You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1042 lines
37KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... cavlc bitstream decoding
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/h264_cavlc.c
  23. * H.264 / AVC / MPEG4 part10 cavlc bitstream decoding.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "internal.h"
  27. #include "avcodec.h"
  28. #include "mpegvideo.h"
  29. #include "h264.h"
  30. #include "h264data.h" // FIXME FIXME FIXME
  31. #include "h264_mvpred.h"
  32. #include "golomb.h"
  33. #if ARCH_X86
  34. #include "x86/h264_i386.h"
  35. #endif
  36. //#undef NDEBUG
  37. #include <assert.h>
  38. static const uint8_t golomb_to_inter_cbp_gray[16]={
  39. 0, 1, 2, 4, 8, 3, 5,10,12,15, 7,11,13,14, 6, 9,
  40. };
  41. static const uint8_t golomb_to_intra4x4_cbp_gray[16]={
  42. 15, 0, 7,11,13,14, 3, 5,10,12, 1, 2, 4, 8, 6, 9,
  43. };
  44. static const uint8_t chroma_dc_coeff_token_len[4*5]={
  45. 2, 0, 0, 0,
  46. 6, 1, 0, 0,
  47. 6, 6, 3, 0,
  48. 6, 7, 7, 6,
  49. 6, 8, 8, 7,
  50. };
  51. static const uint8_t chroma_dc_coeff_token_bits[4*5]={
  52. 1, 0, 0, 0,
  53. 7, 1, 0, 0,
  54. 4, 6, 1, 0,
  55. 3, 3, 2, 5,
  56. 2, 3, 2, 0,
  57. };
  58. static const uint8_t coeff_token_len[4][4*17]={
  59. {
  60. 1, 0, 0, 0,
  61. 6, 2, 0, 0, 8, 6, 3, 0, 9, 8, 7, 5, 10, 9, 8, 6,
  62. 11,10, 9, 7, 13,11,10, 8, 13,13,11, 9, 13,13,13,10,
  63. 14,14,13,11, 14,14,14,13, 15,15,14,14, 15,15,15,14,
  64. 16,15,15,15, 16,16,16,15, 16,16,16,16, 16,16,16,16,
  65. },
  66. {
  67. 2, 0, 0, 0,
  68. 6, 2, 0, 0, 6, 5, 3, 0, 7, 6, 6, 4, 8, 6, 6, 4,
  69. 8, 7, 7, 5, 9, 8, 8, 6, 11, 9, 9, 6, 11,11,11, 7,
  70. 12,11,11, 9, 12,12,12,11, 12,12,12,11, 13,13,13,12,
  71. 13,13,13,13, 13,14,13,13, 14,14,14,13, 14,14,14,14,
  72. },
  73. {
  74. 4, 0, 0, 0,
  75. 6, 4, 0, 0, 6, 5, 4, 0, 6, 5, 5, 4, 7, 5, 5, 4,
  76. 7, 5, 5, 4, 7, 6, 6, 4, 7, 6, 6, 4, 8, 7, 7, 5,
  77. 8, 8, 7, 6, 9, 8, 8, 7, 9, 9, 8, 8, 9, 9, 9, 8,
  78. 10, 9, 9, 9, 10,10,10,10, 10,10,10,10, 10,10,10,10,
  79. },
  80. {
  81. 6, 0, 0, 0,
  82. 6, 6, 0, 0, 6, 6, 6, 0, 6, 6, 6, 6, 6, 6, 6, 6,
  83. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  84. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  85. 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
  86. }
  87. };
  88. static const uint8_t coeff_token_bits[4][4*17]={
  89. {
  90. 1, 0, 0, 0,
  91. 5, 1, 0, 0, 7, 4, 1, 0, 7, 6, 5, 3, 7, 6, 5, 3,
  92. 7, 6, 5, 4, 15, 6, 5, 4, 11,14, 5, 4, 8,10,13, 4,
  93. 15,14, 9, 4, 11,10,13,12, 15,14, 9,12, 11,10,13, 8,
  94. 15, 1, 9,12, 11,14,13, 8, 7,10, 9,12, 4, 6, 5, 8,
  95. },
  96. {
  97. 3, 0, 0, 0,
  98. 11, 2, 0, 0, 7, 7, 3, 0, 7,10, 9, 5, 7, 6, 5, 4,
  99. 4, 6, 5, 6, 7, 6, 5, 8, 15, 6, 5, 4, 11,14,13, 4,
  100. 15,10, 9, 4, 11,14,13,12, 8,10, 9, 8, 15,14,13,12,
  101. 11,10, 9,12, 7,11, 6, 8, 9, 8,10, 1, 7, 6, 5, 4,
  102. },
  103. {
  104. 15, 0, 0, 0,
  105. 15,14, 0, 0, 11,15,13, 0, 8,12,14,12, 15,10,11,11,
  106. 11, 8, 9,10, 9,14,13, 9, 8,10, 9, 8, 15,14,13,13,
  107. 11,14,10,12, 15,10,13,12, 11,14, 9,12, 8,10,13, 8,
  108. 13, 7, 9,12, 9,12,11,10, 5, 8, 7, 6, 1, 4, 3, 2,
  109. },
  110. {
  111. 3, 0, 0, 0,
  112. 0, 1, 0, 0, 4, 5, 6, 0, 8, 9,10,11, 12,13,14,15,
  113. 16,17,18,19, 20,21,22,23, 24,25,26,27, 28,29,30,31,
  114. 32,33,34,35, 36,37,38,39, 40,41,42,43, 44,45,46,47,
  115. 48,49,50,51, 52,53,54,55, 56,57,58,59, 60,61,62,63,
  116. }
  117. };
  118. static const uint8_t total_zeros_len[16][16]= {
  119. {1,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9},
  120. {3,3,3,3,3,4,4,4,4,5,5,6,6,6,6},
  121. {4,3,3,3,4,4,3,3,4,5,5,6,5,6},
  122. {5,3,4,4,3,3,3,4,3,4,5,5,5},
  123. {4,4,4,3,3,3,3,3,4,5,4,5},
  124. {6,5,3,3,3,3,3,3,4,3,6},
  125. {6,5,3,3,3,2,3,4,3,6},
  126. {6,4,5,3,2,2,3,3,6},
  127. {6,6,4,2,2,3,2,5},
  128. {5,5,3,2,2,2,4},
  129. {4,4,3,3,1,3},
  130. {4,4,2,1,3},
  131. {3,3,1,2},
  132. {2,2,1},
  133. {1,1},
  134. };
  135. static const uint8_t total_zeros_bits[16][16]= {
  136. {1,3,2,3,2,3,2,3,2,3,2,3,2,3,2,1},
  137. {7,6,5,4,3,5,4,3,2,3,2,3,2,1,0},
  138. {5,7,6,5,4,3,4,3,2,3,2,1,1,0},
  139. {3,7,5,4,6,5,4,3,3,2,2,1,0},
  140. {5,4,3,7,6,5,4,3,2,1,1,0},
  141. {1,1,7,6,5,4,3,2,1,1,0},
  142. {1,1,5,4,3,3,2,1,1,0},
  143. {1,1,1,3,3,2,2,1,0},
  144. {1,0,1,3,2,1,1,1},
  145. {1,0,1,3,2,1,1},
  146. {0,1,1,2,1,3},
  147. {0,1,1,1,1},
  148. {0,1,1,1},
  149. {0,1,1},
  150. {0,1},
  151. };
  152. static const uint8_t chroma_dc_total_zeros_len[3][4]= {
  153. { 1, 2, 3, 3,},
  154. { 1, 2, 2, 0,},
  155. { 1, 1, 0, 0,},
  156. };
  157. static const uint8_t chroma_dc_total_zeros_bits[3][4]= {
  158. { 1, 1, 1, 0,},
  159. { 1, 1, 0, 0,},
  160. { 1, 0, 0, 0,},
  161. };
  162. static const uint8_t run_len[7][16]={
  163. {1,1},
  164. {1,2,2},
  165. {2,2,2,2},
  166. {2,2,2,3,3},
  167. {2,2,3,3,3,3},
  168. {2,3,3,3,3,3,3},
  169. {3,3,3,3,3,3,3,4,5,6,7,8,9,10,11},
  170. };
  171. static const uint8_t run_bits[7][16]={
  172. {1,0},
  173. {1,1,0},
  174. {3,2,1,0},
  175. {3,2,1,1,0},
  176. {3,2,3,2,1,0},
  177. {3,0,1,3,2,5,4},
  178. {7,6,5,4,3,2,1,1,1,1,1,1,1,1,1},
  179. };
  180. static VLC coeff_token_vlc[4];
  181. static VLC_TYPE coeff_token_vlc_tables[520+332+280+256][2];
  182. static const int coeff_token_vlc_tables_size[4]={520,332,280,256};
  183. static VLC chroma_dc_coeff_token_vlc;
  184. static VLC_TYPE chroma_dc_coeff_token_vlc_table[256][2];
  185. static const int chroma_dc_coeff_token_vlc_table_size = 256;
  186. static VLC total_zeros_vlc[15];
  187. static VLC_TYPE total_zeros_vlc_tables[15][512][2];
  188. static const int total_zeros_vlc_tables_size = 512;
  189. static VLC chroma_dc_total_zeros_vlc[3];
  190. static VLC_TYPE chroma_dc_total_zeros_vlc_tables[3][8][2];
  191. static const int chroma_dc_total_zeros_vlc_tables_size = 8;
  192. static VLC run_vlc[6];
  193. static VLC_TYPE run_vlc_tables[6][8][2];
  194. static const int run_vlc_tables_size = 8;
  195. static VLC run7_vlc;
  196. static VLC_TYPE run7_vlc_table[96][2];
  197. static const int run7_vlc_table_size = 96;
  198. #define LEVEL_TAB_BITS 8
  199. static int8_t cavlc_level_tab[7][1<<LEVEL_TAB_BITS][2];
  200. /**
  201. * gets the predicted number of non-zero coefficients.
  202. * @param n block index
  203. */
  204. static inline int pred_non_zero_count(H264Context *h, int n){
  205. const int index8= scan8[n];
  206. const int left= h->non_zero_count_cache[index8 - 1];
  207. const int top = h->non_zero_count_cache[index8 - 8];
  208. int i= left + top;
  209. if(i<64) i= (i+1)>>1;
  210. tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
  211. return i&31;
  212. }
  213. static av_cold void init_cavlc_level_tab(void){
  214. int suffix_length, mask;
  215. unsigned int i;
  216. for(suffix_length=0; suffix_length<7; suffix_length++){
  217. for(i=0; i<(1<<LEVEL_TAB_BITS); i++){
  218. int prefix= LEVEL_TAB_BITS - av_log2(2*i);
  219. int level_code= (prefix<<suffix_length) + (i>>(LEVEL_TAB_BITS-prefix-1-suffix_length)) - (1<<suffix_length);
  220. mask= -(level_code&1);
  221. level_code= (((2+level_code)>>1) ^ mask) - mask;
  222. if(prefix + 1 + suffix_length <= LEVEL_TAB_BITS){
  223. cavlc_level_tab[suffix_length][i][0]= level_code;
  224. cavlc_level_tab[suffix_length][i][1]= prefix + 1 + suffix_length;
  225. }else if(prefix + 1 <= LEVEL_TAB_BITS){
  226. cavlc_level_tab[suffix_length][i][0]= prefix+100;
  227. cavlc_level_tab[suffix_length][i][1]= prefix + 1;
  228. }else{
  229. cavlc_level_tab[suffix_length][i][0]= LEVEL_TAB_BITS+100;
  230. cavlc_level_tab[suffix_length][i][1]= LEVEL_TAB_BITS;
  231. }
  232. }
  233. }
  234. }
  235. av_cold void ff_h264_decode_init_vlc(void){
  236. static int done = 0;
  237. if (!done) {
  238. int i;
  239. int offset;
  240. done = 1;
  241. chroma_dc_coeff_token_vlc.table = chroma_dc_coeff_token_vlc_table;
  242. chroma_dc_coeff_token_vlc.table_allocated = chroma_dc_coeff_token_vlc_table_size;
  243. init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
  244. &chroma_dc_coeff_token_len [0], 1, 1,
  245. &chroma_dc_coeff_token_bits[0], 1, 1,
  246. INIT_VLC_USE_NEW_STATIC);
  247. offset = 0;
  248. for(i=0; i<4; i++){
  249. coeff_token_vlc[i].table = coeff_token_vlc_tables+offset;
  250. coeff_token_vlc[i].table_allocated = coeff_token_vlc_tables_size[i];
  251. init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
  252. &coeff_token_len [i][0], 1, 1,
  253. &coeff_token_bits[i][0], 1, 1,
  254. INIT_VLC_USE_NEW_STATIC);
  255. offset += coeff_token_vlc_tables_size[i];
  256. }
  257. /*
  258. * This is a one time safety check to make sure that
  259. * the packed static coeff_token_vlc table sizes
  260. * were initialized correctly.
  261. */
  262. assert(offset == FF_ARRAY_ELEMS(coeff_token_vlc_tables));
  263. for(i=0; i<3; i++){
  264. chroma_dc_total_zeros_vlc[i].table = chroma_dc_total_zeros_vlc_tables[i];
  265. chroma_dc_total_zeros_vlc[i].table_allocated = chroma_dc_total_zeros_vlc_tables_size;
  266. init_vlc(&chroma_dc_total_zeros_vlc[i],
  267. CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
  268. &chroma_dc_total_zeros_len [i][0], 1, 1,
  269. &chroma_dc_total_zeros_bits[i][0], 1, 1,
  270. INIT_VLC_USE_NEW_STATIC);
  271. }
  272. for(i=0; i<15; i++){
  273. total_zeros_vlc[i].table = total_zeros_vlc_tables[i];
  274. total_zeros_vlc[i].table_allocated = total_zeros_vlc_tables_size;
  275. init_vlc(&total_zeros_vlc[i],
  276. TOTAL_ZEROS_VLC_BITS, 16,
  277. &total_zeros_len [i][0], 1, 1,
  278. &total_zeros_bits[i][0], 1, 1,
  279. INIT_VLC_USE_NEW_STATIC);
  280. }
  281. for(i=0; i<6; i++){
  282. run_vlc[i].table = run_vlc_tables[i];
  283. run_vlc[i].table_allocated = run_vlc_tables_size;
  284. init_vlc(&run_vlc[i],
  285. RUN_VLC_BITS, 7,
  286. &run_len [i][0], 1, 1,
  287. &run_bits[i][0], 1, 1,
  288. INIT_VLC_USE_NEW_STATIC);
  289. }
  290. run7_vlc.table = run7_vlc_table,
  291. run7_vlc.table_allocated = run7_vlc_table_size;
  292. init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
  293. &run_len [6][0], 1, 1,
  294. &run_bits[6][0], 1, 1,
  295. INIT_VLC_USE_NEW_STATIC);
  296. init_cavlc_level_tab();
  297. }
  298. }
  299. /**
  300. *
  301. */
  302. static inline int get_level_prefix(GetBitContext *gb){
  303. unsigned int buf;
  304. int log;
  305. OPEN_READER(re, gb);
  306. UPDATE_CACHE(re, gb);
  307. buf=GET_CACHE(re, gb);
  308. log= 32 - av_log2(buf);
  309. #ifdef TRACE
  310. print_bin(buf>>(32-log), log);
  311. av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
  312. #endif
  313. LAST_SKIP_BITS(re, gb, log);
  314. CLOSE_READER(re, gb);
  315. return log-1;
  316. }
  317. /**
  318. * decodes a residual block.
  319. * @param n block index
  320. * @param scantable scantable
  321. * @param max_coeff number of coefficients in the block
  322. * @return <0 if an error occurred
  323. */
  324. static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff){
  325. MpegEncContext * const s = &h->s;
  326. static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
  327. int level[16];
  328. int zeros_left, coeff_num, coeff_token, total_coeff, i, j, trailing_ones, run_before;
  329. //FIXME put trailing_onex into the context
  330. if(n == CHROMA_DC_BLOCK_INDEX){
  331. coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
  332. total_coeff= coeff_token>>2;
  333. }else{
  334. if(n == LUMA_DC_BLOCK_INDEX){
  335. total_coeff= pred_non_zero_count(h, 0);
  336. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  337. total_coeff= coeff_token>>2;
  338. }else{
  339. total_coeff= pred_non_zero_count(h, n);
  340. coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
  341. total_coeff= coeff_token>>2;
  342. h->non_zero_count_cache[ scan8[n] ]= total_coeff;
  343. }
  344. }
  345. //FIXME set last_non_zero?
  346. if(total_coeff==0)
  347. return 0;
  348. if(total_coeff > (unsigned)max_coeff) {
  349. av_log(h->s.avctx, AV_LOG_ERROR, "corrupted macroblock %d %d (total_coeff=%d)\n", s->mb_x, s->mb_y, total_coeff);
  350. return -1;
  351. }
  352. trailing_ones= coeff_token&3;
  353. tprintf(h->s.avctx, "trailing:%d, total:%d\n", trailing_ones, total_coeff);
  354. assert(total_coeff<=16);
  355. i = show_bits(gb, 3);
  356. skip_bits(gb, trailing_ones);
  357. level[0] = 1-((i&4)>>1);
  358. level[1] = 1-((i&2) );
  359. level[2] = 1-((i&1)<<1);
  360. if(trailing_ones<total_coeff) {
  361. int mask, prefix;
  362. int suffix_length = total_coeff > 10 && trailing_ones < 3;
  363. int bitsi= show_bits(gb, LEVEL_TAB_BITS);
  364. int level_code= cavlc_level_tab[suffix_length][bitsi][0];
  365. skip_bits(gb, cavlc_level_tab[suffix_length][bitsi][1]);
  366. if(level_code >= 100){
  367. prefix= level_code - 100;
  368. if(prefix == LEVEL_TAB_BITS)
  369. prefix += get_level_prefix(gb);
  370. //first coefficient has suffix_length equal to 0 or 1
  371. if(prefix<14){ //FIXME try to build a large unified VLC table for all this
  372. if(suffix_length)
  373. level_code= (prefix<<1) + get_bits1(gb); //part
  374. else
  375. level_code= prefix; //part
  376. }else if(prefix==14){
  377. if(suffix_length)
  378. level_code= (prefix<<1) + get_bits1(gb); //part
  379. else
  380. level_code= prefix + get_bits(gb, 4); //part
  381. }else{
  382. level_code= 30 + get_bits(gb, prefix-3); //part
  383. if(prefix>=16)
  384. level_code += (1<<(prefix-3))-4096;
  385. }
  386. if(trailing_ones < 3) level_code += 2;
  387. suffix_length = 2;
  388. mask= -(level_code&1);
  389. level[trailing_ones]= (((2+level_code)>>1) ^ mask) - mask;
  390. }else{
  391. if(trailing_ones < 3) level_code += (level_code>>31)|1;
  392. suffix_length = 1;
  393. if(level_code + 3U > 6U)
  394. suffix_length++;
  395. level[trailing_ones]= level_code;
  396. }
  397. //remaining coefficients have suffix_length > 0
  398. for(i=trailing_ones+1;i<total_coeff;i++) {
  399. static const unsigned int suffix_limit[7] = {0,3,6,12,24,48,INT_MAX };
  400. int bitsi= show_bits(gb, LEVEL_TAB_BITS);
  401. level_code= cavlc_level_tab[suffix_length][bitsi][0];
  402. skip_bits(gb, cavlc_level_tab[suffix_length][bitsi][1]);
  403. if(level_code >= 100){
  404. prefix= level_code - 100;
  405. if(prefix == LEVEL_TAB_BITS){
  406. prefix += get_level_prefix(gb);
  407. }
  408. if(prefix<15){
  409. level_code = (prefix<<suffix_length) + get_bits(gb, suffix_length);
  410. }else{
  411. level_code = (15<<suffix_length) + get_bits(gb, prefix-3);
  412. if(prefix>=16)
  413. level_code += (1<<(prefix-3))-4096;
  414. }
  415. mask= -(level_code&1);
  416. level_code= (((2+level_code)>>1) ^ mask) - mask;
  417. }
  418. level[i]= level_code;
  419. if(suffix_limit[suffix_length] + level_code > 2U*suffix_limit[suffix_length])
  420. suffix_length++;
  421. }
  422. }
  423. if(total_coeff == max_coeff)
  424. zeros_left=0;
  425. else{
  426. if(n == CHROMA_DC_BLOCK_INDEX)
  427. zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
  428. else
  429. zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
  430. }
  431. coeff_num = zeros_left + total_coeff - 1;
  432. j = scantable[coeff_num];
  433. if(n > 24){
  434. block[j] = level[0];
  435. for(i=1;i<total_coeff;i++) {
  436. if(zeros_left <= 0)
  437. run_before = 0;
  438. else if(zeros_left < 7){
  439. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  440. }else{
  441. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  442. }
  443. zeros_left -= run_before;
  444. coeff_num -= 1 + run_before;
  445. j= scantable[ coeff_num ];
  446. block[j]= level[i];
  447. }
  448. }else{
  449. block[j] = (level[0] * qmul[j] + 32)>>6;
  450. for(i=1;i<total_coeff;i++) {
  451. if(zeros_left <= 0)
  452. run_before = 0;
  453. else if(zeros_left < 7){
  454. run_before= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
  455. }else{
  456. run_before= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
  457. }
  458. zeros_left -= run_before;
  459. coeff_num -= 1 + run_before;
  460. j= scantable[ coeff_num ];
  461. block[j]= (level[i] * qmul[j] + 32)>>6;
  462. }
  463. }
  464. if(zeros_left<0){
  465. av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
  466. return -1;
  467. }
  468. return 0;
  469. }
  470. int ff_h264_decode_mb_cavlc(H264Context *h){
  471. MpegEncContext * const s = &h->s;
  472. int mb_xy;
  473. int partition_count;
  474. unsigned int mb_type, cbp;
  475. int dct8x8_allowed= h->pps.transform_8x8_mode;
  476. mb_xy = h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  477. tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  478. cbp = 0; /* avoid warning. FIXME: find a solution without slowing
  479. down the code */
  480. if(h->slice_type_nos != FF_I_TYPE){
  481. if(s->mb_skip_run==-1)
  482. s->mb_skip_run= get_ue_golomb(&s->gb);
  483. if (s->mb_skip_run--) {
  484. if(FRAME_MBAFF && (s->mb_y&1) == 0){
  485. if(s->mb_skip_run==0)
  486. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  487. else
  488. predict_field_decoding_flag(h);
  489. }
  490. decode_mb_skip(h);
  491. return 0;
  492. }
  493. }
  494. if(FRAME_MBAFF){
  495. if( (s->mb_y&1) == 0 )
  496. h->mb_mbaff = h->mb_field_decoding_flag = get_bits1(&s->gb);
  497. }
  498. h->prev_mb_skipped= 0;
  499. mb_type= get_ue_golomb(&s->gb);
  500. if(h->slice_type_nos == FF_B_TYPE){
  501. if(mb_type < 23){
  502. partition_count= b_mb_type_info[mb_type].partition_count;
  503. mb_type= b_mb_type_info[mb_type].type;
  504. }else{
  505. mb_type -= 23;
  506. goto decode_intra_mb;
  507. }
  508. }else if(h->slice_type_nos == FF_P_TYPE){
  509. if(mb_type < 5){
  510. partition_count= p_mb_type_info[mb_type].partition_count;
  511. mb_type= p_mb_type_info[mb_type].type;
  512. }else{
  513. mb_type -= 5;
  514. goto decode_intra_mb;
  515. }
  516. }else{
  517. assert(h->slice_type_nos == FF_I_TYPE);
  518. if(h->slice_type == FF_SI_TYPE && mb_type)
  519. mb_type--;
  520. decode_intra_mb:
  521. if(mb_type > 25){
  522. av_log(h->s.avctx, AV_LOG_ERROR, "mb_type %d in %c slice too large at %d %d\n", mb_type, av_get_pict_type_char(h->slice_type), s->mb_x, s->mb_y);
  523. return -1;
  524. }
  525. partition_count=0;
  526. cbp= i_mb_type_info[mb_type].cbp;
  527. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  528. mb_type= i_mb_type_info[mb_type].type;
  529. }
  530. if(MB_FIELD)
  531. mb_type |= MB_TYPE_INTERLACED;
  532. h->slice_table[ mb_xy ]= h->slice_num;
  533. if(IS_INTRA_PCM(mb_type)){
  534. unsigned int x;
  535. // We assume these blocks are very rare so we do not optimize it.
  536. align_get_bits(&s->gb);
  537. // The pixels are stored in the same order as levels in h->mb array.
  538. for(x=0; x < (CHROMA ? 384 : 256); x++){
  539. ((uint8_t*)h->mb)[x]= get_bits(&s->gb, 8);
  540. }
  541. // In deblocking, the quantizer is 0
  542. s->current_picture.qscale_table[mb_xy]= 0;
  543. // All coeffs are present
  544. memset(h->non_zero_count[mb_xy], 16, 16);
  545. s->current_picture.mb_type[mb_xy]= mb_type;
  546. return 0;
  547. }
  548. if(MB_MBAFF){
  549. h->ref_count[0] <<= 1;
  550. h->ref_count[1] <<= 1;
  551. }
  552. fill_caches(h, mb_type, 0);
  553. //mb_pred
  554. if(IS_INTRA(mb_type)){
  555. int pred_mode;
  556. // init_top_left_availability(h);
  557. if(IS_INTRA4x4(mb_type)){
  558. int i;
  559. int di = 1;
  560. if(dct8x8_allowed && get_bits1(&s->gb)){
  561. mb_type |= MB_TYPE_8x8DCT;
  562. di = 4;
  563. }
  564. // fill_intra4x4_pred_table(h);
  565. for(i=0; i<16; i+=di){
  566. int mode= pred_intra_mode(h, i);
  567. if(!get_bits1(&s->gb)){
  568. const int rem_mode= get_bits(&s->gb, 3);
  569. mode = rem_mode + (rem_mode >= mode);
  570. }
  571. if(di==4)
  572. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  573. else
  574. h->intra4x4_pred_mode_cache[ scan8[i] ] = mode;
  575. }
  576. ff_h264_write_back_intra_pred_mode(h);
  577. if( ff_h264_check_intra4x4_pred_mode(h) < 0)
  578. return -1;
  579. }else{
  580. h->intra16x16_pred_mode= ff_h264_check_intra_pred_mode(h, h->intra16x16_pred_mode);
  581. if(h->intra16x16_pred_mode < 0)
  582. return -1;
  583. }
  584. if(CHROMA){
  585. pred_mode= ff_h264_check_intra_pred_mode(h, get_ue_golomb_31(&s->gb));
  586. if(pred_mode < 0)
  587. return -1;
  588. h->chroma_pred_mode= pred_mode;
  589. }
  590. }else if(partition_count==4){
  591. int i, j, sub_partition_count[4], list, ref[2][4];
  592. if(h->slice_type_nos == FF_B_TYPE){
  593. for(i=0; i<4; i++){
  594. h->sub_mb_type[i]= get_ue_golomb_31(&s->gb);
  595. if(h->sub_mb_type[i] >=13){
  596. av_log(h->s.avctx, AV_LOG_ERROR, "B sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  597. return -1;
  598. }
  599. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  600. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  601. }
  602. if( IS_DIRECT(h->sub_mb_type[0]) || IS_DIRECT(h->sub_mb_type[1])
  603. || IS_DIRECT(h->sub_mb_type[2]) || IS_DIRECT(h->sub_mb_type[3])) {
  604. ff_h264_pred_direct_motion(h, &mb_type);
  605. h->ref_cache[0][scan8[4]] =
  606. h->ref_cache[1][scan8[4]] =
  607. h->ref_cache[0][scan8[12]] =
  608. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  609. }
  610. }else{
  611. assert(h->slice_type_nos == FF_P_TYPE); //FIXME SP correct ?
  612. for(i=0; i<4; i++){
  613. h->sub_mb_type[i]= get_ue_golomb_31(&s->gb);
  614. if(h->sub_mb_type[i] >=4){
  615. av_log(h->s.avctx, AV_LOG_ERROR, "P sub_mb_type %u out of range at %d %d\n", h->sub_mb_type[i], s->mb_x, s->mb_y);
  616. return -1;
  617. }
  618. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  619. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  620. }
  621. }
  622. for(list=0; list<h->list_count; list++){
  623. int ref_count= IS_REF0(mb_type) ? 1 : h->ref_count[list];
  624. for(i=0; i<4; i++){
  625. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  626. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  627. unsigned int tmp;
  628. if(ref_count == 1){
  629. tmp= 0;
  630. }else if(ref_count == 2){
  631. tmp= get_bits1(&s->gb)^1;
  632. }else{
  633. tmp= get_ue_golomb_31(&s->gb);
  634. if(tmp>=ref_count){
  635. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", tmp);
  636. return -1;
  637. }
  638. }
  639. ref[list][i]= tmp;
  640. }else{
  641. //FIXME
  642. ref[list][i] = -1;
  643. }
  644. }
  645. }
  646. if(dct8x8_allowed)
  647. dct8x8_allowed = get_dct8x8_allowed(h);
  648. for(list=0; list<h->list_count; list++){
  649. for(i=0; i<4; i++){
  650. if(IS_DIRECT(h->sub_mb_type[i])) {
  651. h->ref_cache[list][ scan8[4*i] ] = h->ref_cache[list][ scan8[4*i]+1 ];
  652. continue;
  653. }
  654. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ]=
  655. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  656. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  657. const int sub_mb_type= h->sub_mb_type[i];
  658. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  659. for(j=0; j<sub_partition_count[i]; j++){
  660. int mx, my;
  661. const int index= 4*i + block_width*j;
  662. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  663. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mx, &my);
  664. mx += get_se_golomb(&s->gb);
  665. my += get_se_golomb(&s->gb);
  666. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  667. if(IS_SUB_8X8(sub_mb_type)){
  668. mv_cache[ 1 ][0]=
  669. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  670. mv_cache[ 1 ][1]=
  671. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  672. }else if(IS_SUB_8X4(sub_mb_type)){
  673. mv_cache[ 1 ][0]= mx;
  674. mv_cache[ 1 ][1]= my;
  675. }else if(IS_SUB_4X8(sub_mb_type)){
  676. mv_cache[ 8 ][0]= mx;
  677. mv_cache[ 8 ][1]= my;
  678. }
  679. mv_cache[ 0 ][0]= mx;
  680. mv_cache[ 0 ][1]= my;
  681. }
  682. }else{
  683. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  684. p[0] = p[1]=
  685. p[8] = p[9]= 0;
  686. }
  687. }
  688. }
  689. }else if(IS_DIRECT(mb_type)){
  690. ff_h264_pred_direct_motion(h, &mb_type);
  691. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  692. }else{
  693. int list, mx, my, i;
  694. //FIXME we should set ref_idx_l? to 0 if we use that later ...
  695. if(IS_16X16(mb_type)){
  696. for(list=0; list<h->list_count; list++){
  697. unsigned int val;
  698. if(IS_DIR(mb_type, 0, list)){
  699. if(h->ref_count[list]==1){
  700. val= 0;
  701. }else if(h->ref_count[list]==2){
  702. val= get_bits1(&s->gb)^1;
  703. }else{
  704. val= get_ue_golomb_31(&s->gb);
  705. if(val >= h->ref_count[list]){
  706. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  707. return -1;
  708. }
  709. }
  710. }else
  711. val= LIST_NOT_USED&0xFF;
  712. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, val, 1);
  713. }
  714. for(list=0; list<h->list_count; list++){
  715. unsigned int val;
  716. if(IS_DIR(mb_type, 0, list)){
  717. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mx, &my);
  718. mx += get_se_golomb(&s->gb);
  719. my += get_se_golomb(&s->gb);
  720. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  721. val= pack16to32(mx,my);
  722. }else
  723. val=0;
  724. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, val, 4);
  725. }
  726. }
  727. else if(IS_16X8(mb_type)){
  728. for(list=0; list<h->list_count; list++){
  729. for(i=0; i<2; i++){
  730. unsigned int val;
  731. if(IS_DIR(mb_type, i, list)){
  732. if(h->ref_count[list] == 1){
  733. val= 0;
  734. }else if(h->ref_count[list] == 2){
  735. val= get_bits1(&s->gb)^1;
  736. }else{
  737. val= get_ue_golomb_31(&s->gb);
  738. if(val >= h->ref_count[list]){
  739. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  740. return -1;
  741. }
  742. }
  743. }else
  744. val= LIST_NOT_USED&0xFF;
  745. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 1);
  746. }
  747. }
  748. for(list=0; list<h->list_count; list++){
  749. for(i=0; i<2; i++){
  750. unsigned int val;
  751. if(IS_DIR(mb_type, i, list)){
  752. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mx, &my);
  753. mx += get_se_golomb(&s->gb);
  754. my += get_se_golomb(&s->gb);
  755. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  756. val= pack16to32(mx,my);
  757. }else
  758. val=0;
  759. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, val, 4);
  760. }
  761. }
  762. }else{
  763. assert(IS_8X16(mb_type));
  764. for(list=0; list<h->list_count; list++){
  765. for(i=0; i<2; i++){
  766. unsigned int val;
  767. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  768. if(h->ref_count[list]==1){
  769. val= 0;
  770. }else if(h->ref_count[list]==2){
  771. val= get_bits1(&s->gb)^1;
  772. }else{
  773. val= get_ue_golomb_31(&s->gb);
  774. if(val >= h->ref_count[list]){
  775. av_log(h->s.avctx, AV_LOG_ERROR, "ref %u overflow\n", val);
  776. return -1;
  777. }
  778. }
  779. }else
  780. val= LIST_NOT_USED&0xFF;
  781. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 1);
  782. }
  783. }
  784. for(list=0; list<h->list_count; list++){
  785. for(i=0; i<2; i++){
  786. unsigned int val;
  787. if(IS_DIR(mb_type, i, list)){
  788. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mx, &my);
  789. mx += get_se_golomb(&s->gb);
  790. my += get_se_golomb(&s->gb);
  791. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  792. val= pack16to32(mx,my);
  793. }else
  794. val=0;
  795. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, val, 4);
  796. }
  797. }
  798. }
  799. }
  800. if(IS_INTER(mb_type))
  801. write_back_motion(h, mb_type);
  802. if(!IS_INTRA16x16(mb_type)){
  803. cbp= get_ue_golomb(&s->gb);
  804. if(cbp > 47){
  805. av_log(h->s.avctx, AV_LOG_ERROR, "cbp too large (%u) at %d %d\n", cbp, s->mb_x, s->mb_y);
  806. return -1;
  807. }
  808. if(CHROMA){
  809. if(IS_INTRA4x4(mb_type)) cbp= golomb_to_intra4x4_cbp[cbp];
  810. else cbp= golomb_to_inter_cbp [cbp];
  811. }else{
  812. if(IS_INTRA4x4(mb_type)) cbp= golomb_to_intra4x4_cbp_gray[cbp];
  813. else cbp= golomb_to_inter_cbp_gray[cbp];
  814. }
  815. }
  816. h->cbp = cbp;
  817. if(dct8x8_allowed && (cbp&15) && !IS_INTRA(mb_type)){
  818. if(get_bits1(&s->gb)){
  819. mb_type |= MB_TYPE_8x8DCT;
  820. h->cbp_table[mb_xy]= cbp;
  821. }
  822. }
  823. s->current_picture.mb_type[mb_xy]= mb_type;
  824. if(cbp || IS_INTRA16x16(mb_type)){
  825. int i8x8, i4x4, chroma_idx;
  826. int dquant;
  827. GetBitContext *gb= IS_INTRA(mb_type) ? h->intra_gb_ptr : h->inter_gb_ptr;
  828. const uint8_t *scan, *scan8x8, *dc_scan;
  829. // fill_non_zero_count_cache(h);
  830. if(IS_INTERLACED(mb_type)){
  831. scan8x8= s->qscale ? h->field_scan8x8_cavlc : h->field_scan8x8_cavlc_q0;
  832. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  833. dc_scan= luma_dc_field_scan;
  834. }else{
  835. scan8x8= s->qscale ? h->zigzag_scan8x8_cavlc : h->zigzag_scan8x8_cavlc_q0;
  836. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  837. dc_scan= luma_dc_zigzag_scan;
  838. }
  839. dquant= get_se_golomb(&s->gb);
  840. if( dquant > 25 || dquant < -26 ){
  841. av_log(h->s.avctx, AV_LOG_ERROR, "dquant out of range (%d) at %d %d\n", dquant, s->mb_x, s->mb_y);
  842. return -1;
  843. }
  844. s->qscale += dquant;
  845. if(((unsigned)s->qscale) > 51){
  846. if(s->qscale<0) s->qscale+= 52;
  847. else s->qscale-= 52;
  848. }
  849. h->chroma_qp[0]= get_chroma_qp(h, 0, s->qscale);
  850. h->chroma_qp[1]= get_chroma_qp(h, 1, s->qscale);
  851. if(IS_INTRA16x16(mb_type)){
  852. if( decode_residual(h, h->intra_gb_ptr, h->mb, LUMA_DC_BLOCK_INDEX, dc_scan, h->dequant4_coeff[0][s->qscale], 16) < 0){
  853. return -1; //FIXME continue if partitioned and other return -1 too
  854. }
  855. assert((cbp&15) == 0 || (cbp&15) == 15);
  856. if(cbp&15){
  857. for(i8x8=0; i8x8<4; i8x8++){
  858. for(i4x4=0; i4x4<4; i4x4++){
  859. const int index= i4x4 + 4*i8x8;
  860. if( decode_residual(h, h->intra_gb_ptr, h->mb + 16*index, index, scan + 1, h->dequant4_coeff[0][s->qscale], 15) < 0 ){
  861. return -1;
  862. }
  863. }
  864. }
  865. }else{
  866. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  867. }
  868. }else{
  869. for(i8x8=0; i8x8<4; i8x8++){
  870. if(cbp & (1<<i8x8)){
  871. if(IS_8x8DCT(mb_type)){
  872. DCTELEM *buf = &h->mb[64*i8x8];
  873. uint8_t *nnz;
  874. for(i4x4=0; i4x4<4; i4x4++){
  875. if( decode_residual(h, gb, buf, i4x4+4*i8x8, scan8x8+16*i4x4,
  876. h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 16) <0 )
  877. return -1;
  878. }
  879. nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  880. nnz[0] += nnz[1] + nnz[8] + nnz[9];
  881. }else{
  882. for(i4x4=0; i4x4<4; i4x4++){
  883. const int index= i4x4 + 4*i8x8;
  884. if( decode_residual(h, gb, h->mb + 16*index, index, scan, h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale], 16) <0 ){
  885. return -1;
  886. }
  887. }
  888. }
  889. }else{
  890. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  891. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  892. }
  893. }
  894. }
  895. if(cbp&0x30){
  896. for(chroma_idx=0; chroma_idx<2; chroma_idx++)
  897. if( decode_residual(h, gb, h->mb + 256 + 16*4*chroma_idx, CHROMA_DC_BLOCK_INDEX, chroma_dc_scan, NULL, 4) < 0){
  898. return -1;
  899. }
  900. }
  901. if(cbp&0x20){
  902. for(chroma_idx=0; chroma_idx<2; chroma_idx++){
  903. const uint32_t *qmul = h->dequant4_coeff[chroma_idx+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[chroma_idx]];
  904. for(i4x4=0; i4x4<4; i4x4++){
  905. const int index= 16 + 4*chroma_idx + i4x4;
  906. if( decode_residual(h, gb, h->mb + 16*index, index, scan + 1, qmul, 15) < 0){
  907. return -1;
  908. }
  909. }
  910. }
  911. }else{
  912. uint8_t * const nnz= &h->non_zero_count_cache[0];
  913. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  914. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  915. }
  916. }else{
  917. uint8_t * const nnz= &h->non_zero_count_cache[0];
  918. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  919. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  920. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  921. }
  922. s->current_picture.qscale_table[mb_xy]= s->qscale;
  923. write_back_non_zero_count(h);
  924. if(MB_MBAFF){
  925. h->ref_count[0] >>= 1;
  926. h->ref_count[1] >>= 1;
  927. }
  928. return 0;
  929. }