/01/10
  293. 0x000c, 0x000d, 0x000e, // 11+00/01/10
  294. 0x003c, 0x003d, 0x003e, // 1111+00/01/10
  295. 0x00fc, 0x00fd, 0x00fe, // 111111+00/01/10
  296. 0x03fc, 0x03fd, 0x03fe, // 11111111+00/01/10
  297. 0x0ffc, 0x0ffd, 0x0ffe, // 1111111111+00/01/10
  298. 0x3ffc, 0x3ffd, 0x3ffe, 0x3fff // 111111111111+xx
  299. };
  300. int cntr[8], n, res;
  301. memset(vbm_tree, 0xff, sizeof(vbm_tree[0]) * 25);
  302. memset(cntr, 0, sizeof(cntr));
  303. for (n = 0; n < 17; n++) {
  304. res = get_bits(gb, 3);
  305. if (cntr[res] > 3) // should be >= 3 + (res == 7))
  306. return -1;
  307. vbm_tree[res * 3 + cntr[res]++] = n;
  308. }
  309. INIT_VLC_STATIC(&frame_type_vlc, VLC_NBITS, sizeof(bits),
  310. bits, 1, 1, codes, 2, 2, 132);
  311. return 0;
  312. }
  313. /**
  314. * Set up decoder with parameters from demuxer (extradata etc.).
  315. */
  316. static av_cold int wmavoice_decode_init(AVCodecContext *ctx)
  317. {
  318. int n, flags, pitch_range, lsp16_flag;
  319. WMAVoiceContext *s = ctx->priv_data;
  320. /**
  321. * Extradata layout:
  322. * - byte 0-18: WMAPro-in-WMAVoice extradata (see wmaprodec.c),
  323. * - byte 19-22: flags field (annoyingly in LE; see below for known
  324. * values),
  325. * - byte 23-46: variable bitmode tree (really just 17 * 3 bits,
  326. * rest is 0).
  327. */
  328. if (ctx->extradata_size != 46) {
  329. av_log(ctx, AV_LOG_ERROR,
  330. "Invalid extradata size %d (should be 46)\n",
  331. ctx->extradata_size);
  332. return -1;
  333. }
  334. flags = AV_RL32(ctx->extradata + 18);
  335. s->spillover_bitsize = 3 + av_ceil_log2(ctx->block_align);
  336. s->do_apf = flags & 0x1;
  337. if (s->do_apf) {
  338. ff_rdft_init(&s->rdft, 7, DFT_R2C);
  339. ff_rdft_init(&s->irdft, 7, IDFT_C2R);
  340. ff_dct_init(&s->dct, 6, DCT_I);
  341. ff_dct_init(&s->dst, 6, DST_I);
  342. ff_sine_window_init(s->cos, 256);
  343. memcpy(&s->sin[255], s->cos, 256 * sizeof(s->cos[0]));
  344. for (n = 0; n < 255; n++) {
  345. s->sin[n] = -s->sin[510 - n];
  346. s->cos[510 - n] = s->cos[n];
  347. }
  348. }
  349. s->denoise_strength = (flags >> 2) & 0xF;
  350. if (s->denoise_strength >= 12) {
  351. av_log(ctx, AV_LOG_ERROR,
  352. "Invalid denoise filter strength %d (max=11)\n",
  353. s->denoise_strength);
  354. return -1;
  355. }
  356. s->denoise_tilt_corr = !!(flags & 0x40);
  357. s->dc_level = (flags >> 7) & 0xF;
  358. s->lsp_q_mode = !!(flags & 0x2000);
  359. s->lsp_def_mode = !!(flags & 0x4000);
  360. lsp16_flag = flags & 0x1000;
  361. if (lsp16_flag) {
  362. s->lsps = 16;
  363. s->frame_lsp_bitsize = 34;
  364. s->sframe_lsp_bitsize = 60;
  365. } else {
  366. s->lsps = 10;
  367. s->frame_lsp_bitsize = 24;
  368. s->sframe_lsp_bitsize = 48;
  369. }
  370. for (n = 0; n < s->lsps; n++)
  371. s->prev_lsps[n] = M_PI * (n + 1.0) / (s->lsps + 1.0);
  372. init_get_bits(&s->gb, ctx->extradata + 22, (ctx->extradata_size - 22) << 3);
  373. if (decode_vbmtree(&s->gb, s->vbm_tree) < 0) {
  374. av_log(ctx, AV_LOG_ERROR, "Invalid VBM tree; broken extradata?\n");
  375. return -1;
  376. }
  377. s->min_pitch_val = ((ctx->sample_rate << 8) / 400 + 50) >> 8;
  378. s->max_pitch_val = ((ctx->sample_rate << 8) * 37 / 2000 + 50) >> 8;
  379. pitch_range = s->max_pitch_val - s->min_pitch_val;
  380. s->pitch_nbits = av_ceil_log2(pitch_range);
  381. s->last_pitch_val = 40;
  382. s->last_acb_type = ACB_TYPE_NONE;
  383. s->history_nsamples = s->max_pitch_val + 8;
  384. if (s->min_pitch_val < 1 || s->history_nsamples > MAX_SIGNAL_HISTORY) {
  385. int min_sr = ((((1 << 8) - 50) * 400) + 0xFF) >> 8,
  386. max_sr = ((((MAX_SIGNAL_HISTORY - 8) << 8) + 205) * 2000 / 37) >> 8;
  387. av_log(ctx, AV_LOG_ERROR,
  388. "Unsupported samplerate %d (min=%d, max=%d)\n",
  389. ctx->sample_rate, min_sr, max_sr); // 322-22097 Hz
  390. return -1;
  391. }
  392. s->block_conv_table[0] = s->min_pitch_val;
  393. s->block_conv_table[1] = (pitch_range * 25) >> 6;
  394. s->block_conv_table[2] = (pitch_range * 44) >> 6;
  395. s->block_conv_table[3] = s->max_pitch_val - 1;
  396. s->block_delta_pitch_hrange = (pitch_range >> 3) & ~0xF;
  397. s->block_delta_pitch_nbits = 1 + av_ceil_log2(s->block_delta_pitch_hrange);
  398. s->block_pitch_range = s->block_conv_table[2] +
  399. s->block_conv_table[3] + 1 +
  400. 2 * (s->block_conv_table[1] - 2 * s->min_pitch_val);
  401. s->block_pitch_nbits = av_ceil_log2(s->block_pitch_range);
  402. ctx->sample_fmt = AV_SAMPLE_FMT_FLT;
  403. return 0;
  404. }
  405. /**
  406. * @name Postfilter functions
  407. * Postfilter functions (gain control, wiener denoise filter, DC filter,
  408. * kalman smoothening, plus surrounding code to wrap it)
  409. * @{
  410. */
  411. /**
  412. * Adaptive gain control (as used in postfilter).
  413. *
  414. * Identical to #ff_adaptive_gain_control() in acelp_vectors.c, except
  415. * that the energy here is calculated using sum(abs(...)), whereas the
  416. * other codecs (e.g. AMR-NB, SIPRO) use sqrt(dotproduct(...)).
  417. *
  418. * @param out output buffer for filtered samples
  419. * @param in input buffer containing the samples as they are after the
  420. * postfilter steps so far
  421. * @param speech_synth input buffer containing speech synth before postfilter
  422. * @param size input buffer size
  423. * @param alpha exponential filter factor
  424. * @param gain_mem pointer to filter memory (single float)
  425. */
  426. static void adaptive_gain_control(float *out, const float *in,
  427. const float *speech_synth,
  428. int size, float alpha, float *gain_mem)
  429. {
  430. int i;
  431. float speech_energy = 0.0, postfilter_energy = 0.0, gain_scale_factor;
  432. float mem = *gain_mem;
  433. for (i = 0; i < size; i++) {
  434. speech_energy += fabsf(speech_synth[i]);
  435. postfilter_energy += fabsf(in[i]);
  436. }
  437. gain_scale_factor = (1.0 - alpha) * speech_energy / postfilter_energy;
  438. for (i = 0; i < size; i++) {
  439. mem = alpha * mem + gain_scale_factor;
  440. out[i] = in[i] * mem;
  441. }
  442. *gain_mem = mem;
  443. }
  444. /**
  445. * Kalman smoothing function.
  446. *
  447. * This function looks back pitch +/- 3 samples back into history to find
  448. * the best fitting curve (that one giving the optimal gain of the two
  449. * signals, i.e. the highest dot product between the two), and then
  450. * uses that signal history to smoothen the output of the speech synthesis
  451. * filter.
  452. *
  453. * @param s WMA Voice decoding context
  454. * @param pitch pitch of the speech signal
  455. * @param in input speech signal
  456. * @param out output pointer for smoothened signal
  457. * @param size input/output buffer size
  458. *
  459. * @returns -1 if no smoothening took place, e.g. because no optimal
  460. * fit could be found, or 0 on success.
  461. */
  462. static int kalman_smoothen(WMAVoiceContext *s, int pitch,
  463. const float *in, float *out, int size)
  464. {
  465. int n;
  466. float optimal_gain = 0, dot;
  467. const float *ptr = &in[-FFMAX(s->min_pitch_val, pitch - 3)],
  468. *end = &in[-FFMIN(s->max_pitch_val, pitch + 3)],
  469. *best_hist_ptr;
  470. /* find best fitting point in history */
  471. do {
  472. dot = ff_dot_productf(in, ptr, size);
  473. if (dot > optimal_gain) {
  474. optimal_gain = dot;
  475. best_hist_ptr = ptr;
  476. }
  477. } while (--ptr >= end);
  478. if (optimal_gain <= 0)
  479. return -1;
  480. dot = ff_dot_productf(best_hist_ptr, best_hist_ptr, size);
  481. if (dot <= 0) // would be 1.0
  482. return -1;
  483. if (optimal_gain <= dot) {
  484. dot = dot / (dot + 0.6 * optimal_gain); // 0.625-1.000
  485. } else
  486. dot = 0.625;
  487. /* actual smoothing */
  488. for (n = 0; n < size; n++)
  489. out[n] = best_hist_ptr[n] + dot * (in[n] - best_hist_ptr[n]);
  490. return 0;
  491. }
  492. /**
  493. * Get the tilt factor of a formant filter from its transfer function
  494. * @see #tilt_factor() in amrnbdec.c, which does essentially the same,
  495. * but somehow (??) it does a speech synthesis filter in the
  496. * middle, which is missing here
  497. *
  498. * @param lpcs LPC coefficients
  499. * @param n_lpcs Size of LPC buffer
  500. * @returns the tilt factor
  501. */
  502. static float tilt_factor(const float *lpcs, int n_lpcs)
  503. {
  504. float rh0, rh1;
  505. rh0 = 1.0 + ff_dot_productf(lpcs, lpcs, n_lpcs);
  506. rh1 = lpcs[0] + ff_dot_productf(lpcs, &lpcs[1], n_lpcs - 1);
  507. return rh1 / rh0;
  508. }
  509. /**
  510. * Derive denoise filter coefficients (in real domain) from the LPCs.
  511. */
  512. static void calc_input_response(WMAVoiceContext *s, float *lpcs,
  513. int fcb_type, float *coeffs, int remainder)
  514. {
  515. float last_coeff, min = 15.0, max = -15.0;
  516. float irange, angle_mul, gain_mul, range, sq;
  517. int n, idx;
  518. /* Create frequency power spectrum of speech input (i.e. RDFT of LPCs) */
  519. s->rdft.rdft_calc(&s->rdft, lpcs);
  520. #define log_range(var, assign) do { \
  521. float tmp = log10f(assign); var = tmp; \
  522. max = FFMAX(max, tmp); min = FFMIN(min, tmp); \
  523. } while (0)
  524. log_range(last_coeff, lpcs[1] * lpcs[1]);
  525. for (n = 1; n < 64; n++)
  526. log_range(lpcs[n], lpcs[n * 2] * lpcs[n * 2] +
  527. lpcs[n * 2 + 1] * lpcs[n * 2 + 1]);
  528. log_range(lpcs[0], lpcs[0] * lpcs[0]);
  529. #undef log_range
  530. range = max - min;
  531. lpcs[64] = last_coeff;
  532. /* Now, use this spectrum to pick out these frequencies with higher
  533. * (relative) power/energy (which we then take to be "not noise"),
  534. * and set up a table (still in lpc[]) of (relative) gains per frequency.
  535. * These frequencies will be maintained, while others ("noise") will be
  536. * decreased in the filter output. */
  537. irange = 64.0 / range; // so irange*(max-value) is in the range [0, 63]
  538. gain_mul = range * (fcb_type == FCB_TYPE_HARDCODED ? (5.0 / 13.0) :
  539. (5.0 / 14.7));
  540. angle_mul = gain_mul * (8.0 * M_LN10 / M_PI);
  541. for (n = 0; n <= 64; n++) {
  542. float pwr;
  543. idx = FFMAX(0, lrint((max - lpcs[n]) * irange) - 1);
  544. pwr = wmavoice_denoise_power_table[s->denoise_strength][idx];
  545. lpcs[n] = angle_mul * pwr;
  546. /* 70.57 =~ 1/log10(1.0331663) */
  547. idx = (pwr * gain_mul - 0.0295) * 70.570526123;
  548. if (idx > 127) { // fallback if index falls outside table range
  549. coeffs[n] = wmavoice_energy_table[127] *
  550. powf(1.0331663, idx - 127);
  551. } else
  552. coeffs[n] = wmavoice_energy_table[FFMAX(0, idx)];
  553. }
  554. /* calculate the Hilbert transform of the gains, which we do (since this
  555. * is a sinus input) by doing a phase shift (in theory, H(sin())=cos()).
  556. * Hilbert_Transform(RDFT(x)) = Laplace_Transform(x), which calculates the
  557. * "moment" of the LPCs in this filter. */
  558. s->dct.dct_calc(&s->dct, lpcs);
  559. s->dst.dct_calc(&s->dst, lpcs);
  560. /* Split out the coefficient indexes into phase/magnitude pairs */
  561. idx = 255 + av_clip(lpcs[64], -255, 255);
  562. coeffs[0] = coeffs[0] * s->cos[idx];
  563. idx = 255 + av_clip(lpcs[64] - 2 * lpcs[63], -255, 255);
  564. last_coeff = coeffs[64] * s->cos[idx];
  565. for (n = 63;; n--) {
  566. idx = 255 + av_clip(-lpcs[64] - 2 * lpcs[n - 1], -255, 255);
  567. coeffs[n * 2 + 1] = coeffs[n] * s->sin[idx];
  568. coeffs[n * 2] = coeffs[n] * s->cos[idx];
  569. if (!--n) break;
  570. idx = 255 + av_clip( lpcs[64] - 2 * lpcs[n - 1], -255, 255);
  571. coeffs[n * 2 + 1] = coeffs[n] * s->sin[idx];
  572. coeffs[n * 2] = coeffs[n] * s->cos[idx];
  573. }
  574. coeffs[1] = last_coeff;
  575. /* move into real domain */
  576. s->irdft.rdft_calc(&s->irdft, coeffs);
  577. /* tilt correction and normalize scale */
  578. memset(&coeffs[remainder], 0, sizeof(coeffs[0]) * (128 - remainder));
  579. if (s->denoise_tilt_corr) {
  580. float tilt_mem = 0;
  581. coeffs[remainder - 1] = 0;
  582. ff_tilt_compensation(&tilt_mem,
  583. -1.8 * tilt_factor(coeffs, remainder - 1),
  584. coeffs, remainder);
  585. }
  586. sq = (1.0 / 64.0) * sqrtf(1 / ff_dot_productf(coeffs, coeffs, remainder));
  587. for (n = 0; n < remainder; n++)
  588. coeffs[n] *= sq;
  589. }
  590. /**
  591. * This function applies a Wiener filter on the (noisy) speech signal as
  592. * a means to denoise it.
  593. *
  594. * - take RDFT of LPCs to get the power spectrum of the noise + speech;
  595. * - using this power spectrum, calculate (for each frequency) the Wiener
  596. * filter gain, which depends on the frequency power and desired level
  597. * of noise subtraction (when set too high, this leads to artifacts)
  598. * We can do this symmetrically over the X-axis (so 0-4kHz is the inverse
  599. * of 4-8kHz);
  600. * - by doing a phase shift, calculate the Hilbert transform of this array
  601. * of per-frequency filter-gains to get the filtering coefficients;
  602. * - smoothen/normalize/de-tilt these filter coefficients as desired;
  603. * - take RDFT of noisy sound, apply the coefficients and take its IRDFT
  604. * to get the denoised speech signal;
  605. * - the leftover (i.e. output of the IRDFT on denoised speech data beyond
  606. * the frame boundary) are saved and applied to subsequent frames by an
  607. * overlap-add method (otherwise you get clicking-artifacts).
  608. *
  609. * @param s WMA Voice decoding context
  610. * @param fcb_type Frame (codebook) type
  611. * @param synth_pf input: the noisy speech signal, output: denoised speech
  612. * data; should be 16-byte aligned (for ASM purposes)
  613. * @param size size of the speech data
  614. * @param lpcs LPCs used to synthesize this frame's speech data
  615. */
  616. static void wiener_denoise(WMAVoiceContext *s, int fcb_type,
  617. float *synth_pf, int size,
  618. const float *lpcs)
  619. {
  620. int remainder, lim, n;
  621. if (fcb_type != FCB_TYPE_SILENCE) {
  622. float *tilted_lpcs = s->tilted_lpcs_pf,
  623. *coeffs = s->denoise_coeffs_pf, tilt_mem = 0;
  624. tilted_lpcs[0] = 1.0;
  625. memcpy(&tilted_lpcs[1], lpcs, sizeof(lpcs[0]) * s->lsps);
  626. memset(&tilted_lpcs[s->lsps + 1], 0,
  627. sizeof(tilted_lpcs[0]) * (128 - s->lsps - 1));
  628. ff_tilt_compensation(&tilt_mem, 0.7 * tilt_factor(lpcs, s->lsps),
  629. tilted_lpcs, s->lsps + 2);
  630. /* The IRDFT output (127 samples for 7-bit filter) beyond the frame
  631. * size is applied to the next frame. All input beyond this is zero,
  632. * and thus all output beyond this will go towards zero, hence we can
  633. * limit to min(size-1, 127-size) as a performance consideration. */
  634. remainder = FFMIN(127 - size, size - 1);
  635. calc_input_response(s, tilted_lpcs, fcb_type, coeffs, remainder);
  636. /* apply coefficients (in frequency spectrum domain), i.e. complex
  637. * number multiplication */
  638. memset(&synth_pf[size], 0, sizeof(synth_pf[0]) * (128 - size));
  639. s->rdft.rdft_calc(&s->rdft, synth_pf);
  640. s->rdft.rdft_calc(&s->rdft, coeffs);
  641. synth_pf[0] *= coeffs[0];
  642. synth_pf[1] *= coeffs[1];
  643. for (n = 1; n < 64; n++) {
  644. float v1 = synth_pf[n * 2], v2 = synth_pf[n * 2 + 1];
  645. synth_pf[n * 2] = v1 * coeffs[n * 2] - v2 * coeffs[n * 2 + 1];
  646. synth_pf[n * 2 + 1] = v2 * coeffs[n * 2] + v1 * coeffs[n * 2 + 1];
  647. }
  648. s->irdft.rdft_calc(&s->irdft, synth_pf);
  649. }
  650. /* merge filter output with the history of previous runs */
  651. if (s->denoise_filter_cache_size) {
  652. lim = FFMIN(s->denoise_filter_cache_size, size);
  653. for (n = 0; n < lim; n++)
  654. synth_pf[n] += s->denoise_filter_cache[n];
  655. s->denoise_filter_cache_size -= lim;
  656. memmove(s->denoise_filter_cache, &s->denoise_filter_cache[size],
  657. sizeof(s->denoise_filter_cache[0]) * s->denoise_filter_cache_size);
  658. }
  659. /* move remainder of filter output into a cache for future runs */
  660. if (fcb_type != FCB_TYPE_SILENCE) {
  661. lim = FFMIN(remainder, s->denoise_filter_cache_size);
  662. for (n = 0; n < lim; n++)
  663. s->denoise_filter_cache[n] += synth_pf[size + n];
  664. if (lim < remainder) {
  665. memcpy(&s->denoise_filter_cache[lim], &synth_pf[size + lim],
  666. sizeof(s->denoise_filter_cache[0]) * (remainder - lim));
  667. s->denoise_filter_cache_size = remainder;
  668. }
  669. }
  670. }
  671. /**
  672. * Averaging projection filter, the postfilter used in WMAVoice.
  673. *
  674. * This uses the following steps:
  675. * - A zero-synthesis filter (generate excitation from synth signal)
  676. * - Kalman smoothing on excitation, based on pitch
  677. * - Re-synthesized smoothened output
  678. * - Iterative Wiener denoise filter
  679. * - Adaptive gain filter
  680. * - DC filter
  681. *
  682. * @param s WMAVoice decoding context
  683. * @param synth Speech synthesis output (before postfilter)
  684. * @param samples Output buffer for filtered samples
  685. * @param size Buffer size of synth & samples
  686. * @param lpcs Generated LPCs used for speech synthesis
  687. * @param zero_exc_pf destination for zero synthesis filter (16-byte aligned)
  688. * @param fcb_type Frame type (silence, hardcoded, AW-pulses or FCB-pulses)
  689. * @param pitch Pitch of the input signal
  690. */
  691. static void postfilter(WMAVoiceContext *s, const float *synth,
  692. float *samples, int size,
  693. const float *lpcs, float *zero_exc_pf,
  694. int fcb_type, int pitch)
  695. {
  696. float synth_filter_in_buf[MAX_FRAMESIZE / 2],
  697. *synth_pf = &s->synth_filter_out_buf[MAX_LSPS_ALIGN16],
  698. *synth_filter_in = zero_exc_pf;
  699. assert(size <= MAX_FRAMESIZE / 2);
  700. /* generate excitation from input signal */
  701. ff_celp_lp_zero_synthesis_filterf(zero_exc_pf, lpcs, synth, size, s->lsps);
  702. if (fcb_type >= FCB_TYPE_AW_PULSES &&
  703. !kalman_smoothen(s, pitch, zero_exc_pf, synth_filter_in_buf, size))
  704. synth_filter_in = synth_filter_in_buf;
  705. /* re-synthesize speech after smoothening, and keep history */
  706. ff_celp_lp_synthesis_filterf(synth_pf, lpcs,
  707. synth_filter_in, size, s->lsps);
  708. memcpy(&synth_pf[-s->lsps], &synth_pf[size - s->lsps],
  709. sizeof(synth_pf[0]) * s->lsps);
  710. wiener_denoise(s, fcb_type, synth_pf, size, lpcs);
  711. adaptive_gain_control(samples, synth_pf, synth, size, 0.99,
  712. &s->postfilter_agc);
  713. if (s->dc_level > 8) {
  714. /* remove ultra-low frequency DC noise / highpass filter;
  715. * coefficients are identical to those used in SIPR decoding,
  716. * and very closely resemble those used in AMR-NB decoding. */
  717. ff_acelp_apply_order_2_transfer_function(samples, samples,
  718. (const float[2]) { -1.99997, 1.0 },
  719. (const float[2]) { -1.9330735188, 0.93589198496 },
  720. 0.93980580475, s->dcf_mem, size);
  721. }
  722. }
  723. /**
  724. * @}
  725. */
  726. /**
  727. * Dequantize LSPs
  728. * @param lsps output pointer to the array that will hold the LSPs
  729. * @param num number of LSPs to be dequantized
  730. * @param values quantized values, contains n_stages values
  731. * @param sizes range (i.e. max value) of each quantized value
  732. * @param n_stages number of dequantization runs
  733. * @param table dequantization table to be used
  734. * @param mul_q LSF multiplier
  735. * @param base_q base (lowest) LSF values
  736. */
  737. static void dequant_lsps(double *lsps, int num,
  738. const uint16_t *values,
  739. const uint16_t *sizes,
  740. int n_stages, const uint8_t *table,
  741. const double *mul_q,
  742. const double *base_q)
  743. {
  744. int n, m;
  745. memset(lsps, 0, num * sizeof(*lsps));
  746. for (n = 0; n < n_stages; n++) {
  747. const uint8_t *t_off = &table[values[n] * num];
  748. double base = base_q[n], mul = mul_q[n];
  749. for (m = 0; m < num; m++)
  750. lsps[m] += base + mul * t_off[m];
  751. table += sizes[n] * num;
  752. }
  753. }
  754. /**
  755. * @name LSP dequantization routines
  756. * LSP dequantization routines, for 10/16LSPs and independent/residual coding.
  757. * @note we assume enough bits are available, caller should check.
  758. * lsp10i() consumes 24 bits; lsp10r() consumes an additional 24 bits;
  759. * lsp16i() consumes 34 bits; lsp16r() consumes an additional 26 bits.
  760. * @{
  761. */
  762. /**
  763. * Parse 10 independently-coded LSPs.
  764. */
  765. static void dequant_lsp10i(GetBitContext *gb, double *lsps)
  766. {
  767. static const uint16_t vec_sizes[4] = { 256, 64, 32, 32 };
  768. static const double mul_lsf[4] = {
  769. 5.2187144800e-3, 1.4626986422e-3,
  770. 9.6179549166e-4, 1.1325736225e-3
  771. };
  772. static const double base_lsf[4] = {
  773. M_PI * -2.15522e-1, M_PI * -6.1646e-2,
  774. M_PI * -3.3486e-2, M_PI * -5.7408e-2
  775. };
  776. uint16_t v[4];
  777. v[0] = get_bits(gb, 8);
  778. v[1] = get_bits(gb, 6);
  779. v[2] = get_bits(gb, 5);
  780. v[3] = get_bits(gb, 5);
  781. dequant_lsps(lsps, 10, v, vec_sizes, 4, wmavoice_dq_lsp10i,
  782. mul_lsf, base_lsf);
  783. }
  784. /**
  785. * Parse 10 independently-coded LSPs, and then derive the tables to
  786. * generate LSPs for the other frames from them (residual coding).
  787. */
  788. static void dequant_lsp10r(GetBitContext *gb,
  789. double *i_lsps, const double *old,
  790. double *a1, double *a2, int q_mode)
  791. {
  792. static const uint16_t vec_sizes[3] = { 128, 64, 64 };
  793. static const double mul_lsf[3] = {
  794. 2.5807601174e-3, 1.2354460219e-3, 1.1763821673e-3
  795. };
  796. static const double base_lsf[3] = {
  797. M_PI * -1.07448e-1, M_PI * -5.2706e-2, M_PI * -5.1634e-2
  798. };
  799. const float (*ipol_tab)[2][10] = q_mode ?
  800. wmavoice_lsp10_intercoeff_b : wmavoice_lsp10_intercoeff_a;
  801. uint16_t interpol, v[3];
  802. int n;
  803. dequant_lsp10i(gb, i_lsps);
  804. interpol = get_bits(gb, 5);
  805. v[0] = get_bits(gb, 7);
  806. v[1] = get_bits(gb, 6);
  807. v[2] = get_bits(gb, 6);
  808. for (n = 0; n < 10; n++) {
  809. double delta = old[n] - i_lsps[n];
  810. a1[n] = ipol_tab[interpol][0][n] * delta + i_lsps[n];
  811. a1[10 + n] = ipol_tab[interpol][1][n] * delta + i_lsps[n];
  812. }
  813. dequant_lsps(a2, 20, v, vec_sizes, 3, wmavoice_dq_lsp10r,
  814. mul_lsf, base_lsf);
  815. }
  816. /**
  817. * Parse 16 independently-coded LSPs.
  818. */
  819. static void dequant_lsp16i(GetBitContext *gb, double *lsps)
  820. {
  821. static const uint16_t vec_sizes[5] = { 256, 64, 128, 64, 128 };
  822. static const double mul_lsf[5] = {
  823. 3.3439586280e-3, 6.9908173703e-4,
  824. 3.3216608306e-3, 1.0334960326e-3,
  825. 3.1899104283e-3
  826. };
  827. static const double base_lsf[5] = {
  828. M_PI * -1.27576e-1, M_PI * -2.4292e-2,
  829. M_PI * -1.28094e-1, M_PI * -3.2128e-2,
  830. M_PI * -1.29816e-1
  831. };
  832. uint16_t v[5];
  833. v[0] = get_bits(gb, 8);
  834. v[1] = get_bits(gb, 6);
  835. v[2] = get_bits(gb, 7);
  836. v[3] = get_bits(gb, 6);
  837. v[4] = get_bits(gb, 7);
  838. dequant_lsps( lsps, 5, v, vec_sizes, 2,
  839. wmavoice_dq_lsp16i1, mul_lsf, base_lsf);
  840. dequant_lsps(&lsps[5], 5, &v[2], &vec_sizes[2], 2,
  841. wmavoice_dq_lsp16i2, &mul_lsf[2], &base_lsf[2]);
  842. dequant_lsps(&lsps[10], 6, &v[4], &vec_sizes[4], 1,
  843. wmavoice_dq_lsp16i3, &mul_lsf[4], &base_lsf[4]);
  844. }
  845. /**
  846. * Parse 16 independently-coded LSPs, and then derive the tables to
  847. * generate LSPs for the other frames from them (residual coding).
  848. */
  849. static void dequant_lsp16r(GetBitContext *gb,
  850. double *i_lsps, const double *old,
  851. double *a1, double *a2, int q_mode)
  852. {
  853. static const uint16_t vec_sizes[3] = { 128, 128, 128 };
  854. static const double mul_lsf[3] = {
  855. 1.2232979501e-3, 1.4062241527e-3, 1.6114744851e-3
  856. };
  857. static const double base_lsf[3] = {
  858. M_PI * -5.5830e-2, M_PI * -5.2908e-2, M_PI * -5.4776e-2
  859. };
  860. const float (*ipol_tab)[2][16] = q_mode ?
  861. wmavoice_lsp16_intercoeff_b : wmavoice_lsp16_intercoeff_a;
  862. uint16_t interpol, v[3];
  863. int n;
  864. dequant_lsp16i(gb, i_lsps);
  865. interpol = get_bits(gb, 5);
  866. v[0] = get_bits(gb, 7);
  867. v[1] = get_bits(gb, 7);
  868. v[2] = get_bits(gb, 7);
  869. for (n = 0; n < 16; n++) {
  870. double delta = old[n] - i_lsps[n];
  871. a1[n] = ipol_tab[interpol][0][n] * delta + i_lsps[n];
  872. a1[16 + n] = ipol_tab[interpol][1][n] * delta + i_lsps[n];
  873. }
  874. dequant_lsps( a2, 10, v, vec_sizes, 1,
  875. wmavoice_dq_lsp16r1, mul_lsf, base_lsf);
  876. dequant_lsps(&a2[10], 10, &v[1], &vec_sizes[1], 1,
  877. wmavoice_dq_lsp16r2, &mul_lsf[1], &base_lsf[1]);
  878. dequant_lsps(&a2[20], 12, &v[2], &vec_sizes[2], 1,
  879. wmavoice_dq_lsp16r3, &mul_lsf[2], &base_lsf[2]);
  880. }
  881. /**
  882. * @}
  883. * @name Pitch-adaptive window coding functions
  884. * The next few functions are for pitch-adaptive window coding.
  885. * @{
  886. */
  887. /**
  888. * Parse the offset of the first pitch-adaptive window pulses, and
  889. * the distribution of pulses between the two blocks in this frame.
  890. * @param s WMA Voice decoding context private data
  891. * @param gb bit I/O context
  892. * @param pitch pitch for each block in this frame
  893. */
  894. static void aw_parse_coords(WMAVoiceContext *s, GetBitContext *gb,
  895. const int *pitch)
  896. {
  897. static const int16_t start_offset[94] = {
  898. -11, -9, -7, -5, -3, -1, 1, 3, 5, 7, 9, 11,
  899. 13, 15, 18, 17, 19, 20, 21, 22, 23, 24, 25, 26,
  900. 27, 28, 29, 30, 31, 32, 33, 35, 37, 39, 41, 43,
  901. 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67,
  902. 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91,
  903. 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115,
  904. 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139,
  905. 141, 143, 145, 147, 149, 151, 153, 155, 157, 159
  906. };
  907. int bits, offset;
  908. /* position of pulse */
  909. s->aw_idx_is_ext = 0;
  910. if ((bits = get_bits(gb, 6)) >= 54) {
  911. s->aw_idx_is_ext = 1;
  912. bits += (bits - 54) * 3 + get_bits(gb, 2);
  913. }
  914. /* for a repeated pulse at pulse_off with a pitch_lag of pitch[], count
  915. * the distribution of the pulses in each block contained in this frame. */
  916. s->aw_pulse_range = FFMIN(pitch[0], pitch[1]) > 32 ? 24 : 16;
  917. for (offset = start_offset[bits]; offset < 0; offset += pitch[0]) ;
  918. s->aw_n_pulses[0] = (pitch[0] - 1 + MAX_FRAMESIZE / 2 - offset) / pitch[0];
  919. s->aw_first_pulse_off[0] = offset - s->aw_pulse_range / 2;
  920. offset += s->aw_n_pulses[0] * pitch[0];
  921. s->aw_n_pulses[1] = (pitch[1] - 1 + MAX_FRAMESIZE - offset) / pitch[1];
  922. s->aw_first_pulse_off[1] = offset - (MAX_FRAMESIZE + s->aw_pulse_range) / 2;
  923. /* if continuing from a position before the block, reset position to
  924. * start of block (when corrected for the range over which it can be
  925. * spread in aw_pulse_set1()). */
  926. if (start_offset[bits] < MAX_FRAMESIZE / 2) {
  927. while (s->aw_first_pulse_off[1] - pitch[1] + s->aw_pulse_range > 0)
  928. s->aw_first_pulse_off[1] -= pitch[1];
  929. if (start_offset[bits] < 0)
  930. while (s->aw_first_pulse_off[0] - pitch[0] + s->aw_pulse_range > 0)
  931. s->aw_first_pulse_off[0] -= pitch[0];
  932. }
  933. }
  934. /**
  935. * Apply second set of pitch-adaptive window pulses.
  936. * @param s WMA Voice decoding context private data
  937. * @param gb bit I/O context
  938. * @param block_idx block index in frame [0, 1]
  939. * @param fcb structure containing fixed codebook vector info
  940. */
  941. static void aw_pulse_set2(WMAVoiceContext *s, GetBitContext *gb,
  942. int block_idx, AMRFixed *fcb)
  943. {
  944. uint16_t use_mask_mem[9]; // only 5 are used, rest is padding
  945. uint16_t *use_mask = use_mask_mem + 2;
  946. /* in this function, idx is the index in the 80-bit (+ padding) use_mask
  947. * bit-array. Since use_mask consists of 16-bit values, the lower 4 bits
  948. * of idx are the position of the bit within a particular item in the
  949. * array (0 being the most significant bit, and 15 being the least
  950. * significant bit), and the remainder (>> 4) is the index in the
  951. * use_mask[]-array. This is faster and uses less memory than using a
  952. * 80-byte/80-int array. */
  953. int pulse_off = s->aw_first_pulse_off[block_idx],
  954. pulse_start, n, idx, range, aidx, start_off = 0;
  955. /* set offset of first pulse to within this block */
  956. if (s->aw_n_pulses[block_idx] > 0)
  957. while (pulse_off + s->aw_pulse_range < 1)
  958. pulse_off += fcb->pitch_lag;
  959. /* find range per pulse */
  960. if (s->aw_n_pulses[0] > 0) {
  961. if (block_idx == 0) {
  962. range = 32;
  963. } else /* block_idx = 1 */ {
  964. range = 8;
  965. if (s->aw_n_pulses[block_idx] > 0)
  966. pulse_off = s->aw_next_pulse_off_cache;
  967. }
  968. } else
  969. range = 16;
  970. pulse_start = s->aw_n_pulses[block_idx] > 0 ? pulse_off - range / 2 : 0;
  971. /* aw_pulse_set1() already applies pulses around pulse_off (to be exactly,
  972. * in the range of [pulse_off, pulse_off + s->aw_pulse_range], and thus
  973. * we exclude that range from being pulsed again in this function. */
  974. memset(&use_mask[-2], 0, 2 * sizeof(use_mask[0]));
  975. memset( use_mask, -1, 5 * sizeof(use_mask[0]));
  976. memset(&use_mask[5], 0, 2 * sizeof(use_mask[0]));
  977. if (s->aw_n_pulses[block_idx] > 0)
  978. for (idx = pulse_off; idx < MAX_FRAMESIZE / 2; idx += fcb->pitch_lag) {
  979. int excl_range = s->aw_pulse_range; // always 16 or 24
  980. uint16_t *use_mask_ptr = &use_mask[idx >> 4];
  981. int first_sh = 16 - (idx & 15);
  982. *use_mask_ptr++ &= 0xFFFF << first_sh;
  983. excl_range -= first_sh;
  984. if (excl_range >= 16) {
  985. *use_mask_ptr++ = 0;
  986. *use_mask_ptr &= 0xFFFF >> (excl_range - 16);
  987. } else
  988. *use_mask_ptr &= 0xFFFF >> excl_range;
  989. }
  990. /* find the 'aidx'th offset that is not excluded */
  991. aidx = get_bits(gb, s->aw_n_pulses[0] > 0 ? 5 - 2 * block_idx : 4);
  992. for (n = 0; n <= aidx; pulse_start++) {
  993. for (idx = pulse_start; idx < 0; idx += fcb->pitch_lag) ;
  994. if (idx >= MAX_FRAMESIZE / 2) { // find from zero
  995. if (use_mask[0]) idx = 0x0F;
  996. else if (use_mask[1]) idx = 0x1F;
  997. else if (use_mask[2]) idx = 0x2F;
  998. else if (use_mask[3]) idx = 0x3F;
  999. else if (use_mask[4]) idx = 0x4F;
  1000. else return;
  1001. idx -= av_log2_16bit(use_mask[idx >> 4]);
  1002. }
  1003. if (use_mask[idx >> 4] & (0x8000 >> (idx & 15))) {
  1004. use_mask[idx >> 4] &= ~(0x8000 >> (idx & 15));
  1005. n++;
  1006. start_off = idx;
  1007. }
  1008. }
  1009. fcb->x[fcb->n] = start_off;
  1010. fcb->y[fcb->n] = get_bits1(gb) ? -1.0 : 1.0;
  1011. fcb->n++;
  1012. /* set offset for next block, relative to start of that block */
  1013. n = (MAX_FRAMESIZE / 2 - start_off) % fcb->pitch_lag;
  1014. s->aw_next_pulse_off_cache = n ? fcb->pitch_lag - n : 0;
  1015. }
  1016. /**
  1017. * Apply first set of pitch-adaptive window pulses.
  1018. * @param s WMA Voice decoding context private data
  1019. * @param gb bit I/O context
  1020. * @param block_idx block index in frame [0, 1]
  1021. * @param fcb storage location for fixed codebook pulse info
  1022. */
  1023. static void aw_pulse_set1(WMAVoiceContext *s, GetBitContext *gb,
  1024. int block_idx, AMRFixed *fcb)
  1025. {
  1026. int val = get_bits(gb, 12 - 2 * (s->aw_idx_is_ext && !block_idx));
  1027. float v;
  1028. if (s->aw_n_pulses[block_idx] > 0) {
  1029. int n, v_mask, i_mask, sh, n_pulses;
  1030. if (s->aw_pulse_range == 24) { // 3 pulses, 1:sign + 3:index each
  1031. n_pulses = 3;
  1032. v_mask = 8;
  1033. i_mask = 7;
  1034. sh = 4;
  1035. } else { // 4 pulses, 1:sign + 2:index each
  1036. n_pulses = 4;
  1037. v_mask = 4;
  1038. i_mask = 3;
  1039. sh = 3;
  1040. }
  1041. for (n = n_pulses - 1; n >= 0; n--, val >>= sh) {
  1042. fcb->y[fcb->n] = (val & v_mask) ? -1.0 : 1.0;
  1043. fcb->x[fcb->n] = (val & i_mask) * n_pulses + n +
  1044. s->aw_first_pulse_off[block_idx];
  1045. while (fcb->x[fcb->n] < 0)
  1046. fcb->x[fcb->n] += fcb->pitch_lag;
  1047. if (fcb->x[fcb->n] < MAX_FRAMESIZE / 2)
  1048. fcb->n++;
  1049. }
  1050. } else {
  1051. int num2 = (val & 0x1FF) >> 1, delta, idx;
  1052. if (num2 < 1 * 79) { delta = 1; idx = num2 + 1; }
  1053. else if (num2 < 2 * 78) { delta = 3; idx = num2 + 1 - 1 * 77; }
  1054. else if (num2 < 3 * 77) { delta = 5; idx = num2 + 1 - 2 * 76; }
  1055. else { delta = 7; idx = num2 + 1 - 3 * 75; }
  1056. v = (val & 0x200) ? -1.0 : 1.0;
  1057. fcb->no_repeat_mask |= 3 << fcb->n;
  1058. fcb->x[fcb->n] = idx - delta;
  1059. fcb->y[fcb->n] = v;
  1060. fcb->x[fcb->n + 1] = idx;
  1061. fcb->y[fcb->n + 1] = (val & 1) ? -v : v;
  1062. fcb->n += 2;
  1063. }
  1064. }
  1065. /**
  1066. * @}
  1067. *
  1068. * Generate a random number from frame_cntr and block_idx, which will lief
  1069. * in the range [0, 1000 - block_size] (so it can be used as an index in a
  1070. * table of size 1000 of which you want to read block_size entries).
  1071. *
  1072. * @param frame_cntr current frame number
  1073. * @param block_num current block index
  1074. * @param block_size amount of entries we want to read from a table
  1075. * that has 1000 entries
  1076. * @return a (non-)random number in the [0, 1000 - block_size] range.
  1077. */
  1078. static int pRNG(int frame_cntr, int block_num, int block_size)
  1079. {
  1080. /* array to simplify the calculation of z:
  1081. * y = (x % 9) * 5 + 6;
  1082. * z = (49995 * x) / y;
  1083. * Since y only has 9 values, we can remove the division by using a
  1084. * LUT and using FASTDIV-style divisions. For each of the 9 values
  1085. * of y, we can rewrite z as:
  1086. * z = x * (49995 / y) + x * ((49995 % y) / y)
  1087. * In this table, each col represents one possible value of y, the
  1088. * first number is 49995 / y, and the second is the FASTDIV variant
  1089. * of 49995 % y / y. */
  1090. static const unsigned int div_tbl[9][2] = {
  1091. { 8332, 3 * 715827883U }, // y = 6
  1092. { 4545, 0 * 390451573U }, // y = 11
  1093. { 3124, 11 * 268435456U }, // y = 16
  1094. { 2380, 15 * 204522253U }, // y = 21
  1095. { 1922, 23 * 165191050U }, // y = 26
  1096. { 1612, 23 * 138547333U }, // y = 31
  1097. { 1388, 27 * 119304648U }, // y = 36
  1098. { 1219, 16 * 104755300U }, // y = 41
  1099. { 1086, 39 * 93368855U } // y = 46
  1100. };
  1101. unsigned int z, y, x = MUL16(block_num, 1877) + frame_cntr;
  1102. if (x >= 0xFFFF) x -= 0xFFFF; // max value of x is 8*1877+0xFFFE=0x13AA6,
  1103. // so this is effectively a modulo (%)
  1104. y = x - 9 * MULH(477218589, x); // x % 9
  1105. z = (uint16_t) (x * div_tbl[y][0] + UMULH(x, div_tbl[y][1]));
  1106. // z = x * 49995 / (y * 5 + 6)
  1107. return z % (1000 - block_size);
  1108. }
  1109. /**
  1110. * Parse hardcoded signal for a single block.
  1111. * @note see #synth_block().
  1112. */
  1113. static void synth_block_hardcoded(WMAVoiceContext *s, GetBitContext *gb,
  1114. int block_idx, int size,
  1115. const struct frame_type_desc *frame_desc,
  1116. float *excitation)
  1117. {
  1118. float gain;
  1119. int n, r_idx;
  1120. assert(size <= MAX_FRAMESIZE);
  1121. /* Set the offset from which we start reading wmavoice_std_codebook */
  1122. if (frame_desc->fcb_type == FCB_TYPE_SILENCE) {
  1123. r_idx = pRNG(s->frame_cntr, block_idx, size);
  1124. gain = s->silence_gain;
  1125. } else /* FCB_TYPE_HARDCODED */ {
  1126. r_idx = get_bits(gb, 8);
  1127. gain = wmavoice_gain_universal[get_bits(gb, 6)];
  1128. }
  1129. /* Clear gain prediction parameters */
  1130. memset(s->gain_pred_err, 0, sizeof(s->gain_pred_err));
  1131. /* Apply gain to hardcoded codebook and use that as excitation signal */
  1132. for (n = 0; n < size; n++)
  1133. excitation[n] = wmavoice_std_codebook[r_idx + n] * gain;
  1134. }
  1135. /**
  1136. * Parse FCB/ACB signal for a single block.
  1137. * @note see #synth_block().
  1138. */
  1139. static void synth_block_fcb_acb(WMAVoiceContext *s, GetBitContext *gb,
  1140. int block_idx, int size,
  1141. int block_pitch_sh2,
  1142. const struct frame_type_desc *frame_desc,
  1143. float *excitation)
  1144. {
  1145. static const float gain_coeff[6] = {
  1146. 0.8169, -0.06545, 0.1726, 0.0185, -0.0359, 0.0458
  1147. };
  1148. float pulses[MAX_FRAMESIZE / 2], pred_err, acb_gain, fcb_gain;
  1149. int n, idx, gain_weight;
  1150. AMRFixed fcb;
  1151. assert(size <= MAX_FRAMESIZE / 2);
  1152. memset(pulses, 0, sizeof(*pulses) * size);
  1153. fcb.pitch_lag = block_pitch_sh2 >> 2;
  1154. fcb.pitch_fac = 1.0;
  1155. fcb.no_repeat_mask = 0;
  1156. fcb.n = 0;
  1157. /* For the other frame types, this is where we apply the innovation
  1158. * (fixed) codebook pulses of the speech signal. */
  1159. if (frame_desc->fcb_type == FCB_TYPE_AW_PULSES) {
  1160. aw_pulse_set1(s, gb, block_idx, &fcb);
  1161. aw_pulse_set2(s, gb, block_idx, &fcb);
  1162. } else /* FCB_TYPE_EXC_PULSES */ {
  1163. int offset_nbits = 5 - frame_desc->log_n_blocks;
  1164. fcb.no_repeat_mask = -1;
  1165. /* similar to ff_decode_10_pulses_35bits(), but with single pulses
  1166. * (instead of double) for a subset of pulses */
  1167. for (n = 0; n < 5; n++) {
  1168. float sign;
  1169. int pos1, pos2;
  1170. sign = get_bits1(gb) ? 1.0 : -1.0;
  1171. pos1 = get_bits(gb, offset_nbits);
  1172. fcb.x[fcb.n] = n + 5 * pos1;
  1173. fcb.y[fcb.n++] = sign;
  1174. if (n < frame_desc->dbl_pulses) {
  1175. pos2 = get_bits(gb, offset_nbits);
  1176. fcb.x[fcb.n] = n + 5 * pos2;
  1177. fcb.y[fcb.n++] = (pos1 < pos2) ? -sign : sign;
  1178. }
  1179. }
  1180. }
  1181. ff_set_fixed_vector(pulses, &fcb, 1.0, size);
  1182. /* Calculate gain for adaptive & fixed codebook signal.
  1183. * see ff_amr_set_fixed_gain(). */
  1184. idx = get_bits(gb, 7);
  1185. fcb_gain = expf(ff_dot_productf(s->gain_pred_err, gain_coeff, 6) -
  1186. 5.2409161640 + wmavoice_gain_codebook_fcb[idx]);
  1187. acb_gain = wmavoice_gain_codebook_acb[idx];
  1188. pred_err = av_clipf(wmavoice_gain_codebook_fcb[idx],
  1189. -2.9957322736 /* log(0.05) */,
  1190. 1.6094379124 /* log(5.0) */);
  1191. gain_weight = 8 >> frame_desc->log_n_blocks;
  1192. memmove(&s->gain_pred_err[gain_weight], s->gain_pred_err,
  1193. sizeof(*s->gain_pred_err) * (6 - gain_weight));
  1194. for (n = 0; n < gain_weight; n++)
  1195. s->gain_pred_err[n] = pred_err;
  1196. /* Calculation of adaptive codebook */
  1197. if (frame_desc->acb_type == ACB_TYPE_ASYMMETRIC) {
  1198. int len;
  1199. for (n = 0; n < size; n += len) {
  1200. int next_idx_sh16;
  1201. int abs_idx = block_idx * size + n;
  1202. int pitch_sh16 = (s->last_pitch_val << 16) +
  1203. s->pitch_diff_sh16 * abs_idx;
  1204. int pitch = (pitch_sh16 + 0x6FFF) >> 16;
  1205. int idx_sh16 = ((pitch << 16) - pitch_sh16) * 8 + 0x58000;
  1206. idx = idx_sh16 >> 16;
  1207. if (s->pitch_diff_sh16) {
  1208. if (s->pitch_diff_sh16 > 0) {
  1209. next_idx_sh16 = (idx_sh16) &~ 0xFFFF;
  1210. } else
  1211. next_idx_sh16 = (idx_sh16 + 0x10000) &~ 0xFFFF;
  1212. len = av_clip((idx_sh16 - next_idx_sh16) / s->pitch_diff_sh16 / 8,
  1213. 1, size - n);
  1214. } else
  1215. len = size;
  1216. ff_acelp_interpolatef(&excitation[n], &excitation[n - pitch],
  1217. wmavoice_ipol1_coeffs, 17,
  1218. idx, 9, len);
  1219. }
  1220. } else /* ACB_TYPE_HAMMING */ {
  1221. int block_pitch = block_pitch_sh2 >> 2;
  1222. idx = block_pitch_sh2 & 3;
  1223. if (idx) {
  1224. ff_acelp_interpolatef(excitation, &excitation[-block_pitch],
  1225. wmavoice_ipol2_coeffs, 4,
  1226. idx, 8, size);
  1227. } else
  1228. av_memcpy_backptr((uint8_t *) excitation, sizeof(float) * block_pitch,
  1229. sizeof(float) * size);
  1230. }
  1231. /* Interpolate ACB/FCB and use as excitation signal */
  1232. ff_weighted_vector_sumf(excitation, excitation, pulses,
  1233. acb_gain, fcb_gain, size);
  1234. }
  1235. /**
  1236. * Parse data in a single block.
  1237. * @note we assume enough bits are available, caller should check.
  1238. *
  1239. * @param s WMA Voice decoding context private data
  1240. * @param gb bit I/O context
  1241. * @param block_idx index of the to-be-read block
  1242. * @param size amount of samples to be read in this block
  1243. * @param block_pitch_sh2 pitch for this block << 2
  1244. * @param lsps LSPs for (the end of) this frame
  1245. * @param prev_lsps LSPs for the last frame
  1246. * @param frame_desc frame type descriptor
  1247. * @param excitation target memory for the ACB+FCB interpolated signal
  1248. * @param synth target memory for the speech synthesis filter output
  1249. * @return 0 on success, <0 on error.
  1250. */
  1251. static void synth_block(WMAVoiceContext *s, GetBitContext *gb,
  1252. int block_idx, int size,
  1253. int block_pitch_sh2,
  1254. const double *lsps, const double *prev_lsps,
  1255. const struct frame_type_desc *frame_desc,
  1256. float *excitation, float *synth)
  1257. {
  1258. double i_lsps[MAX_LSPS];
  1259. float lpcs[MAX_LSPS];
  1260. float fac;
  1261. int n;
  1262. if (frame_desc->acb_type == ACB_TYPE_NONE)
  1263. synth_block_hardcoded(s, gb, block_idx, size, frame_desc, excitation);
  1264. else
  1265. synth_block_fcb_acb(s, gb, block_idx, size, block_pitch_sh2,
  1266. frame_desc, excitation);
  1267. /* convert interpolated LSPs to LPCs */
  1268. fac = (block_idx + 0.5) / frame_desc->n_blocks;
  1269. for (n = 0; n < s->lsps; n++) // LSF -> LSP
  1270. i_lsps[n] = cos(prev_lsps[n] + fac * (lsps[n] - prev_lsps[n]));
  1271. ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1);
  1272. /* Speech synthesis */
  1273. ff_celp_lp_synthesis_filterf(synth, lpcs, excitation, size, s->lsps);
  1274. }
  1275. /**
  1276. * Synthesize output samples for a single frame.
  1277. * @note we assume enough bits are available, caller should check.
  1278. *
  1279. * @param ctx WMA Voice decoder context
  1280. * @param gb bit I/O context (s->gb or one for cross-packet superframes)
  1281. * @param frame_idx Frame number within superframe [0-2]
  1282. * @param samples pointer to output sample buffer, has space for at least 160
  1283. * samples
  1284. * @param lsps LSP array
  1285. * @param prev_lsps array of previous frame's LSPs
  1286. * @param excitation target buffer for excitation signal
  1287. * @param synth target buffer for synthesized speech data
  1288. * @return 0 on success, <0 on error.
  1289. */
  1290. static int synth_frame(AVCodecContext *ctx, GetBitContext *gb, int frame_idx,
  1291. float *samples,
  1292. const double *lsps, const double *prev_lsps,
  1293. float *excitation, float *synth)
  1294. {
  1295. WMAVoiceContext *s = ctx->priv_data;
  1296. int n, n_blocks_x2, log_n_blocks_x2, cur_pitch_val;
  1297. int pitch[MAX_BLOCKS], last_block_pitch;
  1298. /* Parse frame type ("frame header"), see frame_descs */
  1299. int bd_idx = s->vbm_tree[get_vlc2(gb, frame_type_vlc.table, 6, 3)],
  1300. block_nsamples = MAX_FRAMESIZE / frame_descs[bd_idx].n_blocks;
  1301. if (bd_idx < 0) {
  1302. av_log(ctx, AV_LOG_ERROR,
  1303. "Invalid frame type VLC code, skipping\n");
  1304. return -1;
  1305. }
  1306. /* Pitch calculation for ACB_TYPE_ASYMMETRIC ("pitch-per-frame") */
  1307. if (frame_descs[bd_idx].acb_type == ACB_TYPE_ASYMMETRIC) {
  1308. /* Pitch is provided per frame, which is interpreted as the pitch of
  1309. * the last sample of the last block of this frame. We can interpolate
  1310. * the pitch of other blocks (and even pitch-per-sample) by gradually
  1311. * incrementing/decrementing prev_frame_pitch to cur_pitch_val. */
  1312. n_blocks_x2 = frame_descs[bd_idx].n_blocks << 1;
  1313. log_n_blocks_x2 = frame_descs[bd_idx].log_n_blocks + 1;
  1314. cur_pitch_val = s->min_pitch_val + get_bits(gb, s->pitch_nbits);
  1315. cur_pitch_val = FFMIN(cur_pitch_val, s->max_pitch_val - 1);
  1316. if (s->last_acb_type == ACB_TYPE_NONE ||
  1317. 20 * abs(cur_pitch_val - s->last_pitch_val) >
  1318. (cur_pitch_val + s->last_pitch_val))
  1319. s->last_pitch_val = cur_pitch_val;
  1320. /* pitch per block */
  1321. for (n = 0; n < frame_descs[bd_idx].n_blocks; n++) {
  1322. int fac = n * 2 + 1;
  1323. pitch[n] = (MUL16(fac, cur_pitch_val) +
  1324. MUL16((n_blocks_x2 - fac), s->last_pitch_val) +
  1325. frame_descs[bd_idx].n_blocks) >> log_n_blocks_x2;
  1326. }
  1327. /* "pitch-diff-per-sample" for calculation of pitch per sample */
  1328. s->pitch_diff_sh16 =
  1329. ((cur_pitch_val - s->last_pitch_val) << 16) / MAX_FRAMESIZE;
  1330. }
  1331. /* Global gain (if silence) and pitch-adaptive window coordinates */
  1332. switch (frame_descs[bd_idx].fcb_type) {
  1333. case FCB_TYPE_SILENCE:
  1334. s->silence_gain = wmavoice_gain_silence[get_bits(gb, 8)];
  1335. break;
  1336. case FCB_TYPE_AW_PULSES:
  1337. aw_parse_coords(s, gb, pitch);
  1338. break;
  1339. }
  1340. for (n = 0; n < frame_descs[bd_idx].n_blocks; n++) {
  1341. int bl_pitch_sh2;
  1342. /* Pitch calculation for ACB_TYPE_HAMMING ("pitch-per-block") */
  1343. switch (frame_descs[bd_idx].acb_type) {
  1344. case ACB_TYPE_HAMMING: {
  1345. /* Pitch is given per block. Per-block pitches are encoded as an
  1346. * absolute value for the first block, and then delta values
  1347. * relative to this value) for all subsequent blocks. The scale of
  1348. * this pitch value is semi-logaritmic compared to its use in the
  1349. * decoder, so we convert it to normal scale also. */
  1350. int block_pitch,
  1351. t1 = (s->block_conv_table[1] - s->block_conv_table[0]) << 2,
  1352. t2 = (s->block_conv_table[2] - s->block_conv_table[1]) << 1,
  1353. t3 = s->block_conv_table[3] - s->block_conv_table[2] + 1;
  1354. if (n == 0) {
  1355. block_pitch = get_bits(gb, s->block_pitch_nbits);
  1356. } else
  1357. block_pitch = last_block_pitch - s->block_delta_pitch_hrange +
  1358. get_bits(gb, s->block_delta_pitch_nbits);
  1359. /* Convert last_ so that any next delta is within _range */
  1360. last_block_pitch = av_clip(block_pitch,
  1361. s->block_delta_pitch_hrange,
  1362. s->block_pitch_range -
  1363. s->block_delta_pitch_hrange);
  1364. /* Convert semi-log-style scale back to normal scale */
  1365. if (block_pitch < t1) {
  1366. bl_pitch_sh2 = (s->block_conv_table[0] << 2) + block_pitch;
  1367. } else {
  1368. block_pitch -= t1;
  1369. if (block_pitch < t2) {
  1370. bl_pitch_sh2 =
  1371. (s->block_conv_table[1] << 2) + (block_pitch << 1);
  1372. } else {
  1373. block_pitch -= t2;
  1374. if (block_pitch < t3) {
  1375. bl_pitch_sh2 =
  1376. (s->block_conv_table[2] + block_pitch) << 2;
  1377. } else
  1378. bl_pitch_sh2 = s->block_conv_table[3] << 2;
  1379. }
  1380. }
  1381. pitch[n] = bl_pitch_sh2 >> 2;
  1382. break;
  1383. }
  1384. case ACB_TYPE_ASYMMETRIC: {
  1385. bl_pitch_sh2 = pitch[n] << 2;
  1386. break;
  1387. }
  1388. default: // ACB_TYPE_NONE has no pitch
  1389. bl_pitch_sh2 = 0;
  1390. break;
  1391. }
  1392. synth_block(s, gb, n, block_nsamples, bl_pitch_sh2,
  1393. lsps, prev_lsps, &frame_descs[bd_idx],
  1394. &excitation[n * block_nsamples],
  1395. &synth[n * block_nsamples]);
  1396. }
  1397. /* Averaging projection filter, if applicable. Else, just copy samples
  1398. * from synthesis buffer */
  1399. if (s->do_apf) {
  1400. double i_lsps[MAX_LSPS];
  1401. float lpcs[MAX_LSPS];
  1402. for (n = 0; n < s->lsps; n++) // LSF -> LSP
  1403. i_lsps[n] = cos(0.5 * (prev_lsps[n] + lsps[n]));
  1404. ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1);
  1405. postfilter(s, synth, samples, 80, lpcs,
  1406. &s->zero_exc_pf[s->history_nsamples + MAX_FRAMESIZE * frame_idx],
  1407. frame_descs[bd_idx].fcb_type, pitch[0]);
  1408. for (n = 0; n < s->lsps; n++) // LSF -> LSP
  1409. i_lsps[n] = cos(lsps[n]);
  1410. ff_acelp_lspd2lpc(i_lsps, lpcs, s->lsps >> 1);
  1411. postfilter(s, &synth[80], &samples[80], 80, lpcs,
  1412. &s->zero_exc_pf[s->history_nsamples + MAX_FRAMESIZE * frame_idx + 80],
  1413. frame_descs[bd_idx].fcb_type, pitch[0]);
  1414. } else
  1415. memcpy(samples, synth, 160 * sizeof(synth[0]));
  1416. /* Cache values for next frame */
  1417. s->frame_cntr++;
  1418. if (s->frame_cntr >= 0xFFFF) s->frame_cntr -= 0xFFFF; // i.e. modulo (%)
  1419. s->last_acb_type = frame_descs[bd_idx].acb_type;
  1420. switch (frame_descs[bd_idx].acb_type) {
  1421. case ACB_TYPE_NONE:
  1422. s->last_pitch_val = 0;
  1423. break;
  1424. case ACB_TYPE_ASYMMETRIC:
  1425. s->last_pitch_val = cur_pitch_val;
  1426. break;
  1427. case ACB_TYPE_HAMMING:
  1428. s->last_pitch_val = pitch[frame_descs[bd_idx].n_blocks - 1];
  1429. break;
  1430. }
  1431. return 0;
  1432. }
  1433. /**
  1434. * Ensure minimum value for first item, maximum value for last value,
  1435. * proper spacing between each value and proper ordering.
  1436. *
  1437. * @param lsps array of LSPs
  1438. * @param num size of LSP array
  1439. *
  1440. * @note basically a double version of #ff_acelp_reorder_lsf(), might be
  1441. * useful to put in a generic location later on. Parts are also
  1442. * present in #ff_set_min_dist_lsf() + #ff_sort_nearly_sorted_floats(),
  1443. * which is in float.
  1444. */
  1445. static void stabilize_lsps(double *lsps, int num)
  1446. {
  1447. int n, m, l;
  1448. /* set minimum value for first, maximum value for last and minimum
  1449. * spacing between LSF values.
  1450. * Very similar to ff_set_min_dist_lsf(), but in double. */
  1451. lsps[0] = FFMAX(lsps[0], 0.0015 * M_PI);
  1452. for (n = 1; n < num; n++)
  1453. lsps[n] = FFMAX(lsps[n], lsps[n - 1] + 0.0125 * M_PI);
  1454. lsps[num - 1] = FFMIN(lsps[num - 1], 0.9985 * M_PI);
  1455. /* reorder (looks like one-time / non-recursed bubblesort).
  1456. * Very similar to ff_sort_nearly_sorted_floats(), but in double. */
  1457. for (n = 1; n < num; n++) {
  1458. if (lsps[n] < lsps[n - 1]) {
  1459. for (m = 1; m < num; m++) {
  1460. double tmp = lsps[m];
  1461. for (l = m - 1; l >= 0; l--) {
  1462. if (lsps[l] <= tmp) break;
  1463. lsps[l + 1] = lsps[l];
  1464. }
  1465. lsps[l + 1] = tmp;
  1466. }
  1467. break;
  1468. }
  1469. }
  1470. }
  1471. /**
  1472. * Test if there's enough bits to read 1 superframe.
  1473. *
  1474. * @param orig_gb bit I/O context used for reading. This function
  1475. * does not modify the state of the bitreader; it
  1476. * only uses it to copy the current stream position
  1477. * @param s WMA Voice decoding context private data
  1478. * @return -1 if unsupported, 1 on not enough bits or 0 if OK.
  1479. */
  1480. static int check_bits_for_superframe(GetBitContext *orig_gb,
  1481. WMAVoiceContext *s)
  1482. {
  1483. GetBitContext s_gb, *gb = &s_gb;
  1484. int n, need_bits, bd_idx;
  1485. const struct frame_type_desc *frame_desc;
  1486. /* initialize a copy */
  1487. init_get_bits(gb, orig_gb->buffer, orig_gb->size_in_bits);
  1488. skip_bits_long(gb, get_bits_count(orig_gb));
  1489. assert(get_bits_left(gb) == get_bits_left(orig_gb));
  1490. /* superframe header */
  1491. if (get_bits_left(gb) < 14)
  1492. return 1;
  1493. if (!get_bits1(gb))
  1494. return -1; // WMAPro-in-WMAVoice superframe
  1495. if (get_bits1(gb)) skip_bits(gb, 12); // number of samples in superframe
  1496. if (s->has_residual_lsps) { // residual LSPs (for all frames)
  1497. if (get_bits_left(gb) < s->sframe_lsp_bitsize)
  1498. return 1;
  1499. skip_bits_long(gb, s->sframe_lsp_bitsize);
  1500. }
  1501. /* frames */
  1502. for (n = 0; n < MAX_FRAMES; n++) {
  1503. int aw_idx_is_ext = 0;
  1504. if (!s->has_residual_lsps) { // independent LSPs (per-frame)
  1505. if (get_bits_left(gb) < s->frame_lsp_bitsize) return 1;
  1506. skip_bits_long(gb, s->frame_lsp_bitsize);
  1507. }
  1508. bd_idx = s->vbm_tree[get_vlc2(gb, frame_type_vlc.table, 6, 3)];
  1509. if (bd_idx < 0)
  1510. return -1; // invalid frame type VLC code
  1511. frame_desc = &frame_descs[bd_idx];
  1512. if (frame_desc->acb_type == ACB_TYPE_ASYMMETRIC) {
  1513. if (get_bits_left(gb) < s->pitch_nbits)
  1514. return 1;
  1515. skip_bits_long(gb, s->pitch_nbits);
  1516. }
  1517. if (frame_desc->fcb_type == FCB_TYPE_SILENCE) {
  1518. skip_bits(gb, 8);
  1519. } else if (frame_desc->fcb_type == FCB_TYPE_AW_PULSES) {
  1520. int tmp = get_bits(gb, 6);
  1521. if (tmp >= 0x36) {
  1522. skip_bits(gb, 2);
  1523. aw_idx_is_ext = 1;
  1524. }
  1525. }
  1526. /* blocks */
  1527. if (frame_desc->acb_type == ACB_TYPE_HAMMING) {
  1528. need_bits = s->block_pitch_nbits +
  1529. (frame_desc->n_blocks - 1) * s->block_delta_pitch_nbits;
  1530. } else if (frame_desc->fcb_type == FCB_TYPE_AW_PULSES) {
  1531. need_bits = 2 * !aw_idx_is_ext;
  1532. } else
  1533. need_bits = 0;
  1534. need_bits += frame_desc->frame_size;
  1535. if (get_bits_left(gb) < need_bits)
  1536. return 1;
  1537. skip_bits_long(gb, need_bits);
  1538. }
  1539. return 0;
  1540. }
  1541. /**
  1542. * Synthesize output samples for a single superframe. If we have any data
  1543. * cached in s->sframe_cache, that will be used instead of whatever is loaded
  1544. * in s->gb.
  1545. *
  1546. * WMA Voice superframes contain 3 frames, each containing 160 audio samples,
  1547. * to give a total of 480 samples per frame. See #synth_frame() for frame
  1548. * parsing. In addition to 3 frames, superframes can also contain the LSPs
  1549. * (if these are globally specified for all frames (residually); they can
  1550. * also be specified individually per-frame. See the s->has_residual_lsps
  1551. * option), and can specify the number of samples encoded in this superframe
  1552. * (if less than 480), usually used to prevent blanks at track boundaries.
  1553. *
  1554. * @param ctx WMA Voice decoder context
  1555. * @param samples pointer to output buffer for voice samples
  1556. * @param data_size pointer containing the size of #samples on input, and the
  1557. * amount of #samples filled on output
  1558. * @return 0 on success, <0 on error or 1 if there was not enough data to
  1559. * fully parse the superframe
  1560. */
  1561. static int synth_superframe(AVCodecContext *ctx,
  1562. float *samples, int *data_size)
  1563. {
  1564. WMAVoiceContext *s = ctx->priv_data;
  1565. GetBitContext *gb = &s->gb, s_gb;
  1566. int n, res, n_samples = 480;
  1567. double lsps[MAX_FRAMES][MAX_LSPS];
  1568. const double *mean_lsf = s->lsps == 16 ?
  1569. wmavoice_mean_lsf16[s->lsp_def_mode] : wmavoice_mean_lsf10[s->lsp_def_mode];
  1570. float excitation[MAX_SIGNAL_HISTORY + MAX_SFRAMESIZE + 12];
  1571. float synth[MAX_LSPS + MAX_SFRAMESIZE];
  1572. memcpy(synth, s->synth_history,
  1573. s->lsps * sizeof(*synth));
  1574. memcpy(excitation, s->excitation_history,
  1575. s->history_nsamples * sizeof(*excitation));
  1576. if (s->sframe_cache_size > 0) {
  1577. gb = &s_gb;
  1578. init_get_bits(gb, s->sframe_cache, s->sframe_cache_size);
  1579. s->sframe_cache_size = 0;
  1580. }
  1581. if ((res = check_bits_for_superframe(gb, s)) == 1) return 1;
  1582. /* First bit is speech/music bit, it differentiates between WMAVoice
  1583. * speech samples (the actual codec) and WMAVoice music samples, which
  1584. * are really WMAPro-in-WMAVoice-superframes. I've never seen those in
  1585. * the wild yet. */
  1586. if (!get_bits1(gb)) {
  1587. av_log_missing_feature(ctx, "WMAPro-in-WMAVoice support", 1);
  1588. return -1;
  1589. }
  1590. /* (optional) nr. of samples in superframe; always <= 480 and >= 0 */
  1591. if (get_bits1(gb)) {
  1592. if ((n_samples = get_bits(gb, 12)) > 480) {
  1593. av_log(ctx, AV_LOG_ERROR,
  1594. "Superframe encodes >480 samples (%d), not allowed\n",
  1595. n_samples);
  1596. return -1;
  1597. }
  1598. }
  1599. /* Parse LSPs, if global for the superframe (can also be per-frame). */
  1600. if (s->has_residual_lsps) {
  1601. double prev_lsps[MAX_LSPS], a1[MAX_LSPS * 2], a2[MAX_LSPS * 2];
  1602. for (n = 0; n < s->lsps; n++)
  1603. prev_lsps[n] = s->prev_lsps[n] - mean_lsf[n];
  1604. if (s->lsps == 10) {
  1605. dequant_lsp10r(gb, lsps[2], prev_lsps, a1, a2, s->lsp_q_mode);
  1606. } else /* s->lsps == 16 */
  1607. dequant_lsp16r(gb, lsps[2], prev_lsps, a1, a2, s->lsp_q_mode);
  1608. for (n = 0; n < s->lsps; n++) {
  1609. lsps[0][n] = mean_lsf[n] + (a1[n] - a2[n * 2]);
  1610. lsps[1][n] = mean_lsf[n] + (a1[s->lsps + n] - a2[n * 2 + 1]);
  1611. lsps[2][n] += mean_lsf[n];
  1612. }
  1613. for (n = 0; n < 3; n++)
  1614. stabilize_lsps(lsps[n], s->lsps);
  1615. }
  1616. /* Parse frames, optionally preceeded by per-frame (independent) LSPs. */
  1617. for (n = 0; n < 3; n++) {
  1618. if (!s->has_residual_lsps) {
  1619. int m;
  1620. if (s->lsps == 10) {
  1621. dequant_lsp10i(gb, lsps[n]);
  1622. } else /* s->lsps == 16 */
  1623. dequant_lsp16i(gb, lsps[n]);
  1624. for (m = 0; m < s->lsps; m++)
  1625. lsps[n][m] += mean_lsf[m];
  1626. stabilize_lsps(lsps[n], s->lsps);
  1627. }
  1628. if ((res = synth_frame(ctx, gb, n,
  1629. &samples[n * MAX_FRAMESIZE],
  1630. lsps[n], n == 0 ? s->prev_lsps : lsps[n - 1],
  1631. &excitation[s->history_nsamples + n * MAX_FRAMESIZE],
  1632. &synth[s->lsps + n * MAX_FRAMESIZE])))
  1633. return res;
  1634. }
  1635. /* Statistics? FIXME - we don't check for length, a slight overrun
  1636. * will be caught by internal buffer padding, and anything else
  1637. * will be skipped, not read. */
  1638. if (get_bits1(gb)) {
  1639. res = get_bits(gb, 4);
  1640. skip_bits(gb, 10 * (res + 1));
  1641. }
  1642. /* Specify nr. of output samples */
  1643. *data_size = n_samples * sizeof(float);
  1644. /* Update history */
  1645. memcpy(s->prev_lsps, lsps[2],
  1646. s->lsps * sizeof(*s->prev_lsps));
  1647. memcpy(s->synth_history, &synth[MAX_SFRAMESIZE],
  1648. s->lsps * sizeof(*synth));
  1649. memcpy(s->excitation_history, &excitation[MAX_SFRAMESIZE],
  1650. s->history_nsamples * sizeof(*excitation));
  1651. if (s->do_apf)
  1652. memmove(s->zero_exc_pf, &s->zero_exc_pf[MAX_SFRAMESIZE],
  1653. s->history_nsamples * sizeof(*s->zero_exc_pf));
  1654. return 0;
  1655. }
  1656. /**
  1657. * Parse the packet header at the start of each packet (input data to this
  1658. * decoder).
  1659. *
  1660. * @param s WMA Voice decoding context private data
  1661. * @return 1 if not enough bits were available, or 0 on success.
  1662. */
  1663. static int parse_packet_header(WMAVoiceContext *s)
  1664. {
  1665. GetBitContext *gb = &s->gb;
  1666. unsigned int res;
  1667. if (get_bits_left(gb) < 11)
  1668. return 1;
  1669. skip_bits(gb, 4); // packet sequence number
  1670. s->has_residual_lsps = get_bits1(gb);
  1671. do {
  1672. res = get_bits(gb, 6); // number of superframes per packet
  1673. // (minus first one if there is spillover)
  1674. if (get_bits_left(gb) < 6 * (res == 0x3F) + s->spillover_bitsize)
  1675. return 1;
  1676. } while (res == 0x3F);
  1677. s->spillover_nbits = get_bits(gb, s->spillover_bitsize);
  1678. return 0;
  1679. }
  1680. /**
  1681. * Copy (unaligned) bits from gb/data/size to pb.
  1682. *
  1683. * @param pb target buffer to copy bits into
  1684. * @param data source buffer to copy bits from
  1685. * @param size size of the source data, in bytes
  1686. * @param gb bit I/O context specifying the current position in the source.
  1687. * data. This function might use this to align the bit position to
  1688. * a whole-byte boundary before calling #ff_copy_bits() on aligned
  1689. * source data
  1690. * @param nbits the amount of bits to copy from source to target
  1691. *
  1692. * @note after calling this function, the current position in the input bit
  1693. * I/O context is undefined.
  1694. */
  1695. static void copy_bits(PutBitContext *pb,
  1696. const uint8_t *data, int size,
  1697. GetBitContext *gb, int nbits)
  1698. {
  1699. int rmn_bytes, rmn_bits;
  1700. rmn_bits = rmn_bytes = get_bits_left(gb);
  1701. if (rmn_bits < nbits)
  1702. return;
  1703. rmn_bits &= 7; rmn_bytes >>= 3;
  1704. if ((rmn_bits = FFMIN(rmn_bits, nbits)) > 0)
  1705. put_bits(pb, rmn_bits, get_bits(gb, rmn_bits));
  1706. ff_copy_bits(pb, data + size - rmn_bytes,
  1707. FFMIN(nbits - rmn_bits, rmn_bytes << 3));
  1708. }
  1709. /**
  1710. * Packet decoding: a packet is anything that the (ASF) demuxer contains,
  1711. * and we expect that the demuxer / application provides it to us as such
  1712. * (else you'll probably get garbage as output). Every packet has a size of
  1713. * ctx->block_align bytes, starts with a packet header (see
  1714. * #parse_packet_header()), and then a series of superframes. Superframe
  1715. * boundaries may exceed packets, i.e. superframes can split data over
  1716. * multiple (two) packets.
  1717. *
  1718. * For more information about frames, see #synth_superframe().
  1719. */
  1720. static int wmavoice_decode_packet(AVCodecContext *ctx, void *data,
  1721. int *data_size, AVPacket *avpkt)
  1722. {
  1723. WMAVoiceContext *s = ctx->priv_data;
  1724. GetBitContext *gb = &s->gb;
  1725. int size, res, pos;
  1726. if (*data_size < 480 * sizeof(float)) {
  1727. av_log(ctx, AV_LOG_ERROR,
  1728. "Output buffer too small (%d given - %zu needed)\n",
  1729. *data_size, 480 * sizeof(float));
  1730. return -1;
  1731. }
  1732. *data_size = 0;
  1733. /* Packets are sometimes a multiple of ctx->block_align, with a packet
  1734. * header at each ctx->block_align bytes. However, Libav's ASF demuxer
  1735. * feeds us ASF packets, which may concatenate multiple "codec" packets
  1736. * in a single "muxer" packet, so we artificially emulate that by
  1737. * capping the packet size at ctx->block_align. */
  1738. for (size = avpkt->size; size > ctx->block_align; size -= ctx->block_align);
  1739. if (!size)
  1740. return 0;
  1741. init_get_bits(&s->gb, avpkt->data, size << 3);
  1742. /* size == ctx->block_align is used to indicate whether we are dealing with
  1743. * a new packet or a packet of which we already read the packet header
  1744. * previously. */
  1745. if (size == ctx->block_align) { // new packet header
  1746. if ((res = parse_packet_header(s)) < 0)
  1747. return res;
  1748. /* If the packet header specifies a s->spillover_nbits, then we want
  1749. * to push out all data of the previous packet (+ spillover) before
  1750. * continuing to parse new superframes in the current packet. */
  1751. if (s->spillover_nbits > 0) {
  1752. if (s->sframe_cache_size > 0) {
  1753. int cnt = get_bits_count(gb);
  1754. copy_bits(&s->pb, avpkt->data, size, gb, s->spillover_nbits);
  1755. flush_put_bits(&s->pb);
  1756. s->sframe_cache_size += s->spillover_nbits;
  1757. if ((res = synth_superframe(ctx, data, data_size)) == 0 &&
  1758. *data_size > 0) {
  1759. cnt += s->spillover_nbits;
  1760. s->skip_bits_next = cnt & 7;
  1761. return cnt >> 3;
  1762. } else
  1763. skip_bits_long (gb, s->spillover_nbits - cnt +
  1764. get_bits_count(gb)); // resync
  1765. } else
  1766. skip_bits_long(gb, s->spillover_nbits); // resync
  1767. }
  1768. } else if (s->skip_bits_next)
  1769. skip_bits(gb, s->skip_bits_next);
  1770. /* Try parsing superframes in current packet */
  1771. s->sframe_cache_size = 0;
  1772. s->skip_bits_next = 0;
  1773. pos = get_bits_left(gb);
  1774. if ((res = synth_superframe(ctx, data, data_size)) < 0) {
  1775. return res;
  1776. } else if (*data_size > 0) {
  1777. int cnt = get_bits_count(gb);
  1778. s->skip_bits_next = cnt & 7;
  1779. return cnt >> 3;
  1780. } else if ((s->sframe_cache_size = pos) > 0) {
  1781. /* rewind bit reader to start of last (incomplete) superframe... */
  1782. init_get_bits(gb, avpkt->data, size << 3);
  1783. skip_bits_long(gb, (size << 3) - pos);
  1784. assert(get_bits_left(gb) == pos);
  1785. /* ...and cache it for spillover in next packet */
  1786. init_put_bits(&s->pb, s->sframe_cache, SFRAME_CACHE_MAXSIZE);
  1787. copy_bits(&s->pb, avpkt->data, size, gb, s->sframe_cache_size);
  1788. // FIXME bad - just copy bytes as whole and add use the
  1789. // skip_bits_next field
  1790. }
  1791. return size;
  1792. }
  1793. static av_cold int wmavoice_decode_end(AVCodecContext *ctx)
  1794. {
  1795. WMAVoiceContext *s = ctx->priv_data;
  1796. if (s->do_apf) {
  1797. ff_rdft_end(&s->rdft);
  1798. ff_rdft_end(&s->irdft);
  1799. ff_dct_end(&s->dct);
  1800. ff_dct_end(&s->dst);
  1801. }
  1802. return 0;
  1803. }
  1804. static av_cold void wmavoice_flush(AVCodecContext *ctx)
  1805. {
  1806. WMAVoiceContext *s = ctx->priv_data;
  1807. int n;
  1808. s->postfilter_agc = 0;
  1809. s->sframe_cache_size = 0;
  1810. s->skip_bits_next = 0;
  1811. for (n = 0; n < s->lsps; n++)
  1812. s->prev_lsps[n] = M_PI * (n + 1.0) / (s->lsps + 1.0);
  1813. memset(s->excitation_history, 0,
  1814. sizeof(*s->excitation_history) * MAX_SIGNAL_HISTORY);
  1815. memset(s->synth_history, 0,
  1816. sizeof(*s->synth_history) * MAX_LSPS);
  1817. memset(s->gain_pred_err, 0,
  1818. sizeof(s->gain_pred_err));
  1819. if (s->do_apf) {
  1820. memset(&s->synth_filter_out_buf[MAX_LSPS_ALIGN16 - s->lsps], 0,
  1821. sizeof(*s->synth_filter_out_buf) * s->lsps);
  1822. memset(s->dcf_mem, 0,
  1823. sizeof(*s->dcf_mem) * 2);
  1824. memset(s->zero_exc_pf, 0,
  1825. sizeof(*s->zero_exc_pf) * s->history_nsamples);
  1826. memset(s->denoise_filter_cache, 0, sizeof(s->denoise_filter_cache));
  1827. }
  1828. }
  1829. AVCodec ff_wmavoice_decoder = {
  1830. .name = "wmavoice",
  1831. .type = AVMEDIA_TYPE_AUDIO,
  1832. .id = CODEC_ID_WMAVOICE,
  1833. .priv_data_size = sizeof(WMAVoiceContext),
  1834. .init = wmavoice_decode_init,
  1835. .close = wmavoice_decode_end,
  1836. .decode = wmavoice_decode_packet,
  1837. .capabilities = CODEC_CAP_SUBFRAMES,
  1838. .flush = wmavoice_flush,
  1839. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio Voice"),
  1840. };