| 
							- /*
 -  * audio resampling
 -  * Copyright (c) 2004-2012 Michael Niedermayer <michaelni@gmx.at>
 -  *
 -  * This file is part of FFmpeg.
 -  *
 -  * FFmpeg is free software; you can redistribute it and/or
 -  * modify it under the terms of the GNU Lesser General Public
 -  * License as published by the Free Software Foundation; either
 -  * version 2.1 of the License, or (at your option) any later version.
 -  *
 -  * FFmpeg is distributed in the hope that it will be useful,
 -  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 -  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 -  * Lesser General Public License for more details.
 -  *
 -  * You should have received a copy of the GNU Lesser General Public
 -  * License along with FFmpeg; if not, write to the Free Software
 -  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 -  */
 - 
 - /**
 -  * @file
 -  * audio resampling
 -  * @author Michael Niedermayer <michaelni@gmx.at>
 -  */
 - 
 - #include "libavutil/avassert.h"
 - #include "resample.h"
 - 
 - /**
 -  * 0th order modified bessel function of the first kind.
 -  */
 - static double bessel(double x){
 -     double v=1;
 -     double lastv=0;
 -     double t=1;
 -     int i;
 -     static const double inv[100]={
 -  1.0/( 1* 1), 1.0/( 2* 2), 1.0/( 3* 3), 1.0/( 4* 4), 1.0/( 5* 5), 1.0/( 6* 6), 1.0/( 7* 7), 1.0/( 8* 8), 1.0/( 9* 9), 1.0/(10*10),
 -  1.0/(11*11), 1.0/(12*12), 1.0/(13*13), 1.0/(14*14), 1.0/(15*15), 1.0/(16*16), 1.0/(17*17), 1.0/(18*18), 1.0/(19*19), 1.0/(20*20),
 -  1.0/(21*21), 1.0/(22*22), 1.0/(23*23), 1.0/(24*24), 1.0/(25*25), 1.0/(26*26), 1.0/(27*27), 1.0/(28*28), 1.0/(29*29), 1.0/(30*30),
 -  1.0/(31*31), 1.0/(32*32), 1.0/(33*33), 1.0/(34*34), 1.0/(35*35), 1.0/(36*36), 1.0/(37*37), 1.0/(38*38), 1.0/(39*39), 1.0/(40*40),
 -  1.0/(41*41), 1.0/(42*42), 1.0/(43*43), 1.0/(44*44), 1.0/(45*45), 1.0/(46*46), 1.0/(47*47), 1.0/(48*48), 1.0/(49*49), 1.0/(50*50),
 -  1.0/(51*51), 1.0/(52*52), 1.0/(53*53), 1.0/(54*54), 1.0/(55*55), 1.0/(56*56), 1.0/(57*57), 1.0/(58*58), 1.0/(59*59), 1.0/(60*60),
 -  1.0/(61*61), 1.0/(62*62), 1.0/(63*63), 1.0/(64*64), 1.0/(65*65), 1.0/(66*66), 1.0/(67*67), 1.0/(68*68), 1.0/(69*69), 1.0/(70*70),
 -  1.0/(71*71), 1.0/(72*72), 1.0/(73*73), 1.0/(74*74), 1.0/(75*75), 1.0/(76*76), 1.0/(77*77), 1.0/(78*78), 1.0/(79*79), 1.0/(80*80),
 -  1.0/(81*81), 1.0/(82*82), 1.0/(83*83), 1.0/(84*84), 1.0/(85*85), 1.0/(86*86), 1.0/(87*87), 1.0/(88*88), 1.0/(89*89), 1.0/(90*90),
 -  1.0/(91*91), 1.0/(92*92), 1.0/(93*93), 1.0/(94*94), 1.0/(95*95), 1.0/(96*96), 1.0/(97*97), 1.0/(98*98), 1.0/(99*99), 1.0/(10000)
 -     };
 - 
 -     x= x*x/4;
 -     for(i=0; v != lastv; i++){
 -         lastv=v;
 -         t *= x*inv[i];
 -         v += t;
 -         av_assert2(i<99);
 -     }
 -     return v;
 - }
 - 
 - /**
 -  * builds a polyphase filterbank.
 -  * @param factor resampling factor
 -  * @param scale wanted sum of coefficients for each filter
 -  * @param filter_type  filter type
 -  * @param kaiser_beta  kaiser window beta
 -  * @return 0 on success, negative on error
 -  */
 - static int build_filter(ResampleContext *c, void *filter, double factor, int tap_count, int alloc, int phase_count, int scale,
 -                         int filter_type, int kaiser_beta){
 -     int ph, i;
 -     double x, y, w;
 -     double *tab = av_malloc_array(tap_count,  sizeof(*tab));
 -     const int center= (tap_count-1)/2;
 - 
 -     if (!tab)
 -         return AVERROR(ENOMEM);
 - 
 -     /* if upsampling, only need to interpolate, no filter */
 -     if (factor > 1.0)
 -         factor = 1.0;
 - 
 -     for(ph=0;ph<phase_count;ph++) {
 -         double norm = 0;
 -         for(i=0;i<tap_count;i++) {
 -             x = M_PI * ((double)(i - center) - (double)ph / phase_count) * factor;
 -             if (x == 0) y = 1.0;
 -             else        y = sin(x) / x;
 -             switch(filter_type){
 -             case SWR_FILTER_TYPE_CUBIC:{
 -                 const float d= -0.5; //first order derivative = -0.5
 -                 x = fabs(((double)(i - center) - (double)ph / phase_count) * factor);
 -                 if(x<1.0) y= 1 - 3*x*x + 2*x*x*x + d*(            -x*x + x*x*x);
 -                 else      y=                       d*(-4 + 8*x - 5*x*x + x*x*x);
 -                 break;}
 -             case SWR_FILTER_TYPE_BLACKMAN_NUTTALL:
 -                 w = 2.0*x / (factor*tap_count) + M_PI;
 -                 y *= 0.3635819 - 0.4891775 * cos(w) + 0.1365995 * cos(2*w) - 0.0106411 * cos(3*w);
 -                 break;
 -             case SWR_FILTER_TYPE_KAISER:
 -                 w = 2.0*x / (factor*tap_count*M_PI);
 -                 y *= bessel(kaiser_beta*sqrt(FFMAX(1-w*w, 0)));
 -                 break;
 -             default:
 -                 av_assert0(0);
 -             }
 - 
 -             tab[i] = y;
 -             norm += y;
 -         }
 - 
 -         /* normalize so that an uniform color remains the same */
 -         switch(c->format){
 -         case AV_SAMPLE_FMT_S16P:
 -             for(i=0;i<tap_count;i++)
 -                 ((int16_t*)filter)[ph * alloc + i] = av_clip(lrintf(tab[i] * scale / norm), INT16_MIN, INT16_MAX);
 -             break;
 -         case AV_SAMPLE_FMT_S32P:
 -             for(i=0;i<tap_count;i++)
 -                 ((int32_t*)filter)[ph * alloc + i] = av_clipl_int32(llrint(tab[i] * scale / norm));
 -             break;
 -         case AV_SAMPLE_FMT_FLTP:
 -             for(i=0;i<tap_count;i++)
 -                 ((float*)filter)[ph * alloc + i] = tab[i] * scale / norm;
 -             break;
 -         case AV_SAMPLE_FMT_DBLP:
 -             for(i=0;i<tap_count;i++)
 -                 ((double*)filter)[ph * alloc + i] = tab[i] * scale / norm;
 -             break;
 -         }
 -     }
 - #if 0
 -     {
 - #define LEN 1024
 -         int j,k;
 -         double sine[LEN + tap_count];
 -         double filtered[LEN];
 -         double maxff=-2, minff=2, maxsf=-2, minsf=2;
 -         for(i=0; i<LEN; i++){
 -             double ss=0, sf=0, ff=0;
 -             for(j=0; j<LEN+tap_count; j++)
 -                 sine[j]= cos(i*j*M_PI/LEN);
 -             for(j=0; j<LEN; j++){
 -                 double sum=0;
 -                 ph=0;
 -                 for(k=0; k<tap_count; k++)
 -                     sum += filter[ph * tap_count + k] * sine[k+j];
 -                 filtered[j]= sum / (1<<FILTER_SHIFT);
 -                 ss+= sine[j + center] * sine[j + center];
 -                 ff+= filtered[j] * filtered[j];
 -                 sf+= sine[j + center] * filtered[j];
 -             }
 -             ss= sqrt(2*ss/LEN);
 -             ff= sqrt(2*ff/LEN);
 -             sf= 2*sf/LEN;
 -             maxff= FFMAX(maxff, ff);
 -             minff= FFMIN(minff, ff);
 -             maxsf= FFMAX(maxsf, sf);
 -             minsf= FFMIN(minsf, sf);
 -             if(i%11==0){
 -                 av_log(NULL, AV_LOG_ERROR, "i:%4d ss:%f ff:%13.6e-%13.6e sf:%13.6e-%13.6e\n", i, ss, maxff, minff, maxsf, minsf);
 -                 minff=minsf= 2;
 -                 maxff=maxsf= -2;
 -             }
 -         }
 -     }
 - #endif
 - 
 -     av_free(tab);
 -     return 0;
 - }
 - 
 - static ResampleContext *resample_init(ResampleContext *c, int out_rate, int in_rate, int filter_size, int phase_shift, int linear,
 -                                     double cutoff0, enum AVSampleFormat format, enum SwrFilterType filter_type, int kaiser_beta,
 -                                     double precision, int cheby)
 - {
 -     double cutoff = cutoff0? cutoff0 : 0.97;
 -     double factor= FFMIN(out_rate * cutoff / in_rate, 1.0);
 -     int phase_count= 1<<phase_shift;
 - 
 -     if (!c || c->phase_shift != phase_shift || c->linear!=linear || c->factor != factor
 -            || c->filter_length != FFMAX((int)ceil(filter_size/factor), 1) || c->format != format
 -            || c->filter_type != filter_type || c->kaiser_beta != kaiser_beta) {
 -         c = av_mallocz(sizeof(*c));
 -         if (!c)
 -             return NULL;
 - 
 -         c->format= format;
 - 
 -         c->felem_size= av_get_bytes_per_sample(c->format);
 - 
 -         switch(c->format){
 -         case AV_SAMPLE_FMT_S16P:
 -             c->filter_shift = 15;
 -             break;
 -         case AV_SAMPLE_FMT_S32P:
 -             c->filter_shift = 30;
 -             break;
 -         case AV_SAMPLE_FMT_FLTP:
 -         case AV_SAMPLE_FMT_DBLP:
 -             c->filter_shift = 0;
 -             break;
 -         default:
 -             av_log(NULL, AV_LOG_ERROR, "Unsupported sample format\n");
 -             av_assert0(0);
 -         }
 - 
 -         if (filter_size/factor > INT32_MAX/256) {
 -             av_log(NULL, AV_LOG_ERROR, "Filter length too large\n");
 -             goto error;
 -         }
 - 
 -         c->phase_shift   = phase_shift;
 -         c->phase_mask    = phase_count - 1;
 -         c->linear        = linear;
 -         c->factor        = factor;
 -         c->filter_length = FFMAX((int)ceil(filter_size/factor), 1);
 -         c->filter_alloc  = FFALIGN(c->filter_length, 8);
 -         c->filter_bank   = av_calloc(c->filter_alloc, (phase_count+1)*c->felem_size);
 -         c->filter_type   = filter_type;
 -         c->kaiser_beta   = kaiser_beta;
 -         if (!c->filter_bank)
 -             goto error;
 -         if (build_filter(c, (void*)c->filter_bank, factor, c->filter_length, c->filter_alloc, phase_count, 1<<c->filter_shift, filter_type, kaiser_beta))
 -             goto error;
 -         memcpy(c->filter_bank + (c->filter_alloc*phase_count+1)*c->felem_size, c->filter_bank, (c->filter_alloc-1)*c->felem_size);
 -         memcpy(c->filter_bank + (c->filter_alloc*phase_count  )*c->felem_size, c->filter_bank + (c->filter_alloc - 1)*c->felem_size, c->felem_size);
 -     }
 - 
 -     c->compensation_distance= 0;
 -     if(!av_reduce(&c->src_incr, &c->dst_incr, out_rate, in_rate * (int64_t)phase_count, INT32_MAX/2))
 -         goto error;
 -     c->ideal_dst_incr = c->dst_incr;
 -     c->dst_incr_div   = c->dst_incr / c->src_incr;
 -     c->dst_incr_mod   = c->dst_incr % c->src_incr;
 - 
 -     c->index= -phase_count*((c->filter_length-1)/2);
 -     c->frac= 0;
 - 
 -     swri_resample_dsp_init(c);
 - 
 -     return c;
 - error:
 -     av_freep(&c->filter_bank);
 -     av_free(c);
 -     return NULL;
 - }
 - 
 - static void resample_free(ResampleContext **c){
 -     if(!*c)
 -         return;
 -     av_freep(&(*c)->filter_bank);
 -     av_freep(c);
 - }
 - 
 - static int set_compensation(ResampleContext *c, int sample_delta, int compensation_distance){
 -     c->compensation_distance= compensation_distance;
 -     if (compensation_distance)
 -         c->dst_incr = c->ideal_dst_incr - c->ideal_dst_incr * (int64_t)sample_delta / compensation_distance;
 -     else
 -         c->dst_incr = c->ideal_dst_incr;
 - 
 -     c->dst_incr_div   = c->dst_incr / c->src_incr;
 -     c->dst_incr_mod   = c->dst_incr % c->src_incr;
 - 
 -     return 0;
 - }
 - 
 - static int swri_resample(ResampleContext *c,
 -                          uint8_t *dst, const uint8_t *src, int *consumed,
 -                          int src_size, int dst_size, int update_ctx)
 - {
 -     if (c->filter_length == 1 && c->phase_shift == 0) {
 -         int index= c->index;
 -         int frac= c->frac;
 -         int64_t index2= (1LL<<32)*c->frac/c->src_incr + (1LL<<32)*index;
 -         int64_t incr= (1LL<<32) * c->dst_incr / c->src_incr;
 -         int new_size = (src_size * (int64_t)c->src_incr - frac + c->dst_incr - 1) / c->dst_incr;
 - 
 -         dst_size= FFMIN(dst_size, new_size);
 -         c->dsp.resample_one(dst, src, dst_size, index2, incr);
 - 
 -         index += dst_size * c->dst_incr_div;
 -         index += (frac + dst_size * (int64_t)c->dst_incr_mod) / c->src_incr;
 -         av_assert2(index >= 0);
 -         *consumed= index;
 -         if (update_ctx) {
 -             c->frac   = (frac + dst_size * (int64_t)c->dst_incr_mod) % c->src_incr;
 -             c->index = 0;
 -         }
 -     } else {
 -         int64_t end_index = (1LL + src_size - c->filter_length) << c->phase_shift;
 -         int64_t delta_frac = (end_index - c->index) * c->src_incr - c->frac;
 -         int delta_n = (delta_frac + c->dst_incr - 1) / c->dst_incr;
 - 
 -         dst_size = FFMIN(dst_size, delta_n);
 -         if (dst_size > 0) {
 -             *consumed = c->dsp.resample(c, dst, src, dst_size, update_ctx);
 -         } else {
 -             *consumed = 0;
 -         }
 -     }
 - 
 -     return dst_size;
 - }
 - 
 - static int multiple_resample(ResampleContext *c, AudioData *dst, int dst_size, AudioData *src, int src_size, int *consumed){
 -     int i, ret= -1;
 -     int av_unused mm_flags = av_get_cpu_flags();
 -     int need_emms = c->format == AV_SAMPLE_FMT_S16P && ARCH_X86_32 &&
 -                     (mm_flags & (AV_CPU_FLAG_MMX2 | AV_CPU_FLAG_SSE2)) == AV_CPU_FLAG_MMX2;
 -     int64_t max_src_size = (INT64_MAX >> (c->phase_shift+1)) / c->src_incr;
 - 
 -     if (c->compensation_distance)
 -         dst_size = FFMIN(dst_size, c->compensation_distance);
 -     src_size = FFMIN(src_size, max_src_size);
 - 
 -     for(i=0; i<dst->ch_count; i++){
 -         ret= swri_resample(c, dst->ch[i], src->ch[i],
 -                            consumed, src_size, dst_size, i+1==dst->ch_count);
 -     }
 -     if(need_emms)
 -         emms_c();
 - 
 -     if (c->compensation_distance) {
 -         c->compensation_distance -= ret;
 -         if (!c->compensation_distance) {
 -             c->dst_incr     = c->ideal_dst_incr;
 -             c->dst_incr_div = c->dst_incr / c->src_incr;
 -             c->dst_incr_mod = c->dst_incr % c->src_incr;
 -         }
 -     }
 - 
 -     return ret;
 - }
 - 
 - static int64_t get_delay(struct SwrContext *s, int64_t base){
 -     ResampleContext *c = s->resample;
 -     int64_t num = s->in_buffer_count - (c->filter_length-1)/2;
 -     num <<= c->phase_shift;
 -     num -= c->index;
 -     num *= c->src_incr;
 -     num -= c->frac;
 -     return av_rescale(num, base, s->in_sample_rate*(int64_t)c->src_incr << c->phase_shift);
 - }
 - 
 - static int resample_flush(struct SwrContext *s) {
 -     AudioData *a= &s->in_buffer;
 -     int i, j, ret;
 -     if((ret = swri_realloc_audio(a, s->in_buffer_index + 2*s->in_buffer_count)) < 0)
 -         return ret;
 -     av_assert0(a->planar);
 -     for(i=0; i<a->ch_count; i++){
 -         for(j=0; j<s->in_buffer_count; j++){
 -             memcpy(a->ch[i] + (s->in_buffer_index+s->in_buffer_count+j  )*a->bps,
 -                 a->ch[i] + (s->in_buffer_index+s->in_buffer_count-j-1)*a->bps, a->bps);
 -         }
 -     }
 -     s->in_buffer_count += (s->in_buffer_count+1)/2;
 -     return 0;
 - }
 - 
 - // in fact the whole handle multiple ridiculously small buffers might need more thinking...
 - static int invert_initial_buffer(ResampleContext *c, AudioData *dst, const AudioData *src,
 -                                  int in_count, int *out_idx, int *out_sz)
 - {
 -     int n, ch, num = FFMIN(in_count + *out_sz, c->filter_length + 1), res;
 - 
 -     if (c->index >= 0)
 -         return 0;
 - 
 -     if ((res = swri_realloc_audio(dst, c->filter_length * 2 + 1)) < 0)
 -         return res;
 - 
 -     // copy
 -     for (n = *out_sz; n < num; n++) {
 -         for (ch = 0; ch < src->ch_count; ch++) {
 -             memcpy(dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
 -                    src->ch[ch] + ((n - *out_sz) * c->felem_size), c->felem_size);
 -         }
 -     }
 - 
 -     // if not enough data is in, return and wait for more
 -     if (num < c->filter_length + 1) {
 -         *out_sz = num;
 -         *out_idx = c->filter_length;
 -         return INT_MAX;
 -     }
 - 
 -     // else invert
 -     for (n = 1; n <= c->filter_length; n++) {
 -         for (ch = 0; ch < src->ch_count; ch++) {
 -             memcpy(dst->ch[ch] + ((c->filter_length - n) * c->felem_size),
 -                    dst->ch[ch] + ((c->filter_length + n) * c->felem_size),
 -                    c->felem_size);
 -         }
 -     }
 - 
 -     res = num - *out_sz;
 -     *out_idx = c->filter_length + (c->index >> c->phase_shift);
 -     *out_sz = 1 + c->filter_length * 2 - *out_idx;
 -     c->index &= c->phase_mask;
 -     av_assert1(res > 0);
 - 
 -     return res;
 - }
 - 
 - struct Resampler const swri_resampler={
 -   resample_init,
 -   resample_free,
 -   multiple_resample,
 -   resample_flush,
 -   set_compensation,
 -   get_delay,
 -   invert_initial_buffer,
 - };
 
 
  |