You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1075 lines
36KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002-2004 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * Rate control for video encoders.
  25. */
  26. #include "libavutil/attributes.h"
  27. #include "avcodec.h"
  28. #include "ratecontrol.h"
  29. #include "mpegutils.h"
  30. #include "mpegvideo.h"
  31. #include "libavutil/eval.h"
  32. #undef NDEBUG // Always check asserts, the speed effect is far too small to disable them.
  33. #include <assert.h>
  34. #ifndef M_E
  35. #define M_E 2.718281828
  36. #endif
  37. static int init_pass2(MpegEncContext *s);
  38. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  39. double rate_factor, int frame_num);
  40. void ff_write_pass1_stats(MpegEncContext *s)
  41. {
  42. snprintf(s->avctx->stats_out, 256,
  43. "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d "
  44. "fcode:%d bcode:%d mc-var:%"PRId64" var:%"PRId64" icount:%d skipcount:%d hbits:%d;\n",
  45. s->current_picture_ptr->f->display_picture_number,
  46. s->current_picture_ptr->f->coded_picture_number,
  47. s->pict_type,
  48. s->current_picture.f->quality,
  49. s->i_tex_bits,
  50. s->p_tex_bits,
  51. s->mv_bits,
  52. s->misc_bits,
  53. s->f_code,
  54. s->b_code,
  55. s->current_picture.mc_mb_var_sum,
  56. s->current_picture.mb_var_sum,
  57. s->i_count, s->skip_count,
  58. s->header_bits);
  59. }
  60. static double get_fps(AVCodecContext *avctx)
  61. {
  62. return 1.0 / av_q2d(avctx->time_base) / FFMAX(avctx->ticks_per_frame, 1);
  63. }
  64. static inline double qp2bits(RateControlEntry *rce, double qp)
  65. {
  66. if (qp <= 0.0) {
  67. av_log(NULL, AV_LOG_ERROR, "qp<=0.0\n");
  68. }
  69. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / qp;
  70. }
  71. static inline double bits2qp(RateControlEntry *rce, double bits)
  72. {
  73. if (bits < 0.9) {
  74. av_log(NULL, AV_LOG_ERROR, "bits<0.9\n");
  75. }
  76. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits + 1) / bits;
  77. }
  78. av_cold int ff_rate_control_init(MpegEncContext *s)
  79. {
  80. RateControlContext *rcc = &s->rc_context;
  81. int i, res;
  82. static const char * const const_names[] = {
  83. "PI",
  84. "E",
  85. "iTex",
  86. "pTex",
  87. "tex",
  88. "mv",
  89. "fCode",
  90. "iCount",
  91. "mcVar",
  92. "var",
  93. "isI",
  94. "isP",
  95. "isB",
  96. "avgQP",
  97. "qComp",
  98. #if 0
  99. "lastIQP",
  100. "lastPQP",
  101. "lastBQP",
  102. "nextNonBQP",
  103. #endif
  104. "avgIITex",
  105. "avgPITex",
  106. "avgPPTex",
  107. "avgBPTex",
  108. "avgTex",
  109. NULL
  110. };
  111. static double (* const func1[])(void *, double) = {
  112. (void *)bits2qp,
  113. (void *)qp2bits,
  114. NULL
  115. };
  116. static const char * const func1_names[] = {
  117. "bits2qp",
  118. "qp2bits",
  119. NULL
  120. };
  121. emms_c();
  122. if (!s->avctx->rc_max_available_vbv_use && s->avctx->rc_buffer_size) {
  123. if (s->avctx->rc_max_rate) {
  124. s->avctx->rc_max_available_vbv_use = av_clipf(s->avctx->rc_max_rate/(s->avctx->rc_buffer_size*get_fps(s->avctx)), 1.0/3, 1.0);
  125. } else
  126. s->avctx->rc_max_available_vbv_use = 1.0;
  127. }
  128. res = av_expr_parse(&rcc->rc_eq_eval,
  129. s->rc_eq ? s->rc_eq : "tex^qComp",
  130. const_names, func1_names, func1,
  131. NULL, NULL, 0, s->avctx);
  132. if (res < 0) {
  133. av_log(s->avctx, AV_LOG_ERROR, "Error parsing rc_eq \"%s\"\n", s->rc_eq);
  134. return res;
  135. }
  136. for (i = 0; i < 5; i++) {
  137. rcc->pred[i].coeff = FF_QP2LAMBDA * 7.0;
  138. rcc->pred[i].count = 1.0;
  139. rcc->pred[i].decay = 0.4;
  140. rcc->i_cplx_sum [i] =
  141. rcc->p_cplx_sum [i] =
  142. rcc->mv_bits_sum[i] =
  143. rcc->qscale_sum [i] =
  144. rcc->frame_count[i] = 1; // 1 is better because of 1/0 and such
  145. rcc->last_qscale_for[i] = FF_QP2LAMBDA * 5;
  146. }
  147. rcc->buffer_index = s->avctx->rc_initial_buffer_occupancy;
  148. if (!rcc->buffer_index)
  149. rcc->buffer_index = s->avctx->rc_buffer_size * 3 / 4;
  150. if (s->flags & CODEC_FLAG_PASS2) {
  151. int i;
  152. char *p;
  153. /* find number of pics */
  154. p = s->avctx->stats_in;
  155. for (i = -1; p; i++)
  156. p = strchr(p + 1, ';');
  157. i += s->max_b_frames;
  158. if (i <= 0 || i >= INT_MAX / sizeof(RateControlEntry))
  159. return -1;
  160. rcc->entry = av_mallocz(i * sizeof(RateControlEntry));
  161. if (!rcc->entry)
  162. return AVERROR(ENOMEM);
  163. rcc->num_entries = i;
  164. /* init all to skipped p frames
  165. * (with b frames we might have a not encoded frame at the end FIXME) */
  166. for (i = 0; i < rcc->num_entries; i++) {
  167. RateControlEntry *rce = &rcc->entry[i];
  168. rce->pict_type = rce->new_pict_type = AV_PICTURE_TYPE_P;
  169. rce->qscale = rce->new_qscale = FF_QP2LAMBDA * 2;
  170. rce->misc_bits = s->mb_num + 10;
  171. rce->mb_var_sum = s->mb_num * 100;
  172. }
  173. /* read stats */
  174. p = s->avctx->stats_in;
  175. for (i = 0; i < rcc->num_entries - s->max_b_frames; i++) {
  176. RateControlEntry *rce;
  177. int picture_number;
  178. int e;
  179. char *next;
  180. next = strchr(p, ';');
  181. if (next) {
  182. (*next) = 0; // sscanf in unbelievably slow on looong strings // FIXME copy / do not write
  183. next++;
  184. }
  185. e = sscanf(p, " in:%d ", &picture_number);
  186. assert(picture_number >= 0);
  187. assert(picture_number < rcc->num_entries);
  188. rce = &rcc->entry[picture_number];
  189. e += sscanf(p, " in:%*d out:%*d type:%d q:%f itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%"SCNd64" var:%"SCNd64" icount:%d skipcount:%d hbits:%d",
  190. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits,
  191. &rce->mv_bits, &rce->misc_bits,
  192. &rce->f_code, &rce->b_code,
  193. &rce->mc_mb_var_sum, &rce->mb_var_sum,
  194. &rce->i_count, &rce->skip_count, &rce->header_bits);
  195. if (e != 14) {
  196. av_log(s->avctx, AV_LOG_ERROR,
  197. "statistics are damaged at line %d, parser out=%d\n",
  198. i, e);
  199. return -1;
  200. }
  201. p = next;
  202. }
  203. if (init_pass2(s) < 0)
  204. return -1;
  205. // FIXME maybe move to end
  206. if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID) {
  207. #if CONFIG_LIBXVID
  208. return ff_xvid_rate_control_init(s);
  209. #else
  210. av_log(s->avctx, AV_LOG_ERROR,
  211. "Xvid ratecontrol requires libavcodec compiled with Xvid support.\n");
  212. return -1;
  213. #endif
  214. }
  215. }
  216. if (!(s->flags & CODEC_FLAG_PASS2)) {
  217. rcc->short_term_qsum = 0.001;
  218. rcc->short_term_qcount = 0.001;
  219. rcc->pass1_rc_eq_output_sum = 0.001;
  220. rcc->pass1_wanted_bits = 0.001;
  221. if (s->avctx->qblur > 1.0) {
  222. av_log(s->avctx, AV_LOG_ERROR, "qblur too large\n");
  223. return -1;
  224. }
  225. /* init stuff with the user specified complexity */
  226. if (s->rc_initial_cplx) {
  227. for (i = 0; i < 60 * 30; i++) {
  228. double bits = s->rc_initial_cplx * (i / 10000.0 + 1.0) * s->mb_num;
  229. RateControlEntry rce;
  230. if (i % ((s->gop_size + 3) / 4) == 0)
  231. rce.pict_type = AV_PICTURE_TYPE_I;
  232. else if (i % (s->max_b_frames + 1))
  233. rce.pict_type = AV_PICTURE_TYPE_B;
  234. else
  235. rce.pict_type = AV_PICTURE_TYPE_P;
  236. rce.new_pict_type = rce.pict_type;
  237. rce.mc_mb_var_sum = bits * s->mb_num / 100000;
  238. rce.mb_var_sum = s->mb_num;
  239. rce.qscale = FF_QP2LAMBDA * 2;
  240. rce.f_code = 2;
  241. rce.b_code = 1;
  242. rce.misc_bits = 1;
  243. if (s->pict_type == AV_PICTURE_TYPE_I) {
  244. rce.i_count = s->mb_num;
  245. rce.i_tex_bits = bits;
  246. rce.p_tex_bits = 0;
  247. rce.mv_bits = 0;
  248. } else {
  249. rce.i_count = 0; // FIXME we do know this approx
  250. rce.i_tex_bits = 0;
  251. rce.p_tex_bits = bits * 0.9;
  252. rce.mv_bits = bits * 0.1;
  253. }
  254. rcc->i_cplx_sum[rce.pict_type] += rce.i_tex_bits * rce.qscale;
  255. rcc->p_cplx_sum[rce.pict_type] += rce.p_tex_bits * rce.qscale;
  256. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  257. rcc->frame_count[rce.pict_type]++;
  258. get_qscale(s, &rce, rcc->pass1_wanted_bits / rcc->pass1_rc_eq_output_sum, i);
  259. // FIXME misbehaves a little for variable fps
  260. rcc->pass1_wanted_bits += s->bit_rate / get_fps(s->avctx);
  261. }
  262. }
  263. }
  264. return 0;
  265. }
  266. av_cold void ff_rate_control_uninit(MpegEncContext *s)
  267. {
  268. RateControlContext *rcc = &s->rc_context;
  269. emms_c();
  270. av_expr_free(rcc->rc_eq_eval);
  271. av_freep(&rcc->entry);
  272. #if CONFIG_LIBXVID
  273. if ((s->flags & CODEC_FLAG_PASS2) && s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  274. ff_xvid_rate_control_uninit(s);
  275. #endif
  276. }
  277. int ff_vbv_update(MpegEncContext *s, int frame_size)
  278. {
  279. RateControlContext *rcc = &s->rc_context;
  280. const double fps = get_fps(s->avctx);
  281. const int buffer_size = s->avctx->rc_buffer_size;
  282. const double min_rate = s->avctx->rc_min_rate / fps;
  283. const double max_rate = s->avctx->rc_max_rate / fps;
  284. av_dlog(s, "%d %f %d %f %f\n",
  285. buffer_size, rcc->buffer_index, frame_size, min_rate, max_rate);
  286. if (buffer_size) {
  287. int left;
  288. rcc->buffer_index -= frame_size;
  289. if (rcc->buffer_index < 0) {
  290. av_log(s->avctx, AV_LOG_ERROR, "rc buffer underflow\n");
  291. if (frame_size > max_rate && s->qscale == s->avctx->qmax) {
  292. av_log(s->avctx, AV_LOG_ERROR, "max bitrate possibly too small or try trellis with large lmax or increase qmax\n");
  293. }
  294. rcc->buffer_index = 0;
  295. }
  296. left = buffer_size - rcc->buffer_index - 1;
  297. rcc->buffer_index += av_clip(left, min_rate, max_rate);
  298. if (rcc->buffer_index > buffer_size) {
  299. int stuffing = ceil((rcc->buffer_index - buffer_size) / 8);
  300. if (stuffing < 4 && s->codec_id == AV_CODEC_ID_MPEG4)
  301. stuffing = 4;
  302. rcc->buffer_index -= 8 * stuffing;
  303. if (s->avctx->debug & FF_DEBUG_RC)
  304. av_log(s->avctx, AV_LOG_DEBUG, "stuffing %d bytes\n", stuffing);
  305. return stuffing;
  306. }
  307. }
  308. return 0;
  309. }
  310. /**
  311. * Modify the bitrate curve from pass1 for one frame.
  312. */
  313. static double get_qscale(MpegEncContext *s, RateControlEntry *rce,
  314. double rate_factor, int frame_num)
  315. {
  316. RateControlContext *rcc = &s->rc_context;
  317. AVCodecContext *a = s->avctx;
  318. const int pict_type = rce->new_pict_type;
  319. const double mb_num = s->mb_num;
  320. double q, bits;
  321. int i;
  322. double const_values[] = {
  323. M_PI,
  324. M_E,
  325. rce->i_tex_bits * rce->qscale,
  326. rce->p_tex_bits * rce->qscale,
  327. (rce->i_tex_bits + rce->p_tex_bits) * (double)rce->qscale,
  328. rce->mv_bits / mb_num,
  329. rce->pict_type == AV_PICTURE_TYPE_B ? (rce->f_code + rce->b_code) * 0.5 : rce->f_code,
  330. rce->i_count / mb_num,
  331. rce->mc_mb_var_sum / mb_num,
  332. rce->mb_var_sum / mb_num,
  333. rce->pict_type == AV_PICTURE_TYPE_I,
  334. rce->pict_type == AV_PICTURE_TYPE_P,
  335. rce->pict_type == AV_PICTURE_TYPE_B,
  336. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  337. a->qcompress,
  338. #if 0
  339. rcc->last_qscale_for[AV_PICTURE_TYPE_I],
  340. rcc->last_qscale_for[AV_PICTURE_TYPE_P],
  341. rcc->last_qscale_for[AV_PICTURE_TYPE_B],
  342. rcc->next_non_b_qscale,
  343. #endif
  344. rcc->i_cplx_sum[AV_PICTURE_TYPE_I] / (double)rcc->frame_count[AV_PICTURE_TYPE_I],
  345. rcc->i_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  346. rcc->p_cplx_sum[AV_PICTURE_TYPE_P] / (double)rcc->frame_count[AV_PICTURE_TYPE_P],
  347. rcc->p_cplx_sum[AV_PICTURE_TYPE_B] / (double)rcc->frame_count[AV_PICTURE_TYPE_B],
  348. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  349. 0
  350. };
  351. bits = av_expr_eval(rcc->rc_eq_eval, const_values, rce);
  352. if (isnan(bits)) {
  353. av_log(s->avctx, AV_LOG_ERROR, "Error evaluating rc_eq \"%s\"\n", s->rc_eq);
  354. return -1;
  355. }
  356. rcc->pass1_rc_eq_output_sum += bits;
  357. bits *= rate_factor;
  358. if (bits < 0.0)
  359. bits = 0.0;
  360. bits += 1.0; // avoid 1/0 issues
  361. /* user override */
  362. for (i = 0; i < s->avctx->rc_override_count; i++) {
  363. RcOverride *rco = s->avctx->rc_override;
  364. if (rco[i].start_frame > frame_num)
  365. continue;
  366. if (rco[i].end_frame < frame_num)
  367. continue;
  368. if (rco[i].qscale)
  369. bits = qp2bits(rce, rco[i].qscale); // FIXME move at end to really force it?
  370. else
  371. bits *= rco[i].quality_factor;
  372. }
  373. q = bits2qp(rce, bits);
  374. /* I/B difference */
  375. if (pict_type == AV_PICTURE_TYPE_I && s->avctx->i_quant_factor < 0.0)
  376. q = -q * s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  377. else if (pict_type == AV_PICTURE_TYPE_B && s->avctx->b_quant_factor < 0.0)
  378. q = -q * s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  379. if (q < 1)
  380. q = 1;
  381. return q;
  382. }
  383. static double get_diff_limited_q(MpegEncContext *s, RateControlEntry *rce, double q)
  384. {
  385. RateControlContext *rcc = &s->rc_context;
  386. AVCodecContext *a = s->avctx;
  387. const int pict_type = rce->new_pict_type;
  388. const double last_p_q = rcc->last_qscale_for[AV_PICTURE_TYPE_P];
  389. const double last_non_b_q = rcc->last_qscale_for[rcc->last_non_b_pict_type];
  390. if (pict_type == AV_PICTURE_TYPE_I &&
  391. (a->i_quant_factor > 0.0 || rcc->last_non_b_pict_type == AV_PICTURE_TYPE_P))
  392. q = last_p_q * FFABS(a->i_quant_factor) + a->i_quant_offset;
  393. else if (pict_type == AV_PICTURE_TYPE_B &&
  394. a->b_quant_factor > 0.0)
  395. q = last_non_b_q * a->b_quant_factor + a->b_quant_offset;
  396. if (q < 1)
  397. q = 1;
  398. /* last qscale / qdiff stuff */
  399. if (rcc->last_non_b_pict_type == pict_type || pict_type != AV_PICTURE_TYPE_I) {
  400. double last_q = rcc->last_qscale_for[pict_type];
  401. const int maxdiff = FF_QP2LAMBDA * a->max_qdiff;
  402. if (q > last_q + maxdiff)
  403. q = last_q + maxdiff;
  404. else if (q < last_q - maxdiff)
  405. q = last_q - maxdiff;
  406. }
  407. rcc->last_qscale_for[pict_type] = q; // Note we cannot do that after blurring
  408. if (pict_type != AV_PICTURE_TYPE_B)
  409. rcc->last_non_b_pict_type = pict_type;
  410. return q;
  411. }
  412. /**
  413. * Get the qmin & qmax for pict_type.
  414. */
  415. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type)
  416. {
  417. int qmin = s->lmin;
  418. int qmax = s->lmax;
  419. assert(qmin <= qmax);
  420. switch (pict_type) {
  421. case AV_PICTURE_TYPE_B:
  422. qmin = (int)(qmin * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  423. qmax = (int)(qmax * FFABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset + 0.5);
  424. break;
  425. case AV_PICTURE_TYPE_I:
  426. qmin = (int)(qmin * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  427. qmax = (int)(qmax * FFABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset + 0.5);
  428. break;
  429. }
  430. qmin = av_clip(qmin, 1, FF_LAMBDA_MAX);
  431. qmax = av_clip(qmax, 1, FF_LAMBDA_MAX);
  432. if (qmax < qmin)
  433. qmax = qmin;
  434. *qmin_ret = qmin;
  435. *qmax_ret = qmax;
  436. }
  437. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce,
  438. double q, int frame_num)
  439. {
  440. RateControlContext *rcc = &s->rc_context;
  441. const double buffer_size = s->avctx->rc_buffer_size;
  442. const double fps = get_fps(s->avctx);
  443. const double min_rate = s->avctx->rc_min_rate / fps;
  444. const double max_rate = s->avctx->rc_max_rate / fps;
  445. const int pict_type = rce->new_pict_type;
  446. int qmin, qmax;
  447. get_qminmax(&qmin, &qmax, s, pict_type);
  448. /* modulation */
  449. if (s->rc_qmod_freq &&
  450. frame_num % s->rc_qmod_freq == 0 &&
  451. pict_type == AV_PICTURE_TYPE_P)
  452. q *= s->rc_qmod_amp;
  453. /* buffer overflow/underflow protection */
  454. if (buffer_size) {
  455. double expected_size = rcc->buffer_index;
  456. double q_limit;
  457. if (min_rate) {
  458. double d = 2 * (buffer_size - expected_size) / buffer_size;
  459. if (d > 1.0)
  460. d = 1.0;
  461. else if (d < 0.0001)
  462. d = 0.0001;
  463. q *= pow(d, 1.0 / s->rc_buffer_aggressivity);
  464. q_limit = bits2qp(rce,
  465. FFMAX((min_rate - buffer_size + rcc->buffer_index) *
  466. s->avctx->rc_min_vbv_overflow_use, 1));
  467. if (q > q_limit) {
  468. if (s->avctx->debug & FF_DEBUG_RC)
  469. av_log(s->avctx, AV_LOG_DEBUG,
  470. "limiting QP %f -> %f\n", q, q_limit);
  471. q = q_limit;
  472. }
  473. }
  474. if (max_rate) {
  475. double d = 2 * expected_size / buffer_size;
  476. if (d > 1.0)
  477. d = 1.0;
  478. else if (d < 0.0001)
  479. d = 0.0001;
  480. q /= pow(d, 1.0 / s->rc_buffer_aggressivity);
  481. q_limit = bits2qp(rce,
  482. FFMAX(rcc->buffer_index *
  483. s->avctx->rc_max_available_vbv_use,
  484. 1));
  485. if (q < q_limit) {
  486. if (s->avctx->debug & FF_DEBUG_RC)
  487. av_log(s->avctx, AV_LOG_DEBUG,
  488. "limiting QP %f -> %f\n", q, q_limit);
  489. q = q_limit;
  490. }
  491. }
  492. }
  493. av_dlog(s, "q:%f max:%f min:%f size:%f index:%f agr:%f\n",
  494. q, max_rate, min_rate, buffer_size, rcc->buffer_index,
  495. s->rc_buffer_aggressivity);
  496. if (s->rc_qsquish == 0.0 || qmin == qmax) {
  497. if (q < qmin)
  498. q = qmin;
  499. else if (q > qmax)
  500. q = qmax;
  501. } else {
  502. double min2 = log(qmin);
  503. double max2 = log(qmax);
  504. q = log(q);
  505. q = (q - min2) / (max2 - min2) - 0.5;
  506. q *= -4.0;
  507. q = 1.0 / (1.0 + exp(q));
  508. q = q * (max2 - min2) + min2;
  509. q = exp(q);
  510. }
  511. return q;
  512. }
  513. // ----------------------------------
  514. // 1 Pass Code
  515. static double predict_size(Predictor *p, double q, double var)
  516. {
  517. return p->coeff * var / (q * p->count);
  518. }
  519. static void update_predictor(Predictor *p, double q, double var, double size)
  520. {
  521. double new_coeff = size * q / (var + 1);
  522. if (var < 10)
  523. return;
  524. p->count *= p->decay;
  525. p->coeff *= p->decay;
  526. p->count++;
  527. p->coeff += new_coeff;
  528. }
  529. static void adaptive_quantization(MpegEncContext *s, double q)
  530. {
  531. int i;
  532. const float lumi_masking = s->avctx->lumi_masking / (128.0 * 128.0);
  533. const float dark_masking = s->avctx->dark_masking / (128.0 * 128.0);
  534. const float temp_cplx_masking = s->avctx->temporal_cplx_masking;
  535. const float spatial_cplx_masking = s->avctx->spatial_cplx_masking;
  536. const float p_masking = s->avctx->p_masking;
  537. const float border_masking = s->border_masking;
  538. float bits_sum = 0.0;
  539. float cplx_sum = 0.0;
  540. float *cplx_tab = s->cplx_tab;
  541. float *bits_tab = s->bits_tab;
  542. const int qmin = s->avctx->mb_lmin;
  543. const int qmax = s->avctx->mb_lmax;
  544. Picture *const pic = &s->current_picture;
  545. const int mb_width = s->mb_width;
  546. const int mb_height = s->mb_height;
  547. for (i = 0; i < s->mb_num; i++) {
  548. const int mb_xy = s->mb_index2xy[i];
  549. float temp_cplx = sqrt(pic->mc_mb_var[mb_xy]); // FIXME merge in pow()
  550. float spat_cplx = sqrt(pic->mb_var[mb_xy]);
  551. const int lumi = pic->mb_mean[mb_xy];
  552. float bits, cplx, factor;
  553. int mb_x = mb_xy % s->mb_stride;
  554. int mb_y = mb_xy / s->mb_stride;
  555. int mb_distance;
  556. float mb_factor = 0.0;
  557. if (spat_cplx < 4)
  558. spat_cplx = 4; // FIXME finetune
  559. if (temp_cplx < 4)
  560. temp_cplx = 4; // FIXME finetune
  561. if ((s->mb_type[mb_xy] & CANDIDATE_MB_TYPE_INTRA)) { // FIXME hq mode
  562. cplx = spat_cplx;
  563. factor = 1.0 + p_masking;
  564. } else {
  565. cplx = temp_cplx;
  566. factor = pow(temp_cplx, -temp_cplx_masking);
  567. }
  568. factor *= pow(spat_cplx, -spatial_cplx_masking);
  569. if (lumi > 127)
  570. factor *= (1.0 - (lumi - 128) * (lumi - 128) * lumi_masking);
  571. else
  572. factor *= (1.0 - (lumi - 128) * (lumi - 128) * dark_masking);
  573. if (mb_x < mb_width / 5) {
  574. mb_distance = mb_width / 5 - mb_x;
  575. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  576. } else if (mb_x > 4 * mb_width / 5) {
  577. mb_distance = mb_x - 4 * mb_width / 5;
  578. mb_factor = (float)mb_distance / (float)(mb_width / 5);
  579. }
  580. if (mb_y < mb_height / 5) {
  581. mb_distance = mb_height / 5 - mb_y;
  582. mb_factor = FFMAX(mb_factor,
  583. (float)mb_distance / (float)(mb_height / 5));
  584. } else if (mb_y > 4 * mb_height / 5) {
  585. mb_distance = mb_y - 4 * mb_height / 5;
  586. mb_factor = FFMAX(mb_factor,
  587. (float)mb_distance / (float)(mb_height / 5));
  588. }
  589. factor *= 1.0 - border_masking * mb_factor;
  590. if (factor < 0.00001)
  591. factor = 0.00001;
  592. bits = cplx * factor;
  593. cplx_sum += cplx;
  594. bits_sum += bits;
  595. cplx_tab[i] = cplx;
  596. bits_tab[i] = bits;
  597. }
  598. /* handle qmin/qmax clipping */
  599. if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
  600. float factor = bits_sum / cplx_sum;
  601. for (i = 0; i < s->mb_num; i++) {
  602. float newq = q * cplx_tab[i] / bits_tab[i];
  603. newq *= factor;
  604. if (newq > qmax) {
  605. bits_sum -= bits_tab[i];
  606. cplx_sum -= cplx_tab[i] * q / qmax;
  607. } else if (newq < qmin) {
  608. bits_sum -= bits_tab[i];
  609. cplx_sum -= cplx_tab[i] * q / qmin;
  610. }
  611. }
  612. if (bits_sum < 0.001)
  613. bits_sum = 0.001;
  614. if (cplx_sum < 0.001)
  615. cplx_sum = 0.001;
  616. }
  617. for (i = 0; i < s->mb_num; i++) {
  618. const int mb_xy = s->mb_index2xy[i];
  619. float newq = q * cplx_tab[i] / bits_tab[i];
  620. int intq;
  621. if (s->mpv_flags & FF_MPV_FLAG_NAQ) {
  622. newq *= bits_sum / cplx_sum;
  623. }
  624. intq = (int)(newq + 0.5);
  625. if (intq > qmax)
  626. intq = qmax;
  627. else if (intq < qmin)
  628. intq = qmin;
  629. s->lambda_table[mb_xy] = intq;
  630. }
  631. }
  632. void ff_get_2pass_fcode(MpegEncContext *s)
  633. {
  634. RateControlContext *rcc = &s->rc_context;
  635. RateControlEntry *rce = &rcc->entry[s->picture_number];
  636. s->f_code = rce->f_code;
  637. s->b_code = rce->b_code;
  638. }
  639. // FIXME rd or at least approx for dquant
  640. float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
  641. {
  642. float q;
  643. int qmin, qmax;
  644. float br_compensation;
  645. double diff;
  646. double short_term_q;
  647. double fps;
  648. int picture_number = s->picture_number;
  649. int64_t wanted_bits;
  650. RateControlContext *rcc = &s->rc_context;
  651. AVCodecContext *a = s->avctx;
  652. RateControlEntry local_rce, *rce;
  653. double bits;
  654. double rate_factor;
  655. int64_t var;
  656. const int pict_type = s->pict_type;
  657. Picture * const pic = &s->current_picture;
  658. emms_c();
  659. #if CONFIG_LIBXVID
  660. if ((s->flags & CODEC_FLAG_PASS2) &&
  661. s->avctx->rc_strategy == FF_RC_STRATEGY_XVID)
  662. return ff_xvid_rate_estimate_qscale(s, dry_run);
  663. #endif
  664. get_qminmax(&qmin, &qmax, s, pict_type);
  665. fps = get_fps(s->avctx);
  666. /* update predictors */
  667. if (picture_number > 2 && !dry_run) {
  668. const int64_t last_var =
  669. s->last_pict_type == AV_PICTURE_TYPE_I ? rcc->last_mb_var_sum
  670. : rcc->last_mc_mb_var_sum;
  671. av_assert1(s->frame_bits >= s->stuffing_bits);
  672. update_predictor(&rcc->pred[s->last_pict_type],
  673. rcc->last_qscale,
  674. sqrt(last_var),
  675. s->frame_bits - s->stuffing_bits);
  676. }
  677. if (s->flags & CODEC_FLAG_PASS2) {
  678. assert(picture_number >= 0);
  679. if (picture_number >= rcc->num_entries) {
  680. av_log(s, AV_LOG_ERROR, "Input is longer than 2-pass log file\n");
  681. return -1;
  682. }
  683. rce = &rcc->entry[picture_number];
  684. wanted_bits = rce->expected_bits;
  685. } else {
  686. Picture *dts_pic;
  687. rce = &local_rce;
  688. /* FIXME add a dts field to AVFrame and ensure it is set and use it
  689. * here instead of reordering but the reordering is simpler for now
  690. * until H.264 B-pyramid must be handled. */
  691. if (s->pict_type == AV_PICTURE_TYPE_B || s->low_delay)
  692. dts_pic = s->current_picture_ptr;
  693. else
  694. dts_pic = s->last_picture_ptr;
  695. if (!dts_pic || dts_pic->f->pts == AV_NOPTS_VALUE)
  696. wanted_bits = (uint64_t)(s->bit_rate * (double)picture_number / fps);
  697. else
  698. wanted_bits = (uint64_t)(s->bit_rate * (double)dts_pic->f->pts / fps);
  699. }
  700. diff = s->total_bits - wanted_bits;
  701. br_compensation = (a->bit_rate_tolerance - diff) / a->bit_rate_tolerance;
  702. if (br_compensation <= 0.0)
  703. br_compensation = 0.001;
  704. var = pict_type == AV_PICTURE_TYPE_I ? pic->mb_var_sum : pic->mc_mb_var_sum;
  705. short_term_q = 0; /* avoid warning */
  706. if (s->flags & CODEC_FLAG_PASS2) {
  707. if (pict_type != AV_PICTURE_TYPE_I)
  708. assert(pict_type == rce->new_pict_type);
  709. q = rce->new_qscale / br_compensation;
  710. av_dlog(s, "%f %f %f last:%d var:%"PRId64" type:%d//\n", q, rce->new_qscale,
  711. br_compensation, s->frame_bits, var, pict_type);
  712. } else {
  713. rce->pict_type =
  714. rce->new_pict_type = pict_type;
  715. rce->mc_mb_var_sum = pic->mc_mb_var_sum;
  716. rce->mb_var_sum = pic->mb_var_sum;
  717. rce->qscale = FF_QP2LAMBDA * 2;
  718. rce->f_code = s->f_code;
  719. rce->b_code = s->b_code;
  720. rce->misc_bits = 1;
  721. bits = predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  722. if (pict_type == AV_PICTURE_TYPE_I) {
  723. rce->i_count = s->mb_num;
  724. rce->i_tex_bits = bits;
  725. rce->p_tex_bits = 0;
  726. rce->mv_bits = 0;
  727. } else {
  728. rce->i_count = 0; // FIXME we do know this approx
  729. rce->i_tex_bits = 0;
  730. rce->p_tex_bits = bits * 0.9;
  731. rce->mv_bits = bits * 0.1;
  732. }
  733. rcc->i_cplx_sum[pict_type] += rce->i_tex_bits * rce->qscale;
  734. rcc->p_cplx_sum[pict_type] += rce->p_tex_bits * rce->qscale;
  735. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  736. rcc->frame_count[pict_type]++;
  737. rate_factor = rcc->pass1_wanted_bits /
  738. rcc->pass1_rc_eq_output_sum * br_compensation;
  739. q = get_qscale(s, rce, rate_factor, picture_number);
  740. if (q < 0)
  741. return -1;
  742. assert(q > 0.0);
  743. q = get_diff_limited_q(s, rce, q);
  744. assert(q > 0.0);
  745. // FIXME type dependent blur like in 2-pass
  746. if (pict_type == AV_PICTURE_TYPE_P || s->intra_only) {
  747. rcc->short_term_qsum *= a->qblur;
  748. rcc->short_term_qcount *= a->qblur;
  749. rcc->short_term_qsum += q;
  750. rcc->short_term_qcount++;
  751. q = short_term_q = rcc->short_term_qsum / rcc->short_term_qcount;
  752. }
  753. assert(q > 0.0);
  754. q = modify_qscale(s, rce, q, picture_number);
  755. rcc->pass1_wanted_bits += s->bit_rate / fps;
  756. assert(q > 0.0);
  757. }
  758. if (s->avctx->debug & FF_DEBUG_RC) {
  759. av_log(s->avctx, AV_LOG_DEBUG,
  760. "%c qp:%d<%2.1f<%d %d want:%d total:%d comp:%f st_q:%2.2f "
  761. "size:%d var:%"PRId64"/%"PRId64" br:%d fps:%d\n",
  762. av_get_picture_type_char(pict_type),
  763. qmin, q, qmax, picture_number,
  764. (int)wanted_bits / 1000, (int)s->total_bits / 1000,
  765. br_compensation, short_term_q, s->frame_bits,
  766. pic->mb_var_sum, pic->mc_mb_var_sum,
  767. s->bit_rate / 1000, (int)fps);
  768. }
  769. if (q < qmin)
  770. q = qmin;
  771. else if (q > qmax)
  772. q = qmax;
  773. if (s->adaptive_quant)
  774. adaptive_quantization(s, q);
  775. else
  776. q = (int)(q + 0.5);
  777. if (!dry_run) {
  778. rcc->last_qscale = q;
  779. rcc->last_mc_mb_var_sum = pic->mc_mb_var_sum;
  780. rcc->last_mb_var_sum = pic->mb_var_sum;
  781. }
  782. return q;
  783. }
  784. // ----------------------------------------------
  785. // 2-Pass code
  786. static int init_pass2(MpegEncContext *s)
  787. {
  788. RateControlContext *rcc = &s->rc_context;
  789. AVCodecContext *a = s->avctx;
  790. int i, toobig;
  791. double fps = get_fps(s->avctx);
  792. double complexity[5] = { 0 }; // approximate bits at quant=1
  793. uint64_t const_bits[5] = { 0 }; // quantizer independent bits
  794. uint64_t all_const_bits;
  795. uint64_t all_available_bits = (uint64_t)(s->bit_rate *
  796. (double)rcc->num_entries / fps);
  797. double rate_factor = 0;
  798. double step;
  799. const int filter_size = (int)(a->qblur * 4) | 1;
  800. double expected_bits = 0; // init to silence gcc warning
  801. double *qscale, *blurred_qscale, qscale_sum;
  802. /* find complexity & const_bits & decide the pict_types */
  803. for (i = 0; i < rcc->num_entries; i++) {
  804. RateControlEntry *rce = &rcc->entry[i];
  805. rce->new_pict_type = rce->pict_type;
  806. rcc->i_cplx_sum[rce->pict_type] += rce->i_tex_bits * rce->qscale;
  807. rcc->p_cplx_sum[rce->pict_type] += rce->p_tex_bits * rce->qscale;
  808. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  809. rcc->frame_count[rce->pict_type]++;
  810. complexity[rce->new_pict_type] += (rce->i_tex_bits + rce->p_tex_bits) *
  811. (double)rce->qscale;
  812. const_bits[rce->new_pict_type] += rce->mv_bits + rce->misc_bits;
  813. }
  814. all_const_bits = const_bits[AV_PICTURE_TYPE_I] +
  815. const_bits[AV_PICTURE_TYPE_P] +
  816. const_bits[AV_PICTURE_TYPE_B];
  817. if (all_available_bits < all_const_bits) {
  818. av_log(s->avctx, AV_LOG_ERROR, "requested bitrate is too low\n");
  819. return -1;
  820. }
  821. qscale = av_malloc_array(rcc->num_entries, sizeof(double));
  822. blurred_qscale = av_malloc_array(rcc->num_entries, sizeof(double));
  823. if (!qscale || !blurred_qscale) {
  824. av_free(qscale);
  825. av_free(blurred_qscale);
  826. return AVERROR(ENOMEM);
  827. }
  828. toobig = 0;
  829. for (step = 256 * 256; step > 0.0000001; step *= 0.5) {
  830. expected_bits = 0;
  831. rate_factor += step;
  832. rcc->buffer_index = s->avctx->rc_buffer_size / 2;
  833. /* find qscale */
  834. for (i = 0; i < rcc->num_entries; i++) {
  835. RateControlEntry *rce = &rcc->entry[i];
  836. qscale[i] = get_qscale(s, &rcc->entry[i], rate_factor, i);
  837. rcc->last_qscale_for[rce->pict_type] = qscale[i];
  838. }
  839. assert(filter_size % 2 == 1);
  840. /* fixed I/B QP relative to P mode */
  841. for (i = FFMAX(0, rcc->num_entries - 300); i < rcc->num_entries; i++) {
  842. RateControlEntry *rce = &rcc->entry[i];
  843. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  844. }
  845. for (i = rcc->num_entries - 1; i >= 0; i--) {
  846. RateControlEntry *rce = &rcc->entry[i];
  847. qscale[i] = get_diff_limited_q(s, rce, qscale[i]);
  848. }
  849. /* smooth curve */
  850. for (i = 0; i < rcc->num_entries; i++) {
  851. RateControlEntry *rce = &rcc->entry[i];
  852. const int pict_type = rce->new_pict_type;
  853. int j;
  854. double q = 0.0, sum = 0.0;
  855. for (j = 0; j < filter_size; j++) {
  856. int index = i + j - filter_size / 2;
  857. double d = index - i;
  858. double coeff = a->qblur == 0 ? 1.0 : exp(-d * d / (a->qblur * a->qblur));
  859. if (index < 0 || index >= rcc->num_entries)
  860. continue;
  861. if (pict_type != rcc->entry[index].new_pict_type)
  862. continue;
  863. q += qscale[index] * coeff;
  864. sum += coeff;
  865. }
  866. blurred_qscale[i] = q / sum;
  867. }
  868. /* find expected bits */
  869. for (i = 0; i < rcc->num_entries; i++) {
  870. RateControlEntry *rce = &rcc->entry[i];
  871. double bits;
  872. rce->new_qscale = modify_qscale(s, rce, blurred_qscale[i], i);
  873. bits = qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  874. bits += 8 * ff_vbv_update(s, bits);
  875. rce->expected_bits = expected_bits;
  876. expected_bits += bits;
  877. }
  878. av_dlog(s->avctx,
  879. "expected_bits: %f all_available_bits: %d rate_factor: %f\n",
  880. expected_bits, (int)all_available_bits, rate_factor);
  881. if (expected_bits > all_available_bits) {
  882. rate_factor -= step;
  883. ++toobig;
  884. }
  885. }
  886. av_free(qscale);
  887. av_free(blurred_qscale);
  888. /* check bitrate calculations and print info */
  889. qscale_sum = 0.0;
  890. for (i = 0; i < rcc->num_entries; i++) {
  891. av_dlog(s, "[lavc rc] entry[%d].new_qscale = %.3f qp = %.3f\n",
  892. i,
  893. rcc->entry[i].new_qscale,
  894. rcc->entry[i].new_qscale / FF_QP2LAMBDA);
  895. qscale_sum += av_clip(rcc->entry[i].new_qscale / FF_QP2LAMBDA,
  896. s->avctx->qmin, s->avctx->qmax);
  897. }
  898. assert(toobig <= 40);
  899. av_log(s->avctx, AV_LOG_DEBUG,
  900. "[lavc rc] requested bitrate: %d bps expected bitrate: %d bps\n",
  901. s->bit_rate,
  902. (int)(expected_bits / ((double)all_available_bits / s->bit_rate)));
  903. av_log(s->avctx, AV_LOG_DEBUG,
  904. "[lavc rc] estimated target average qp: %.3f\n",
  905. (float)qscale_sum / rcc->num_entries);
  906. if (toobig == 0) {
  907. av_log(s->avctx, AV_LOG_INFO,
  908. "[lavc rc] Using all of requested bitrate is not "
  909. "necessary for this video with these parameters.\n");
  910. } else if (toobig == 40) {
  911. av_log(s->avctx, AV_LOG_ERROR,
  912. "[lavc rc] Error: bitrate too low for this video "
  913. "with these parameters.\n");
  914. return -1;
  915. } else if (fabs(expected_bits / all_available_bits - 1.0) > 0.01) {
  916. av_log(s->avctx, AV_LOG_ERROR,
  917. "[lavc rc] Error: 2pass curve failed to converge\n");
  918. return -1;
  919. }
  920. return 0;
  921. }