You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1774 lines
66KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file libavcodec/aacsbr.c
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #include "aac.h"
  28. #include "sbr.h"
  29. #include "aacsbr.h"
  30. #include "aacsbrdata.h"
  31. #include "fft.h"
  32. #include <stdint.h>
  33. #include <float.h>
  34. #define ENVELOPE_ADJUSTMENT_OFFSET 2
  35. #define NOISE_FLOOR_OFFSET 6.0f
  36. /**
  37. * SBR VLC tables
  38. */
  39. enum {
  40. T_HUFFMAN_ENV_1_5DB,
  41. F_HUFFMAN_ENV_1_5DB,
  42. T_HUFFMAN_ENV_BAL_1_5DB,
  43. F_HUFFMAN_ENV_BAL_1_5DB,
  44. T_HUFFMAN_ENV_3_0DB,
  45. F_HUFFMAN_ENV_3_0DB,
  46. T_HUFFMAN_ENV_BAL_3_0DB,
  47. F_HUFFMAN_ENV_BAL_3_0DB,
  48. T_HUFFMAN_NOISE_3_0DB,
  49. T_HUFFMAN_NOISE_BAL_3_0DB,
  50. };
  51. /**
  52. * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
  53. */
  54. enum {
  55. FIXFIX,
  56. FIXVAR,
  57. VARFIX,
  58. VARVAR,
  59. };
  60. enum {
  61. EXTENSION_ID_PS = 2,
  62. };
  63. static VLC vlc_sbr[10];
  64. static const int8_t vlc_sbr_lav[10] =
  65. { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
  66. static DECLARE_ALIGNED(16, float, analysis_cos_pre)[64];
  67. static DECLARE_ALIGNED(16, float, analysis_sin_pre)[64];
  68. static DECLARE_ALIGNED(16, float, analysis_cossin_post)[32][2];
  69. static const DECLARE_ALIGNED(16, float, zero64)[64];
  70. #define SBR_INIT_VLC_STATIC(num, size) \
  71. INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
  72. sbr_tmp[num].sbr_bits , 1, 1, \
  73. sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
  74. size)
  75. #define SBR_VLC_ROW(name) \
  76. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  77. av_cold void ff_aac_sbr_init(void)
  78. {
  79. int n, k;
  80. static const struct {
  81. const void *sbr_codes, *sbr_bits;
  82. const unsigned int table_size, elem_size;
  83. } sbr_tmp[] = {
  84. SBR_VLC_ROW(t_huffman_env_1_5dB),
  85. SBR_VLC_ROW(f_huffman_env_1_5dB),
  86. SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
  87. SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
  88. SBR_VLC_ROW(t_huffman_env_3_0dB),
  89. SBR_VLC_ROW(f_huffman_env_3_0dB),
  90. SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
  91. SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
  92. SBR_VLC_ROW(t_huffman_noise_3_0dB),
  93. SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
  94. };
  95. // SBR VLC table initialization
  96. SBR_INIT_VLC_STATIC(0, 1098);
  97. SBR_INIT_VLC_STATIC(1, 1092);
  98. SBR_INIT_VLC_STATIC(2, 768);
  99. SBR_INIT_VLC_STATIC(3, 1026);
  100. SBR_INIT_VLC_STATIC(4, 1058);
  101. SBR_INIT_VLC_STATIC(5, 1052);
  102. SBR_INIT_VLC_STATIC(6, 544);
  103. SBR_INIT_VLC_STATIC(7, 544);
  104. SBR_INIT_VLC_STATIC(8, 592);
  105. SBR_INIT_VLC_STATIC(9, 512);
  106. for (n = 0; n < 64; n++) {
  107. float pre = M_PI * n / 64;
  108. analysis_cos_pre[n] = cosf(pre);
  109. analysis_sin_pre[n] = sinf(pre);
  110. }
  111. for (k = 0; k < 32; k++) {
  112. float post = M_PI * (k + 0.5) / 128;
  113. analysis_cossin_post[k][0] = 4.0 * cosf(post);
  114. analysis_cossin_post[k][1] = -4.0 * sinf(post);
  115. }
  116. for (n = 1; n < 320; n++)
  117. sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
  118. sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
  119. sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
  120. for (n = 0; n < 320; n++)
  121. sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
  122. }
  123. av_cold void ff_aac_sbr_ctx_init(SpectralBandReplication *sbr)
  124. {
  125. sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
  126. sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  127. sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  128. ff_mdct_init(&sbr->mdct, 7, 1, 1.0/64);
  129. ff_rdft_init(&sbr->rdft, 6, IDFT_R2C);
  130. }
  131. av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
  132. {
  133. ff_mdct_end(&sbr->mdct);
  134. ff_rdft_end(&sbr->rdft);
  135. }
  136. static int qsort_comparison_function_int16(const void *a, const void *b)
  137. {
  138. return *(const int16_t *)a - *(const int16_t *)b;
  139. }
  140. static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
  141. {
  142. int i;
  143. for (i = 0; i <= last_el; i++)
  144. if (table[i] == needle)
  145. return 1;
  146. return 0;
  147. }
  148. /// Limiter Frequency Band Table (14496-3 sp04 p198)
  149. static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
  150. {
  151. int k;
  152. if (sbr->bs_limiter_bands > 0) {
  153. static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
  154. 1.18509277094158210129f, //2^(0.49/2)
  155. 1.11987160404675912501f }; //2^(0.49/3)
  156. const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
  157. int16_t patch_borders[5];
  158. uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
  159. patch_borders[0] = sbr->kx[1];
  160. for (k = 1; k <= sbr->num_patches; k++)
  161. patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
  162. memcpy(sbr->f_tablelim, sbr->f_tablelow,
  163. (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
  164. if (sbr->num_patches > 1)
  165. memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
  166. (sbr->num_patches - 1) * sizeof(patch_borders[0]));
  167. qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
  168. sizeof(sbr->f_tablelim[0]),
  169. qsort_comparison_function_int16);
  170. sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
  171. while (out < sbr->f_tablelim + sbr->n_lim) {
  172. if (*in >= *out * lim_bands_per_octave_warped) {
  173. *++out = *in++;
  174. } else if (*in == *out ||
  175. !in_table_int16(patch_borders, sbr->num_patches, *in)) {
  176. in++;
  177. sbr->n_lim--;
  178. } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
  179. *out = *in++;
  180. sbr->n_lim--;
  181. } else {
  182. *++out = *in++;
  183. }
  184. }
  185. } else {
  186. sbr->f_tablelim[0] = sbr->f_tablelow[0];
  187. sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
  188. sbr->n_lim = 1;
  189. }
  190. }
  191. static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
  192. {
  193. unsigned int cnt = get_bits_count(gb);
  194. uint8_t bs_header_extra_1;
  195. uint8_t bs_header_extra_2;
  196. int old_bs_limiter_bands = sbr->bs_limiter_bands;
  197. SpectrumParameters old_spectrum_params;
  198. sbr->start = 1;
  199. // Save last spectrum parameters variables to compare to new ones
  200. memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
  201. sbr->bs_amp_res_header = get_bits1(gb);
  202. sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
  203. sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
  204. sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
  205. skip_bits(gb, 2); // bs_reserved
  206. bs_header_extra_1 = get_bits1(gb);
  207. bs_header_extra_2 = get_bits1(gb);
  208. if (bs_header_extra_1) {
  209. sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
  210. sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
  211. sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
  212. } else {
  213. sbr->spectrum_params.bs_freq_scale = 2;
  214. sbr->spectrum_params.bs_alter_scale = 1;
  215. sbr->spectrum_params.bs_noise_bands = 2;
  216. }
  217. // Check if spectrum parameters changed
  218. if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
  219. sbr->reset = 1;
  220. if (bs_header_extra_2) {
  221. sbr->bs_limiter_bands = get_bits(gb, 2);
  222. sbr->bs_limiter_gains = get_bits(gb, 2);
  223. sbr->bs_interpol_freq = get_bits1(gb);
  224. sbr->bs_smoothing_mode = get_bits1(gb);
  225. } else {
  226. sbr->bs_limiter_bands = 2;
  227. sbr->bs_limiter_gains = 2;
  228. sbr->bs_interpol_freq = 1;
  229. sbr->bs_smoothing_mode = 1;
  230. }
  231. if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
  232. sbr_make_f_tablelim(sbr);
  233. return get_bits_count(gb) - cnt;
  234. }
  235. static int array_min_int16(const int16_t *array, int nel)
  236. {
  237. int i, min = array[0];
  238. for (i = 1; i < nel; i++)
  239. min = FFMIN(array[i], min);
  240. return min;
  241. }
  242. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  243. {
  244. int k, previous, present;
  245. float base, prod;
  246. base = powf((float)stop / start, 1.0f / num_bands);
  247. prod = start;
  248. previous = start;
  249. for (k = 0; k < num_bands-1; k++) {
  250. prod *= base;
  251. present = lrintf(prod);
  252. bands[k] = present - previous;
  253. previous = present;
  254. }
  255. bands[num_bands-1] = stop - previous;
  256. }
  257. static int check_n_master(AVCodecContext *avccontext, int n_master, int bs_xover_band)
  258. {
  259. // Requirements (14496-3 sp04 p205)
  260. if (n_master <= 0) {
  261. av_log(avccontext, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
  262. return -1;
  263. }
  264. if (bs_xover_band >= n_master) {
  265. av_log(avccontext, AV_LOG_ERROR,
  266. "Invalid bitstream, crossover band index beyond array bounds: %d\n",
  267. bs_xover_band);
  268. return -1;
  269. }
  270. return 0;
  271. }
  272. /// Master Frequency Band Table (14496-3 sp04 p194)
  273. static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
  274. SpectrumParameters *spectrum)
  275. {
  276. unsigned int temp, max_qmf_subbands;
  277. unsigned int start_min, stop_min;
  278. int k;
  279. const int8_t *sbr_offset_ptr;
  280. int16_t stop_dk[13];
  281. if (sbr->sample_rate < 32000) {
  282. temp = 3000;
  283. } else if (sbr->sample_rate < 64000) {
  284. temp = 4000;
  285. } else
  286. temp = 5000;
  287. start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  288. stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  289. switch (sbr->sample_rate) {
  290. case 16000:
  291. sbr_offset_ptr = sbr_offset[0];
  292. break;
  293. case 22050:
  294. sbr_offset_ptr = sbr_offset[1];
  295. break;
  296. case 24000:
  297. sbr_offset_ptr = sbr_offset[2];
  298. break;
  299. case 32000:
  300. sbr_offset_ptr = sbr_offset[3];
  301. break;
  302. case 44100: case 48000: case 64000:
  303. sbr_offset_ptr = sbr_offset[4];
  304. break;
  305. case 88200: case 96000: case 128000: case 176400: case 192000:
  306. sbr_offset_ptr = sbr_offset[5];
  307. break;
  308. default:
  309. av_log(ac->avccontext, AV_LOG_ERROR,
  310. "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
  311. return -1;
  312. }
  313. sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
  314. if (spectrum->bs_stop_freq < 14) {
  315. sbr->k[2] = stop_min;
  316. make_bands(stop_dk, stop_min, 64, 13);
  317. qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
  318. for (k = 0; k < spectrum->bs_stop_freq; k++)
  319. sbr->k[2] += stop_dk[k];
  320. } else if (spectrum->bs_stop_freq == 14) {
  321. sbr->k[2] = 2*sbr->k[0];
  322. } else if (spectrum->bs_stop_freq == 15) {
  323. sbr->k[2] = 3*sbr->k[0];
  324. } else {
  325. av_log(ac->avccontext, AV_LOG_ERROR,
  326. "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
  327. return -1;
  328. }
  329. sbr->k[2] = FFMIN(64, sbr->k[2]);
  330. // Requirements (14496-3 sp04 p205)
  331. if (sbr->sample_rate <= 32000) {
  332. max_qmf_subbands = 48;
  333. } else if (sbr->sample_rate == 44100) {
  334. max_qmf_subbands = 35;
  335. } else if (sbr->sample_rate >= 48000)
  336. max_qmf_subbands = 32;
  337. if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
  338. av_log(ac->avccontext, AV_LOG_ERROR,
  339. "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
  340. return -1;
  341. }
  342. if (!spectrum->bs_freq_scale) {
  343. unsigned int dk;
  344. int k2diff;
  345. dk = spectrum->bs_alter_scale + 1;
  346. sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
  347. if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  348. return -1;
  349. for (k = 1; k <= sbr->n_master; k++)
  350. sbr->f_master[k] = dk;
  351. k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
  352. if (k2diff < 0) {
  353. sbr->f_master[1]--;
  354. sbr->f_master[2]-= (k2diff < 1);
  355. } else if (k2diff) {
  356. sbr->f_master[sbr->n_master]++;
  357. }
  358. sbr->f_master[0] = sbr->k[0];
  359. for (k = 1; k <= sbr->n_master; k++)
  360. sbr->f_master[k] += sbr->f_master[k - 1];
  361. } else {
  362. int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
  363. int two_regions, num_bands_0;
  364. int vdk0_max, vdk1_min;
  365. int16_t vk0[49];
  366. if (49 * sbr->k[2] > 110 * sbr->k[0]) {
  367. two_regions = 1;
  368. sbr->k[1] = 2 * sbr->k[0];
  369. } else {
  370. two_regions = 0;
  371. sbr->k[1] = sbr->k[2];
  372. }
  373. num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
  374. if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
  375. av_log(ac->avccontext, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
  376. return -1;
  377. }
  378. vk0[0] = 0;
  379. make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
  380. qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
  381. vdk0_max = vk0[num_bands_0];
  382. vk0[0] = sbr->k[0];
  383. for (k = 1; k <= num_bands_0; k++) {
  384. if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
  385. av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
  386. return -1;
  387. }
  388. vk0[k] += vk0[k-1];
  389. }
  390. if (two_regions) {
  391. int16_t vk1[49];
  392. float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
  393. : 1.0f; // bs_alter_scale = {0,1}
  394. int num_bands_1 = lrintf(half_bands * invwarp *
  395. log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
  396. make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
  397. vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
  398. if (vdk1_min < vdk0_max) {
  399. int change;
  400. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  401. change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
  402. vk1[1] += change;
  403. vk1[num_bands_1] -= change;
  404. }
  405. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  406. vk1[0] = sbr->k[1];
  407. for (k = 1; k <= num_bands_1; k++) {
  408. if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
  409. av_log(ac->avccontext, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
  410. return -1;
  411. }
  412. vk1[k] += vk1[k-1];
  413. }
  414. sbr->n_master = num_bands_0 + num_bands_1;
  415. if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  416. return -1;
  417. memcpy(&sbr->f_master[0], vk0,
  418. (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  419. memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
  420. num_bands_1 * sizeof(sbr->f_master[0]));
  421. } else {
  422. sbr->n_master = num_bands_0;
  423. if (check_n_master(ac->avccontext, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  424. return -1;
  425. memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  426. }
  427. }
  428. return 0;
  429. }
  430. /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
  431. static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
  432. {
  433. int i, k, sb = 0;
  434. int msb = sbr->k[0];
  435. int usb = sbr->kx[1];
  436. int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  437. sbr->num_patches = 0;
  438. if (goal_sb < sbr->kx[1] + sbr->m[1]) {
  439. for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
  440. } else
  441. k = sbr->n_master;
  442. do {
  443. int odd = 0;
  444. for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
  445. sb = sbr->f_master[i];
  446. odd = (sb + sbr->k[0]) & 1;
  447. }
  448. sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
  449. sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
  450. if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
  451. usb = sb;
  452. msb = sb;
  453. sbr->num_patches++;
  454. } else
  455. msb = sbr->kx[1];
  456. if (sbr->f_master[k] - sb < 3)
  457. k = sbr->n_master;
  458. } while (sb != sbr->kx[1] + sbr->m[1]);
  459. if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
  460. sbr->num_patches--;
  461. // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5
  462. // However the Coding Technologies decoder check uses 6 patches
  463. if (sbr->num_patches > 6) {
  464. av_log(ac->avccontext, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
  465. return -1;
  466. }
  467. return 0;
  468. }
  469. /// Derived Frequency Band Tables (14496-3 sp04 p197)
  470. static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
  471. {
  472. int k, temp;
  473. sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
  474. sbr->n[0] = (sbr->n[1] + 1) >> 1;
  475. memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
  476. (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
  477. sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
  478. sbr->kx[1] = sbr->f_tablehigh[0];
  479. // Requirements (14496-3 sp04 p205)
  480. if (sbr->kx[1] + sbr->m[1] > 64) {
  481. av_log(ac->avccontext, AV_LOG_ERROR,
  482. "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
  483. return -1;
  484. }
  485. if (sbr->kx[1] > 32) {
  486. av_log(ac->avccontext, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
  487. return -1;
  488. }
  489. sbr->f_tablelow[0] = sbr->f_tablehigh[0];
  490. temp = sbr->n[1] & 1;
  491. for (k = 1; k <= sbr->n[0]; k++)
  492. sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
  493. sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
  494. log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
  495. if (sbr->n_q > 5) {
  496. av_log(ac->avccontext, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
  497. return -1;
  498. }
  499. sbr->f_tablenoise[0] = sbr->f_tablelow[0];
  500. temp = 0;
  501. for (k = 1; k <= sbr->n_q; k++) {
  502. temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
  503. sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
  504. }
  505. if (sbr_hf_calc_npatches(ac, sbr) < 0)
  506. return -1;
  507. sbr_make_f_tablelim(sbr);
  508. sbr->data[0].f_indexnoise = 0;
  509. sbr->data[1].f_indexnoise = 0;
  510. return 0;
  511. }
  512. static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
  513. int elements)
  514. {
  515. int i;
  516. for (i = 0; i < elements; i++) {
  517. vec[i] = get_bits1(gb);
  518. }
  519. }
  520. /** ceil(log2(index+1)) */
  521. static const int8_t ceil_log2[] = {
  522. 0, 1, 2, 2, 3, 3,
  523. };
  524. static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
  525. GetBitContext *gb, SBRData *ch_data)
  526. {
  527. int i;
  528. ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env[1]];
  529. ch_data->bs_num_env[0] = ch_data->bs_num_env[1];
  530. ch_data->bs_amp_res = sbr->bs_amp_res_header;
  531. switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
  532. case FIXFIX:
  533. ch_data->bs_num_env[1] = 1 << get_bits(gb, 2);
  534. if (ch_data->bs_num_env[1] == 1)
  535. ch_data->bs_amp_res = 0;
  536. ch_data->bs_freq_res[1] = get_bits1(gb);
  537. for (i = 1; i < ch_data->bs_num_env[1]; i++)
  538. ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
  539. break;
  540. case FIXVAR:
  541. ch_data->bs_var_bord[1] = get_bits(gb, 2);
  542. ch_data->bs_num_rel[1] = get_bits(gb, 2);
  543. ch_data->bs_num_env[1] = ch_data->bs_num_rel[1] + 1;
  544. for (i = 0; i < ch_data->bs_num_rel[1]; i++)
  545. ch_data->bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2;
  546. ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
  547. for (i = 0; i < ch_data->bs_num_env[1]; i++)
  548. ch_data->bs_freq_res[ch_data->bs_num_env[1] - i] = get_bits1(gb);
  549. break;
  550. case VARFIX:
  551. ch_data->bs_var_bord[0] = get_bits(gb, 2);
  552. ch_data->bs_num_rel[0] = get_bits(gb, 2);
  553. ch_data->bs_num_env[1] = ch_data->bs_num_rel[0] + 1;
  554. for (i = 0; i < ch_data->bs_num_rel[0]; i++)
  555. ch_data->bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2;
  556. ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
  557. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]);
  558. break;
  559. case VARVAR:
  560. ch_data->bs_var_bord[0] = get_bits(gb, 2);
  561. ch_data->bs_var_bord[1] = get_bits(gb, 2);
  562. ch_data->bs_num_rel[0] = get_bits(gb, 2);
  563. ch_data->bs_num_rel[1] = get_bits(gb, 2);
  564. ch_data->bs_num_env[1] = ch_data->bs_num_rel[0] + ch_data->bs_num_rel[1] + 1;
  565. for (i = 0; i < ch_data->bs_num_rel[0]; i++)
  566. ch_data->bs_rel_bord[0][i] = 2 * get_bits(gb, 2) + 2;
  567. for (i = 0; i < ch_data->bs_num_rel[1]; i++)
  568. ch_data->bs_rel_bord[1][i] = 2 * get_bits(gb, 2) + 2;
  569. ch_data->bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env[1]]);
  570. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env[1]);
  571. break;
  572. }
  573. if (ch_data->bs_frame_class == FIXFIX && ch_data->bs_num_env[1] > 4) {
  574. av_log(ac->avccontext, AV_LOG_ERROR,
  575. "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
  576. ch_data->bs_num_env[1]);
  577. return -1;
  578. }
  579. if (ch_data->bs_frame_class == VARVAR && ch_data->bs_num_env[1] > 5) {
  580. av_log(ac->avccontext, AV_LOG_ERROR,
  581. "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
  582. ch_data->bs_num_env[1]);
  583. return -1;
  584. }
  585. ch_data->bs_num_noise = (ch_data->bs_num_env[1] > 1) + 1;
  586. return 0;
  587. }
  588. static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
  589. //These variables are saved from the previous frame rather than copied
  590. dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env[1]];
  591. dst->bs_num_env[0] = dst->bs_num_env[1];
  592. //These variables are read from the bitstream and therefore copied
  593. memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
  594. memcpy(dst->bs_num_env+1, src->bs_num_env+1, sizeof(dst->bs_num_env)- sizeof(*dst->bs_num_env));
  595. memcpy(dst->bs_var_bord, src->bs_var_bord, sizeof(dst->bs_var_bord));
  596. memcpy(dst->bs_rel_bord, src->bs_rel_bord, sizeof(dst->bs_rel_bord));
  597. memcpy(dst->bs_num_rel, src->bs_num_rel, sizeof(dst->bs_rel_bord));
  598. dst->bs_amp_res = src->bs_amp_res;
  599. dst->bs_num_noise = src->bs_num_noise;
  600. dst->bs_pointer = src->bs_pointer;
  601. dst->bs_frame_class = src->bs_frame_class;
  602. }
  603. /// Read how the envelope and noise floor data is delta coded
  604. static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
  605. SBRData *ch_data)
  606. {
  607. get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env[1]);
  608. get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
  609. }
  610. /// Read inverse filtering data
  611. static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
  612. SBRData *ch_data)
  613. {
  614. int i;
  615. memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
  616. for (i = 0; i < sbr->n_q; i++)
  617. ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
  618. }
  619. static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
  620. SBRData *ch_data, int ch)
  621. {
  622. int bits;
  623. int i, j, k;
  624. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  625. int t_lav, f_lav;
  626. const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  627. const int odd = sbr->n[1] & 1;
  628. if (sbr->bs_coupling && ch) {
  629. if (ch_data->bs_amp_res) {
  630. bits = 5;
  631. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
  632. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
  633. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  634. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  635. } else {
  636. bits = 6;
  637. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
  638. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
  639. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
  640. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
  641. }
  642. } else {
  643. if (ch_data->bs_amp_res) {
  644. bits = 6;
  645. t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
  646. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
  647. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  648. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  649. } else {
  650. bits = 7;
  651. t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
  652. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
  653. f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
  654. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
  655. }
  656. }
  657. for (i = 0; i < ch_data->bs_num_env[1]; i++) {
  658. if (ch_data->bs_df_env[i]) {
  659. // bs_freq_res[0] == bs_freq_res[bs_num_env[1]] from prev frame
  660. if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
  661. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  662. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  663. } else if (ch_data->bs_freq_res[i + 1]) {
  664. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  665. k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
  666. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  667. }
  668. } else {
  669. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  670. k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
  671. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  672. }
  673. }
  674. } else {
  675. ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
  676. for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  677. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  678. }
  679. }
  680. //assign 0th elements of env_facs from last elements
  681. memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env[1]],
  682. sizeof(ch_data->env_facs[0]));
  683. }
  684. static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
  685. SBRData *ch_data, int ch)
  686. {
  687. int i, j;
  688. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  689. int t_lav, f_lav;
  690. int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  691. if (sbr->bs_coupling && ch) {
  692. t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
  693. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
  694. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  695. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  696. } else {
  697. t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
  698. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
  699. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  700. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  701. }
  702. for (i = 0; i < ch_data->bs_num_noise; i++) {
  703. if (ch_data->bs_df_noise[i]) {
  704. for (j = 0; j < sbr->n_q; j++)
  705. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
  706. } else {
  707. ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
  708. for (j = 1; j < sbr->n_q; j++)
  709. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  710. }
  711. }
  712. //assign 0th elements of noise_facs from last elements
  713. memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
  714. sizeof(ch_data->noise_facs[0]));
  715. }
  716. static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  717. GetBitContext *gb,
  718. int bs_extension_id, int *num_bits_left)
  719. {
  720. //TODO - implement ps_data for parametric stereo parsing
  721. switch (bs_extension_id) {
  722. case EXTENSION_ID_PS:
  723. #if 0
  724. *num_bits_left -= ff_ps_data(gb, ps);
  725. #else
  726. av_log_missing_feature(ac->avccontext, "Parametric Stereo is", 0);
  727. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  728. *num_bits_left = 0;
  729. #endif
  730. break;
  731. default:
  732. av_log_missing_feature(ac->avccontext, "Reserved SBR extensions are", 1);
  733. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  734. *num_bits_left = 0;
  735. break;
  736. }
  737. }
  738. static int read_sbr_single_channel_element(AACContext *ac,
  739. SpectralBandReplication *sbr,
  740. GetBitContext *gb)
  741. {
  742. if (get_bits1(gb)) // bs_data_extra
  743. skip_bits(gb, 4); // bs_reserved
  744. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  745. return -1;
  746. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  747. read_sbr_invf(sbr, gb, &sbr->data[0]);
  748. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  749. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  750. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  751. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  752. return 0;
  753. }
  754. static int read_sbr_channel_pair_element(AACContext *ac,
  755. SpectralBandReplication *sbr,
  756. GetBitContext *gb)
  757. {
  758. if (get_bits1(gb)) // bs_data_extra
  759. skip_bits(gb, 8); // bs_reserved
  760. if ((sbr->bs_coupling = get_bits1(gb))) {
  761. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  762. return -1;
  763. copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
  764. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  765. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  766. read_sbr_invf(sbr, gb, &sbr->data[0]);
  767. memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  768. memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  769. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  770. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  771. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  772. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  773. } else {
  774. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
  775. read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
  776. return -1;
  777. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  778. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  779. read_sbr_invf(sbr, gb, &sbr->data[0]);
  780. read_sbr_invf(sbr, gb, &sbr->data[1]);
  781. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  782. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  783. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  784. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  785. }
  786. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  787. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  788. if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
  789. get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
  790. return 0;
  791. }
  792. static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
  793. GetBitContext *gb, int id_aac)
  794. {
  795. unsigned int cnt = get_bits_count(gb);
  796. if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
  797. if (read_sbr_single_channel_element(ac, sbr, gb)) {
  798. sbr->start = 0;
  799. return get_bits_count(gb) - cnt;
  800. }
  801. } else if (id_aac == TYPE_CPE) {
  802. if (read_sbr_channel_pair_element(ac, sbr, gb)) {
  803. sbr->start = 0;
  804. return get_bits_count(gb) - cnt;
  805. }
  806. } else {
  807. av_log(ac->avccontext, AV_LOG_ERROR,
  808. "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
  809. sbr->start = 0;
  810. return get_bits_count(gb) - cnt;
  811. }
  812. if (get_bits1(gb)) { // bs_extended_data
  813. int num_bits_left = get_bits(gb, 4); // bs_extension_size
  814. if (num_bits_left == 15)
  815. num_bits_left += get_bits(gb, 8); // bs_esc_count
  816. num_bits_left <<= 3;
  817. while (num_bits_left > 7) {
  818. num_bits_left -= 2;
  819. read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
  820. }
  821. }
  822. return get_bits_count(gb) - cnt;
  823. }
  824. static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
  825. {
  826. int err;
  827. err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
  828. if (err >= 0)
  829. err = sbr_make_f_derived(ac, sbr);
  830. if (err < 0) {
  831. av_log(ac->avccontext, AV_LOG_ERROR,
  832. "SBR reset failed. Switching SBR to pure upsampling mode.\n");
  833. sbr->start = 0;
  834. }
  835. }
  836. /**
  837. * Decode Spectral Band Replication extension data; reference: table 4.55.
  838. *
  839. * @param crc flag indicating the presence of CRC checksum
  840. * @param cnt length of TYPE_FIL syntactic element in bytes
  841. *
  842. * @return Returns number of bytes consumed from the TYPE_FIL element.
  843. */
  844. int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  845. GetBitContext *gb_host, int crc, int cnt, int id_aac)
  846. {
  847. unsigned int num_sbr_bits = 0, num_align_bits;
  848. unsigned bytes_read;
  849. GetBitContext gbc = *gb_host, *gb = &gbc;
  850. skip_bits_long(gb_host, cnt*8 - 4);
  851. sbr->reset = 0;
  852. if (!sbr->sample_rate)
  853. sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
  854. if (!ac->m4ac.ext_sample_rate)
  855. ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
  856. if (crc) {
  857. skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
  858. num_sbr_bits += 10;
  859. }
  860. //Save some state from the previous frame.
  861. sbr->kx[0] = sbr->kx[1];
  862. sbr->m[0] = sbr->m[1];
  863. num_sbr_bits++;
  864. if (get_bits1(gb)) // bs_header_flag
  865. num_sbr_bits += read_sbr_header(sbr, gb);
  866. if (sbr->reset)
  867. sbr_reset(ac, sbr);
  868. if (sbr->start)
  869. num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
  870. num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
  871. bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
  872. if (bytes_read > cnt) {
  873. av_log(ac->avccontext, AV_LOG_ERROR,
  874. "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
  875. }
  876. return cnt;
  877. }
  878. /// Time/frequency Grid (14496-3 sp04 p200)
  879. static int sbr_time_freq_grid(AACContext *ac, SpectralBandReplication *sbr,
  880. SBRData *ch_data, int ch)
  881. {
  882. int abs_bord_lead = ch_data->bs_frame_class >= 2 ? ch_data->bs_var_bord[0] : 0;
  883. // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
  884. int abs_bord_trail = (ch_data->bs_frame_class & 1 ? ch_data->bs_var_bord[1] : 0) + 16;
  885. int n_rel_lead;
  886. int i;
  887. if (ch_data->bs_frame_class == FIXFIX) {
  888. n_rel_lead = ch_data->bs_num_env[1] - 1;
  889. } else if (ch_data->bs_frame_class == FIXVAR) {
  890. n_rel_lead = 0;
  891. } else if (ch_data->bs_frame_class < 4) { // VARFIX or VARVAR
  892. n_rel_lead = ch_data->bs_num_rel[0];
  893. } else {
  894. av_log(ac->avccontext, AV_LOG_ERROR,
  895. "Invalid bs_frame_class for SBR: %d\n", ch_data->bs_frame_class);
  896. return -1;
  897. }
  898. ch_data->t_env_num_env_old = ch_data->t_env[ch_data->bs_num_env[0]];
  899. ch_data->t_env[0] = abs_bord_lead;
  900. ch_data->t_env[ch_data->bs_num_env[1]] = abs_bord_trail;
  901. if (ch_data->bs_frame_class == FIXFIX) {
  902. int temp = (abs_bord_trail + (ch_data->bs_num_env[1] >> 1)) /
  903. ch_data->bs_num_env[1];
  904. for (i = 0; i < n_rel_lead; i++)
  905. ch_data->t_env[i + 1] = ch_data->t_env[i] + temp;
  906. } else if (ch_data->bs_frame_class > 1) { // VARFIX or VARVAR
  907. for (i = 0; i < n_rel_lead; i++)
  908. ch_data->t_env[i + 1] = ch_data->t_env[i] + ch_data->bs_rel_bord[0][i];
  909. } else { // FIXVAR
  910. for (i = 0; i < n_rel_lead; i++)
  911. ch_data->t_env[i + 1] = abs_bord_lead;
  912. }
  913. if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  914. for (i = ch_data->bs_num_env[1] - 1; i > n_rel_lead; i--)
  915. ch_data->t_env[i] = ch_data->t_env[i + 1] -
  916. ch_data->bs_rel_bord[1][ch_data->bs_num_env[1] - 1 - i];
  917. } else { // FIXFIX or VARFIX
  918. for (i = n_rel_lead; i < ch_data->bs_num_env[1]; i++)
  919. ch_data->t_env[i + 1] = abs_bord_trail;
  920. }
  921. ch_data->t_q[0] = ch_data->t_env[0];
  922. if (ch_data->bs_num_noise > 1) { // typo in spec bases this on bs_num_env...
  923. unsigned int idx;
  924. if (ch_data->bs_frame_class == FIXFIX) {
  925. idx = ch_data->bs_num_env[1] >> 1;
  926. } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  927. idx = ch_data->bs_num_env[1] - FFMAX(ch_data->bs_pointer - 1, 1);
  928. } else { // VARFIX
  929. if (!ch_data->bs_pointer)
  930. idx = 1;
  931. else if (ch_data->bs_pointer == 1)
  932. idx = ch_data->bs_num_env[1] - 1;
  933. else // bs_pointer > 1
  934. idx = ch_data->bs_pointer - 1;
  935. }
  936. ch_data->t_q[1] = ch_data->t_env[idx];
  937. ch_data->t_q[2] = ch_data->t_env[ch_data->bs_num_env[1]];
  938. } else
  939. ch_data->t_q[1] = ch_data->t_env[ch_data->bs_num_env[1]];
  940. return 0;
  941. }
  942. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  943. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  944. {
  945. int k, e;
  946. int ch;
  947. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  948. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  949. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  950. for (e = 1; e <= sbr->data[0].bs_num_env[1]; e++) {
  951. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  952. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  953. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  954. float fac = temp1 / (1.0f + temp2);
  955. sbr->data[0].env_facs[e][k] = fac;
  956. sbr->data[1].env_facs[e][k] = fac * temp2;
  957. }
  958. }
  959. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  960. for (k = 0; k < sbr->n_q; k++) {
  961. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  962. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  963. float fac = temp1 / (1.0f + temp2);
  964. sbr->data[0].noise_facs[e][k] = fac;
  965. sbr->data[1].noise_facs[e][k] = fac * temp2;
  966. }
  967. }
  968. } else { // SCE or one non-coupled CPE
  969. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  970. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  971. for (e = 1; e <= sbr->data[ch].bs_num_env[1]; e++)
  972. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
  973. sbr->data[ch].env_facs[e][k] =
  974. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  975. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  976. for (k = 0; k < sbr->n_q; k++)
  977. sbr->data[ch].noise_facs[e][k] =
  978. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  979. }
  980. }
  981. }
  982. /**
  983. * Analysis QMF Bank (14496-3 sp04 p206)
  984. *
  985. * @param x pointer to the beginning of the first sample window
  986. * @param W array of complex-valued samples split into subbands
  987. */
  988. static void sbr_qmf_analysis(DSPContext *dsp, RDFTContext *rdft, const float *in, float *x,
  989. float z[320], float W[2][32][32][2],
  990. float bias, float scale)
  991. {
  992. int i, k;
  993. memcpy(W[0], W[1], sizeof(W[0]));
  994. memcpy(x , x+1024, (320-32)*sizeof(x[0]));
  995. if (scale != 1.0f || bias != 0.0f)
  996. for (i = 0; i < 1024; i++)
  997. x[288 + i] = (in[i] - bias) * scale;
  998. else
  999. memcpy(x+288, in, 1024*sizeof(*x));
  1000. for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
  1001. // are not supported
  1002. float re, im;
  1003. dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
  1004. for (k = 0; k < 64; k++) {
  1005. float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
  1006. z[k] = f * analysis_cos_pre[k];
  1007. z[k+64] = f;
  1008. }
  1009. ff_rdft_calc(rdft, z);
  1010. re = z[0] * 0.5f;
  1011. im = 0.5f * dsp->scalarproduct_float(z+64, analysis_sin_pre, 64);
  1012. W[1][i][0][0] = re * analysis_cossin_post[0][0] - im * analysis_cossin_post[0][1];
  1013. W[1][i][0][1] = re * analysis_cossin_post[0][1] + im * analysis_cossin_post[0][0];
  1014. for (k = 1; k < 32; k++) {
  1015. re = z[2*k ] - re;
  1016. im = z[2*k+1] - im;
  1017. W[1][i][k][0] = re * analysis_cossin_post[k][0] - im * analysis_cossin_post[k][1];
  1018. W[1][i][k][1] = re * analysis_cossin_post[k][1] + im * analysis_cossin_post[k][0];
  1019. }
  1020. x += 32;
  1021. }
  1022. }
  1023. /**
  1024. * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
  1025. * (14496-3 sp04 p206)
  1026. */
  1027. static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
  1028. float *out, float X[2][32][64],
  1029. float mdct_buf[2][64],
  1030. float *v0, int *v_off, const unsigned int div,
  1031. float bias, float scale)
  1032. {
  1033. int i, n;
  1034. const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
  1035. int scale_and_bias = scale != 1.0f || bias != 0.0f;
  1036. float *v;
  1037. for (i = 0; i < 32; i++) {
  1038. if (*v_off == 0) {
  1039. int saved_samples = (1280 - 128) >> div;
  1040. memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
  1041. *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
  1042. } else {
  1043. *v_off -= 128 >> div;
  1044. }
  1045. v = v0 + *v_off;
  1046. for (n = 1; n < 64 >> div; n+=2) {
  1047. X[1][i][n] = -X[1][i][n];
  1048. }
  1049. if (div) {
  1050. memset(X[0][i]+32, 0, 32*sizeof(float));
  1051. memset(X[1][i]+32, 0, 32*sizeof(float));
  1052. }
  1053. ff_imdct_half(mdct, mdct_buf[0], X[0][i]);
  1054. ff_imdct_half(mdct, mdct_buf[1], X[1][i]);
  1055. if (div) {
  1056. for (n = 0; n < 32; n++) {
  1057. v[ n] = -mdct_buf[0][63 - 2*n] + mdct_buf[1][2*n ];
  1058. v[ 63 - n] = mdct_buf[0][62 - 2*n] + mdct_buf[1][2*n + 1];
  1059. }
  1060. } else {
  1061. for (n = 0; n < 64; n++) {
  1062. v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1063. v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1064. }
  1065. }
  1066. dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
  1067. dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
  1068. dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
  1069. dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
  1070. dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
  1071. dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
  1072. dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
  1073. dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
  1074. dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
  1075. dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
  1076. if (scale_and_bias)
  1077. for (n = 0; n < 64 >> div; n++)
  1078. out[n] = out[n] * scale + bias;
  1079. out += 64 >> div;
  1080. }
  1081. }
  1082. static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
  1083. {
  1084. int i;
  1085. float real_sum = 0.0f;
  1086. float imag_sum = 0.0f;
  1087. if (lag) {
  1088. for (i = 1; i < 38; i++) {
  1089. real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
  1090. imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
  1091. }
  1092. phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
  1093. phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
  1094. if (lag == 1) {
  1095. phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
  1096. phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
  1097. }
  1098. } else {
  1099. for (i = 1; i < 38; i++) {
  1100. real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
  1101. }
  1102. phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
  1103. phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
  1104. }
  1105. }
  1106. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  1107. * (14496-3 sp04 p214)
  1108. * Warning: This routine does not seem numerically stable.
  1109. */
  1110. static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
  1111. const float X_low[32][40][2], int k0)
  1112. {
  1113. int k;
  1114. for (k = 0; k < k0; k++) {
  1115. float phi[3][2][2], dk;
  1116. autocorrelate(X_low[k], phi, 0);
  1117. autocorrelate(X_low[k], phi, 1);
  1118. autocorrelate(X_low[k], phi, 2);
  1119. dk = phi[2][1][0] * phi[1][0][0] -
  1120. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  1121. if (!dk) {
  1122. alpha1[k][0] = 0;
  1123. alpha1[k][1] = 0;
  1124. } else {
  1125. float temp_real, temp_im;
  1126. temp_real = phi[0][0][0] * phi[1][1][0] -
  1127. phi[0][0][1] * phi[1][1][1] -
  1128. phi[0][1][0] * phi[1][0][0];
  1129. temp_im = phi[0][0][0] * phi[1][1][1] +
  1130. phi[0][0][1] * phi[1][1][0] -
  1131. phi[0][1][1] * phi[1][0][0];
  1132. alpha1[k][0] = temp_real / dk;
  1133. alpha1[k][1] = temp_im / dk;
  1134. }
  1135. if (!phi[1][0][0]) {
  1136. alpha0[k][0] = 0;
  1137. alpha0[k][1] = 0;
  1138. } else {
  1139. float temp_real, temp_im;
  1140. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  1141. alpha1[k][1] * phi[1][1][1];
  1142. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  1143. alpha1[k][0] * phi[1][1][1];
  1144. alpha0[k][0] = -temp_real / phi[1][0][0];
  1145. alpha0[k][1] = -temp_im / phi[1][0][0];
  1146. }
  1147. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  1148. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  1149. alpha1[k][0] = 0;
  1150. alpha1[k][1] = 0;
  1151. alpha0[k][0] = 0;
  1152. alpha0[k][1] = 0;
  1153. }
  1154. }
  1155. }
  1156. /// Chirp Factors (14496-3 sp04 p214)
  1157. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  1158. {
  1159. int i;
  1160. float new_bw;
  1161. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  1162. for (i = 0; i < sbr->n_q; i++) {
  1163. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  1164. new_bw = 0.6f;
  1165. } else
  1166. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  1167. if (new_bw < ch_data->bw_array[i]) {
  1168. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  1169. } else
  1170. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  1171. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  1172. }
  1173. }
  1174. /// Generate the subband filtered lowband
  1175. static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1176. float X_low[32][40][2], const float W[2][32][32][2])
  1177. {
  1178. int i, k;
  1179. const int t_HFGen = 8;
  1180. const int i_f = 32;
  1181. memset(X_low, 0, 32*sizeof(*X_low));
  1182. for (k = 0; k < sbr->kx[1]; k++) {
  1183. for (i = t_HFGen; i < i_f + t_HFGen; i++) {
  1184. X_low[k][i][0] = W[1][i - t_HFGen][k][0];
  1185. X_low[k][i][1] = W[1][i - t_HFGen][k][1];
  1186. }
  1187. }
  1188. for (k = 0; k < sbr->kx[0]; k++) {
  1189. for (i = 0; i < t_HFGen; i++) {
  1190. X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
  1191. X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
  1192. }
  1193. }
  1194. return 0;
  1195. }
  1196. /// High Frequency Generator (14496-3 sp04 p215)
  1197. static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1198. float X_high[64][40][2], const float X_low[32][40][2],
  1199. const float (*alpha0)[2], const float (*alpha1)[2],
  1200. const float bw_array[5], const uint8_t *t_env,
  1201. int bs_num_env)
  1202. {
  1203. int i, j, x;
  1204. int g = 0;
  1205. int k = sbr->kx[1];
  1206. for (j = 0; j < sbr->num_patches; j++) {
  1207. for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
  1208. float alpha[4];
  1209. const int p = sbr->patch_start_subband[j] + x;
  1210. while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
  1211. g++;
  1212. g--;
  1213. if (g < 0) {
  1214. av_log(ac->avccontext, AV_LOG_ERROR,
  1215. "ERROR : no subband found for frequency %d\n", k);
  1216. return -1;
  1217. }
  1218. alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
  1219. alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
  1220. alpha[2] = alpha0[p][0] * bw_array[g];
  1221. alpha[3] = alpha0[p][1] * bw_array[g];
  1222. for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
  1223. const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
  1224. X_high[k][idx][0] =
  1225. X_low[p][idx - 2][0] * alpha[0] -
  1226. X_low[p][idx - 2][1] * alpha[1] +
  1227. X_low[p][idx - 1][0] * alpha[2] -
  1228. X_low[p][idx - 1][1] * alpha[3] +
  1229. X_low[p][idx][0];
  1230. X_high[k][idx][1] =
  1231. X_low[p][idx - 2][1] * alpha[0] +
  1232. X_low[p][idx - 2][0] * alpha[1] +
  1233. X_low[p][idx - 1][1] * alpha[2] +
  1234. X_low[p][idx - 1][0] * alpha[3] +
  1235. X_low[p][idx][1];
  1236. }
  1237. }
  1238. }
  1239. if (k < sbr->m[1] + sbr->kx[1])
  1240. memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
  1241. return 0;
  1242. }
  1243. /// Generate the subband filtered lowband
  1244. static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][32][64],
  1245. const float X_low[32][40][2], const float Y[2][38][64][2],
  1246. int ch)
  1247. {
  1248. int k, i;
  1249. const int i_f = 32;
  1250. const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
  1251. memset(X, 0, 2*sizeof(*X));
  1252. for (k = 0; k < sbr->kx[0]; k++) {
  1253. for (i = 0; i < i_Temp; i++) {
  1254. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1255. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1256. }
  1257. }
  1258. for (; k < sbr->kx[0] + sbr->m[0]; k++) {
  1259. for (i = 0; i < i_Temp; i++) {
  1260. X[0][i][k] = Y[0][i + i_f][k][0];
  1261. X[1][i][k] = Y[0][i + i_f][k][1];
  1262. }
  1263. }
  1264. for (k = 0; k < sbr->kx[1]; k++) {
  1265. for (i = i_Temp; i < i_f; i++) {
  1266. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1267. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1268. }
  1269. }
  1270. for (; k < sbr->kx[1] + sbr->m[1]; k++) {
  1271. for (i = i_Temp; i < i_f; i++) {
  1272. X[0][i][k] = Y[1][i][k][0];
  1273. X[1][i][k] = Y[1][i][k][1];
  1274. }
  1275. }
  1276. return 0;
  1277. }
  1278. /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
  1279. * (14496-3 sp04 p217)
  1280. */
  1281. static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
  1282. SBRData *ch_data, int e_a[2])
  1283. {
  1284. int e, i, m;
  1285. e_a[0] = -(e_a[1] != ch_data->bs_num_env[0]); // l_APrev
  1286. e_a[1] = -1;
  1287. if ((ch_data->bs_frame_class & 1) && ch_data->bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
  1288. e_a[1] = ch_data->bs_num_env[1] + 1 - ch_data->bs_pointer;
  1289. } else if ((ch_data->bs_frame_class == 2) && (ch_data->bs_pointer > 1)) // VARFIX and bs_pointer > 1
  1290. e_a[1] = ch_data->bs_pointer - 1;
  1291. memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
  1292. for (e = 0; e < ch_data->bs_num_env[1]; e++) {
  1293. const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
  1294. uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1295. int k;
  1296. for (i = 0; i < ilim; i++)
  1297. for (m = table[i]; m < table[i + 1]; m++)
  1298. sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
  1299. // ch_data->bs_num_noise > 1 => 2 noise floors
  1300. k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
  1301. for (i = 0; i < sbr->n_q; i++)
  1302. for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
  1303. sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
  1304. for (i = 0; i < sbr->n[1]; i++) {
  1305. if (ch_data->bs_add_harmonic_flag) {
  1306. const unsigned int m_midpoint =
  1307. (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
  1308. ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
  1309. (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
  1310. }
  1311. }
  1312. for (i = 0; i < ilim; i++) {
  1313. int additional_sinusoid_present = 0;
  1314. for (m = table[i]; m < table[i + 1]; m++) {
  1315. if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
  1316. additional_sinusoid_present = 1;
  1317. break;
  1318. }
  1319. }
  1320. memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
  1321. (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
  1322. }
  1323. }
  1324. memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env[1]], sizeof(ch_data->s_indexmapped[0]));
  1325. }
  1326. /// Estimation of current envelope (14496-3 sp04 p218)
  1327. static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
  1328. SpectralBandReplication *sbr, SBRData *ch_data)
  1329. {
  1330. int e, i, m;
  1331. if (sbr->bs_interpol_freq) {
  1332. for (e = 0; e < ch_data->bs_num_env[1]; e++) {
  1333. const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1334. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1335. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1336. for (m = 0; m < sbr->m[1]; m++) {
  1337. float sum = 0.0f;
  1338. for (i = ilb; i < iub; i++) {
  1339. sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
  1340. X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
  1341. }
  1342. e_curr[e][m] = sum * recip_env_size;
  1343. }
  1344. }
  1345. } else {
  1346. int k, p;
  1347. for (e = 0; e < ch_data->bs_num_env[1]; e++) {
  1348. const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1349. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1350. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1351. const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1352. for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
  1353. float sum = 0.0f;
  1354. const int den = env_size * (table[p + 1] - table[p]);
  1355. for (k = table[p]; k < table[p + 1]; k++) {
  1356. for (i = ilb; i < iub; i++) {
  1357. sum += X_high[k][i][0] * X_high[k][i][0] +
  1358. X_high[k][i][1] * X_high[k][i][1];
  1359. }
  1360. }
  1361. sum /= den;
  1362. for (k = table[p]; k < table[p + 1]; k++) {
  1363. e_curr[e][k - sbr->kx[1]] = sum;
  1364. }
  1365. }
  1366. }
  1367. }
  1368. }
  1369. /**
  1370. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  1371. * and Calculation of gain (14496-3 sp04 p219)
  1372. */
  1373. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  1374. SBRData *ch_data, const int e_a[2])
  1375. {
  1376. int e, k, m;
  1377. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  1378. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  1379. for (e = 0; e < ch_data->bs_num_env[1]; e++) {
  1380. int delta = !((e == e_a[1]) || (e == e_a[0]));
  1381. for (k = 0; k < sbr->n_lim; k++) {
  1382. float gain_boost, gain_max;
  1383. float sum[2] = { 0.0f, 0.0f };
  1384. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1385. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  1386. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  1387. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  1388. if (!sbr->s_mapped[e][m]) {
  1389. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  1390. ((1.0f + sbr->e_curr[e][m]) *
  1391. (1.0f + sbr->q_mapped[e][m] * delta)));
  1392. } else {
  1393. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  1394. ((1.0f + sbr->e_curr[e][m]) *
  1395. (1.0f + sbr->q_mapped[e][m])));
  1396. }
  1397. }
  1398. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1399. sum[0] += sbr->e_origmapped[e][m];
  1400. sum[1] += sbr->e_curr[e][m];
  1401. }
  1402. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1403. gain_max = FFMIN(100000, gain_max);
  1404. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1405. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  1406. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  1407. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  1408. }
  1409. sum[0] = sum[1] = 0.0f;
  1410. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1411. sum[0] += sbr->e_origmapped[e][m];
  1412. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  1413. + sbr->s_m[e][m] * sbr->s_m[e][m]
  1414. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  1415. }
  1416. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1417. gain_boost = FFMIN(1.584893192, gain_boost);
  1418. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1419. sbr->gain[e][m] *= gain_boost;
  1420. sbr->q_m[e][m] *= gain_boost;
  1421. sbr->s_m[e][m] *= gain_boost;
  1422. }
  1423. }
  1424. }
  1425. }
  1426. /// Assembling HF Signals (14496-3 sp04 p220)
  1427. static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
  1428. SpectralBandReplication *sbr, SBRData *ch_data,
  1429. const int e_a[2])
  1430. {
  1431. int e, i, j, m;
  1432. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  1433. const int kx = sbr->kx[1];
  1434. const int m_max = sbr->m[1];
  1435. static const float h_smooth[5] = {
  1436. 0.33333333333333,
  1437. 0.30150283239582,
  1438. 0.21816949906249,
  1439. 0.11516383427084,
  1440. 0.03183050093751,
  1441. };
  1442. static const int8_t phi[2][4] = {
  1443. { 1, 0, -1, 0}, // real
  1444. { 0, 1, 0, -1}, // imaginary
  1445. };
  1446. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  1447. int indexnoise = ch_data->f_indexnoise;
  1448. int indexsine = ch_data->f_indexsine;
  1449. memcpy(Y[0], Y[1], sizeof(Y[0]));
  1450. if (sbr->reset) {
  1451. for (i = 0; i < h_SL; i++) {
  1452. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  1453. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  1454. }
  1455. } else if (h_SL) {
  1456. memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
  1457. memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
  1458. }
  1459. for (e = 0; e < ch_data->bs_num_env[1]; e++) {
  1460. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1461. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  1462. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  1463. }
  1464. }
  1465. for (e = 0; e < ch_data->bs_num_env[1]; e++) {
  1466. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1467. int phi_sign = (1 - 2*(kx & 1));
  1468. if (h_SL && e != e_a[0] && e != e_a[1]) {
  1469. for (m = 0; m < m_max; m++) {
  1470. const int idx1 = i + h_SL;
  1471. float g_filt = 0.0f;
  1472. for (j = 0; j <= h_SL; j++)
  1473. g_filt += g_temp[idx1 - j][m] * h_smooth[j];
  1474. Y[1][i][m + kx][0] =
  1475. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1476. Y[1][i][m + kx][1] =
  1477. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1478. }
  1479. } else {
  1480. for (m = 0; m < m_max; m++) {
  1481. const float g_filt = g_temp[i + h_SL][m];
  1482. Y[1][i][m + kx][0] =
  1483. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1484. Y[1][i][m + kx][1] =
  1485. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1486. }
  1487. }
  1488. if (e != e_a[0] && e != e_a[1]) {
  1489. for (m = 0; m < m_max; m++) {
  1490. indexnoise = (indexnoise + 1) & 0x1ff;
  1491. if (sbr->s_m[e][m]) {
  1492. Y[1][i][m + kx][0] +=
  1493. sbr->s_m[e][m] * phi[0][indexsine];
  1494. Y[1][i][m + kx][1] +=
  1495. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1496. } else {
  1497. float q_filt;
  1498. if (h_SL) {
  1499. const int idx1 = i + h_SL;
  1500. q_filt = 0.0f;
  1501. for (j = 0; j <= h_SL; j++)
  1502. q_filt += q_temp[idx1 - j][m] * h_smooth[j];
  1503. } else {
  1504. q_filt = q_temp[i][m];
  1505. }
  1506. Y[1][i][m + kx][0] +=
  1507. q_filt * sbr_noise_table[indexnoise][0];
  1508. Y[1][i][m + kx][1] +=
  1509. q_filt * sbr_noise_table[indexnoise][1];
  1510. }
  1511. phi_sign = -phi_sign;
  1512. }
  1513. } else {
  1514. indexnoise = (indexnoise + m_max) & 0x1ff;
  1515. for (m = 0; m < m_max; m++) {
  1516. Y[1][i][m + kx][0] +=
  1517. sbr->s_m[e][m] * phi[0][indexsine];
  1518. Y[1][i][m + kx][1] +=
  1519. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1520. phi_sign = -phi_sign;
  1521. }
  1522. }
  1523. indexsine = (indexsine + 1) & 3;
  1524. }
  1525. }
  1526. ch_data->f_indexnoise = indexnoise;
  1527. ch_data->f_indexsine = indexsine;
  1528. }
  1529. void ff_sbr_dequant(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
  1530. {
  1531. int ch;
  1532. if (sbr->start) {
  1533. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  1534. sbr_time_freq_grid(ac, sbr, &sbr->data[ch], ch);
  1535. }
  1536. sbr_dequant(sbr, id_aac);
  1537. }
  1538. }
  1539. void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int ch,
  1540. const float* in, float* out)
  1541. {
  1542. int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
  1543. /* decode channel */
  1544. sbr_qmf_analysis(&ac->dsp, &sbr->rdft, in, sbr->data[ch].analysis_filterbank_samples,
  1545. (float*)sbr->qmf_filter_scratch,
  1546. sbr->data[ch].W, ac->add_bias, 1/(-1024 * ac->sf_scale));
  1547. sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
  1548. if (sbr->start) {
  1549. sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
  1550. sbr_chirp(sbr, &sbr->data[ch]);
  1551. sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
  1552. sbr->data[ch].bw_array, sbr->data[ch].t_env,
  1553. sbr->data[ch].bs_num_env[1]);
  1554. // hf_adj
  1555. sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1556. sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
  1557. sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1558. sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
  1559. sbr->data[ch].e_a);
  1560. }
  1561. /* synthesis */
  1562. sbr_x_gen(sbr, sbr->X, sbr->X_low, sbr->data[ch].Y, ch);
  1563. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, out, sbr->X, sbr->qmf_filter_scratch,
  1564. sbr->data[ch].synthesis_filterbank_samples,
  1565. &sbr->data[ch].synthesis_filterbank_samples_offset,
  1566. downsampled,
  1567. ac->add_bias, -1024 * ac->sf_scale);
  1568. }