You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

587 lines
17KB

  1. /*
  2. * Wing Commander/Xan Video Decoder
  3. * Copyright (C) 2003 the ffmpeg project
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Xan video decoder for Wing Commander III computer game
  24. * by Mario Brito (mbrito@student.dei.uc.pt)
  25. * and Mike Melanson (melanson@pcisys.net)
  26. *
  27. * The xan_wc3 decoder outputs PAL8 data.
  28. */
  29. #include <stdio.h>
  30. #include <stdlib.h>
  31. #include <string.h>
  32. #include "libavutil/intreadwrite.h"
  33. #include "avcodec.h"
  34. #include "bytestream.h"
  35. #define ALT_BITSTREAM_READER_LE
  36. #include "get_bits.h"
  37. // for av_memcpy_backptr
  38. #include "libavutil/lzo.h"
  39. #define RUNTIME_GAMMA 0
  40. #define VGA__TAG MKTAG('V', 'G', 'A', ' ')
  41. #define PALT_TAG MKTAG('P', 'A', 'L', 'T')
  42. #define SHOT_TAG MKTAG('S', 'H', 'O', 'T')
  43. #define PALETTE_COUNT 256
  44. #define PALETTE_SIZE (PALETTE_COUNT * 3)
  45. #define PALETTES_MAX 256
  46. typedef struct XanContext {
  47. AVCodecContext *avctx;
  48. AVFrame last_frame;
  49. AVFrame current_frame;
  50. const unsigned char *buf;
  51. int size;
  52. /* scratch space */
  53. unsigned char *buffer1;
  54. int buffer1_size;
  55. unsigned char *buffer2;
  56. int buffer2_size;
  57. unsigned *palettes;
  58. int palettes_count;
  59. int cur_palette;
  60. int frame_size;
  61. } XanContext;
  62. static av_cold int xan_decode_init(AVCodecContext *avctx)
  63. {
  64. XanContext *s = avctx->priv_data;
  65. s->avctx = avctx;
  66. s->frame_size = 0;
  67. avctx->pix_fmt = PIX_FMT_PAL8;
  68. s->buffer1_size = avctx->width * avctx->height;
  69. s->buffer1 = av_malloc(s->buffer1_size);
  70. if (!s->buffer1)
  71. return AVERROR(ENOMEM);
  72. s->buffer2_size = avctx->width * avctx->height;
  73. s->buffer2 = av_malloc(s->buffer2_size + 130);
  74. if (!s->buffer2) {
  75. av_freep(&s->buffer1);
  76. return AVERROR(ENOMEM);
  77. }
  78. return 0;
  79. }
  80. static int xan_huffman_decode(unsigned char *dest, int dest_len,
  81. const unsigned char *src, int src_len)
  82. {
  83. unsigned char byte = *src++;
  84. unsigned char ival = byte + 0x16;
  85. const unsigned char * ptr = src + byte*2;
  86. int ptr_len = src_len - 1 - byte*2;
  87. unsigned char val = ival;
  88. unsigned char *dest_end = dest + dest_len;
  89. GetBitContext gb;
  90. if (ptr_len < 0)
  91. return AVERROR_INVALIDDATA;
  92. init_get_bits(&gb, ptr, ptr_len * 8);
  93. while ( val != 0x16 ) {
  94. val = src[val - 0x17 + get_bits1(&gb) * byte];
  95. if ( val < 0x16 ) {
  96. if (dest >= dest_end)
  97. return 0;
  98. *dest++ = val;
  99. val = ival;
  100. }
  101. }
  102. return 0;
  103. }
  104. /**
  105. * unpack simple compression
  106. *
  107. * @param dest destination buffer of dest_len, must be padded with at least 130 bytes
  108. */
  109. static void xan_unpack(unsigned char *dest, const unsigned char *src, int dest_len)
  110. {
  111. unsigned char opcode;
  112. int size;
  113. unsigned char *dest_end = dest + dest_len;
  114. while (dest < dest_end) {
  115. opcode = *src++;
  116. if (opcode < 0xe0) {
  117. int size2, back;
  118. if ( (opcode & 0x80) == 0 ) {
  119. size = opcode & 3;
  120. back = ((opcode & 0x60) << 3) + *src++ + 1;
  121. size2 = ((opcode & 0x1c) >> 2) + 3;
  122. } else if ( (opcode & 0x40) == 0 ) {
  123. size = *src >> 6;
  124. back = (bytestream_get_be16(&src) & 0x3fff) + 1;
  125. size2 = (opcode & 0x3f) + 4;
  126. } else {
  127. size = opcode & 3;
  128. back = ((opcode & 0x10) << 12) + bytestream_get_be16(&src) + 1;
  129. size2 = ((opcode & 0x0c) << 6) + *src++ + 5;
  130. if (size + size2 > dest_end - dest)
  131. return;
  132. }
  133. memcpy(dest, src, size); dest += size; src += size;
  134. av_memcpy_backptr(dest, back, size2);
  135. dest += size2;
  136. } else {
  137. int finish = opcode >= 0xfc;
  138. size = finish ? opcode & 3 : ((opcode & 0x1f) << 2) + 4;
  139. memcpy(dest, src, size); dest += size; src += size;
  140. if (finish)
  141. return;
  142. }
  143. }
  144. }
  145. static inline void xan_wc3_output_pixel_run(XanContext *s,
  146. const unsigned char *pixel_buffer, int x, int y, int pixel_count)
  147. {
  148. int stride;
  149. int line_inc;
  150. int index;
  151. int current_x;
  152. int width = s->avctx->width;
  153. unsigned char *palette_plane;
  154. palette_plane = s->current_frame.data[0];
  155. stride = s->current_frame.linesize[0];
  156. line_inc = stride - width;
  157. index = y * stride + x;
  158. current_x = x;
  159. while(pixel_count && (index < s->frame_size)) {
  160. int count = FFMIN(pixel_count, width - current_x);
  161. memcpy(palette_plane + index, pixel_buffer, count);
  162. pixel_count -= count;
  163. index += count;
  164. pixel_buffer += count;
  165. current_x += count;
  166. if (current_x >= width) {
  167. index += line_inc;
  168. current_x = 0;
  169. }
  170. }
  171. }
  172. static inline void xan_wc3_copy_pixel_run(XanContext *s,
  173. int x, int y, int pixel_count, int motion_x, int motion_y)
  174. {
  175. int stride;
  176. int line_inc;
  177. int curframe_index, prevframe_index;
  178. int curframe_x, prevframe_x;
  179. int width = s->avctx->width;
  180. unsigned char *palette_plane, *prev_palette_plane;
  181. palette_plane = s->current_frame.data[0];
  182. prev_palette_plane = s->last_frame.data[0];
  183. stride = s->current_frame.linesize[0];
  184. line_inc = stride - width;
  185. curframe_index = y * stride + x;
  186. curframe_x = x;
  187. prevframe_index = (y + motion_y) * stride + x + motion_x;
  188. prevframe_x = x + motion_x;
  189. while(pixel_count && (curframe_index < s->frame_size)) {
  190. int count = FFMIN3(pixel_count, width - curframe_x, width - prevframe_x);
  191. memcpy(palette_plane + curframe_index, prev_palette_plane + prevframe_index, count);
  192. pixel_count -= count;
  193. curframe_index += count;
  194. prevframe_index += count;
  195. curframe_x += count;
  196. prevframe_x += count;
  197. if (curframe_x >= width) {
  198. curframe_index += line_inc;
  199. curframe_x = 0;
  200. }
  201. if (prevframe_x >= width) {
  202. prevframe_index += line_inc;
  203. prevframe_x = 0;
  204. }
  205. }
  206. }
  207. static int xan_wc3_decode_frame(XanContext *s) {
  208. int width = s->avctx->width;
  209. int height = s->avctx->height;
  210. int total_pixels = width * height;
  211. unsigned char opcode;
  212. unsigned char flag = 0;
  213. int size = 0;
  214. int motion_x, motion_y;
  215. int x, y;
  216. unsigned char *opcode_buffer = s->buffer1;
  217. int opcode_buffer_size = s->buffer1_size;
  218. const unsigned char *imagedata_buffer = s->buffer2;
  219. /* pointers to segments inside the compressed chunk */
  220. const unsigned char *huffman_segment;
  221. const unsigned char *size_segment;
  222. const unsigned char *vector_segment;
  223. const unsigned char *imagedata_segment;
  224. int huffman_offset, size_offset, vector_offset, imagedata_offset;
  225. if (s->size < 8)
  226. return AVERROR_INVALIDDATA;
  227. huffman_offset = AV_RL16(&s->buf[0]);
  228. size_offset = AV_RL16(&s->buf[2]);
  229. vector_offset = AV_RL16(&s->buf[4]);
  230. imagedata_offset = AV_RL16(&s->buf[6]);
  231. if (huffman_offset >= s->size ||
  232. size_offset >= s->size ||
  233. vector_offset >= s->size ||
  234. imagedata_offset >= s->size)
  235. return AVERROR_INVALIDDATA;
  236. huffman_segment = s->buf + huffman_offset;
  237. size_segment = s->buf + size_offset;
  238. vector_segment = s->buf + vector_offset;
  239. imagedata_segment = s->buf + imagedata_offset;
  240. if (xan_huffman_decode(opcode_buffer, opcode_buffer_size,
  241. huffman_segment, s->size - huffman_offset) < 0)
  242. return AVERROR_INVALIDDATA;
  243. if (imagedata_segment[0] == 2)
  244. xan_unpack(s->buffer2, &imagedata_segment[1], s->buffer2_size);
  245. else
  246. imagedata_buffer = &imagedata_segment[1];
  247. /* use the decoded data segments to build the frame */
  248. x = y = 0;
  249. while (total_pixels) {
  250. opcode = *opcode_buffer++;
  251. size = 0;
  252. switch (opcode) {
  253. case 0:
  254. flag ^= 1;
  255. continue;
  256. case 1:
  257. case 2:
  258. case 3:
  259. case 4:
  260. case 5:
  261. case 6:
  262. case 7:
  263. case 8:
  264. size = opcode;
  265. break;
  266. case 12:
  267. case 13:
  268. case 14:
  269. case 15:
  270. case 16:
  271. case 17:
  272. case 18:
  273. size += (opcode - 10);
  274. break;
  275. case 9:
  276. case 19:
  277. size = *size_segment++;
  278. break;
  279. case 10:
  280. case 20:
  281. size = AV_RB16(&size_segment[0]);
  282. size_segment += 2;
  283. break;
  284. case 11:
  285. case 21:
  286. size = AV_RB24(size_segment);
  287. size_segment += 3;
  288. break;
  289. }
  290. if (opcode < 12) {
  291. flag ^= 1;
  292. if (flag) {
  293. /* run of (size) pixels is unchanged from last frame */
  294. xan_wc3_copy_pixel_run(s, x, y, size, 0, 0);
  295. } else {
  296. /* output a run of pixels from imagedata_buffer */
  297. xan_wc3_output_pixel_run(s, imagedata_buffer, x, y, size);
  298. imagedata_buffer += size;
  299. }
  300. } else {
  301. /* run-based motion compensation from last frame */
  302. motion_x = sign_extend(*vector_segment >> 4, 4);
  303. motion_y = sign_extend(*vector_segment & 0xF, 4);
  304. vector_segment++;
  305. /* copy a run of pixels from the previous frame */
  306. xan_wc3_copy_pixel_run(s, x, y, size, motion_x, motion_y);
  307. flag = 0;
  308. }
  309. /* coordinate accounting */
  310. total_pixels -= size;
  311. y += (x + size) / width;
  312. x = (x + size) % width;
  313. }
  314. return 0;
  315. }
  316. #if RUNTIME_GAMMA
  317. static inline unsigned mul(unsigned a, unsigned b)
  318. {
  319. return (a * b) >> 16;
  320. }
  321. static inline unsigned pow4(unsigned a)
  322. {
  323. unsigned square = mul(a, a);
  324. return mul(square, square);
  325. }
  326. static inline unsigned pow5(unsigned a)
  327. {
  328. return mul(pow4(a), a);
  329. }
  330. static uint8_t gamma_corr(uint8_t in) {
  331. unsigned lo, hi = 0xff40, target;
  332. int i = 15;
  333. in = (in << 2) | (in >> 6);
  334. /* equivalent float code:
  335. if (in >= 252)
  336. return 253;
  337. return round(pow(in / 256.0, 0.8) * 256);
  338. */
  339. lo = target = in << 8;
  340. do {
  341. unsigned mid = (lo + hi) >> 1;
  342. unsigned pow = pow5(mid);
  343. if (pow > target) hi = mid;
  344. else lo = mid;
  345. } while (--i);
  346. return (pow4((lo + hi) >> 1) + 0x80) >> 8;
  347. }
  348. #else
  349. /**
  350. * This is a gamma correction that xan3 applies to all palette entries.
  351. *
  352. * There is a peculiarity, namely that the values are clamped to 253 -
  353. * it seems likely that this table was calculated by a buggy fixed-point
  354. * implementation, the one above under RUNTIME_GAMMA behaves like this for
  355. * example.
  356. * The exponent value of 0.8 can be explained by this as well, since 0.8 = 4/5
  357. * and thus pow(x, 0.8) is still easy to calculate.
  358. * Also, the input values are first rotated to the left by 2.
  359. */
  360. static const uint8_t gamma_lookup[256] = {
  361. 0x00, 0x09, 0x10, 0x16, 0x1C, 0x21, 0x27, 0x2C,
  362. 0x31, 0x35, 0x3A, 0x3F, 0x43, 0x48, 0x4C, 0x50,
  363. 0x54, 0x59, 0x5D, 0x61, 0x65, 0x69, 0x6D, 0x71,
  364. 0x75, 0x79, 0x7D, 0x80, 0x84, 0x88, 0x8C, 0x8F,
  365. 0x93, 0x97, 0x9A, 0x9E, 0xA2, 0xA5, 0xA9, 0xAC,
  366. 0xB0, 0xB3, 0xB7, 0xBA, 0xBE, 0xC1, 0xC5, 0xC8,
  367. 0xCB, 0xCF, 0xD2, 0xD5, 0xD9, 0xDC, 0xDF, 0xE3,
  368. 0xE6, 0xE9, 0xED, 0xF0, 0xF3, 0xF6, 0xFA, 0xFD,
  369. 0x03, 0x0B, 0x12, 0x18, 0x1D, 0x23, 0x28, 0x2D,
  370. 0x32, 0x36, 0x3B, 0x40, 0x44, 0x49, 0x4D, 0x51,
  371. 0x56, 0x5A, 0x5E, 0x62, 0x66, 0x6A, 0x6E, 0x72,
  372. 0x76, 0x7A, 0x7D, 0x81, 0x85, 0x89, 0x8D, 0x90,
  373. 0x94, 0x98, 0x9B, 0x9F, 0xA2, 0xA6, 0xAA, 0xAD,
  374. 0xB1, 0xB4, 0xB8, 0xBB, 0xBF, 0xC2, 0xC5, 0xC9,
  375. 0xCC, 0xD0, 0xD3, 0xD6, 0xDA, 0xDD, 0xE0, 0xE4,
  376. 0xE7, 0xEA, 0xED, 0xF1, 0xF4, 0xF7, 0xFA, 0xFD,
  377. 0x05, 0x0D, 0x13, 0x19, 0x1F, 0x24, 0x29, 0x2E,
  378. 0x33, 0x38, 0x3C, 0x41, 0x45, 0x4A, 0x4E, 0x52,
  379. 0x57, 0x5B, 0x5F, 0x63, 0x67, 0x6B, 0x6F, 0x73,
  380. 0x77, 0x7B, 0x7E, 0x82, 0x86, 0x8A, 0x8D, 0x91,
  381. 0x95, 0x99, 0x9C, 0xA0, 0xA3, 0xA7, 0xAA, 0xAE,
  382. 0xB2, 0xB5, 0xB9, 0xBC, 0xBF, 0xC3, 0xC6, 0xCA,
  383. 0xCD, 0xD0, 0xD4, 0xD7, 0xDA, 0xDE, 0xE1, 0xE4,
  384. 0xE8, 0xEB, 0xEE, 0xF1, 0xF5, 0xF8, 0xFB, 0xFD,
  385. 0x07, 0x0E, 0x15, 0x1A, 0x20, 0x25, 0x2A, 0x2F,
  386. 0x34, 0x39, 0x3D, 0x42, 0x46, 0x4B, 0x4F, 0x53,
  387. 0x58, 0x5C, 0x60, 0x64, 0x68, 0x6C, 0x70, 0x74,
  388. 0x78, 0x7C, 0x7F, 0x83, 0x87, 0x8B, 0x8E, 0x92,
  389. 0x96, 0x99, 0x9D, 0xA1, 0xA4, 0xA8, 0xAB, 0xAF,
  390. 0xB2, 0xB6, 0xB9, 0xBD, 0xC0, 0xC4, 0xC7, 0xCB,
  391. 0xCE, 0xD1, 0xD5, 0xD8, 0xDB, 0xDF, 0xE2, 0xE5,
  392. 0xE9, 0xEC, 0xEF, 0xF2, 0xF6, 0xF9, 0xFC, 0xFD
  393. };
  394. #endif
  395. static int xan_decode_frame(AVCodecContext *avctx,
  396. void *data, int *data_size,
  397. AVPacket *avpkt)
  398. {
  399. const uint8_t *buf = avpkt->data;
  400. int ret, buf_size = avpkt->size;
  401. XanContext *s = avctx->priv_data;
  402. if (avctx->codec->id == CODEC_ID_XAN_WC3) {
  403. const uint8_t *buf_end = buf + buf_size;
  404. int tag = 0;
  405. while (buf_end - buf > 8 && tag != VGA__TAG) {
  406. unsigned *tmpptr;
  407. uint32_t new_pal;
  408. int size;
  409. int i;
  410. tag = bytestream_get_le32(&buf);
  411. size = bytestream_get_be32(&buf);
  412. size = FFMIN(size, buf_end - buf);
  413. switch (tag) {
  414. case PALT_TAG:
  415. if (size < PALETTE_SIZE)
  416. return AVERROR_INVALIDDATA;
  417. if (s->palettes_count >= PALETTES_MAX)
  418. return AVERROR_INVALIDDATA;
  419. tmpptr = av_realloc(s->palettes, (s->palettes_count + 1) * AVPALETTE_SIZE);
  420. if (!tmpptr)
  421. return AVERROR(ENOMEM);
  422. s->palettes = tmpptr;
  423. tmpptr += s->palettes_count * AVPALETTE_COUNT;
  424. for (i = 0; i < PALETTE_COUNT; i++) {
  425. #if RUNTIME_GAMMA
  426. int r = gamma_corr(*buf++);
  427. int g = gamma_corr(*buf++);
  428. int b = gamma_corr(*buf++);
  429. #else
  430. int r = gamma_lookup[*buf++];
  431. int g = gamma_lookup[*buf++];
  432. int b = gamma_lookup[*buf++];
  433. #endif
  434. *tmpptr++ = (r << 16) | (g << 8) | b;
  435. }
  436. s->palettes_count++;
  437. break;
  438. case SHOT_TAG:
  439. if (size < 4)
  440. return AVERROR_INVALIDDATA;
  441. new_pal = bytestream_get_le32(&buf);
  442. if (new_pal < s->palettes_count) {
  443. s->cur_palette = new_pal;
  444. } else
  445. av_log(avctx, AV_LOG_ERROR, "Invalid palette selected\n");
  446. break;
  447. case VGA__TAG:
  448. break;
  449. default:
  450. buf += size;
  451. break;
  452. }
  453. }
  454. buf_size = buf_end - buf;
  455. }
  456. if ((ret = avctx->get_buffer(avctx, &s->current_frame))) {
  457. av_log(s->avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  458. return ret;
  459. }
  460. s->current_frame.reference = 3;
  461. if (!s->frame_size)
  462. s->frame_size = s->current_frame.linesize[0] * s->avctx->height;
  463. memcpy(s->current_frame.data[1], s->palettes + s->cur_palette * AVPALETTE_COUNT, AVPALETTE_SIZE);
  464. s->buf = buf;
  465. s->size = buf_size;
  466. if (xan_wc3_decode_frame(s) < 0)
  467. return AVERROR_INVALIDDATA;
  468. /* release the last frame if it is allocated */
  469. if (s->last_frame.data[0])
  470. avctx->release_buffer(avctx, &s->last_frame);
  471. *data_size = sizeof(AVFrame);
  472. *(AVFrame*)data = s->current_frame;
  473. /* shuffle frames */
  474. FFSWAP(AVFrame, s->current_frame, s->last_frame);
  475. /* always report that the buffer was completely consumed */
  476. return buf_size;
  477. }
  478. static av_cold int xan_decode_end(AVCodecContext *avctx)
  479. {
  480. XanContext *s = avctx->priv_data;
  481. /* release the frames */
  482. if (s->last_frame.data[0])
  483. avctx->release_buffer(avctx, &s->last_frame);
  484. if (s->current_frame.data[0])
  485. avctx->release_buffer(avctx, &s->current_frame);
  486. av_freep(&s->buffer1);
  487. av_freep(&s->buffer2);
  488. av_freep(&s->palettes);
  489. return 0;
  490. }
  491. AVCodec ff_xan_wc3_decoder = {
  492. .name = "xan_wc3",
  493. .type = AVMEDIA_TYPE_VIDEO,
  494. .id = CODEC_ID_XAN_WC3,
  495. .priv_data_size = sizeof(XanContext),
  496. .init = xan_decode_init,
  497. .close = xan_decode_end,
  498. .decode = xan_decode_frame,
  499. .capabilities = CODEC_CAP_DR1,
  500. .long_name = NULL_IF_CONFIG_SMALL("Wing Commander III / Xan"),
  501. };