You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

651 lines
23KB

  1. /*
  2. * AAC encoder
  3. * Copyright (C) 2008 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AAC encoder
  24. */
  25. /***********************************
  26. * TODOs:
  27. * add sane pulse detection
  28. * add temporal noise shaping
  29. ***********************************/
  30. #include "avcodec.h"
  31. #include "put_bits.h"
  32. #include "dsputil.h"
  33. #include "mpeg4audio.h"
  34. #include "aac.h"
  35. #include "aactab.h"
  36. #include "aacenc.h"
  37. #include "psymodel.h"
  38. #define AAC_MAX_CHANNELS 6
  39. static const uint8_t swb_size_1024_96[] = {
  40. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8,
  41. 12, 12, 12, 12, 12, 16, 16, 24, 28, 36, 44,
  42. 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64
  43. };
  44. static const uint8_t swb_size_1024_64[] = {
  45. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8,
  46. 12, 12, 12, 16, 16, 16, 20, 24, 24, 28, 36,
  47. 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40
  48. };
  49. static const uint8_t swb_size_1024_48[] = {
  50. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8,
  51. 12, 12, 12, 12, 16, 16, 20, 20, 24, 24, 28, 28,
  52. 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32,
  53. 96
  54. };
  55. static const uint8_t swb_size_1024_32[] = {
  56. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8,
  57. 12, 12, 12, 12, 16, 16, 20, 20, 24, 24, 28, 28,
  58. 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32
  59. };
  60. static const uint8_t swb_size_1024_24[] = {
  61. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
  62. 12, 12, 12, 12, 16, 16, 16, 20, 20, 24, 24, 28, 28,
  63. 32, 36, 36, 40, 44, 48, 52, 52, 64, 64, 64, 64, 64
  64. };
  65. static const uint8_t swb_size_1024_16[] = {
  66. 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
  67. 12, 12, 12, 12, 12, 12, 12, 12, 12, 16, 16, 16, 16, 20, 20, 20, 24, 24, 28, 28,
  68. 32, 36, 40, 40, 44, 48, 52, 56, 60, 64, 64, 64
  69. };
  70. static const uint8_t swb_size_1024_8[] = {
  71. 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,
  72. 16, 16, 16, 16, 16, 16, 16, 20, 20, 20, 20, 24, 24, 24, 28, 28,
  73. 32, 36, 36, 40, 44, 48, 52, 56, 60, 64, 80
  74. };
  75. static const uint8_t *swb_size_1024[] = {
  76. swb_size_1024_96, swb_size_1024_96, swb_size_1024_64,
  77. swb_size_1024_48, swb_size_1024_48, swb_size_1024_32,
  78. swb_size_1024_24, swb_size_1024_24, swb_size_1024_16,
  79. swb_size_1024_16, swb_size_1024_16, swb_size_1024_8
  80. };
  81. static const uint8_t swb_size_128_96[] = {
  82. 4, 4, 4, 4, 4, 4, 8, 8, 8, 16, 28, 36
  83. };
  84. static const uint8_t swb_size_128_48[] = {
  85. 4, 4, 4, 4, 4, 8, 8, 8, 12, 12, 12, 16, 16, 16
  86. };
  87. static const uint8_t swb_size_128_24[] = {
  88. 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 12, 12, 16, 16, 20
  89. };
  90. static const uint8_t swb_size_128_16[] = {
  91. 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 12, 12, 16, 20, 20
  92. };
  93. static const uint8_t swb_size_128_8[] = {
  94. 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 12, 16, 20, 20
  95. };
  96. static const uint8_t *swb_size_128[] = {
  97. /* the last entry on the following row is swb_size_128_64 but is a
  98. duplicate of swb_size_128_96 */
  99. swb_size_128_96, swb_size_128_96, swb_size_128_96,
  100. swb_size_128_48, swb_size_128_48, swb_size_128_48,
  101. swb_size_128_24, swb_size_128_24, swb_size_128_16,
  102. swb_size_128_16, swb_size_128_16, swb_size_128_8
  103. };
  104. /** default channel configurations */
  105. static const uint8_t aac_chan_configs[6][5] = {
  106. {1, TYPE_SCE}, // 1 channel - single channel element
  107. {1, TYPE_CPE}, // 2 channels - channel pair
  108. {2, TYPE_SCE, TYPE_CPE}, // 3 channels - center + stereo
  109. {3, TYPE_SCE, TYPE_CPE, TYPE_SCE}, // 4 channels - front center + stereo + back center
  110. {3, TYPE_SCE, TYPE_CPE, TYPE_CPE}, // 5 channels - front center + stereo + back stereo
  111. {4, TYPE_SCE, TYPE_CPE, TYPE_CPE, TYPE_LFE}, // 6 channels - front center + stereo + back stereo + LFE
  112. };
  113. /**
  114. * Make AAC audio config object.
  115. * @see 1.6.2.1 "Syntax - AudioSpecificConfig"
  116. */
  117. static void put_audio_specific_config(AVCodecContext *avctx)
  118. {
  119. PutBitContext pb;
  120. AACEncContext *s = avctx->priv_data;
  121. init_put_bits(&pb, avctx->extradata, avctx->extradata_size*8);
  122. put_bits(&pb, 5, 2); //object type - AAC-LC
  123. put_bits(&pb, 4, s->samplerate_index); //sample rate index
  124. put_bits(&pb, 4, avctx->channels);
  125. //GASpecificConfig
  126. put_bits(&pb, 1, 0); //frame length - 1024 samples
  127. put_bits(&pb, 1, 0); //does not depend on core coder
  128. put_bits(&pb, 1, 0); //is not extension
  129. flush_put_bits(&pb);
  130. }
  131. static av_cold int aac_encode_init(AVCodecContext *avctx)
  132. {
  133. AACEncContext *s = avctx->priv_data;
  134. int i;
  135. const uint8_t *sizes[2];
  136. int lengths[2];
  137. avctx->frame_size = 1024;
  138. for (i = 0; i < 16; i++)
  139. if (avctx->sample_rate == ff_mpeg4audio_sample_rates[i])
  140. break;
  141. if (i == 16) {
  142. av_log(avctx, AV_LOG_ERROR, "Unsupported sample rate %d\n", avctx->sample_rate);
  143. return -1;
  144. }
  145. if (avctx->channels > AAC_MAX_CHANNELS) {
  146. av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n", avctx->channels);
  147. return -1;
  148. }
  149. if (avctx->profile != FF_PROFILE_UNKNOWN && avctx->profile != FF_PROFILE_AAC_LOW) {
  150. av_log(avctx, AV_LOG_ERROR, "Unsupported profile %d\n", avctx->profile);
  151. return -1;
  152. }
  153. if (1024.0 * avctx->bit_rate / avctx->sample_rate > 6144 * avctx->channels) {
  154. av_log(avctx, AV_LOG_ERROR, "Too many bits per frame requested\n");
  155. return -1;
  156. }
  157. s->samplerate_index = i;
  158. dsputil_init(&s->dsp, avctx);
  159. ff_mdct_init(&s->mdct1024, 11, 0, 1.0);
  160. ff_mdct_init(&s->mdct128, 8, 0, 1.0);
  161. // window init
  162. ff_kbd_window_init(ff_aac_kbd_long_1024, 4.0, 1024);
  163. ff_kbd_window_init(ff_aac_kbd_short_128, 6.0, 128);
  164. ff_init_ff_sine_windows(10);
  165. ff_init_ff_sine_windows(7);
  166. s->samples = av_malloc(2 * 1024 * avctx->channels * sizeof(s->samples[0]));
  167. s->cpe = av_mallocz(sizeof(ChannelElement) * aac_chan_configs[avctx->channels-1][0]);
  168. avctx->extradata = av_mallocz(2 + FF_INPUT_BUFFER_PADDING_SIZE);
  169. avctx->extradata_size = 2;
  170. put_audio_specific_config(avctx);
  171. sizes[0] = swb_size_1024[i];
  172. sizes[1] = swb_size_128[i];
  173. lengths[0] = ff_aac_num_swb_1024[i];
  174. lengths[1] = ff_aac_num_swb_128[i];
  175. ff_psy_init(&s->psy, avctx, 2, sizes, lengths);
  176. s->psypp = ff_psy_preprocess_init(avctx);
  177. s->coder = &ff_aac_coders[2];
  178. s->lambda = avctx->global_quality ? avctx->global_quality : 120;
  179. ff_aac_tableinit();
  180. return 0;
  181. }
  182. static void apply_window_and_mdct(AVCodecContext *avctx, AACEncContext *s,
  183. SingleChannelElement *sce, short *audio)
  184. {
  185. int i, k;
  186. const int chans = avctx->channels;
  187. const float * lwindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_long_1024 : ff_sine_1024;
  188. const float * swindow = sce->ics.use_kb_window[0] ? ff_aac_kbd_short_128 : ff_sine_128;
  189. const float * pwindow = sce->ics.use_kb_window[1] ? ff_aac_kbd_short_128 : ff_sine_128;
  190. if (sce->ics.window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
  191. memcpy(s->output, sce->saved, sizeof(float)*1024);
  192. if (sce->ics.window_sequence[0] == LONG_STOP_SEQUENCE) {
  193. memset(s->output, 0, sizeof(s->output[0]) * 448);
  194. for (i = 448; i < 576; i++)
  195. s->output[i] = sce->saved[i] * pwindow[i - 448];
  196. for (i = 576; i < 704; i++)
  197. s->output[i] = sce->saved[i];
  198. }
  199. if (sce->ics.window_sequence[0] != LONG_START_SEQUENCE) {
  200. for (i = 0; i < 1024; i++) {
  201. s->output[i+1024] = audio[i * chans] * lwindow[1024 - i - 1];
  202. sce->saved[i] = audio[i * chans] * lwindow[i];
  203. }
  204. } else {
  205. for (i = 0; i < 448; i++)
  206. s->output[i+1024] = audio[i * chans];
  207. for (; i < 576; i++)
  208. s->output[i+1024] = audio[i * chans] * swindow[576 - i - 1];
  209. memset(s->output+1024+576, 0, sizeof(s->output[0]) * 448);
  210. for (i = 0; i < 1024; i++)
  211. sce->saved[i] = audio[i * chans];
  212. }
  213. ff_mdct_calc(&s->mdct1024, sce->coeffs, s->output);
  214. } else {
  215. for (k = 0; k < 1024; k += 128) {
  216. for (i = 448 + k; i < 448 + k + 256; i++)
  217. s->output[i - 448 - k] = (i < 1024)
  218. ? sce->saved[i]
  219. : audio[(i-1024)*chans];
  220. s->dsp.vector_fmul (s->output, k ? swindow : pwindow, 128);
  221. s->dsp.vector_fmul_reverse(s->output+128, s->output+128, swindow, 128);
  222. ff_mdct_calc(&s->mdct128, sce->coeffs + k, s->output);
  223. }
  224. for (i = 0; i < 1024; i++)
  225. sce->saved[i] = audio[i * chans];
  226. }
  227. }
  228. /**
  229. * Encode ics_info element.
  230. * @see Table 4.6 (syntax of ics_info)
  231. */
  232. static void put_ics_info(AACEncContext *s, IndividualChannelStream *info)
  233. {
  234. int w;
  235. put_bits(&s->pb, 1, 0); // ics_reserved bit
  236. put_bits(&s->pb, 2, info->window_sequence[0]);
  237. put_bits(&s->pb, 1, info->use_kb_window[0]);
  238. if (info->window_sequence[0] != EIGHT_SHORT_SEQUENCE) {
  239. put_bits(&s->pb, 6, info->max_sfb);
  240. put_bits(&s->pb, 1, 0); // no prediction
  241. } else {
  242. put_bits(&s->pb, 4, info->max_sfb);
  243. for (w = 1; w < 8; w++)
  244. put_bits(&s->pb, 1, !info->group_len[w]);
  245. }
  246. }
  247. /**
  248. * Encode MS data.
  249. * @see 4.6.8.1 "Joint Coding - M/S Stereo"
  250. */
  251. static void encode_ms_info(PutBitContext *pb, ChannelElement *cpe)
  252. {
  253. int i, w;
  254. put_bits(pb, 2, cpe->ms_mode);
  255. if (cpe->ms_mode == 1)
  256. for (w = 0; w < cpe->ch[0].ics.num_windows; w += cpe->ch[0].ics.group_len[w])
  257. for (i = 0; i < cpe->ch[0].ics.max_sfb; i++)
  258. put_bits(pb, 1, cpe->ms_mask[w*16 + i]);
  259. }
  260. /**
  261. * Produce integer coefficients from scalefactors provided by the model.
  262. */
  263. static void adjust_frame_information(AACEncContext *apc, ChannelElement *cpe, int chans)
  264. {
  265. int i, w, w2, g, ch;
  266. int start, maxsfb, cmaxsfb;
  267. for (ch = 0; ch < chans; ch++) {
  268. IndividualChannelStream *ics = &cpe->ch[ch].ics;
  269. start = 0;
  270. maxsfb = 0;
  271. cpe->ch[ch].pulse.num_pulse = 0;
  272. for (w = 0; w < ics->num_windows*16; w += 16) {
  273. for (g = 0; g < ics->num_swb; g++) {
  274. //apply M/S
  275. if (cpe->common_window && !ch && cpe->ms_mask[w + g]) {
  276. for (i = 0; i < ics->swb_sizes[g]; i++) {
  277. cpe->ch[0].coeffs[start+i] = (cpe->ch[0].coeffs[start+i] + cpe->ch[1].coeffs[start+i]) / 2.0;
  278. cpe->ch[1].coeffs[start+i] = cpe->ch[0].coeffs[start+i] - cpe->ch[1].coeffs[start+i];
  279. }
  280. }
  281. start += ics->swb_sizes[g];
  282. }
  283. for (cmaxsfb = ics->num_swb; cmaxsfb > 0 && cpe->ch[ch].zeroes[w+cmaxsfb-1]; cmaxsfb--)
  284. ;
  285. maxsfb = FFMAX(maxsfb, cmaxsfb);
  286. }
  287. ics->max_sfb = maxsfb;
  288. //adjust zero bands for window groups
  289. for (w = 0; w < ics->num_windows; w += ics->group_len[w]) {
  290. for (g = 0; g < ics->max_sfb; g++) {
  291. i = 1;
  292. for (w2 = w; w2 < w + ics->group_len[w]; w2++) {
  293. if (!cpe->ch[ch].zeroes[w2*16 + g]) {
  294. i = 0;
  295. break;
  296. }
  297. }
  298. cpe->ch[ch].zeroes[w*16 + g] = i;
  299. }
  300. }
  301. }
  302. if (chans > 1 && cpe->common_window) {
  303. IndividualChannelStream *ics0 = &cpe->ch[0].ics;
  304. IndividualChannelStream *ics1 = &cpe->ch[1].ics;
  305. int msc = 0;
  306. ics0->max_sfb = FFMAX(ics0->max_sfb, ics1->max_sfb);
  307. ics1->max_sfb = ics0->max_sfb;
  308. for (w = 0; w < ics0->num_windows*16; w += 16)
  309. for (i = 0; i < ics0->max_sfb; i++)
  310. if (cpe->ms_mask[w+i])
  311. msc++;
  312. if (msc == 0 || ics0->max_sfb == 0)
  313. cpe->ms_mode = 0;
  314. else
  315. cpe->ms_mode = msc < ics0->max_sfb ? 1 : 2;
  316. }
  317. }
  318. /**
  319. * Encode scalefactor band coding type.
  320. */
  321. static void encode_band_info(AACEncContext *s, SingleChannelElement *sce)
  322. {
  323. int w;
  324. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
  325. s->coder->encode_window_bands_info(s, sce, w, sce->ics.group_len[w], s->lambda);
  326. }
  327. /**
  328. * Encode scalefactors.
  329. */
  330. static void encode_scale_factors(AVCodecContext *avctx, AACEncContext *s,
  331. SingleChannelElement *sce)
  332. {
  333. int off = sce->sf_idx[0], diff;
  334. int i, w;
  335. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  336. for (i = 0; i < sce->ics.max_sfb; i++) {
  337. if (!sce->zeroes[w*16 + i]) {
  338. diff = sce->sf_idx[w*16 + i] - off + SCALE_DIFF_ZERO;
  339. if (diff < 0 || diff > 120)
  340. av_log(avctx, AV_LOG_ERROR, "Scalefactor difference is too big to be coded\n");
  341. off = sce->sf_idx[w*16 + i];
  342. put_bits(&s->pb, ff_aac_scalefactor_bits[diff], ff_aac_scalefactor_code[diff]);
  343. }
  344. }
  345. }
  346. }
  347. /**
  348. * Encode pulse data.
  349. */
  350. static void encode_pulses(AACEncContext *s, Pulse *pulse)
  351. {
  352. int i;
  353. put_bits(&s->pb, 1, !!pulse->num_pulse);
  354. if (!pulse->num_pulse)
  355. return;
  356. put_bits(&s->pb, 2, pulse->num_pulse - 1);
  357. put_bits(&s->pb, 6, pulse->start);
  358. for (i = 0; i < pulse->num_pulse; i++) {
  359. put_bits(&s->pb, 5, pulse->pos[i]);
  360. put_bits(&s->pb, 4, pulse->amp[i]);
  361. }
  362. }
  363. /**
  364. * Encode spectral coefficients processed by psychoacoustic model.
  365. */
  366. static void encode_spectral_coeffs(AACEncContext *s, SingleChannelElement *sce)
  367. {
  368. int start, i, w, w2;
  369. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  370. start = 0;
  371. for (i = 0; i < sce->ics.max_sfb; i++) {
  372. if (sce->zeroes[w*16 + i]) {
  373. start += sce->ics.swb_sizes[i];
  374. continue;
  375. }
  376. for (w2 = w; w2 < w + sce->ics.group_len[w]; w2++)
  377. s->coder->quantize_and_encode_band(s, &s->pb, sce->coeffs + start + w2*128,
  378. sce->ics.swb_sizes[i],
  379. sce->sf_idx[w*16 + i],
  380. sce->band_type[w*16 + i],
  381. s->lambda);
  382. start += sce->ics.swb_sizes[i];
  383. }
  384. }
  385. }
  386. /**
  387. * Encode one channel of audio data.
  388. */
  389. static int encode_individual_channel(AVCodecContext *avctx, AACEncContext *s,
  390. SingleChannelElement *sce,
  391. int common_window)
  392. {
  393. put_bits(&s->pb, 8, sce->sf_idx[0]);
  394. if (!common_window)
  395. put_ics_info(s, &sce->ics);
  396. encode_band_info(s, sce);
  397. encode_scale_factors(avctx, s, sce);
  398. encode_pulses(s, &sce->pulse);
  399. put_bits(&s->pb, 1, 0); //tns
  400. put_bits(&s->pb, 1, 0); //ssr
  401. encode_spectral_coeffs(s, sce);
  402. return 0;
  403. }
  404. /**
  405. * Write some auxiliary information about the created AAC file.
  406. */
  407. static void put_bitstream_info(AVCodecContext *avctx, AACEncContext *s,
  408. const char *name)
  409. {
  410. int i, namelen, padbits;
  411. namelen = strlen(name) + 2;
  412. put_bits(&s->pb, 3, TYPE_FIL);
  413. put_bits(&s->pb, 4, FFMIN(namelen, 15));
  414. if (namelen >= 15)
  415. put_bits(&s->pb, 8, namelen - 16);
  416. put_bits(&s->pb, 4, 0); //extension type - filler
  417. padbits = 8 - (put_bits_count(&s->pb) & 7);
  418. align_put_bits(&s->pb);
  419. for (i = 0; i < namelen - 2; i++)
  420. put_bits(&s->pb, 8, name[i]);
  421. put_bits(&s->pb, 12 - padbits, 0);
  422. }
  423. static int aac_encode_frame(AVCodecContext *avctx,
  424. uint8_t *frame, int buf_size, void *data)
  425. {
  426. AACEncContext *s = avctx->priv_data;
  427. int16_t *samples = s->samples, *samples2, *la;
  428. ChannelElement *cpe;
  429. int i, j, chans, tag, start_ch;
  430. const uint8_t *chan_map = aac_chan_configs[avctx->channels-1];
  431. int chan_el_counter[4];
  432. FFPsyWindowInfo windows[AAC_MAX_CHANNELS];
  433. if (s->last_frame)
  434. return 0;
  435. if (data) {
  436. if (!s->psypp) {
  437. memcpy(s->samples + 1024 * avctx->channels, data,
  438. 1024 * avctx->channels * sizeof(s->samples[0]));
  439. } else {
  440. start_ch = 0;
  441. samples2 = s->samples + 1024 * avctx->channels;
  442. for (i = 0; i < chan_map[0]; i++) {
  443. tag = chan_map[i+1];
  444. chans = tag == TYPE_CPE ? 2 : 1;
  445. ff_psy_preprocess(s->psypp, (uint16_t*)data + start_ch,
  446. samples2 + start_ch, start_ch, chans);
  447. start_ch += chans;
  448. }
  449. }
  450. }
  451. if (!avctx->frame_number) {
  452. memcpy(s->samples, s->samples + 1024 * avctx->channels,
  453. 1024 * avctx->channels * sizeof(s->samples[0]));
  454. return 0;
  455. }
  456. start_ch = 0;
  457. for (i = 0; i < chan_map[0]; i++) {
  458. FFPsyWindowInfo* wi = windows + start_ch;
  459. tag = chan_map[i+1];
  460. chans = tag == TYPE_CPE ? 2 : 1;
  461. cpe = &s->cpe[i];
  462. for (j = 0; j < chans; j++) {
  463. IndividualChannelStream *ics = &cpe->ch[j].ics;
  464. int k;
  465. int cur_channel = start_ch + j;
  466. samples2 = samples + cur_channel;
  467. la = samples2 + (448+64) * avctx->channels;
  468. if (!data)
  469. la = NULL;
  470. if (tag == TYPE_LFE) {
  471. wi[j].window_type[0] = ONLY_LONG_SEQUENCE;
  472. wi[j].window_shape = 0;
  473. wi[j].num_windows = 1;
  474. wi[j].grouping[0] = 1;
  475. } else {
  476. wi[j] = ff_psy_suggest_window(&s->psy, samples2, la, cur_channel,
  477. ics->window_sequence[0]);
  478. }
  479. ics->window_sequence[1] = ics->window_sequence[0];
  480. ics->window_sequence[0] = wi[j].window_type[0];
  481. ics->use_kb_window[1] = ics->use_kb_window[0];
  482. ics->use_kb_window[0] = wi[j].window_shape;
  483. ics->num_windows = wi[j].num_windows;
  484. ics->swb_sizes = s->psy.bands [ics->num_windows == 8];
  485. ics->num_swb = tag == TYPE_LFE ? 12 : s->psy.num_bands[ics->num_windows == 8];
  486. for (k = 0; k < ics->num_windows; k++)
  487. ics->group_len[k] = wi[j].grouping[k];
  488. apply_window_and_mdct(avctx, s, &cpe->ch[j], samples2);
  489. }
  490. start_ch += chans;
  491. }
  492. do {
  493. int frame_bits;
  494. init_put_bits(&s->pb, frame, buf_size*8);
  495. if ((avctx->frame_number & 0xFF)==1 && !(avctx->flags & CODEC_FLAG_BITEXACT))
  496. put_bitstream_info(avctx, s, LIBAVCODEC_IDENT);
  497. start_ch = 0;
  498. memset(chan_el_counter, 0, sizeof(chan_el_counter));
  499. for (i = 0; i < chan_map[0]; i++) {
  500. FFPsyWindowInfo* wi = windows + start_ch;
  501. tag = chan_map[i+1];
  502. chans = tag == TYPE_CPE ? 2 : 1;
  503. cpe = &s->cpe[i];
  504. put_bits(&s->pb, 3, tag);
  505. put_bits(&s->pb, 4, chan_el_counter[tag]++);
  506. for (j = 0; j < chans; j++) {
  507. s->cur_channel = start_ch + j;
  508. ff_psy_set_band_info(&s->psy, s->cur_channel, cpe->ch[j].coeffs, &wi[j]);
  509. s->coder->search_for_quantizers(avctx, s, &cpe->ch[j], s->lambda);
  510. }
  511. cpe->common_window = 0;
  512. if (chans > 1
  513. && wi[0].window_type[0] == wi[1].window_type[0]
  514. && wi[0].window_shape == wi[1].window_shape) {
  515. cpe->common_window = 1;
  516. for (j = 0; j < wi[0].num_windows; j++) {
  517. if (wi[0].grouping[j] != wi[1].grouping[j]) {
  518. cpe->common_window = 0;
  519. break;
  520. }
  521. }
  522. }
  523. s->cur_channel = start_ch;
  524. if (cpe->common_window && s->coder->search_for_ms)
  525. s->coder->search_for_ms(s, cpe, s->lambda);
  526. adjust_frame_information(s, cpe, chans);
  527. if (chans == 2) {
  528. put_bits(&s->pb, 1, cpe->common_window);
  529. if (cpe->common_window) {
  530. put_ics_info(s, &cpe->ch[0].ics);
  531. encode_ms_info(&s->pb, cpe);
  532. }
  533. }
  534. for (j = 0; j < chans; j++) {
  535. s->cur_channel = start_ch + j;
  536. encode_individual_channel(avctx, s, &cpe->ch[j], cpe->common_window);
  537. }
  538. start_ch += chans;
  539. }
  540. frame_bits = put_bits_count(&s->pb);
  541. if (frame_bits <= 6144 * avctx->channels - 3)
  542. break;
  543. s->lambda *= avctx->bit_rate * 1024.0f / avctx->sample_rate / frame_bits;
  544. } while (1);
  545. put_bits(&s->pb, 3, TYPE_END);
  546. flush_put_bits(&s->pb);
  547. avctx->frame_bits = put_bits_count(&s->pb);
  548. // rate control stuff
  549. if (!(avctx->flags & CODEC_FLAG_QSCALE)) {
  550. float ratio = avctx->bit_rate * 1024.0f / avctx->sample_rate / avctx->frame_bits;
  551. s->lambda *= ratio;
  552. s->lambda = FFMIN(s->lambda, 65536.f);
  553. }
  554. if (!data)
  555. s->last_frame = 1;
  556. memcpy(s->samples, s->samples + 1024 * avctx->channels,
  557. 1024 * avctx->channels * sizeof(s->samples[0]));
  558. return put_bits_count(&s->pb)>>3;
  559. }
  560. static av_cold int aac_encode_end(AVCodecContext *avctx)
  561. {
  562. AACEncContext *s = avctx->priv_data;
  563. ff_mdct_end(&s->mdct1024);
  564. ff_mdct_end(&s->mdct128);
  565. ff_psy_end(&s->psy);
  566. ff_psy_preprocess_end(s->psypp);
  567. av_freep(&s->samples);
  568. av_freep(&s->cpe);
  569. return 0;
  570. }
  571. AVCodec aac_encoder = {
  572. "aac",
  573. AVMEDIA_TYPE_AUDIO,
  574. CODEC_ID_AAC,
  575. sizeof(AACEncContext),
  576. aac_encode_init,
  577. aac_encode_frame,
  578. aac_encode_end,
  579. .capabilities = CODEC_CAP_SMALL_LAST_FRAME | CODEC_CAP_DELAY | CODEC_CAP_EXPERIMENTAL,
  580. .sample_fmts = (const enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE},
  581. .long_name = NULL_IF_CONFIG_SMALL("Advanced Audio Coding"),
  582. };