You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

903 lines
25KB

  1. /*
  2. * yuv2rgb.c, Software YUV to RGB converter
  3. *
  4. * Copyright (C) 1999, Aaron Holtzman <aholtzma@ess.engr.uvic.ca>
  5. *
  6. * Functions broken out from display_x11.c and several new modes
  7. * added by HÃ¥kan Hjort <d95hjort@dtek.chalmers.se>
  8. *
  9. * 15 & 16 bpp support by Franck Sicard <Franck.Sicard@solsoft.fr>
  10. *
  11. * MMX/MMX2 template stuff (needed for fast movntq support),
  12. * 1,4,8bpp support and context / deglobalize stuff
  13. * by Michael Niedermayer (michaelni@gmx.at)
  14. *
  15. * This file is part of mpeg2dec, a free MPEG-2 video decoder
  16. *
  17. * mpeg2dec is free software; you can redistribute it and/or modify
  18. * it under the terms of the GNU General Public License as published by
  19. * the Free Software Foundation; either version 2, or (at your option)
  20. * any later version.
  21. *
  22. * mpeg2dec is distributed in the hope that it will be useful,
  23. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  24. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  25. * GNU General Public License for more details.
  26. *
  27. * You should have received a copy of the GNU General Public License
  28. * along with mpeg2dec; if not, write to the Free Software
  29. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  30. */
  31. #include <stdio.h>
  32. #include <stdlib.h>
  33. #include <inttypes.h>
  34. #include <assert.h>
  35. #include "config.h"
  36. #include "rgb2rgb.h"
  37. #include "swscale.h"
  38. #include "swscale_internal.h"
  39. #ifdef HAVE_VIS
  40. #include "yuv2rgb_vis.c"
  41. #endif
  42. #ifdef HAVE_MLIB
  43. #include "yuv2rgb_mlib.c"
  44. #endif
  45. #define DITHER1XBPP // only for mmx
  46. const uint8_t __attribute__((aligned(8))) dither_2x2_4[2][8]={
  47. { 1, 3, 1, 3, 1, 3, 1, 3, },
  48. { 2, 0, 2, 0, 2, 0, 2, 0, },
  49. };
  50. const uint8_t __attribute__((aligned(8))) dither_2x2_8[2][8]={
  51. { 6, 2, 6, 2, 6, 2, 6, 2, },
  52. { 0, 4, 0, 4, 0, 4, 0, 4, },
  53. };
  54. const uint8_t __attribute__((aligned(8))) dither_8x8_32[8][8]={
  55. { 17, 9, 23, 15, 16, 8, 22, 14, },
  56. { 5, 29, 3, 27, 4, 28, 2, 26, },
  57. { 21, 13, 19, 11, 20, 12, 18, 10, },
  58. { 0, 24, 6, 30, 1, 25, 7, 31, },
  59. { 16, 8, 22, 14, 17, 9, 23, 15, },
  60. { 4, 28, 2, 26, 5, 29, 3, 27, },
  61. { 20, 12, 18, 10, 21, 13, 19, 11, },
  62. { 1, 25, 7, 31, 0, 24, 6, 30, },
  63. };
  64. #if 0
  65. const uint8_t __attribute__((aligned(8))) dither_8x8_64[8][8]={
  66. { 0, 48, 12, 60, 3, 51, 15, 63, },
  67. { 32, 16, 44, 28, 35, 19, 47, 31, },
  68. { 8, 56, 4, 52, 11, 59, 7, 55, },
  69. { 40, 24, 36, 20, 43, 27, 39, 23, },
  70. { 2, 50, 14, 62, 1, 49, 13, 61, },
  71. { 34, 18, 46, 30, 33, 17, 45, 29, },
  72. { 10, 58, 6, 54, 9, 57, 5, 53, },
  73. { 42, 26, 38, 22, 41, 25, 37, 21, },
  74. };
  75. #endif
  76. const uint8_t __attribute__((aligned(8))) dither_8x8_73[8][8]={
  77. { 0, 55, 14, 68, 3, 58, 17, 72, },
  78. { 37, 18, 50, 32, 40, 22, 54, 35, },
  79. { 9, 64, 5, 59, 13, 67, 8, 63, },
  80. { 46, 27, 41, 23, 49, 31, 44, 26, },
  81. { 2, 57, 16, 71, 1, 56, 15, 70, },
  82. { 39, 21, 52, 34, 38, 19, 51, 33, },
  83. { 11, 66, 7, 62, 10, 65, 6, 60, },
  84. { 48, 30, 43, 25, 47, 29, 42, 24, },
  85. };
  86. #if 0
  87. const uint8_t __attribute__((aligned(8))) dither_8x8_128[8][8]={
  88. { 68, 36, 92, 60, 66, 34, 90, 58, },
  89. { 20, 116, 12, 108, 18, 114, 10, 106, },
  90. { 84, 52, 76, 44, 82, 50, 74, 42, },
  91. { 0, 96, 24, 120, 6, 102, 30, 126, },
  92. { 64, 32, 88, 56, 70, 38, 94, 62, },
  93. { 16, 112, 8, 104, 22, 118, 14, 110, },
  94. { 80, 48, 72, 40, 86, 54, 78, 46, },
  95. { 4, 100, 28, 124, 2, 98, 26, 122, },
  96. };
  97. #endif
  98. #if 1
  99. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  100. {117, 62, 158, 103, 113, 58, 155, 100, },
  101. { 34, 199, 21, 186, 31, 196, 17, 182, },
  102. {144, 89, 131, 76, 141, 86, 127, 72, },
  103. { 0, 165, 41, 206, 10, 175, 52, 217, },
  104. {110, 55, 151, 96, 120, 65, 162, 107, },
  105. { 28, 193, 14, 179, 38, 203, 24, 189, },
  106. {138, 83, 124, 69, 148, 93, 134, 79, },
  107. { 7, 172, 48, 213, 3, 168, 45, 210, },
  108. };
  109. #elif 1
  110. // tries to correct a gamma of 1.5
  111. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  112. { 0, 143, 18, 200, 2, 156, 25, 215, },
  113. { 78, 28, 125, 64, 89, 36, 138, 74, },
  114. { 10, 180, 3, 161, 16, 195, 8, 175, },
  115. {109, 51, 93, 38, 121, 60, 105, 47, },
  116. { 1, 152, 23, 210, 0, 147, 20, 205, },
  117. { 85, 33, 134, 71, 81, 30, 130, 67, },
  118. { 14, 190, 6, 171, 12, 185, 5, 166, },
  119. {117, 57, 101, 44, 113, 54, 97, 41, },
  120. };
  121. #elif 1
  122. // tries to correct a gamma of 2.0
  123. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  124. { 0, 124, 8, 193, 0, 140, 12, 213, },
  125. { 55, 14, 104, 42, 66, 19, 119, 52, },
  126. { 3, 168, 1, 145, 6, 187, 3, 162, },
  127. { 86, 31, 70, 21, 99, 39, 82, 28, },
  128. { 0, 134, 11, 206, 0, 129, 9, 200, },
  129. { 62, 17, 114, 48, 58, 16, 109, 45, },
  130. { 5, 181, 2, 157, 4, 175, 1, 151, },
  131. { 95, 36, 78, 26, 90, 34, 74, 24, },
  132. };
  133. #else
  134. // tries to correct a gamma of 2.5
  135. const uint8_t __attribute__((aligned(8))) dither_8x8_220[8][8]={
  136. { 0, 107, 3, 187, 0, 125, 6, 212, },
  137. { 39, 7, 86, 28, 49, 11, 102, 36, },
  138. { 1, 158, 0, 131, 3, 180, 1, 151, },
  139. { 68, 19, 52, 12, 81, 25, 64, 17, },
  140. { 0, 119, 5, 203, 0, 113, 4, 195, },
  141. { 45, 9, 96, 33, 42, 8, 91, 30, },
  142. { 2, 172, 1, 144, 2, 165, 0, 137, },
  143. { 77, 23, 60, 15, 72, 21, 56, 14, },
  144. };
  145. #endif
  146. #ifdef HAVE_MMX
  147. /* hope these constant values are cache line aligned */
  148. static uint64_t attribute_used __attribute__((aligned(8))) mmx_00ffw = 0x00ff00ff00ff00ffULL;
  149. static uint64_t attribute_used __attribute__((aligned(8))) mmx_redmask = 0xf8f8f8f8f8f8f8f8ULL;
  150. static uint64_t attribute_used __attribute__((aligned(8))) mmx_grnmask = 0xfcfcfcfcfcfcfcfcULL;
  151. static uint64_t attribute_used __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFULL;
  152. static uint64_t attribute_used __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00ULL;
  153. static uint64_t attribute_used __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000ULL;
  154. // the volatile is required because gcc otherwise optimizes some writes away not knowing that these
  155. // are read in the asm block
  156. static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
  157. static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
  158. static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
  159. static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
  160. static uint64_t __attribute__((aligned(8))) dither4[2]={
  161. 0x0103010301030103LL,
  162. 0x0200020002000200LL,};
  163. static uint64_t __attribute__((aligned(8))) dither8[2]={
  164. 0x0602060206020602LL,
  165. 0x0004000400040004LL,};
  166. #undef HAVE_MMX
  167. //MMX versions
  168. #undef RENAME
  169. #define HAVE_MMX
  170. #undef HAVE_MMX2
  171. #undef HAVE_3DNOW
  172. #define RENAME(a) a ## _MMX
  173. #include "yuv2rgb_template.c"
  174. //MMX2 versions
  175. #undef RENAME
  176. #define HAVE_MMX
  177. #define HAVE_MMX2
  178. #undef HAVE_3DNOW
  179. #define RENAME(a) a ## _MMX2
  180. #include "yuv2rgb_template.c"
  181. #endif /* defined(ARCH_X86) */
  182. const int32_t Inverse_Table_6_9[8][4] = {
  183. {117504, 138453, 13954, 34903}, /* no sequence_display_extension */
  184. {117504, 138453, 13954, 34903}, /* ITU-R Rec. 709 (1990) */
  185. {104597, 132201, 25675, 53279}, /* unspecified */
  186. {104597, 132201, 25675, 53279}, /* reserved */
  187. {104448, 132798, 24759, 53109}, /* FCC */
  188. {104597, 132201, 25675, 53279}, /* ITU-R Rec. 624-4 System B, G */
  189. {104597, 132201, 25675, 53279}, /* SMPTE 170M */
  190. {117579, 136230, 16907, 35559} /* SMPTE 240M (1987) */
  191. };
  192. #define RGB(i) \
  193. U = pu[i]; \
  194. V = pv[i]; \
  195. r = (void *)c->table_rV[V]; \
  196. g = (void *)(c->table_gU[U] + c->table_gV[V]); \
  197. b = (void *)c->table_bU[U];
  198. #define DST1(i) \
  199. Y = py_1[2*i]; \
  200. dst_1[2*i] = r[Y] + g[Y] + b[Y]; \
  201. Y = py_1[2*i+1]; \
  202. dst_1[2*i+1] = r[Y] + g[Y] + b[Y];
  203. #define DST2(i) \
  204. Y = py_2[2*i]; \
  205. dst_2[2*i] = r[Y] + g[Y] + b[Y]; \
  206. Y = py_2[2*i+1]; \
  207. dst_2[2*i+1] = r[Y] + g[Y] + b[Y];
  208. #define DST1RGB(i) \
  209. Y = py_1[2*i]; \
  210. dst_1[6*i] = r[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = b[Y]; \
  211. Y = py_1[2*i+1]; \
  212. dst_1[6*i+3] = r[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = b[Y];
  213. #define DST2RGB(i) \
  214. Y = py_2[2*i]; \
  215. dst_2[6*i] = r[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = b[Y]; \
  216. Y = py_2[2*i+1]; \
  217. dst_2[6*i+3] = r[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = b[Y];
  218. #define DST1BGR(i) \
  219. Y = py_1[2*i]; \
  220. dst_1[6*i] = b[Y]; dst_1[6*i+1] = g[Y]; dst_1[6*i+2] = r[Y]; \
  221. Y = py_1[2*i+1]; \
  222. dst_1[6*i+3] = b[Y]; dst_1[6*i+4] = g[Y]; dst_1[6*i+5] = r[Y];
  223. #define DST2BGR(i) \
  224. Y = py_2[2*i]; \
  225. dst_2[6*i] = b[Y]; dst_2[6*i+1] = g[Y]; dst_2[6*i+2] = r[Y]; \
  226. Y = py_2[2*i+1]; \
  227. dst_2[6*i+3] = b[Y]; dst_2[6*i+4] = g[Y]; dst_2[6*i+5] = r[Y];
  228. #define PROLOG(func_name, dst_type) \
  229. static int func_name(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY, \
  230. int srcSliceH, uint8_t* dst[], int dstStride[]){\
  231. int y;\
  232. \
  233. if (c->srcFormat == PIX_FMT_YUV422P){\
  234. srcStride[1] *= 2;\
  235. srcStride[2] *= 2;\
  236. }\
  237. for (y=0; y<srcSliceH; y+=2){\
  238. dst_type *dst_1= (dst_type*)(dst[0] + (y+srcSliceY )*dstStride[0]);\
  239. dst_type *dst_2= (dst_type*)(dst[0] + (y+srcSliceY+1)*dstStride[0]);\
  240. dst_type av_unused *r, *b;\
  241. dst_type *g;\
  242. uint8_t *py_1= src[0] + y*srcStride[0];\
  243. uint8_t *py_2= py_1 + srcStride[0];\
  244. uint8_t *pu= src[1] + (y>>1)*srcStride[1];\
  245. uint8_t *pv= src[2] + (y>>1)*srcStride[2];\
  246. unsigned int h_size= c->dstW>>3;\
  247. while (h_size--) {\
  248. int av_unused U, V;\
  249. int Y;\
  250. #define EPILOG1(dst_delta)\
  251. pu += 4;\
  252. pv += 4;\
  253. py_1 += 8;\
  254. py_2 += 8;\
  255. dst_1 += dst_delta;\
  256. dst_2 += dst_delta;\
  257. }\
  258. if (c->dstW & 4) {\
  259. int av_unused U, V;\
  260. int Y;\
  261. #define EPILOG2()\
  262. }\
  263. }\
  264. return srcSliceH;\
  265. }
  266. #define EPILOG(dst_delta)\
  267. EPILOG1(dst_delta)\
  268. EPILOG2()
  269. PROLOG(yuv2rgb_c_32, uint32_t)
  270. RGB(0);
  271. DST1(0);
  272. DST2(0);
  273. RGB(1);
  274. DST2(1);
  275. DST1(1);
  276. RGB(2);
  277. DST1(2);
  278. DST2(2);
  279. RGB(3);
  280. DST2(3);
  281. DST1(3);
  282. EPILOG1(8)
  283. RGB(0);
  284. DST1(0);
  285. DST2(0);
  286. RGB(1);
  287. DST2(1);
  288. DST1(1);
  289. EPILOG2()
  290. PROLOG(yuv2rgb_c_24_rgb, uint8_t)
  291. RGB(0);
  292. DST1RGB(0);
  293. DST2RGB(0);
  294. RGB(1);
  295. DST2RGB(1);
  296. DST1RGB(1);
  297. RGB(2);
  298. DST1RGB(2);
  299. DST2RGB(2);
  300. RGB(3);
  301. DST2RGB(3);
  302. DST1RGB(3);
  303. EPILOG1(24)
  304. RGB(0);
  305. DST1RGB(0);
  306. DST2RGB(0);
  307. RGB(1);
  308. DST2RGB(1);
  309. DST1RGB(1);
  310. EPILOG2()
  311. // only trivial mods from yuv2rgb_c_24_rgb
  312. PROLOG(yuv2rgb_c_24_bgr, uint8_t)
  313. RGB(0);
  314. DST1BGR(0);
  315. DST2BGR(0);
  316. RGB(1);
  317. DST2BGR(1);
  318. DST1BGR(1);
  319. RGB(2);
  320. DST1BGR(2);
  321. DST2BGR(2);
  322. RGB(3);
  323. DST2BGR(3);
  324. DST1BGR(3);
  325. EPILOG1(24)
  326. RGB(0);
  327. DST1BGR(0);
  328. DST2BGR(0);
  329. RGB(1);
  330. DST2BGR(1);
  331. DST1BGR(1);
  332. EPILOG2()
  333. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  334. // r, g, b, dst_1, dst_2
  335. PROLOG(yuv2rgb_c_16, uint16_t)
  336. RGB(0);
  337. DST1(0);
  338. DST2(0);
  339. RGB(1);
  340. DST2(1);
  341. DST1(1);
  342. RGB(2);
  343. DST1(2);
  344. DST2(2);
  345. RGB(3);
  346. DST2(3);
  347. DST1(3);
  348. EPILOG(8)
  349. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  350. // r, g, b, dst_1, dst_2
  351. PROLOG(yuv2rgb_c_8, uint8_t)
  352. RGB(0);
  353. DST1(0);
  354. DST2(0);
  355. RGB(1);
  356. DST2(1);
  357. DST1(1);
  358. RGB(2);
  359. DST1(2);
  360. DST2(2);
  361. RGB(3);
  362. DST2(3);
  363. DST1(3);
  364. EPILOG(8)
  365. // r, g, b, dst_1, dst_2
  366. PROLOG(yuv2rgb_c_8_ordered_dither, uint8_t)
  367. const uint8_t *d32= dither_8x8_32[y&7];
  368. const uint8_t *d64= dither_8x8_73[y&7];
  369. #define DST1bpp8(i,o) \
  370. Y = py_1[2*i]; \
  371. dst_1[2*i] = r[Y+d32[0+o]] + g[Y+d32[0+o]] + b[Y+d64[0+o]]; \
  372. Y = py_1[2*i+1]; \
  373. dst_1[2*i+1] = r[Y+d32[1+o]] + g[Y+d32[1+o]] + b[Y+d64[1+o]];
  374. #define DST2bpp8(i,o) \
  375. Y = py_2[2*i]; \
  376. dst_2[2*i] = r[Y+d32[8+o]] + g[Y+d32[8+o]] + b[Y+d64[8+o]]; \
  377. Y = py_2[2*i+1]; \
  378. dst_2[2*i+1] = r[Y+d32[9+o]] + g[Y+d32[9+o]] + b[Y+d64[9+o]];
  379. RGB(0);
  380. DST1bpp8(0,0);
  381. DST2bpp8(0,0);
  382. RGB(1);
  383. DST2bpp8(1,2);
  384. DST1bpp8(1,2);
  385. RGB(2);
  386. DST1bpp8(2,4);
  387. DST2bpp8(2,4);
  388. RGB(3);
  389. DST2bpp8(3,6);
  390. DST1bpp8(3,6);
  391. EPILOG(8)
  392. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  393. // r, g, b, dst_1, dst_2
  394. PROLOG(yuv2rgb_c_4, uint8_t)
  395. int acc;
  396. #define DST1_4(i) \
  397. Y = py_1[2*i]; \
  398. acc = r[Y] + g[Y] + b[Y]; \
  399. Y = py_1[2*i+1]; \
  400. acc |= (r[Y] + g[Y] + b[Y])<<4; \
  401. dst_1[i] = acc;
  402. #define DST2_4(i) \
  403. Y = py_2[2*i]; \
  404. acc = r[Y] + g[Y] + b[Y]; \
  405. Y = py_2[2*i+1]; \
  406. acc |= (r[Y] + g[Y] + b[Y])<<4; \
  407. dst_2[i] = acc;
  408. RGB(0);
  409. DST1_4(0);
  410. DST2_4(0);
  411. RGB(1);
  412. DST2_4(1);
  413. DST1_4(1);
  414. RGB(2);
  415. DST1_4(2);
  416. DST2_4(2);
  417. RGB(3);
  418. DST2_4(3);
  419. DST1_4(3);
  420. EPILOG(4)
  421. PROLOG(yuv2rgb_c_4_ordered_dither, uint8_t)
  422. const uint8_t *d64= dither_8x8_73[y&7];
  423. const uint8_t *d128=dither_8x8_220[y&7];
  424. int acc;
  425. #define DST1bpp4(i,o) \
  426. Y = py_1[2*i]; \
  427. acc = r[Y+d128[0+o]] + g[Y+d64[0+o]] + b[Y+d128[0+o]]; \
  428. Y = py_1[2*i+1]; \
  429. acc |= (r[Y+d128[1+o]] + g[Y+d64[1+o]] + b[Y+d128[1+o]])<<4; \
  430. dst_1[i]= acc;
  431. #define DST2bpp4(i,o) \
  432. Y = py_2[2*i]; \
  433. acc = r[Y+d128[8+o]] + g[Y+d64[8+o]] + b[Y+d128[8+o]]; \
  434. Y = py_2[2*i+1]; \
  435. acc |= (r[Y+d128[9+o]] + g[Y+d64[9+o]] + b[Y+d128[9+o]])<<4; \
  436. dst_2[i]= acc;
  437. RGB(0);
  438. DST1bpp4(0,0);
  439. DST2bpp4(0,0);
  440. RGB(1);
  441. DST2bpp4(1,2);
  442. DST1bpp4(1,2);
  443. RGB(2);
  444. DST1bpp4(2,4);
  445. DST2bpp4(2,4);
  446. RGB(3);
  447. DST2bpp4(3,6);
  448. DST1bpp4(3,6);
  449. EPILOG(4)
  450. // This is exactly the same code as yuv2rgb_c_32 except for the types of
  451. // r, g, b, dst_1, dst_2
  452. PROLOG(yuv2rgb_c_4b, uint8_t)
  453. RGB(0);
  454. DST1(0);
  455. DST2(0);
  456. RGB(1);
  457. DST2(1);
  458. DST1(1);
  459. RGB(2);
  460. DST1(2);
  461. DST2(2);
  462. RGB(3);
  463. DST2(3);
  464. DST1(3);
  465. EPILOG(8)
  466. PROLOG(yuv2rgb_c_4b_ordered_dither, uint8_t)
  467. const uint8_t *d64= dither_8x8_73[y&7];
  468. const uint8_t *d128=dither_8x8_220[y&7];
  469. #define DST1bpp4b(i,o) \
  470. Y = py_1[2*i]; \
  471. dst_1[2*i] = r[Y+d128[0+o]] + g[Y+d64[0+o]] + b[Y+d128[0+o]]; \
  472. Y = py_1[2*i+1]; \
  473. dst_1[2*i+1] = r[Y+d128[1+o]] + g[Y+d64[1+o]] + b[Y+d128[1+o]];
  474. #define DST2bpp4b(i,o) \
  475. Y = py_2[2*i]; \
  476. dst_2[2*i] = r[Y+d128[8+o]] + g[Y+d64[8+o]] + b[Y+d128[8+o]]; \
  477. Y = py_2[2*i+1]; \
  478. dst_2[2*i+1] = r[Y+d128[9+o]] + g[Y+d64[9+o]] + b[Y+d128[9+o]];
  479. RGB(0);
  480. DST1bpp4b(0,0);
  481. DST2bpp4b(0,0);
  482. RGB(1);
  483. DST2bpp4b(1,2);
  484. DST1bpp4b(1,2);
  485. RGB(2);
  486. DST1bpp4b(2,4);
  487. DST2bpp4b(2,4);
  488. RGB(3);
  489. DST2bpp4b(3,6);
  490. DST1bpp4b(3,6);
  491. EPILOG(8)
  492. PROLOG(yuv2rgb_c_1_ordered_dither, uint8_t)
  493. const uint8_t *d128=dither_8x8_220[y&7];
  494. char out_1=0, out_2=0;
  495. g= c->table_gU[128] + c->table_gV[128];
  496. #define DST1bpp1(i,o) \
  497. Y = py_1[2*i]; \
  498. out_1+= out_1 + g[Y+d128[0+o]]; \
  499. Y = py_1[2*i+1]; \
  500. out_1+= out_1 + g[Y+d128[1+o]];
  501. #define DST2bpp1(i,o) \
  502. Y = py_2[2*i]; \
  503. out_2+= out_2 + g[Y+d128[8+o]]; \
  504. Y = py_2[2*i+1]; \
  505. out_2+= out_2 + g[Y+d128[9+o]];
  506. DST1bpp1(0,0);
  507. DST2bpp1(0,0);
  508. DST2bpp1(1,2);
  509. DST1bpp1(1,2);
  510. DST1bpp1(2,4);
  511. DST2bpp1(2,4);
  512. DST2bpp1(3,6);
  513. DST1bpp1(3,6);
  514. dst_1[0]= out_1;
  515. dst_2[0]= out_2;
  516. EPILOG(1)
  517. SwsFunc yuv2rgb_get_func_ptr (SwsContext *c)
  518. {
  519. #if defined(HAVE_MMX2) || defined(HAVE_MMX)
  520. if (c->flags & SWS_CPU_CAPS_MMX2){
  521. switch(c->dstFormat){
  522. case PIX_FMT_RGB32: return yuv420_rgb32_MMX2;
  523. case PIX_FMT_BGR24: return yuv420_rgb24_MMX2;
  524. case PIX_FMT_BGR565: return yuv420_rgb16_MMX2;
  525. case PIX_FMT_BGR555: return yuv420_rgb15_MMX2;
  526. }
  527. }
  528. if (c->flags & SWS_CPU_CAPS_MMX){
  529. switch(c->dstFormat){
  530. case PIX_FMT_RGB32: return yuv420_rgb32_MMX;
  531. case PIX_FMT_BGR24: return yuv420_rgb24_MMX;
  532. case PIX_FMT_BGR565: return yuv420_rgb16_MMX;
  533. case PIX_FMT_BGR555: return yuv420_rgb15_MMX;
  534. }
  535. }
  536. #endif
  537. #ifdef HAVE_VIS
  538. {
  539. SwsFunc t= yuv2rgb_init_vis(c);
  540. if (t) return t;
  541. }
  542. #endif
  543. #ifdef HAVE_MLIB
  544. {
  545. SwsFunc t= yuv2rgb_init_mlib(c);
  546. if (t) return t;
  547. }
  548. #endif
  549. #ifdef HAVE_ALTIVEC
  550. if (c->flags & SWS_CPU_CAPS_ALTIVEC)
  551. {
  552. SwsFunc t = yuv2rgb_init_altivec(c);
  553. if (t) return t;
  554. }
  555. #endif
  556. #ifdef ARCH_BFIN
  557. if (c->flags & SWS_CPU_CAPS_BFIN)
  558. {
  559. SwsFunc t = ff_bfin_yuv2rgb_get_func_ptr (c);
  560. if (t) return t;
  561. }
  562. #endif
  563. av_log(c, AV_LOG_WARNING, "No accelerated colorspace conversion found\n");
  564. switch(c->dstFormat){
  565. case PIX_FMT_BGR32:
  566. case PIX_FMT_RGB32: return yuv2rgb_c_32;
  567. case PIX_FMT_RGB24: return yuv2rgb_c_24_rgb;
  568. case PIX_FMT_BGR24: return yuv2rgb_c_24_bgr;
  569. case PIX_FMT_RGB565:
  570. case PIX_FMT_BGR565:
  571. case PIX_FMT_RGB555:
  572. case PIX_FMT_BGR555: return yuv2rgb_c_16;
  573. case PIX_FMT_RGB8:
  574. case PIX_FMT_BGR8: return yuv2rgb_c_8_ordered_dither;
  575. case PIX_FMT_RGB4:
  576. case PIX_FMT_BGR4: return yuv2rgb_c_4_ordered_dither;
  577. case PIX_FMT_RGB4_BYTE:
  578. case PIX_FMT_BGR4_BYTE: return yuv2rgb_c_4b_ordered_dither;
  579. case PIX_FMT_MONOBLACK: return yuv2rgb_c_1_ordered_dither;
  580. default:
  581. assert(0);
  582. }
  583. return NULL;
  584. }
  585. static int div_round (int dividend, int divisor)
  586. {
  587. if (dividend > 0)
  588. return (dividend + (divisor>>1)) / divisor;
  589. else
  590. return -((-dividend + (divisor>>1)) / divisor);
  591. }
  592. int yuv2rgb_c_init_tables (SwsContext *c, const int inv_table[4], int fullRange, int brightness, int contrast, int saturation)
  593. {
  594. const int isRgb = isBGR(c->dstFormat);
  595. const int bpp = fmt_depth(c->dstFormat);
  596. int i;
  597. uint8_t table_Y[1024];
  598. uint32_t *table_32 = 0;
  599. uint16_t *table_16 = 0;
  600. uint8_t *table_8 = 0;
  601. uint8_t *table_332 = 0;
  602. uint8_t *table_121 = 0;
  603. uint8_t *table_1 = 0;
  604. int entry_size = 0;
  605. void *table_r = 0, *table_g = 0, *table_b = 0;
  606. void *table_start;
  607. int64_t crv = inv_table[0];
  608. int64_t cbu = inv_table[1];
  609. int64_t cgu = -inv_table[2];
  610. int64_t cgv = -inv_table[3];
  611. int64_t cy = 1<<16;
  612. int64_t oy = 0;
  613. //printf("%lld %lld %lld %lld %lld\n", cy, crv, cbu, cgu, cgv);
  614. if (!fullRange){
  615. cy= (cy*255) / 219;
  616. oy= 16<<16;
  617. }else{
  618. crv= (crv*224) / 255;
  619. cbu= (cbu*224) / 255;
  620. cgu= (cgu*224) / 255;
  621. cgv= (cgv*224) / 255;
  622. }
  623. cy = (cy *contrast )>>16;
  624. crv= (crv*contrast * saturation)>>32;
  625. cbu= (cbu*contrast * saturation)>>32;
  626. cgu= (cgu*contrast * saturation)>>32;
  627. cgv= (cgv*contrast * saturation)>>32;
  628. //printf("%lld %lld %lld %lld %lld\n", cy, crv, cbu, cgu, cgv);
  629. oy -= 256*brightness;
  630. for (i = 0; i < 1024; i++) {
  631. int j;
  632. j= (cy*(((i - 384)<<16) - oy) + (1<<31))>>32;
  633. j = (j < 0) ? 0 : ((j > 255) ? 255 : j);
  634. table_Y[i] = j;
  635. }
  636. switch (bpp) {
  637. case 32:
  638. table_start= table_32 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint32_t));
  639. entry_size = sizeof (uint32_t);
  640. table_r = table_32 + 197;
  641. table_b = table_32 + 197 + 685;
  642. table_g = table_32 + 197 + 2*682;
  643. for (i = -197; i < 256+197; i++)
  644. ((uint32_t *)table_r)[i] = table_Y[i+384] << (isRgb ? 16 : 0);
  645. for (i = -132; i < 256+132; i++)
  646. ((uint32_t *)table_g)[i] = table_Y[i+384] << 8;
  647. for (i = -232; i < 256+232; i++)
  648. ((uint32_t *)table_b)[i] = table_Y[i+384] << (isRgb ? 0 : 16);
  649. break;
  650. case 24:
  651. table_start= table_8 = av_malloc ((256 + 2*232) * sizeof (uint8_t));
  652. entry_size = sizeof (uint8_t);
  653. table_r = table_g = table_b = table_8 + 232;
  654. for (i = -232; i < 256+232; i++)
  655. ((uint8_t * )table_b)[i] = table_Y[i+384];
  656. break;
  657. case 15:
  658. case 16:
  659. table_start= table_16 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint16_t));
  660. entry_size = sizeof (uint16_t);
  661. table_r = table_16 + 197;
  662. table_b = table_16 + 197 + 685;
  663. table_g = table_16 + 197 + 2*682;
  664. for (i = -197; i < 256+197; i++) {
  665. int j = table_Y[i+384] >> 3;
  666. if (isRgb)
  667. j <<= ((bpp==16) ? 11 : 10);
  668. ((uint16_t *)table_r)[i] = j;
  669. }
  670. for (i = -132; i < 256+132; i++) {
  671. int j = table_Y[i+384] >> ((bpp==16) ? 2 : 3);
  672. ((uint16_t *)table_g)[i] = j << 5;
  673. }
  674. for (i = -232; i < 256+232; i++) {
  675. int j = table_Y[i+384] >> 3;
  676. if (!isRgb)
  677. j <<= ((bpp==16) ? 11 : 10);
  678. ((uint16_t *)table_b)[i] = j;
  679. }
  680. break;
  681. case 8:
  682. table_start= table_332 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint8_t));
  683. entry_size = sizeof (uint8_t);
  684. table_r = table_332 + 197;
  685. table_b = table_332 + 197 + 685;
  686. table_g = table_332 + 197 + 2*682;
  687. for (i = -197; i < 256+197; i++) {
  688. int j = (table_Y[i+384 - 16] + 18)/36;
  689. if (isRgb)
  690. j <<= 5;
  691. ((uint8_t *)table_r)[i] = j;
  692. }
  693. for (i = -132; i < 256+132; i++) {
  694. int j = (table_Y[i+384 - 16] + 18)/36;
  695. if (!isRgb)
  696. j <<= 1;
  697. ((uint8_t *)table_g)[i] = j << 2;
  698. }
  699. for (i = -232; i < 256+232; i++) {
  700. int j = (table_Y[i+384 - 37] + 43)/85;
  701. if (!isRgb)
  702. j <<= 6;
  703. ((uint8_t *)table_b)[i] = j;
  704. }
  705. break;
  706. case 4:
  707. case 4|128:
  708. table_start= table_121 = av_malloc ((197 + 2*682 + 256 + 132) * sizeof (uint8_t));
  709. entry_size = sizeof (uint8_t);
  710. table_r = table_121 + 197;
  711. table_b = table_121 + 197 + 685;
  712. table_g = table_121 + 197 + 2*682;
  713. for (i = -197; i < 256+197; i++) {
  714. int j = table_Y[i+384 - 110] >> 7;
  715. if (isRgb)
  716. j <<= 3;
  717. ((uint8_t *)table_r)[i] = j;
  718. }
  719. for (i = -132; i < 256+132; i++) {
  720. int j = (table_Y[i+384 - 37]+ 43)/85;
  721. ((uint8_t *)table_g)[i] = j << 1;
  722. }
  723. for (i = -232; i < 256+232; i++) {
  724. int j =table_Y[i+384 - 110] >> 7;
  725. if (!isRgb)
  726. j <<= 3;
  727. ((uint8_t *)table_b)[i] = j;
  728. }
  729. break;
  730. case 1:
  731. table_start= table_1 = av_malloc (256*2 * sizeof (uint8_t));
  732. entry_size = sizeof (uint8_t);
  733. table_g = table_1;
  734. table_r = table_b = NULL;
  735. for (i = 0; i < 256+256; i++) {
  736. int j = table_Y[i + 384 - 110]>>7;
  737. ((uint8_t *)table_g)[i] = j;
  738. }
  739. break;
  740. default:
  741. table_start= NULL;
  742. av_log(c, AV_LOG_ERROR, "%ibpp not supported by yuv2rgb\n", bpp);
  743. //free mem?
  744. return -1;
  745. }
  746. for (i = 0; i < 256; i++) {
  747. c->table_rV[i] = (uint8_t *)table_r + entry_size * div_round (crv * (i-128), 76309);
  748. c->table_gU[i] = (uint8_t *)table_g + entry_size * div_round (cgu * (i-128), 76309);
  749. c->table_gV[i] = entry_size * div_round (cgv * (i-128), 76309);
  750. c->table_bU[i] = (uint8_t *)table_b + entry_size * div_round (cbu * (i-128), 76309);
  751. }
  752. av_free(c->yuvTable);
  753. c->yuvTable= table_start;
  754. return 0;
  755. }