You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

394 lines
10KB

  1. /*
  2. * Real Audio 1.0 (14.4K)
  3. * Copyright (c) 2003 the ffmpeg project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "bitstream.h"
  23. #include "ra144.h"
  24. #define NBLOCKS 4 /* number of segments within a block */
  25. #define BLOCKSIZE 40 /* (quarter) block size in 16-bit words (80 bytes) */
  26. #define HALFBLOCK 20 /* BLOCKSIZE/2 */
  27. #define BUFFERSIZE 146 /* for do_output */
  28. typedef struct {
  29. unsigned int old_energy; ///< previous frame energy
  30. /* the swapped buffers */
  31. unsigned int lpc_tables[2][10];
  32. unsigned int *lpc_coef; ///< LPC coefficients
  33. unsigned int *lpc_coef_old; ///< previous frame LPC coefficients
  34. unsigned int lpc_refl_rms;
  35. unsigned int lpc_refl_rms_old;
  36. /** the current subblock padded by the last 10 values of the previous one*/
  37. int16_t curr_sblock[50];
  38. uint16_t adapt_cb[148]; ///< adaptive codebook
  39. } RA144Context;
  40. static int ra144_decode_init(AVCodecContext * avctx)
  41. {
  42. RA144Context *ractx = avctx->priv_data;
  43. ractx->lpc_coef = ractx->lpc_tables[0];
  44. ractx->lpc_coef_old = ractx->lpc_tables[1];
  45. return 0;
  46. }
  47. /**
  48. * Evaluate sqrt(x << 24). x must fit in 20 bits. This value is evaluated in an
  49. * odd way to make the output identical to the binary decoder.
  50. */
  51. static int t_sqrt(unsigned int x)
  52. {
  53. int s = 0;
  54. while (x > 0xfff) {
  55. s++;
  56. x = x >> 2;
  57. }
  58. return (ff_sqrt(x << 20) << s) << 2;
  59. }
  60. /**
  61. * Evaluate the LPC filter coefficients from the reflection coefficients.
  62. * Does the inverse of the eval_refl() function.
  63. */
  64. static void eval_coefs(const int *refl, int *coefs)
  65. {
  66. int buffer[10];
  67. int *b1 = buffer;
  68. int *b2 = coefs;
  69. int x, y;
  70. for (x=0; x < 10; x++) {
  71. b1[x] = refl[x] << 4;
  72. for (y=0; y < x; y++)
  73. b1[y] = ((refl[x] * b2[x-y-1]) >> 12) + b2[y];
  74. FFSWAP(int *, b1, b2);
  75. }
  76. for (x=0; x < 10; x++)
  77. coefs[x] >>= 4;
  78. }
  79. /* rotate block */
  80. static void rotate_block(const int16_t *source, int16_t *target, int offset)
  81. {
  82. int i=0, k=0;
  83. source += BUFFERSIZE - offset;
  84. while (i<BLOCKSIZE) {
  85. target[i++] = source[k++];
  86. if (k == offset)
  87. k = 0;
  88. }
  89. }
  90. /* inverse root mean square */
  91. static int irms(const int16_t *data, int factor)
  92. {
  93. unsigned int i, sum = 0;
  94. for (i=0; i < BLOCKSIZE; i++)
  95. sum += data[i] * data[i];
  96. if (sum == 0)
  97. return 0; /* OOPS - division by zero */
  98. return (0x20000000 / (t_sqrt(sum) >> 8)) * factor;
  99. }
  100. /* multiply/add wavetable */
  101. static void add_wav(int n, int skip_first, int *m, const int16_t *s1,
  102. const int8_t *s2, const int8_t *s3, int16_t *dest)
  103. {
  104. int i;
  105. int v[3];
  106. v[0] = 0;
  107. for (i=!skip_first; i<3; i++)
  108. v[i] = (gain_val_tab[n][i] * m[i]) >> (gain_exp_tab[n][i] + 1);
  109. for (i=0; i < BLOCKSIZE; i++)
  110. dest[i] = ((*(s1++))*v[0] + (*(s2++))*v[1] + (*(s3++))*v[2]) >> 12;
  111. }
  112. static void lpc_filter(const int16_t *lpc_coefs, const int16_t *adapt_coef,
  113. uint16_t *statbuf, int len)
  114. {
  115. int x, i;
  116. int16_t *ptr = statbuf;
  117. memcpy(statbuf, statbuf + 40, 20);
  118. memcpy(statbuf + 10, adapt_coef, len * 2);
  119. for (i=0; i<len; i++) {
  120. int sum = 0;
  121. int new_val;
  122. for(x=0; x<10; x++)
  123. sum += lpc_coefs[9-x] * ptr[x];
  124. sum >>= 12;
  125. new_val = ptr[10] - sum;
  126. if (new_val < -32768 || new_val > 32767) {
  127. memset(statbuf, 0, 100);
  128. return;
  129. }
  130. ptr[10] = new_val;
  131. ptr++;
  132. }
  133. }
  134. static unsigned int rescale_rms(int rms, int energy)
  135. {
  136. return (rms * energy) >> 10;
  137. }
  138. static unsigned int rms(const int *data)
  139. {
  140. int x;
  141. unsigned int res = 0x10000;
  142. int b = 0;
  143. for (x=0; x<10; x++) {
  144. res = (((0x1000000 - (*data) * (*data)) >> 12) * res) >> 12;
  145. if (res == 0)
  146. return 0;
  147. while (res <= 0x3fff) {
  148. b++;
  149. res <<= 2;
  150. }
  151. data++;
  152. }
  153. if (res > 0)
  154. res = t_sqrt(res);
  155. res >>= (b + 10);
  156. return res;
  157. }
  158. /* do quarter-block output */
  159. static void do_output_subblock(RA144Context *ractx,
  160. const uint16_t *lpc_coefs, unsigned int gval,
  161. GetBitContext *gb)
  162. {
  163. uint16_t buffer_a[40];
  164. uint16_t *block;
  165. int cba_idx = get_bits(gb, 7); // index of the adaptive CB, 0 if none
  166. int gain = get_bits(gb, 8);
  167. int cb1_idx = get_bits(gb, 7);
  168. int cb2_idx = get_bits(gb, 7);
  169. int m[3];
  170. if (cba_idx) {
  171. cba_idx += HALFBLOCK - 1;
  172. rotate_block(ractx->adapt_cb, buffer_a, cba_idx);
  173. m[0] = irms(buffer_a, gval) >> 12;
  174. } else {
  175. m[0] = 0;
  176. }
  177. m[1] = ((cb1_base[cb1_idx] >> 4) * gval) >> 8;
  178. m[2] = ((cb2_base[cb2_idx] >> 4) * gval) >> 8;
  179. memmove(ractx->adapt_cb, ractx->adapt_cb + BLOCKSIZE,
  180. (BUFFERSIZE - BLOCKSIZE) * 2);
  181. block = ractx->adapt_cb + BUFFERSIZE - BLOCKSIZE;
  182. add_wav(gain, cba_idx, m, buffer_a, cb1_vects[cb1_idx], cb2_vects[cb2_idx],
  183. block);
  184. lpc_filter(lpc_coefs, block, ractx->curr_sblock, BLOCKSIZE);
  185. }
  186. static void int_to_int16(int16_t *out, const int *inp)
  187. {
  188. int i;
  189. for (i=0; i<30; i++)
  190. *(out++) = *(inp++);
  191. }
  192. /**
  193. * Evaluate the reflection coefficients from the filter coefficients.
  194. * Does the inverse of the eval_coefs() function.
  195. *
  196. * @return 1 if one of the reflection coefficients is of magnitude greater than
  197. * 4095, 0 if not.
  198. */
  199. static int eval_refl(const int16_t *coefs, int *refl, RA144Context *ractx)
  200. {
  201. int retval = 0;
  202. int b, c, i;
  203. unsigned int u;
  204. int buffer1[10];
  205. int buffer2[10];
  206. int *bp1 = buffer1;
  207. int *bp2 = buffer2;
  208. for (i=0; i < 10; i++)
  209. buffer2[i] = coefs[i];
  210. u = refl[9] = bp2[9];
  211. if (u + 0x1000 > 0x1fff) {
  212. av_log(ractx, AV_LOG_ERROR, "Overflow. Broken sample?\n");
  213. return 0;
  214. }
  215. for (c=8; c >= 0; c--) {
  216. if (u == 0x1000)
  217. u++;
  218. if (u == 0xfffff000)
  219. u--;
  220. b = 0x1000-((u * u) >> 12);
  221. if (b == 0)
  222. b++;
  223. for (u=0; u<=c; u++)
  224. bp1[u] = ((bp2[u] - ((refl[c+1] * bp2[c-u]) >> 12)) * (0x1000000 / b)) >> 12;
  225. refl[c] = u = bp1[c];
  226. if ((u + 0x1000) > 0x1fff)
  227. retval = 1;
  228. FFSWAP(int *, bp1, bp2);
  229. }
  230. return retval;
  231. }
  232. static int interp(RA144Context *ractx, int16_t *out, int block_num,
  233. int copynew, int energy)
  234. {
  235. int work[10];
  236. int a = block_num + 1;
  237. int b = NBLOCKS - a;
  238. int x;
  239. // Interpolate block coefficients from the this frame forth block and
  240. // last frame forth block
  241. for (x=0; x<30; x++)
  242. out[x] = (a * ractx->lpc_coef[x] + b * ractx->lpc_coef_old[x])>> 2;
  243. if (eval_refl(out, work, ractx)) {
  244. // The interpolated coefficients are unstable, copy either new or old
  245. // coefficients
  246. if (copynew) {
  247. int_to_int16(out, ractx->lpc_coef);
  248. return rescale_rms(ractx->lpc_refl_rms, energy);
  249. } else {
  250. int_to_int16(out, ractx->lpc_coef_old);
  251. return rescale_rms(ractx->lpc_refl_rms_old, energy);
  252. }
  253. } else {
  254. return rescale_rms(rms(work), energy);
  255. }
  256. }
  257. /* Uncompress one block (20 bytes -> 160*2 bytes) */
  258. static int ra144_decode_frame(AVCodecContext * avctx,
  259. void *vdata, int *data_size,
  260. const uint8_t * buf, int buf_size)
  261. {
  262. static const uint8_t sizes[10] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
  263. unsigned int refl_rms[4]; // RMS of the reflection coefficients
  264. uint16_t block_coefs[4][30]; // LPC coefficients of each sub-block
  265. unsigned int lpc_refl[10]; // LPC reflection coefficients of the frame
  266. int i, c;
  267. int16_t *data = vdata;
  268. unsigned int energy;
  269. RA144Context *ractx = avctx->priv_data;
  270. GetBitContext gb;
  271. if(buf_size < 20) {
  272. av_log(avctx, AV_LOG_ERROR,
  273. "Frame too small (%d bytes). Truncated file?\n", buf_size);
  274. *data_size = 0;
  275. return buf_size;
  276. }
  277. init_get_bits(&gb, buf, 20 * 8);
  278. for (i=0; i<10; i++)
  279. // "<< 1"? Doesn't this make one value out of two of the table useless?
  280. lpc_refl[i] = lpc_refl_cb[i][get_bits(&gb, sizes[i]) << 1];
  281. eval_coefs(lpc_refl, ractx->lpc_coef);
  282. ractx->lpc_refl_rms = rms(lpc_refl);
  283. energy = energy_tab[get_bits(&gb, 5) << 1]; // Useless table entries?
  284. refl_rms[0] = interp(ractx, block_coefs[0], 0, 0, ractx->old_energy);
  285. refl_rms[1] = interp(ractx, block_coefs[1], 1, energy > ractx->old_energy,
  286. t_sqrt(energy*ractx->old_energy) >> 12);
  287. refl_rms[2] = interp(ractx, block_coefs[2], 2, 1, energy);
  288. refl_rms[3] = rescale_rms(ractx->lpc_refl_rms, energy);
  289. int_to_int16(block_coefs[3], ractx->lpc_coef);
  290. /* do output */
  291. for (c=0; c<4; c++) {
  292. do_output_subblock(ractx, block_coefs[c], refl_rms[c], &gb);
  293. for (i=0; i<BLOCKSIZE; i++)
  294. *data++ = av_clip_int16(ractx->curr_sblock[i + 10] << 2);
  295. }
  296. ractx->old_energy = energy;
  297. ractx->lpc_refl_rms_old = ractx->lpc_refl_rms;
  298. FFSWAP(unsigned int *, ractx->lpc_coef_old, ractx->lpc_coef);
  299. *data_size = 2*160;
  300. return 20;
  301. }
  302. AVCodec ra_144_decoder =
  303. {
  304. "real_144",
  305. CODEC_TYPE_AUDIO,
  306. CODEC_ID_RA_144,
  307. sizeof(RA144Context),
  308. ra144_decode_init,
  309. NULL,
  310. NULL,
  311. ra144_decode_frame,
  312. .long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"),
  313. };