You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4196 lines
154KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/h264.c
  23. * H.264 / AVC / MPEG4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #include "internal.h"
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "h264.h"
  31. #include "h264data.h"
  32. #include "h264_mvpred.h"
  33. #include "h264_parser.h"
  34. #include "golomb.h"
  35. #include "mathops.h"
  36. #include "rectangle.h"
  37. #include "vdpau_internal.h"
  38. #include "cabac.h"
  39. #if ARCH_X86
  40. #include "x86/h264_i386.h"
  41. #endif
  42. //#undef NDEBUG
  43. #include <assert.h>
  44. static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
  45. static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
  46. static const uint8_t rem6[52]={
  47. 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
  48. };
  49. static const uint8_t div6[52]={
  50. 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
  51. };
  52. void ff_h264_write_back_intra_pred_mode(H264Context *h){
  53. const int mb_xy= h->mb_xy;
  54. h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
  55. h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
  56. h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
  57. h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
  58. h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
  59. h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
  60. h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
  61. }
  62. /**
  63. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  64. */
  65. int ff_h264_check_intra4x4_pred_mode(H264Context *h){
  66. MpegEncContext * const s = &h->s;
  67. static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
  68. static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
  69. int i;
  70. if(!(h->top_samples_available&0x8000)){
  71. for(i=0; i<4; i++){
  72. int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
  73. if(status<0){
  74. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  75. return -1;
  76. } else if(status){
  77. h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
  78. }
  79. }
  80. }
  81. if((h->left_samples_available&0x8888)!=0x8888){
  82. static const int mask[4]={0x8000,0x2000,0x80,0x20};
  83. for(i=0; i<4; i++){
  84. if(!(h->left_samples_available&mask[i])){
  85. int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
  86. if(status<0){
  87. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
  88. return -1;
  89. } else if(status){
  90. h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
  91. }
  92. }
  93. }
  94. }
  95. return 0;
  96. } //FIXME cleanup like ff_h264_check_intra_pred_mode
  97. /**
  98. * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
  99. */
  100. int ff_h264_check_intra_pred_mode(H264Context *h, int mode){
  101. MpegEncContext * const s = &h->s;
  102. static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
  103. static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
  104. if(mode > 6U) {
  105. av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
  106. return -1;
  107. }
  108. if(!(h->top_samples_available&0x8000)){
  109. mode= top[ mode ];
  110. if(mode<0){
  111. av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  112. return -1;
  113. }
  114. }
  115. if((h->left_samples_available&0x8080) != 0x8080){
  116. mode= left[ mode ];
  117. if(h->left_samples_available&0x8080){ //mad cow disease mode, aka MBAFF + constrained_intra_pred
  118. mode= ALZHEIMER_DC_L0T_PRED8x8 + (!(h->left_samples_available&0x8000)) + 2*(mode == DC_128_PRED8x8);
  119. }
  120. if(mode<0){
  121. av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
  122. return -1;
  123. }
  124. }
  125. return mode;
  126. }
  127. const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
  128. int i, si, di;
  129. uint8_t *dst;
  130. int bufidx;
  131. // src[0]&0x80; //forbidden bit
  132. h->nal_ref_idc= src[0]>>5;
  133. h->nal_unit_type= src[0]&0x1F;
  134. src++; length--;
  135. #if 0
  136. for(i=0; i<length; i++)
  137. printf("%2X ", src[i]);
  138. #endif
  139. #if HAVE_FAST_UNALIGNED
  140. # if HAVE_FAST_64BIT
  141. # define RS 7
  142. for(i=0; i+1<length; i+=9){
  143. if(!((~*(const uint64_t*)(src+i) & (*(const uint64_t*)(src+i) - 0x0100010001000101ULL)) & 0x8000800080008080ULL))
  144. # else
  145. # define RS 3
  146. for(i=0; i+1<length; i+=5){
  147. if(!((~*(const uint32_t*)(src+i) & (*(const uint32_t*)(src+i) - 0x01000101U)) & 0x80008080U))
  148. # endif
  149. continue;
  150. if(i>0 && !src[i]) i--;
  151. while(src[i]) i++;
  152. #else
  153. # define RS 0
  154. for(i=0; i+1<length; i+=2){
  155. if(src[i]) continue;
  156. if(i>0 && src[i-1]==0) i--;
  157. #endif
  158. if(i+2<length && src[i+1]==0 && src[i+2]<=3){
  159. if(src[i+2]!=3){
  160. /* startcode, so we must be past the end */
  161. length=i;
  162. }
  163. break;
  164. }
  165. i-= RS;
  166. }
  167. if(i>=length-1){ //no escaped 0
  168. *dst_length= length;
  169. *consumed= length+1; //+1 for the header
  170. return src;
  171. }
  172. bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
  173. av_fast_malloc(&h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length+FF_INPUT_BUFFER_PADDING_SIZE);
  174. dst= h->rbsp_buffer[bufidx];
  175. if (dst == NULL){
  176. return NULL;
  177. }
  178. //printf("decoding esc\n");
  179. memcpy(dst, src, i);
  180. si=di=i;
  181. while(si+2<length){
  182. //remove escapes (very rare 1:2^22)
  183. if(src[si+2]>3){
  184. dst[di++]= src[si++];
  185. dst[di++]= src[si++];
  186. }else if(src[si]==0 && src[si+1]==0){
  187. if(src[si+2]==3){ //escape
  188. dst[di++]= 0;
  189. dst[di++]= 0;
  190. si+=3;
  191. continue;
  192. }else //next start code
  193. goto nsc;
  194. }
  195. dst[di++]= src[si++];
  196. }
  197. while(si<length)
  198. dst[di++]= src[si++];
  199. nsc:
  200. memset(dst+di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  201. *dst_length= di;
  202. *consumed= si + 1;//+1 for the header
  203. //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
  204. return dst;
  205. }
  206. int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src){
  207. int v= *src;
  208. int r;
  209. tprintf(h->s.avctx, "rbsp trailing %X\n", v);
  210. for(r=1; r<9; r++){
  211. if(v&1) return r;
  212. v>>=1;
  213. }
  214. return 0;
  215. }
  216. /**
  217. * IDCT transforms the 16 dc values and dequantizes them.
  218. * @param qp quantization parameter
  219. */
  220. static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  221. #define stride 16
  222. int i;
  223. int temp[16]; //FIXME check if this is a good idea
  224. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  225. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  226. //memset(block, 64, 2*256);
  227. //return;
  228. for(i=0; i<4; i++){
  229. const int offset= y_offset[i];
  230. const int z0= block[offset+stride*0] + block[offset+stride*4];
  231. const int z1= block[offset+stride*0] - block[offset+stride*4];
  232. const int z2= block[offset+stride*1] - block[offset+stride*5];
  233. const int z3= block[offset+stride*1] + block[offset+stride*5];
  234. temp[4*i+0]= z0+z3;
  235. temp[4*i+1]= z1+z2;
  236. temp[4*i+2]= z1-z2;
  237. temp[4*i+3]= z0-z3;
  238. }
  239. for(i=0; i<4; i++){
  240. const int offset= x_offset[i];
  241. const int z0= temp[4*0+i] + temp[4*2+i];
  242. const int z1= temp[4*0+i] - temp[4*2+i];
  243. const int z2= temp[4*1+i] - temp[4*3+i];
  244. const int z3= temp[4*1+i] + temp[4*3+i];
  245. block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_residual
  246. block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
  247. block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
  248. block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
  249. }
  250. }
  251. #if 0
  252. /**
  253. * DCT transforms the 16 dc values.
  254. * @param qp quantization parameter ??? FIXME
  255. */
  256. static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
  257. // const int qmul= dequant_coeff[qp][0];
  258. int i;
  259. int temp[16]; //FIXME check if this is a good idea
  260. static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
  261. static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
  262. for(i=0; i<4; i++){
  263. const int offset= y_offset[i];
  264. const int z0= block[offset+stride*0] + block[offset+stride*4];
  265. const int z1= block[offset+stride*0] - block[offset+stride*4];
  266. const int z2= block[offset+stride*1] - block[offset+stride*5];
  267. const int z3= block[offset+stride*1] + block[offset+stride*5];
  268. temp[4*i+0]= z0+z3;
  269. temp[4*i+1]= z1+z2;
  270. temp[4*i+2]= z1-z2;
  271. temp[4*i+3]= z0-z3;
  272. }
  273. for(i=0; i<4; i++){
  274. const int offset= x_offset[i];
  275. const int z0= temp[4*0+i] + temp[4*2+i];
  276. const int z1= temp[4*0+i] - temp[4*2+i];
  277. const int z2= temp[4*1+i] - temp[4*3+i];
  278. const int z3= temp[4*1+i] + temp[4*3+i];
  279. block[stride*0 +offset]= (z0 + z3)>>1;
  280. block[stride*2 +offset]= (z1 + z2)>>1;
  281. block[stride*8 +offset]= (z1 - z2)>>1;
  282. block[stride*10+offset]= (z0 - z3)>>1;
  283. }
  284. }
  285. #endif
  286. #undef xStride
  287. #undef stride
  288. static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
  289. const int stride= 16*2;
  290. const int xStride= 16;
  291. int a,b,c,d,e;
  292. a= block[stride*0 + xStride*0];
  293. b= block[stride*0 + xStride*1];
  294. c= block[stride*1 + xStride*0];
  295. d= block[stride*1 + xStride*1];
  296. e= a-b;
  297. a= a+b;
  298. b= c-d;
  299. c= c+d;
  300. block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
  301. block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
  302. block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
  303. block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
  304. }
  305. #if 0
  306. static void chroma_dc_dct_c(DCTELEM *block){
  307. const int stride= 16*2;
  308. const int xStride= 16;
  309. int a,b,c,d,e;
  310. a= block[stride*0 + xStride*0];
  311. b= block[stride*0 + xStride*1];
  312. c= block[stride*1 + xStride*0];
  313. d= block[stride*1 + xStride*1];
  314. e= a-b;
  315. a= a+b;
  316. b= c-d;
  317. c= c+d;
  318. block[stride*0 + xStride*0]= (a+c);
  319. block[stride*0 + xStride*1]= (e+b);
  320. block[stride*1 + xStride*0]= (a-c);
  321. block[stride*1 + xStride*1]= (e-b);
  322. }
  323. #endif
  324. static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
  325. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  326. int src_x_offset, int src_y_offset,
  327. qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
  328. MpegEncContext * const s = &h->s;
  329. const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
  330. int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
  331. const int luma_xy= (mx&3) + ((my&3)<<2);
  332. uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
  333. uint8_t * src_cb, * src_cr;
  334. int extra_width= h->emu_edge_width;
  335. int extra_height= h->emu_edge_height;
  336. int emu=0;
  337. const int full_mx= mx>>2;
  338. const int full_my= my>>2;
  339. const int pic_width = 16*s->mb_width;
  340. const int pic_height = 16*s->mb_height >> MB_FIELD;
  341. if(mx&7) extra_width -= 3;
  342. if(my&7) extra_height -= 3;
  343. if( full_mx < 0-extra_width
  344. || full_my < 0-extra_height
  345. || full_mx + 16/*FIXME*/ > pic_width + extra_width
  346. || full_my + 16/*FIXME*/ > pic_height + extra_height){
  347. ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
  348. src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
  349. emu=1;
  350. }
  351. qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
  352. if(!square){
  353. qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
  354. }
  355. if(CONFIG_GRAY && s->flags&CODEC_FLAG_GRAY) return;
  356. if(MB_FIELD){
  357. // chroma offset when predicting from a field of opposite parity
  358. my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
  359. emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
  360. }
  361. src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  362. src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
  363. if(emu){
  364. ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  365. src_cb= s->edge_emu_buffer;
  366. }
  367. chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  368. if(emu){
  369. ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
  370. src_cr= s->edge_emu_buffer;
  371. }
  372. chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
  373. }
  374. static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
  375. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  376. int x_offset, int y_offset,
  377. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  378. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  379. int list0, int list1){
  380. MpegEncContext * const s = &h->s;
  381. qpel_mc_func *qpix_op= qpix_put;
  382. h264_chroma_mc_func chroma_op= chroma_put;
  383. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  384. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  385. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  386. x_offset += 8*s->mb_x;
  387. y_offset += 8*(s->mb_y >> MB_FIELD);
  388. if(list0){
  389. Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
  390. mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
  391. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  392. qpix_op, chroma_op);
  393. qpix_op= qpix_avg;
  394. chroma_op= chroma_avg;
  395. }
  396. if(list1){
  397. Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
  398. mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
  399. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  400. qpix_op, chroma_op);
  401. }
  402. }
  403. static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
  404. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  405. int x_offset, int y_offset,
  406. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  407. h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
  408. h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
  409. int list0, int list1){
  410. MpegEncContext * const s = &h->s;
  411. dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
  412. dest_cb += x_offset + y_offset*h->mb_uvlinesize;
  413. dest_cr += x_offset + y_offset*h->mb_uvlinesize;
  414. x_offset += 8*s->mb_x;
  415. y_offset += 8*(s->mb_y >> MB_FIELD);
  416. if(list0 && list1){
  417. /* don't optimize for luma-only case, since B-frames usually
  418. * use implicit weights => chroma too. */
  419. uint8_t *tmp_cb = s->obmc_scratchpad;
  420. uint8_t *tmp_cr = s->obmc_scratchpad + 8;
  421. uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
  422. int refn0 = h->ref_cache[0][ scan8[n] ];
  423. int refn1 = h->ref_cache[1][ scan8[n] ];
  424. mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
  425. dest_y, dest_cb, dest_cr,
  426. x_offset, y_offset, qpix_put, chroma_put);
  427. mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
  428. tmp_y, tmp_cb, tmp_cr,
  429. x_offset, y_offset, qpix_put, chroma_put);
  430. if(h->use_weight == 2){
  431. int weight0 = h->implicit_weight[refn0][refn1];
  432. int weight1 = 64 - weight0;
  433. luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
  434. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
  435. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
  436. }else{
  437. luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
  438. h->luma_weight[0][refn0], h->luma_weight[1][refn1],
  439. h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
  440. chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  441. h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
  442. h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
  443. chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  444. h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
  445. h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
  446. }
  447. }else{
  448. int list = list1 ? 1 : 0;
  449. int refn = h->ref_cache[list][ scan8[n] ];
  450. Picture *ref= &h->ref_list[list][refn];
  451. mc_dir_part(h, ref, n, square, chroma_height, delta, list,
  452. dest_y, dest_cb, dest_cr, x_offset, y_offset,
  453. qpix_put, chroma_put);
  454. luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
  455. h->luma_weight[list][refn], h->luma_offset[list][refn]);
  456. if(h->use_weight_chroma){
  457. chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  458. h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
  459. chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
  460. h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
  461. }
  462. }
  463. }
  464. static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
  465. uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  466. int x_offset, int y_offset,
  467. qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
  468. qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
  469. h264_weight_func *weight_op, h264_biweight_func *weight_avg,
  470. int list0, int list1){
  471. if((h->use_weight==2 && list0 && list1
  472. && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
  473. || h->use_weight==1)
  474. mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  475. x_offset, y_offset, qpix_put, chroma_put,
  476. weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
  477. else
  478. mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
  479. x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
  480. }
  481. static inline void prefetch_motion(H264Context *h, int list){
  482. /* fetch pixels for estimated mv 4 macroblocks ahead
  483. * optimized for 64byte cache lines */
  484. MpegEncContext * const s = &h->s;
  485. const int refn = h->ref_cache[list][scan8[0]];
  486. if(refn >= 0){
  487. const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
  488. const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
  489. uint8_t **src= h->ref_list[list][refn].data;
  490. int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
  491. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  492. off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
  493. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  494. }
  495. }
  496. static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
  497. qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
  498. qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
  499. h264_weight_func *weight_op, h264_biweight_func *weight_avg){
  500. MpegEncContext * const s = &h->s;
  501. const int mb_xy= h->mb_xy;
  502. const int mb_type= s->current_picture.mb_type[mb_xy];
  503. assert(IS_INTER(mb_type));
  504. prefetch_motion(h, 0);
  505. if(IS_16X16(mb_type)){
  506. mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
  507. qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
  508. &weight_op[0], &weight_avg[0],
  509. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  510. }else if(IS_16X8(mb_type)){
  511. mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
  512. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  513. &weight_op[1], &weight_avg[1],
  514. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  515. mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
  516. qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
  517. &weight_op[1], &weight_avg[1],
  518. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  519. }else if(IS_8X16(mb_type)){
  520. mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
  521. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  522. &weight_op[2], &weight_avg[2],
  523. IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
  524. mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
  525. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  526. &weight_op[2], &weight_avg[2],
  527. IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
  528. }else{
  529. int i;
  530. assert(IS_8X8(mb_type));
  531. for(i=0; i<4; i++){
  532. const int sub_mb_type= h->sub_mb_type[i];
  533. const int n= 4*i;
  534. int x_offset= (i&1)<<2;
  535. int y_offset= (i&2)<<1;
  536. if(IS_SUB_8X8(sub_mb_type)){
  537. mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  538. qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
  539. &weight_op[3], &weight_avg[3],
  540. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  541. }else if(IS_SUB_8X4(sub_mb_type)){
  542. mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  543. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  544. &weight_op[4], &weight_avg[4],
  545. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  546. mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
  547. qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
  548. &weight_op[4], &weight_avg[4],
  549. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  550. }else if(IS_SUB_4X8(sub_mb_type)){
  551. mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
  552. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  553. &weight_op[5], &weight_avg[5],
  554. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  555. mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
  556. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  557. &weight_op[5], &weight_avg[5],
  558. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  559. }else{
  560. int j;
  561. assert(IS_SUB_4X4(sub_mb_type));
  562. for(j=0; j<4; j++){
  563. int sub_x_offset= x_offset + 2*(j&1);
  564. int sub_y_offset= y_offset + (j&2);
  565. mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
  566. qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
  567. &weight_op[6], &weight_avg[6],
  568. IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
  569. }
  570. }
  571. }
  572. }
  573. prefetch_motion(h, 1);
  574. }
  575. static void free_tables(H264Context *h){
  576. int i;
  577. H264Context *hx;
  578. av_freep(&h->intra4x4_pred_mode);
  579. av_freep(&h->chroma_pred_mode_table);
  580. av_freep(&h->cbp_table);
  581. av_freep(&h->mvd_table[0]);
  582. av_freep(&h->mvd_table[1]);
  583. av_freep(&h->direct_table);
  584. av_freep(&h->non_zero_count);
  585. av_freep(&h->slice_table_base);
  586. h->slice_table= NULL;
  587. av_freep(&h->mb2b_xy);
  588. av_freep(&h->mb2b8_xy);
  589. for(i = 0; i < MAX_THREADS; i++) {
  590. hx = h->thread_context[i];
  591. if(!hx) continue;
  592. av_freep(&hx->top_borders[1]);
  593. av_freep(&hx->top_borders[0]);
  594. av_freep(&hx->s.obmc_scratchpad);
  595. av_freep(&hx->rbsp_buffer[1]);
  596. av_freep(&hx->rbsp_buffer[0]);
  597. hx->rbsp_buffer_size[0] = 0;
  598. hx->rbsp_buffer_size[1] = 0;
  599. if (i) av_freep(&h->thread_context[i]);
  600. }
  601. }
  602. static void init_dequant8_coeff_table(H264Context *h){
  603. int i,q,x;
  604. const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
  605. h->dequant8_coeff[0] = h->dequant8_buffer[0];
  606. h->dequant8_coeff[1] = h->dequant8_buffer[1];
  607. for(i=0; i<2; i++ ){
  608. if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
  609. h->dequant8_coeff[1] = h->dequant8_buffer[0];
  610. break;
  611. }
  612. for(q=0; q<52; q++){
  613. int shift = div6[q];
  614. int idx = rem6[q];
  615. for(x=0; x<64; x++)
  616. h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
  617. ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
  618. h->pps.scaling_matrix8[i][x]) << shift;
  619. }
  620. }
  621. }
  622. static void init_dequant4_coeff_table(H264Context *h){
  623. int i,j,q,x;
  624. const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
  625. for(i=0; i<6; i++ ){
  626. h->dequant4_coeff[i] = h->dequant4_buffer[i];
  627. for(j=0; j<i; j++){
  628. if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
  629. h->dequant4_coeff[i] = h->dequant4_buffer[j];
  630. break;
  631. }
  632. }
  633. if(j<i)
  634. continue;
  635. for(q=0; q<52; q++){
  636. int shift = div6[q] + 2;
  637. int idx = rem6[q];
  638. for(x=0; x<16; x++)
  639. h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
  640. ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
  641. h->pps.scaling_matrix4[i][x]) << shift;
  642. }
  643. }
  644. }
  645. static void init_dequant_tables(H264Context *h){
  646. int i,x;
  647. init_dequant4_coeff_table(h);
  648. if(h->pps.transform_8x8_mode)
  649. init_dequant8_coeff_table(h);
  650. if(h->sps.transform_bypass){
  651. for(i=0; i<6; i++)
  652. for(x=0; x<16; x++)
  653. h->dequant4_coeff[i][0][x] = 1<<6;
  654. if(h->pps.transform_8x8_mode)
  655. for(i=0; i<2; i++)
  656. for(x=0; x<64; x++)
  657. h->dequant8_coeff[i][0][x] = 1<<6;
  658. }
  659. }
  660. int ff_h264_alloc_tables(H264Context *h){
  661. MpegEncContext * const s = &h->s;
  662. const int big_mb_num= s->mb_stride * (s->mb_height+1);
  663. int x,y;
  664. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t), fail)
  665. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t), fail)
  666. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base), fail)
  667. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->cbp_table, big_mb_num * sizeof(uint16_t), fail)
  668. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t), fail)
  669. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t), fail);
  670. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t), fail);
  671. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->direct_table, 32*big_mb_num * sizeof(uint8_t) , fail);
  672. memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(*h->slice_table_base));
  673. h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
  674. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2b_xy , big_mb_num * sizeof(uint32_t), fail);
  675. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->mb2b8_xy , big_mb_num * sizeof(uint32_t), fail);
  676. for(y=0; y<s->mb_height; y++){
  677. for(x=0; x<s->mb_width; x++){
  678. const int mb_xy= x + y*s->mb_stride;
  679. const int b_xy = 4*x + 4*y*h->b_stride;
  680. const int b8_xy= 2*x + 2*y*h->b8_stride;
  681. h->mb2b_xy [mb_xy]= b_xy;
  682. h->mb2b8_xy[mb_xy]= b8_xy;
  683. }
  684. }
  685. s->obmc_scratchpad = NULL;
  686. if(!h->dequant4_coeff[0])
  687. init_dequant_tables(h);
  688. return 0;
  689. fail:
  690. free_tables(h);
  691. return -1;
  692. }
  693. /**
  694. * Mimic alloc_tables(), but for every context thread.
  695. */
  696. static void clone_tables(H264Context *dst, H264Context *src){
  697. dst->intra4x4_pred_mode = src->intra4x4_pred_mode;
  698. dst->non_zero_count = src->non_zero_count;
  699. dst->slice_table = src->slice_table;
  700. dst->cbp_table = src->cbp_table;
  701. dst->mb2b_xy = src->mb2b_xy;
  702. dst->mb2b8_xy = src->mb2b8_xy;
  703. dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
  704. dst->mvd_table[0] = src->mvd_table[0];
  705. dst->mvd_table[1] = src->mvd_table[1];
  706. dst->direct_table = src->direct_table;
  707. dst->s.obmc_scratchpad = NULL;
  708. ff_h264_pred_init(&dst->hpc, src->s.codec_id);
  709. }
  710. /**
  711. * Init context
  712. * Allocate buffers which are not shared amongst multiple threads.
  713. */
  714. static int context_init(H264Context *h){
  715. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t), fail)
  716. FF_ALLOCZ_OR_GOTO(h->s.avctx, h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t), fail)
  717. return 0;
  718. fail:
  719. return -1; // free_tables will clean up for us
  720. }
  721. static av_cold void common_init(H264Context *h){
  722. MpegEncContext * const s = &h->s;
  723. s->width = s->avctx->width;
  724. s->height = s->avctx->height;
  725. s->codec_id= s->avctx->codec->id;
  726. ff_h264_pred_init(&h->hpc, s->codec_id);
  727. h->dequant_coeff_pps= -1;
  728. s->unrestricted_mv=1;
  729. s->decode=1; //FIXME
  730. dsputil_init(&s->dsp, s->avctx); // needed so that idct permutation is known early
  731. memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
  732. memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
  733. }
  734. av_cold int ff_h264_decode_init(AVCodecContext *avctx){
  735. H264Context *h= avctx->priv_data;
  736. MpegEncContext * const s = &h->s;
  737. MPV_decode_defaults(s);
  738. s->avctx = avctx;
  739. common_init(h);
  740. s->out_format = FMT_H264;
  741. s->workaround_bugs= avctx->workaround_bugs;
  742. // set defaults
  743. // s->decode_mb= ff_h263_decode_mb;
  744. s->quarter_sample = 1;
  745. if(!avctx->has_b_frames)
  746. s->low_delay= 1;
  747. avctx->chroma_sample_location = AVCHROMA_LOC_LEFT;
  748. ff_h264_decode_init_vlc();
  749. if(avctx->extradata_size > 0 && avctx->extradata &&
  750. *(char *)avctx->extradata == 1){
  751. h->is_avc = 1;
  752. h->got_avcC = 0;
  753. } else {
  754. h->is_avc = 0;
  755. }
  756. h->thread_context[0] = h;
  757. h->outputed_poc = INT_MIN;
  758. h->prev_poc_msb= 1<<16;
  759. ff_h264_reset_sei(h);
  760. if(avctx->codec_id == CODEC_ID_H264){
  761. if(avctx->ticks_per_frame == 1){
  762. s->avctx->time_base.den *=2;
  763. }
  764. avctx->ticks_per_frame = 2;
  765. }
  766. return 0;
  767. }
  768. int ff_h264_frame_start(H264Context *h){
  769. MpegEncContext * const s = &h->s;
  770. int i;
  771. if(MPV_frame_start(s, s->avctx) < 0)
  772. return -1;
  773. ff_er_frame_start(s);
  774. /*
  775. * MPV_frame_start uses pict_type to derive key_frame.
  776. * This is incorrect for H.264; IDR markings must be used.
  777. * Zero here; IDR markings per slice in frame or fields are ORed in later.
  778. * See decode_nal_units().
  779. */
  780. s->current_picture_ptr->key_frame= 0;
  781. s->current_picture_ptr->mmco_reset= 0;
  782. assert(s->linesize && s->uvlinesize);
  783. for(i=0; i<16; i++){
  784. h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
  785. h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
  786. }
  787. for(i=0; i<4; i++){
  788. h->block_offset[16+i]=
  789. h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  790. h->block_offset[24+16+i]=
  791. h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
  792. }
  793. /* can't be in alloc_tables because linesize isn't known there.
  794. * FIXME: redo bipred weight to not require extra buffer? */
  795. for(i = 0; i < s->avctx->thread_count; i++)
  796. if(!h->thread_context[i]->s.obmc_scratchpad)
  797. h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
  798. /* some macroblocks will be accessed before they're available */
  799. if(FRAME_MBAFF || s->avctx->thread_count > 1)
  800. memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(*h->slice_table));
  801. // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
  802. // We mark the current picture as non-reference after allocating it, so
  803. // that if we break out due to an error it can be released automatically
  804. // in the next MPV_frame_start().
  805. // SVQ3 as well as most other codecs have only last/next/current and thus
  806. // get released even with set reference, besides SVQ3 and others do not
  807. // mark frames as reference later "naturally".
  808. if(s->codec_id != CODEC_ID_SVQ3)
  809. s->current_picture_ptr->reference= 0;
  810. s->current_picture_ptr->field_poc[0]=
  811. s->current_picture_ptr->field_poc[1]= INT_MAX;
  812. assert(s->current_picture_ptr->long_ref==0);
  813. return 0;
  814. }
  815. static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
  816. MpegEncContext * const s = &h->s;
  817. int i;
  818. int step = 1;
  819. int offset = 1;
  820. int uvoffset= 1;
  821. int top_idx = 1;
  822. int skiplast= 0;
  823. src_y -= linesize;
  824. src_cb -= uvlinesize;
  825. src_cr -= uvlinesize;
  826. if(!simple && FRAME_MBAFF){
  827. if(s->mb_y&1){
  828. offset = MB_MBAFF ? 1 : 17;
  829. uvoffset= MB_MBAFF ? 1 : 9;
  830. if(!MB_MBAFF){
  831. *(uint64_t*)(h->top_borders[0][s->mb_x]+ 0)= *(uint64_t*)(src_y + 15*linesize);
  832. *(uint64_t*)(h->top_borders[0][s->mb_x]+ 8)= *(uint64_t*)(src_y +8+15*linesize);
  833. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  834. *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+7*uvlinesize);
  835. *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+7*uvlinesize);
  836. }
  837. }
  838. }else{
  839. if(!MB_MBAFF){
  840. h->left_border[0]= h->top_borders[0][s->mb_x][15];
  841. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  842. h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7 ];
  843. h->left_border[34+18]= h->top_borders[0][s->mb_x][16+8+7];
  844. }
  845. skiplast= 1;
  846. }
  847. offset =
  848. uvoffset=
  849. top_idx = MB_MBAFF ? 0 : 1;
  850. }
  851. step= MB_MBAFF ? 2 : 1;
  852. }
  853. // There are two lines saved, the line above the the top macroblock of a pair,
  854. // and the line above the bottom macroblock
  855. h->left_border[offset]= h->top_borders[top_idx][s->mb_x][15];
  856. for(i=1; i<17 - skiplast; i++){
  857. h->left_border[offset+i*step]= src_y[15+i* linesize];
  858. }
  859. *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
  860. *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
  861. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  862. h->left_border[uvoffset+34 ]= h->top_borders[top_idx][s->mb_x][16+7];
  863. h->left_border[uvoffset+34+18]= h->top_borders[top_idx][s->mb_x][24+7];
  864. for(i=1; i<9 - skiplast; i++){
  865. h->left_border[uvoffset+34 +i*step]= src_cb[7+i*uvlinesize];
  866. h->left_border[uvoffset+34+18+i*step]= src_cr[7+i*uvlinesize];
  867. }
  868. *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
  869. *(uint64_t*)(h->top_borders[top_idx][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
  870. }
  871. }
  872. static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
  873. MpegEncContext * const s = &h->s;
  874. int temp8, i;
  875. uint64_t temp64;
  876. int deblock_left;
  877. int deblock_top;
  878. int mb_xy;
  879. int step = 1;
  880. int offset = 1;
  881. int uvoffset= 1;
  882. int top_idx = 1;
  883. if(!simple && FRAME_MBAFF){
  884. if(s->mb_y&1){
  885. offset = MB_MBAFF ? 1 : 17;
  886. uvoffset= MB_MBAFF ? 1 : 9;
  887. }else{
  888. offset =
  889. uvoffset=
  890. top_idx = MB_MBAFF ? 0 : 1;
  891. }
  892. step= MB_MBAFF ? 2 : 1;
  893. }
  894. if(h->deblocking_filter == 2) {
  895. mb_xy = h->mb_xy;
  896. deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
  897. deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy];
  898. } else {
  899. deblock_left = (s->mb_x > 0);
  900. deblock_top = (s->mb_y > !!MB_FIELD);
  901. }
  902. src_y -= linesize + 1;
  903. src_cb -= uvlinesize + 1;
  904. src_cr -= uvlinesize + 1;
  905. #define XCHG(a,b,t,xchg)\
  906. t= a;\
  907. if(xchg)\
  908. a= b;\
  909. b= t;
  910. if(deblock_left){
  911. for(i = !deblock_top; i<16; i++){
  912. XCHG(h->left_border[offset+i*step], src_y [i* linesize], temp8, xchg);
  913. }
  914. XCHG(h->left_border[offset+i*step], src_y [i* linesize], temp8, 1);
  915. }
  916. if(deblock_top){
  917. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
  918. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
  919. if(s->mb_x+1 < s->mb_width){
  920. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
  921. }
  922. }
  923. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  924. if(deblock_left){
  925. for(i = !deblock_top; i<8; i++){
  926. XCHG(h->left_border[uvoffset+34 +i*step], src_cb[i*uvlinesize], temp8, xchg);
  927. XCHG(h->left_border[uvoffset+34+18+i*step], src_cr[i*uvlinesize], temp8, xchg);
  928. }
  929. XCHG(h->left_border[uvoffset+34 +i*step], src_cb[i*uvlinesize], temp8, 1);
  930. XCHG(h->left_border[uvoffset+34+18+i*step], src_cr[i*uvlinesize], temp8, 1);
  931. }
  932. if(deblock_top){
  933. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
  934. XCHG(*(uint64_t*)(h->top_borders[top_idx][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
  935. }
  936. }
  937. }
  938. static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
  939. MpegEncContext * const s = &h->s;
  940. const int mb_x= s->mb_x;
  941. const int mb_y= s->mb_y;
  942. const int mb_xy= h->mb_xy;
  943. const int mb_type= s->current_picture.mb_type[mb_xy];
  944. uint8_t *dest_y, *dest_cb, *dest_cr;
  945. int linesize, uvlinesize /*dct_offset*/;
  946. int i;
  947. int *block_offset = &h->block_offset[0];
  948. const int transform_bypass = !simple && (s->qscale == 0 && h->sps.transform_bypass);
  949. /* is_h264 should always be true if SVQ3 is disabled. */
  950. const int is_h264 = !CONFIG_SVQ3_DECODER || simple || s->codec_id == CODEC_ID_H264;
  951. void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
  952. void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
  953. dest_y = s->current_picture.data[0] + (mb_x + mb_y * s->linesize ) * 16;
  954. dest_cb = s->current_picture.data[1] + (mb_x + mb_y * s->uvlinesize) * 8;
  955. dest_cr = s->current_picture.data[2] + (mb_x + mb_y * s->uvlinesize) * 8;
  956. s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
  957. s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
  958. if (!simple && MB_FIELD) {
  959. linesize = h->mb_linesize = s->linesize * 2;
  960. uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
  961. block_offset = &h->block_offset[24];
  962. if(mb_y&1){ //FIXME move out of this function?
  963. dest_y -= s->linesize*15;
  964. dest_cb-= s->uvlinesize*7;
  965. dest_cr-= s->uvlinesize*7;
  966. }
  967. if(FRAME_MBAFF) {
  968. int list;
  969. for(list=0; list<h->list_count; list++){
  970. if(!USES_LIST(mb_type, list))
  971. continue;
  972. if(IS_16X16(mb_type)){
  973. int8_t *ref = &h->ref_cache[list][scan8[0]];
  974. fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
  975. }else{
  976. for(i=0; i<16; i+=4){
  977. int ref = h->ref_cache[list][scan8[i]];
  978. if(ref >= 0)
  979. fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
  980. }
  981. }
  982. }
  983. }
  984. } else {
  985. linesize = h->mb_linesize = s->linesize;
  986. uvlinesize = h->mb_uvlinesize = s->uvlinesize;
  987. // dct_offset = s->linesize * 16;
  988. }
  989. if (!simple && IS_INTRA_PCM(mb_type)) {
  990. for (i=0; i<16; i++) {
  991. memcpy(dest_y + i* linesize, h->mb + i*8, 16);
  992. }
  993. for (i=0; i<8; i++) {
  994. memcpy(dest_cb+ i*uvlinesize, h->mb + 128 + i*4, 8);
  995. memcpy(dest_cr+ i*uvlinesize, h->mb + 160 + i*4, 8);
  996. }
  997. } else {
  998. if(IS_INTRA(mb_type)){
  999. if(h->deblocking_filter)
  1000. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
  1001. if(simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
  1002. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
  1003. h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
  1004. }
  1005. if(IS_INTRA4x4(mb_type)){
  1006. if(simple || !s->encoding){
  1007. if(IS_8x8DCT(mb_type)){
  1008. if(transform_bypass){
  1009. idct_dc_add =
  1010. idct_add = s->dsp.add_pixels8;
  1011. }else{
  1012. idct_dc_add = s->dsp.h264_idct8_dc_add;
  1013. idct_add = s->dsp.h264_idct8_add;
  1014. }
  1015. for(i=0; i<16; i+=4){
  1016. uint8_t * const ptr= dest_y + block_offset[i];
  1017. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  1018. if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
  1019. h->hpc.pred8x8l_add[dir](ptr, h->mb + i*16, linesize);
  1020. }else{
  1021. const int nnz = h->non_zero_count_cache[ scan8[i] ];
  1022. h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
  1023. (h->topright_samples_available<<i)&0x4000, linesize);
  1024. if(nnz){
  1025. if(nnz == 1 && h->mb[i*16])
  1026. idct_dc_add(ptr, h->mb + i*16, linesize);
  1027. else
  1028. idct_add (ptr, h->mb + i*16, linesize);
  1029. }
  1030. }
  1031. }
  1032. }else{
  1033. if(transform_bypass){
  1034. idct_dc_add =
  1035. idct_add = s->dsp.add_pixels4;
  1036. }else{
  1037. idct_dc_add = s->dsp.h264_idct_dc_add;
  1038. idct_add = s->dsp.h264_idct_add;
  1039. }
  1040. for(i=0; i<16; i++){
  1041. uint8_t * const ptr= dest_y + block_offset[i];
  1042. const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
  1043. if(transform_bypass && h->sps.profile_idc==244 && dir<=1){
  1044. h->hpc.pred4x4_add[dir](ptr, h->mb + i*16, linesize);
  1045. }else{
  1046. uint8_t *topright;
  1047. int nnz, tr;
  1048. if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
  1049. const int topright_avail= (h->topright_samples_available<<i)&0x8000;
  1050. assert(mb_y || linesize <= block_offset[i]);
  1051. if(!topright_avail){
  1052. tr= ptr[3 - linesize]*0x01010101;
  1053. topright= (uint8_t*) &tr;
  1054. }else
  1055. topright= ptr + 4 - linesize;
  1056. }else
  1057. topright= NULL;
  1058. h->hpc.pred4x4[ dir ](ptr, topright, linesize);
  1059. nnz = h->non_zero_count_cache[ scan8[i] ];
  1060. if(nnz){
  1061. if(is_h264){
  1062. if(nnz == 1 && h->mb[i*16])
  1063. idct_dc_add(ptr, h->mb + i*16, linesize);
  1064. else
  1065. idct_add (ptr, h->mb + i*16, linesize);
  1066. }else
  1067. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
  1068. }
  1069. }
  1070. }
  1071. }
  1072. }
  1073. }else{
  1074. h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
  1075. if(is_h264){
  1076. if(!transform_bypass)
  1077. h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
  1078. }else
  1079. svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
  1080. }
  1081. if(h->deblocking_filter)
  1082. xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
  1083. }else if(is_h264){
  1084. hl_motion(h, dest_y, dest_cb, dest_cr,
  1085. s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
  1086. s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
  1087. s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
  1088. }
  1089. if(!IS_INTRA4x4(mb_type)){
  1090. if(is_h264){
  1091. if(IS_INTRA16x16(mb_type)){
  1092. if(transform_bypass){
  1093. if(h->sps.profile_idc==244 && (h->intra16x16_pred_mode==VERT_PRED8x8 || h->intra16x16_pred_mode==HOR_PRED8x8)){
  1094. h->hpc.pred16x16_add[h->intra16x16_pred_mode](dest_y, block_offset, h->mb, linesize);
  1095. }else{
  1096. for(i=0; i<16; i++){
  1097. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16])
  1098. s->dsp.add_pixels4(dest_y + block_offset[i], h->mb + i*16, linesize);
  1099. }
  1100. }
  1101. }else{
  1102. s->dsp.h264_idct_add16intra(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  1103. }
  1104. }else if(h->cbp&15){
  1105. if(transform_bypass){
  1106. const int di = IS_8x8DCT(mb_type) ? 4 : 1;
  1107. idct_add= IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
  1108. for(i=0; i<16; i+=di){
  1109. if(h->non_zero_count_cache[ scan8[i] ]){
  1110. idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
  1111. }
  1112. }
  1113. }else{
  1114. if(IS_8x8DCT(mb_type)){
  1115. s->dsp.h264_idct8_add4(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  1116. }else{
  1117. s->dsp.h264_idct_add16(dest_y, block_offset, h->mb, linesize, h->non_zero_count_cache);
  1118. }
  1119. }
  1120. }
  1121. }else{
  1122. for(i=0; i<16; i++){
  1123. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
  1124. uint8_t * const ptr= dest_y + block_offset[i];
  1125. svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
  1126. }
  1127. }
  1128. }
  1129. }
  1130. if((simple || !CONFIG_GRAY || !(s->flags&CODEC_FLAG_GRAY)) && (h->cbp&0x30)){
  1131. uint8_t *dest[2] = {dest_cb, dest_cr};
  1132. if(transform_bypass){
  1133. if(IS_INTRA(mb_type) && h->sps.profile_idc==244 && (h->chroma_pred_mode==VERT_PRED8x8 || h->chroma_pred_mode==HOR_PRED8x8)){
  1134. h->hpc.pred8x8_add[h->chroma_pred_mode](dest[0], block_offset + 16, h->mb + 16*16, uvlinesize);
  1135. h->hpc.pred8x8_add[h->chroma_pred_mode](dest[1], block_offset + 20, h->mb + 20*16, uvlinesize);
  1136. }else{
  1137. idct_add = s->dsp.add_pixels4;
  1138. for(i=16; i<16+8; i++){
  1139. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16])
  1140. idct_add (dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  1141. }
  1142. }
  1143. }else{
  1144. chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
  1145. chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
  1146. if(is_h264){
  1147. idct_add = s->dsp.h264_idct_add;
  1148. idct_dc_add = s->dsp.h264_idct_dc_add;
  1149. for(i=16; i<16+8; i++){
  1150. if(h->non_zero_count_cache[ scan8[i] ])
  1151. idct_add (dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  1152. else if(h->mb[i*16])
  1153. idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
  1154. }
  1155. }else{
  1156. for(i=16; i<16+8; i++){
  1157. if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
  1158. uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
  1159. svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, ff_h264_chroma_qp[s->qscale + 12] - 12, 2);
  1160. }
  1161. }
  1162. }
  1163. }
  1164. }
  1165. }
  1166. if(h->cbp || IS_INTRA(mb_type))
  1167. s->dsp.clear_blocks(h->mb);
  1168. if(h->deblocking_filter) {
  1169. backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
  1170. fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
  1171. h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
  1172. h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
  1173. if (!simple && FRAME_MBAFF) {
  1174. ff_h264_filter_mb (h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  1175. } else {
  1176. ff_h264_filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
  1177. }
  1178. }
  1179. }
  1180. /**
  1181. * Process a macroblock; this case avoids checks for expensive uncommon cases.
  1182. */
  1183. static void hl_decode_mb_simple(H264Context *h){
  1184. hl_decode_mb_internal(h, 1);
  1185. }
  1186. /**
  1187. * Process a macroblock; this handles edge cases, such as interlacing.
  1188. */
  1189. static void av_noinline hl_decode_mb_complex(H264Context *h){
  1190. hl_decode_mb_internal(h, 0);
  1191. }
  1192. void ff_h264_hl_decode_mb(H264Context *h){
  1193. MpegEncContext * const s = &h->s;
  1194. const int mb_xy= h->mb_xy;
  1195. const int mb_type= s->current_picture.mb_type[mb_xy];
  1196. int is_complex = CONFIG_SMALL || h->is_complex || IS_INTRA_PCM(mb_type) || s->qscale == 0;
  1197. if (is_complex)
  1198. hl_decode_mb_complex(h);
  1199. else hl_decode_mb_simple(h);
  1200. }
  1201. static int pred_weight_table(H264Context *h){
  1202. MpegEncContext * const s = &h->s;
  1203. int list, i;
  1204. int luma_def, chroma_def;
  1205. h->use_weight= 0;
  1206. h->use_weight_chroma= 0;
  1207. h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
  1208. h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
  1209. luma_def = 1<<h->luma_log2_weight_denom;
  1210. chroma_def = 1<<h->chroma_log2_weight_denom;
  1211. for(list=0; list<2; list++){
  1212. h->luma_weight_flag[list] = 0;
  1213. h->chroma_weight_flag[list] = 0;
  1214. for(i=0; i<h->ref_count[list]; i++){
  1215. int luma_weight_flag, chroma_weight_flag;
  1216. luma_weight_flag= get_bits1(&s->gb);
  1217. if(luma_weight_flag){
  1218. h->luma_weight[list][i]= get_se_golomb(&s->gb);
  1219. h->luma_offset[list][i]= get_se_golomb(&s->gb);
  1220. if( h->luma_weight[list][i] != luma_def
  1221. || h->luma_offset[list][i] != 0) {
  1222. h->use_weight= 1;
  1223. h->luma_weight_flag[list]= 1;
  1224. }
  1225. }else{
  1226. h->luma_weight[list][i]= luma_def;
  1227. h->luma_offset[list][i]= 0;
  1228. }
  1229. if(CHROMA){
  1230. chroma_weight_flag= get_bits1(&s->gb);
  1231. if(chroma_weight_flag){
  1232. int j;
  1233. for(j=0; j<2; j++){
  1234. h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
  1235. h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
  1236. if( h->chroma_weight[list][i][j] != chroma_def
  1237. || h->chroma_offset[list][i][j] != 0) {
  1238. h->use_weight_chroma= 1;
  1239. h->chroma_weight_flag[list]= 1;
  1240. }
  1241. }
  1242. }else{
  1243. int j;
  1244. for(j=0; j<2; j++){
  1245. h->chroma_weight[list][i][j]= chroma_def;
  1246. h->chroma_offset[list][i][j]= 0;
  1247. }
  1248. }
  1249. }
  1250. }
  1251. if(h->slice_type_nos != FF_B_TYPE) break;
  1252. }
  1253. h->use_weight= h->use_weight || h->use_weight_chroma;
  1254. return 0;
  1255. }
  1256. static void implicit_weight_table(H264Context *h){
  1257. MpegEncContext * const s = &h->s;
  1258. int ref0, ref1, i;
  1259. int cur_poc = s->current_picture_ptr->poc;
  1260. for (i = 0; i < 2; i++) {
  1261. h->luma_weight_flag[i] = 0;
  1262. h->chroma_weight_flag[i] = 0;
  1263. }
  1264. if( h->ref_count[0] == 1 && h->ref_count[1] == 1
  1265. && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
  1266. h->use_weight= 0;
  1267. h->use_weight_chroma= 0;
  1268. return;
  1269. }
  1270. h->use_weight= 2;
  1271. h->use_weight_chroma= 2;
  1272. h->luma_log2_weight_denom= 5;
  1273. h->chroma_log2_weight_denom= 5;
  1274. for(ref0=0; ref0 < h->ref_count[0]; ref0++){
  1275. int poc0 = h->ref_list[0][ref0].poc;
  1276. for(ref1=0; ref1 < h->ref_count[1]; ref1++){
  1277. int poc1 = h->ref_list[1][ref1].poc;
  1278. int td = av_clip(poc1 - poc0, -128, 127);
  1279. if(td){
  1280. int tb = av_clip(cur_poc - poc0, -128, 127);
  1281. int tx = (16384 + (FFABS(td) >> 1)) / td;
  1282. int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
  1283. if(dist_scale_factor < -64 || dist_scale_factor > 128)
  1284. h->implicit_weight[ref0][ref1] = 32;
  1285. else
  1286. h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
  1287. }else
  1288. h->implicit_weight[ref0][ref1] = 32;
  1289. }
  1290. }
  1291. }
  1292. /**
  1293. * instantaneous decoder refresh.
  1294. */
  1295. static void idr(H264Context *h){
  1296. ff_h264_remove_all_refs(h);
  1297. h->prev_frame_num= 0;
  1298. h->prev_frame_num_offset= 0;
  1299. h->prev_poc_msb=
  1300. h->prev_poc_lsb= 0;
  1301. }
  1302. /* forget old pics after a seek */
  1303. static void flush_dpb(AVCodecContext *avctx){
  1304. H264Context *h= avctx->priv_data;
  1305. int i;
  1306. for(i=0; i<MAX_DELAYED_PIC_COUNT; i++) {
  1307. if(h->delayed_pic[i])
  1308. h->delayed_pic[i]->reference= 0;
  1309. h->delayed_pic[i]= NULL;
  1310. }
  1311. h->outputed_poc= INT_MIN;
  1312. h->prev_interlaced_frame = 1;
  1313. idr(h);
  1314. if(h->s.current_picture_ptr)
  1315. h->s.current_picture_ptr->reference= 0;
  1316. h->s.first_field= 0;
  1317. ff_h264_reset_sei(h);
  1318. ff_mpeg_flush(avctx);
  1319. }
  1320. static int init_poc(H264Context *h){
  1321. MpegEncContext * const s = &h->s;
  1322. const int max_frame_num= 1<<h->sps.log2_max_frame_num;
  1323. int field_poc[2];
  1324. Picture *cur = s->current_picture_ptr;
  1325. h->frame_num_offset= h->prev_frame_num_offset;
  1326. if(h->frame_num < h->prev_frame_num)
  1327. h->frame_num_offset += max_frame_num;
  1328. if(h->sps.poc_type==0){
  1329. const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
  1330. if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
  1331. h->poc_msb = h->prev_poc_msb + max_poc_lsb;
  1332. else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
  1333. h->poc_msb = h->prev_poc_msb - max_poc_lsb;
  1334. else
  1335. h->poc_msb = h->prev_poc_msb;
  1336. //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
  1337. field_poc[0] =
  1338. field_poc[1] = h->poc_msb + h->poc_lsb;
  1339. if(s->picture_structure == PICT_FRAME)
  1340. field_poc[1] += h->delta_poc_bottom;
  1341. }else if(h->sps.poc_type==1){
  1342. int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
  1343. int i;
  1344. if(h->sps.poc_cycle_length != 0)
  1345. abs_frame_num = h->frame_num_offset + h->frame_num;
  1346. else
  1347. abs_frame_num = 0;
  1348. if(h->nal_ref_idc==0 && abs_frame_num > 0)
  1349. abs_frame_num--;
  1350. expected_delta_per_poc_cycle = 0;
  1351. for(i=0; i < h->sps.poc_cycle_length; i++)
  1352. expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
  1353. if(abs_frame_num > 0){
  1354. int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
  1355. int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
  1356. expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
  1357. for(i = 0; i <= frame_num_in_poc_cycle; i++)
  1358. expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
  1359. } else
  1360. expectedpoc = 0;
  1361. if(h->nal_ref_idc == 0)
  1362. expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
  1363. field_poc[0] = expectedpoc + h->delta_poc[0];
  1364. field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
  1365. if(s->picture_structure == PICT_FRAME)
  1366. field_poc[1] += h->delta_poc[1];
  1367. }else{
  1368. int poc= 2*(h->frame_num_offset + h->frame_num);
  1369. if(!h->nal_ref_idc)
  1370. poc--;
  1371. field_poc[0]= poc;
  1372. field_poc[1]= poc;
  1373. }
  1374. if(s->picture_structure != PICT_BOTTOM_FIELD)
  1375. s->current_picture_ptr->field_poc[0]= field_poc[0];
  1376. if(s->picture_structure != PICT_TOP_FIELD)
  1377. s->current_picture_ptr->field_poc[1]= field_poc[1];
  1378. cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]);
  1379. return 0;
  1380. }
  1381. /**
  1382. * initialize scan tables
  1383. */
  1384. static void init_scan_tables(H264Context *h){
  1385. MpegEncContext * const s = &h->s;
  1386. int i;
  1387. if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
  1388. memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
  1389. memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
  1390. }else{
  1391. for(i=0; i<16; i++){
  1392. #define T(x) (x>>2) | ((x<<2) & 0xF)
  1393. h->zigzag_scan[i] = T(zigzag_scan[i]);
  1394. h-> field_scan[i] = T( field_scan[i]);
  1395. #undef T
  1396. }
  1397. }
  1398. if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){
  1399. memcpy(h->zigzag_scan8x8, ff_zigzag_direct, 64*sizeof(uint8_t));
  1400. memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t));
  1401. memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t));
  1402. memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t));
  1403. }else{
  1404. for(i=0; i<64; i++){
  1405. #define T(x) (x>>3) | ((x&7)<<3)
  1406. h->zigzag_scan8x8[i] = T(ff_zigzag_direct[i]);
  1407. h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
  1408. h->field_scan8x8[i] = T(field_scan8x8[i]);
  1409. h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
  1410. #undef T
  1411. }
  1412. }
  1413. if(h->sps.transform_bypass){ //FIXME same ugly
  1414. h->zigzag_scan_q0 = zigzag_scan;
  1415. h->zigzag_scan8x8_q0 = ff_zigzag_direct;
  1416. h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
  1417. h->field_scan_q0 = field_scan;
  1418. h->field_scan8x8_q0 = field_scan8x8;
  1419. h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
  1420. }else{
  1421. h->zigzag_scan_q0 = h->zigzag_scan;
  1422. h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
  1423. h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
  1424. h->field_scan_q0 = h->field_scan;
  1425. h->field_scan8x8_q0 = h->field_scan8x8;
  1426. h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
  1427. }
  1428. }
  1429. static void field_end(H264Context *h){
  1430. MpegEncContext * const s = &h->s;
  1431. AVCodecContext * const avctx= s->avctx;
  1432. s->mb_y= 0;
  1433. s->current_picture_ptr->qscale_type= FF_QSCALE_TYPE_H264;
  1434. s->current_picture_ptr->pict_type= s->pict_type;
  1435. if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  1436. ff_vdpau_h264_set_reference_frames(s);
  1437. if(!s->dropable) {
  1438. ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index);
  1439. h->prev_poc_msb= h->poc_msb;
  1440. h->prev_poc_lsb= h->poc_lsb;
  1441. }
  1442. h->prev_frame_num_offset= h->frame_num_offset;
  1443. h->prev_frame_num= h->frame_num;
  1444. if (avctx->hwaccel) {
  1445. if (avctx->hwaccel->end_frame(avctx) < 0)
  1446. av_log(avctx, AV_LOG_ERROR, "hardware accelerator failed to decode picture\n");
  1447. }
  1448. if (CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  1449. ff_vdpau_h264_picture_complete(s);
  1450. /*
  1451. * FIXME: Error handling code does not seem to support interlaced
  1452. * when slices span multiple rows
  1453. * The ff_er_add_slice calls don't work right for bottom
  1454. * fields; they cause massive erroneous error concealing
  1455. * Error marking covers both fields (top and bottom).
  1456. * This causes a mismatched s->error_count
  1457. * and a bad error table. Further, the error count goes to
  1458. * INT_MAX when called for bottom field, because mb_y is
  1459. * past end by one (callers fault) and resync_mb_y != 0
  1460. * causes problems for the first MB line, too.
  1461. */
  1462. if (!FIELD_PICTURE)
  1463. ff_er_frame_end(s);
  1464. MPV_frame_end(s);
  1465. h->current_slice=0;
  1466. }
  1467. /**
  1468. * Replicates H264 "master" context to thread contexts.
  1469. */
  1470. static void clone_slice(H264Context *dst, H264Context *src)
  1471. {
  1472. memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
  1473. dst->s.current_picture_ptr = src->s.current_picture_ptr;
  1474. dst->s.current_picture = src->s.current_picture;
  1475. dst->s.linesize = src->s.linesize;
  1476. dst->s.uvlinesize = src->s.uvlinesize;
  1477. dst->s.first_field = src->s.first_field;
  1478. dst->prev_poc_msb = src->prev_poc_msb;
  1479. dst->prev_poc_lsb = src->prev_poc_lsb;
  1480. dst->prev_frame_num_offset = src->prev_frame_num_offset;
  1481. dst->prev_frame_num = src->prev_frame_num;
  1482. dst->short_ref_count = src->short_ref_count;
  1483. memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
  1484. memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
  1485. memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
  1486. memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
  1487. memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
  1488. memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
  1489. }
  1490. /**
  1491. * decodes a slice header.
  1492. * This will also call MPV_common_init() and frame_start() as needed.
  1493. *
  1494. * @param h h264context
  1495. * @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
  1496. *
  1497. * @return 0 if okay, <0 if an error occurred, 1 if decoding must not be multithreaded
  1498. */
  1499. static int decode_slice_header(H264Context *h, H264Context *h0){
  1500. MpegEncContext * const s = &h->s;
  1501. MpegEncContext * const s0 = &h0->s;
  1502. unsigned int first_mb_in_slice;
  1503. unsigned int pps_id;
  1504. int num_ref_idx_active_override_flag;
  1505. unsigned int slice_type, tmp, i, j;
  1506. int default_ref_list_done = 0;
  1507. int last_pic_structure;
  1508. s->dropable= h->nal_ref_idc == 0;
  1509. if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc){
  1510. s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
  1511. s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
  1512. }else{
  1513. s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
  1514. s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
  1515. }
  1516. first_mb_in_slice= get_ue_golomb(&s->gb);
  1517. if(first_mb_in_slice == 0){ //FIXME better field boundary detection
  1518. if(h0->current_slice && FIELD_PICTURE){
  1519. field_end(h);
  1520. }
  1521. h0->current_slice = 0;
  1522. if (!s0->first_field)
  1523. s->current_picture_ptr= NULL;
  1524. }
  1525. slice_type= get_ue_golomb_31(&s->gb);
  1526. if(slice_type > 9){
  1527. av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
  1528. return -1;
  1529. }
  1530. if(slice_type > 4){
  1531. slice_type -= 5;
  1532. h->slice_type_fixed=1;
  1533. }else
  1534. h->slice_type_fixed=0;
  1535. slice_type= golomb_to_pict_type[ slice_type ];
  1536. if (slice_type == FF_I_TYPE
  1537. || (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
  1538. default_ref_list_done = 1;
  1539. }
  1540. h->slice_type= slice_type;
  1541. h->slice_type_nos= slice_type & 3;
  1542. s->pict_type= h->slice_type; // to make a few old functions happy, it's wrong though
  1543. if (s->pict_type == FF_B_TYPE && s0->last_picture_ptr == NULL) {
  1544. av_log(h->s.avctx, AV_LOG_ERROR,
  1545. "B picture before any references, skipping\n");
  1546. return -1;
  1547. }
  1548. pps_id= get_ue_golomb(&s->gb);
  1549. if(pps_id>=MAX_PPS_COUNT){
  1550. av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
  1551. return -1;
  1552. }
  1553. if(!h0->pps_buffers[pps_id]) {
  1554. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing PPS %u referenced\n", pps_id);
  1555. return -1;
  1556. }
  1557. h->pps= *h0->pps_buffers[pps_id];
  1558. if(!h0->sps_buffers[h->pps.sps_id]) {
  1559. av_log(h->s.avctx, AV_LOG_ERROR, "non-existing SPS %u referenced\n", h->pps.sps_id);
  1560. return -1;
  1561. }
  1562. h->sps = *h0->sps_buffers[h->pps.sps_id];
  1563. if(h == h0 && h->dequant_coeff_pps != pps_id){
  1564. h->dequant_coeff_pps = pps_id;
  1565. init_dequant_tables(h);
  1566. }
  1567. s->mb_width= h->sps.mb_width;
  1568. s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
  1569. h->b_stride= s->mb_width*4;
  1570. h->b8_stride= s->mb_width*2;
  1571. s->width = 16*s->mb_width - 2*FFMIN(h->sps.crop_right, 7);
  1572. if(h->sps.frame_mbs_only_flag)
  1573. s->height= 16*s->mb_height - 2*FFMIN(h->sps.crop_bottom, 7);
  1574. else
  1575. s->height= 16*s->mb_height - 4*FFMIN(h->sps.crop_bottom, 3);
  1576. if (s->context_initialized
  1577. && ( s->width != s->avctx->width || s->height != s->avctx->height)) {
  1578. if(h != h0)
  1579. return -1; // width / height changed during parallelized decoding
  1580. free_tables(h);
  1581. flush_dpb(s->avctx);
  1582. MPV_common_end(s);
  1583. }
  1584. if (!s->context_initialized) {
  1585. if(h != h0)
  1586. return -1; // we cant (re-)initialize context during parallel decoding
  1587. avcodec_set_dimensions(s->avctx, s->width, s->height);
  1588. s->avctx->sample_aspect_ratio= h->sps.sar;
  1589. if(!s->avctx->sample_aspect_ratio.den)
  1590. s->avctx->sample_aspect_ratio.den = 1;
  1591. if(h->sps.video_signal_type_present_flag){
  1592. s->avctx->color_range = h->sps.full_range ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG;
  1593. if(h->sps.colour_description_present_flag){
  1594. s->avctx->color_primaries = h->sps.color_primaries;
  1595. s->avctx->color_trc = h->sps.color_trc;
  1596. s->avctx->colorspace = h->sps.colorspace;
  1597. }
  1598. }
  1599. if(h->sps.timing_info_present_flag){
  1600. s->avctx->time_base= (AVRational){h->sps.num_units_in_tick, h->sps.time_scale};
  1601. if(h->x264_build > 0 && h->x264_build < 44)
  1602. s->avctx->time_base.den *= 2;
  1603. av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
  1604. s->avctx->time_base.num, s->avctx->time_base.den, 1<<30);
  1605. }
  1606. s->avctx->pix_fmt = s->avctx->get_format(s->avctx, s->avctx->codec->pix_fmts);
  1607. s->avctx->hwaccel = ff_find_hwaccel(s->avctx->codec->id, s->avctx->pix_fmt);
  1608. if (MPV_common_init(s) < 0)
  1609. return -1;
  1610. s->first_field = 0;
  1611. h->prev_interlaced_frame = 1;
  1612. init_scan_tables(h);
  1613. ff_h264_alloc_tables(h);
  1614. for(i = 1; i < s->avctx->thread_count; i++) {
  1615. H264Context *c;
  1616. c = h->thread_context[i] = av_malloc(sizeof(H264Context));
  1617. memcpy(c, h->s.thread_context[i], sizeof(MpegEncContext));
  1618. memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
  1619. c->sps = h->sps;
  1620. c->pps = h->pps;
  1621. init_scan_tables(c);
  1622. clone_tables(c, h);
  1623. }
  1624. for(i = 0; i < s->avctx->thread_count; i++)
  1625. if(context_init(h->thread_context[i]) < 0)
  1626. return -1;
  1627. }
  1628. h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
  1629. h->mb_mbaff = 0;
  1630. h->mb_aff_frame = 0;
  1631. last_pic_structure = s0->picture_structure;
  1632. if(h->sps.frame_mbs_only_flag){
  1633. s->picture_structure= PICT_FRAME;
  1634. }else{
  1635. if(get_bits1(&s->gb)) { //field_pic_flag
  1636. s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
  1637. } else {
  1638. s->picture_structure= PICT_FRAME;
  1639. h->mb_aff_frame = h->sps.mb_aff;
  1640. }
  1641. }
  1642. h->mb_field_decoding_flag= s->picture_structure != PICT_FRAME;
  1643. if(h0->current_slice == 0){
  1644. while(h->frame_num != h->prev_frame_num &&
  1645. h->frame_num != (h->prev_frame_num+1)%(1<<h->sps.log2_max_frame_num)){
  1646. av_log(NULL, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num);
  1647. if (ff_h264_frame_start(h) < 0)
  1648. return -1;
  1649. h->prev_frame_num++;
  1650. h->prev_frame_num %= 1<<h->sps.log2_max_frame_num;
  1651. s->current_picture_ptr->frame_num= h->prev_frame_num;
  1652. ff_h264_execute_ref_pic_marking(h, NULL, 0);
  1653. }
  1654. /* See if we have a decoded first field looking for a pair... */
  1655. if (s0->first_field) {
  1656. assert(s0->current_picture_ptr);
  1657. assert(s0->current_picture_ptr->data[0]);
  1658. assert(s0->current_picture_ptr->reference != DELAYED_PIC_REF);
  1659. /* figure out if we have a complementary field pair */
  1660. if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
  1661. /*
  1662. * Previous field is unmatched. Don't display it, but let it
  1663. * remain for reference if marked as such.
  1664. */
  1665. s0->current_picture_ptr = NULL;
  1666. s0->first_field = FIELD_PICTURE;
  1667. } else {
  1668. if (h->nal_ref_idc &&
  1669. s0->current_picture_ptr->reference &&
  1670. s0->current_picture_ptr->frame_num != h->frame_num) {
  1671. /*
  1672. * This and previous field were reference, but had
  1673. * different frame_nums. Consider this field first in
  1674. * pair. Throw away previous field except for reference
  1675. * purposes.
  1676. */
  1677. s0->first_field = 1;
  1678. s0->current_picture_ptr = NULL;
  1679. } else {
  1680. /* Second field in complementary pair */
  1681. s0->first_field = 0;
  1682. }
  1683. }
  1684. } else {
  1685. /* Frame or first field in a potentially complementary pair */
  1686. assert(!s0->current_picture_ptr);
  1687. s0->first_field = FIELD_PICTURE;
  1688. }
  1689. if((!FIELD_PICTURE || s0->first_field) && ff_h264_frame_start(h) < 0) {
  1690. s0->first_field = 0;
  1691. return -1;
  1692. }
  1693. }
  1694. if(h != h0)
  1695. clone_slice(h, h0);
  1696. s->current_picture_ptr->frame_num= h->frame_num; //FIXME frame_num cleanup
  1697. assert(s->mb_num == s->mb_width * s->mb_height);
  1698. if(first_mb_in_slice << FIELD_OR_MBAFF_PICTURE >= s->mb_num ||
  1699. first_mb_in_slice >= s->mb_num){
  1700. av_log(h->s.avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
  1701. return -1;
  1702. }
  1703. s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
  1704. s->resync_mb_y = s->mb_y = (first_mb_in_slice / s->mb_width) << FIELD_OR_MBAFF_PICTURE;
  1705. if (s->picture_structure == PICT_BOTTOM_FIELD)
  1706. s->resync_mb_y = s->mb_y = s->mb_y + 1;
  1707. assert(s->mb_y < s->mb_height);
  1708. if(s->picture_structure==PICT_FRAME){
  1709. h->curr_pic_num= h->frame_num;
  1710. h->max_pic_num= 1<< h->sps.log2_max_frame_num;
  1711. }else{
  1712. h->curr_pic_num= 2*h->frame_num + 1;
  1713. h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
  1714. }
  1715. if(h->nal_unit_type == NAL_IDR_SLICE){
  1716. get_ue_golomb(&s->gb); /* idr_pic_id */
  1717. }
  1718. if(h->sps.poc_type==0){
  1719. h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
  1720. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
  1721. h->delta_poc_bottom= get_se_golomb(&s->gb);
  1722. }
  1723. }
  1724. if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
  1725. h->delta_poc[0]= get_se_golomb(&s->gb);
  1726. if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
  1727. h->delta_poc[1]= get_se_golomb(&s->gb);
  1728. }
  1729. init_poc(h);
  1730. if(h->pps.redundant_pic_cnt_present){
  1731. h->redundant_pic_count= get_ue_golomb(&s->gb);
  1732. }
  1733. //set defaults, might be overridden a few lines later
  1734. h->ref_count[0]= h->pps.ref_count[0];
  1735. h->ref_count[1]= h->pps.ref_count[1];
  1736. if(h->slice_type_nos != FF_I_TYPE){
  1737. if(h->slice_type_nos == FF_B_TYPE){
  1738. h->direct_spatial_mv_pred= get_bits1(&s->gb);
  1739. }
  1740. num_ref_idx_active_override_flag= get_bits1(&s->gb);
  1741. if(num_ref_idx_active_override_flag){
  1742. h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
  1743. if(h->slice_type_nos==FF_B_TYPE)
  1744. h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
  1745. if(h->ref_count[0]-1 > 32-1 || h->ref_count[1]-1 > 32-1){
  1746. av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
  1747. h->ref_count[0]= h->ref_count[1]= 1;
  1748. return -1;
  1749. }
  1750. }
  1751. if(h->slice_type_nos == FF_B_TYPE)
  1752. h->list_count= 2;
  1753. else
  1754. h->list_count= 1;
  1755. }else
  1756. h->list_count= 0;
  1757. if(!default_ref_list_done){
  1758. ff_h264_fill_default_ref_list(h);
  1759. }
  1760. if(h->slice_type_nos!=FF_I_TYPE && ff_h264_decode_ref_pic_list_reordering(h) < 0)
  1761. return -1;
  1762. if(h->slice_type_nos!=FF_I_TYPE){
  1763. s->last_picture_ptr= &h->ref_list[0][0];
  1764. ff_copy_picture(&s->last_picture, s->last_picture_ptr);
  1765. }
  1766. if(h->slice_type_nos==FF_B_TYPE){
  1767. s->next_picture_ptr= &h->ref_list[1][0];
  1768. ff_copy_picture(&s->next_picture, s->next_picture_ptr);
  1769. }
  1770. if( (h->pps.weighted_pred && h->slice_type_nos == FF_P_TYPE )
  1771. || (h->pps.weighted_bipred_idc==1 && h->slice_type_nos== FF_B_TYPE ) )
  1772. pred_weight_table(h);
  1773. else if(h->pps.weighted_bipred_idc==2 && h->slice_type_nos== FF_B_TYPE)
  1774. implicit_weight_table(h);
  1775. else {
  1776. h->use_weight = 0;
  1777. for (i = 0; i < 2; i++) {
  1778. h->luma_weight_flag[i] = 0;
  1779. h->chroma_weight_flag[i] = 0;
  1780. }
  1781. }
  1782. if(h->nal_ref_idc)
  1783. ff_h264_decode_ref_pic_marking(h0, &s->gb);
  1784. if(FRAME_MBAFF)
  1785. ff_h264_fill_mbaff_ref_list(h);
  1786. if(h->slice_type_nos==FF_B_TYPE && !h->direct_spatial_mv_pred)
  1787. ff_h264_direct_dist_scale_factor(h);
  1788. ff_h264_direct_ref_list_init(h);
  1789. if( h->slice_type_nos != FF_I_TYPE && h->pps.cabac ){
  1790. tmp = get_ue_golomb_31(&s->gb);
  1791. if(tmp > 2){
  1792. av_log(s->avctx, AV_LOG_ERROR, "cabac_init_idc overflow\n");
  1793. return -1;
  1794. }
  1795. h->cabac_init_idc= tmp;
  1796. }
  1797. h->last_qscale_diff = 0;
  1798. tmp = h->pps.init_qp + get_se_golomb(&s->gb);
  1799. if(tmp>51){
  1800. av_log(s->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
  1801. return -1;
  1802. }
  1803. s->qscale= tmp;
  1804. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  1805. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  1806. //FIXME qscale / qp ... stuff
  1807. if(h->slice_type == FF_SP_TYPE){
  1808. get_bits1(&s->gb); /* sp_for_switch_flag */
  1809. }
  1810. if(h->slice_type==FF_SP_TYPE || h->slice_type == FF_SI_TYPE){
  1811. get_se_golomb(&s->gb); /* slice_qs_delta */
  1812. }
  1813. h->deblocking_filter = 1;
  1814. h->slice_alpha_c0_offset = 0;
  1815. h->slice_beta_offset = 0;
  1816. if( h->pps.deblocking_filter_parameters_present ) {
  1817. tmp= get_ue_golomb_31(&s->gb);
  1818. if(tmp > 2){
  1819. av_log(s->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp);
  1820. return -1;
  1821. }
  1822. h->deblocking_filter= tmp;
  1823. if(h->deblocking_filter < 2)
  1824. h->deblocking_filter^= 1; // 1<->0
  1825. if( h->deblocking_filter ) {
  1826. h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
  1827. h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
  1828. }
  1829. }
  1830. if( s->avctx->skip_loop_filter >= AVDISCARD_ALL
  1831. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->slice_type_nos != FF_I_TYPE)
  1832. ||(s->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == FF_B_TYPE)
  1833. ||(s->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  1834. h->deblocking_filter= 0;
  1835. if(h->deblocking_filter == 1 && h0->max_contexts > 1) {
  1836. if(s->avctx->flags2 & CODEC_FLAG2_FAST) {
  1837. /* Cheat slightly for speed:
  1838. Do not bother to deblock across slices. */
  1839. h->deblocking_filter = 2;
  1840. } else {
  1841. h0->max_contexts = 1;
  1842. if(!h0->single_decode_warning) {
  1843. av_log(s->avctx, AV_LOG_INFO, "Cannot parallelize deblocking type 1, decoding such frames in sequential order\n");
  1844. h0->single_decode_warning = 1;
  1845. }
  1846. if(h != h0)
  1847. return 1; // deblocking switched inside frame
  1848. }
  1849. }
  1850. #if 0 //FMO
  1851. if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
  1852. slice_group_change_cycle= get_bits(&s->gb, ?);
  1853. #endif
  1854. h0->last_slice_type = slice_type;
  1855. h->slice_num = ++h0->current_slice;
  1856. if(h->slice_num >= MAX_SLICES){
  1857. av_log(s->avctx, AV_LOG_ERROR, "Too many slices, increase MAX_SLICES and recompile\n");
  1858. }
  1859. for(j=0; j<2; j++){
  1860. int *ref2frm= h->ref2frm[h->slice_num&(MAX_SLICES-1)][j];
  1861. ref2frm[0]=
  1862. ref2frm[1]= -1;
  1863. for(i=0; i<16; i++)
  1864. ref2frm[i+2]= 4*h->ref_list[j][i].frame_num
  1865. +(h->ref_list[j][i].reference&3);
  1866. ref2frm[18+0]=
  1867. ref2frm[18+1]= -1;
  1868. for(i=16; i<48; i++)
  1869. ref2frm[i+4]= 4*h->ref_list[j][i].frame_num
  1870. +(h->ref_list[j][i].reference&3);
  1871. }
  1872. h->emu_edge_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16;
  1873. h->emu_edge_height= (FRAME_MBAFF || FIELD_PICTURE) ? 0 : h->emu_edge_width;
  1874. s->avctx->refs= h->sps.ref_frame_count;
  1875. if(s->avctx->debug&FF_DEBUG_PICT_INFO){
  1876. av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
  1877. h->slice_num,
  1878. (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
  1879. first_mb_in_slice,
  1880. av_get_pict_type_char(h->slice_type), h->slice_type_fixed ? " fix" : "", h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "",
  1881. pps_id, h->frame_num,
  1882. s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
  1883. h->ref_count[0], h->ref_count[1],
  1884. s->qscale,
  1885. h->deblocking_filter, h->slice_alpha_c0_offset/2, h->slice_beta_offset/2,
  1886. h->use_weight,
  1887. h->use_weight==1 && h->use_weight_chroma ? "c" : "",
  1888. h->slice_type == FF_B_TYPE ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""
  1889. );
  1890. }
  1891. return 0;
  1892. }
  1893. int ff_h264_get_slice_type(H264Context *h)
  1894. {
  1895. switch (h->slice_type) {
  1896. case FF_P_TYPE: return 0;
  1897. case FF_B_TYPE: return 1;
  1898. case FF_I_TYPE: return 2;
  1899. case FF_SP_TYPE: return 3;
  1900. case FF_SI_TYPE: return 4;
  1901. default: return -1;
  1902. }
  1903. }
  1904. static int decode_cabac_field_decoding_flag(H264Context *h) {
  1905. MpegEncContext * const s = &h->s;
  1906. const int mb_x = s->mb_x;
  1907. const int mb_y = s->mb_y & ~1;
  1908. const int mba_xy = mb_x - 1 + mb_y *s->mb_stride;
  1909. const int mbb_xy = mb_x + (mb_y-2)*s->mb_stride;
  1910. unsigned int ctx = 0;
  1911. if( h->slice_table[mba_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) ) {
  1912. ctx += 1;
  1913. }
  1914. if( h->slice_table[mbb_xy] == h->slice_num && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) ) {
  1915. ctx += 1;
  1916. }
  1917. return get_cabac_noinline( &h->cabac, &h->cabac_state[70 + ctx] );
  1918. }
  1919. static int decode_cabac_intra_mb_type(H264Context *h, int ctx_base, int intra_slice) {
  1920. uint8_t *state= &h->cabac_state[ctx_base];
  1921. int mb_type;
  1922. if(intra_slice){
  1923. MpegEncContext * const s = &h->s;
  1924. const int mba_xy = h->left_mb_xy[0];
  1925. const int mbb_xy = h->top_mb_xy;
  1926. int ctx=0;
  1927. if( h->slice_table[mba_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mba_xy] ) )
  1928. ctx++;
  1929. if( h->slice_table[mbb_xy] == h->slice_num && !IS_INTRA4x4( s->current_picture.mb_type[mbb_xy] ) )
  1930. ctx++;
  1931. if( get_cabac_noinline( &h->cabac, &state[ctx] ) == 0 )
  1932. return 0; /* I4x4 */
  1933. state += 2;
  1934. }else{
  1935. if( get_cabac_noinline( &h->cabac, &state[0] ) == 0 )
  1936. return 0; /* I4x4 */
  1937. }
  1938. if( get_cabac_terminate( &h->cabac ) )
  1939. return 25; /* PCM */
  1940. mb_type = 1; /* I16x16 */
  1941. mb_type += 12 * get_cabac_noinline( &h->cabac, &state[1] ); /* cbp_luma != 0 */
  1942. if( get_cabac_noinline( &h->cabac, &state[2] ) ) /* cbp_chroma */
  1943. mb_type += 4 + 4 * get_cabac_noinline( &h->cabac, &state[2+intra_slice] );
  1944. mb_type += 2 * get_cabac_noinline( &h->cabac, &state[3+intra_slice] );
  1945. mb_type += 1 * get_cabac_noinline( &h->cabac, &state[3+2*intra_slice] );
  1946. return mb_type;
  1947. }
  1948. static int decode_cabac_mb_type_b( H264Context *h ) {
  1949. MpegEncContext * const s = &h->s;
  1950. const int mba_xy = h->left_mb_xy[0];
  1951. const int mbb_xy = h->top_mb_xy;
  1952. int ctx = 0;
  1953. int bits;
  1954. assert(h->slice_type_nos == FF_B_TYPE);
  1955. if( h->slice_table[mba_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mba_xy] ) )
  1956. ctx++;
  1957. if( h->slice_table[mbb_xy] == h->slice_num && !IS_DIRECT( s->current_picture.mb_type[mbb_xy] ) )
  1958. ctx++;
  1959. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+ctx] ) )
  1960. return 0; /* B_Direct_16x16 */
  1961. if( !get_cabac_noinline( &h->cabac, &h->cabac_state[27+3] ) ) {
  1962. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ); /* B_L[01]_16x16 */
  1963. }
  1964. bits = get_cabac_noinline( &h->cabac, &h->cabac_state[27+4] ) << 3;
  1965. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 2;
  1966. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] ) << 1;
  1967. bits|= get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  1968. if( bits < 8 )
  1969. return bits + 3; /* B_Bi_16x16 through B_L1_L0_16x8 */
  1970. else if( bits == 13 ) {
  1971. return decode_cabac_intra_mb_type(h, 32, 0) + 23;
  1972. } else if( bits == 14 )
  1973. return 11; /* B_L1_L0_8x16 */
  1974. else if( bits == 15 )
  1975. return 22; /* B_8x8 */
  1976. bits= ( bits<<1 ) | get_cabac_noinline( &h->cabac, &h->cabac_state[27+5] );
  1977. return bits - 4; /* B_L0_Bi_* through B_Bi_Bi_* */
  1978. }
  1979. static int decode_cabac_mb_skip( H264Context *h, int mb_x, int mb_y ) {
  1980. MpegEncContext * const s = &h->s;
  1981. int mba_xy, mbb_xy;
  1982. int ctx = 0;
  1983. if(FRAME_MBAFF){ //FIXME merge with the stuff in fill_caches?
  1984. int mb_xy = mb_x + (mb_y&~1)*s->mb_stride;
  1985. mba_xy = mb_xy - 1;
  1986. if( (mb_y&1)
  1987. && h->slice_table[mba_xy] == h->slice_num
  1988. && MB_FIELD == !!IS_INTERLACED( s->current_picture.mb_type[mba_xy] ) )
  1989. mba_xy += s->mb_stride;
  1990. if( MB_FIELD ){
  1991. mbb_xy = mb_xy - s->mb_stride;
  1992. if( !(mb_y&1)
  1993. && h->slice_table[mbb_xy] == h->slice_num
  1994. && IS_INTERLACED( s->current_picture.mb_type[mbb_xy] ) )
  1995. mbb_xy -= s->mb_stride;
  1996. }else
  1997. mbb_xy = mb_x + (mb_y-1)*s->mb_stride;
  1998. }else{
  1999. int mb_xy = h->mb_xy;
  2000. mba_xy = mb_xy - 1;
  2001. mbb_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
  2002. }
  2003. if( h->slice_table[mba_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mba_xy] ))
  2004. ctx++;
  2005. if( h->slice_table[mbb_xy] == h->slice_num && !IS_SKIP( s->current_picture.mb_type[mbb_xy] ))
  2006. ctx++;
  2007. if( h->slice_type_nos == FF_B_TYPE )
  2008. ctx += 13;
  2009. return get_cabac_noinline( &h->cabac, &h->cabac_state[11+ctx] );
  2010. }
  2011. static int decode_cabac_mb_intra4x4_pred_mode( H264Context *h, int pred_mode ) {
  2012. int mode = 0;
  2013. if( get_cabac( &h->cabac, &h->cabac_state[68] ) )
  2014. return pred_mode;
  2015. mode += 1 * get_cabac( &h->cabac, &h->cabac_state[69] );
  2016. mode += 2 * get_cabac( &h->cabac, &h->cabac_state[69] );
  2017. mode += 4 * get_cabac( &h->cabac, &h->cabac_state[69] );
  2018. if( mode >= pred_mode )
  2019. return mode + 1;
  2020. else
  2021. return mode;
  2022. }
  2023. static int decode_cabac_mb_chroma_pre_mode( H264Context *h) {
  2024. const int mba_xy = h->left_mb_xy[0];
  2025. const int mbb_xy = h->top_mb_xy;
  2026. int ctx = 0;
  2027. /* No need to test for IS_INTRA4x4 and IS_INTRA16x16, as we set chroma_pred_mode_table to 0 */
  2028. if( h->slice_table[mba_xy] == h->slice_num && h->chroma_pred_mode_table[mba_xy] != 0 )
  2029. ctx++;
  2030. if( h->slice_table[mbb_xy] == h->slice_num && h->chroma_pred_mode_table[mbb_xy] != 0 )
  2031. ctx++;
  2032. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+ctx] ) == 0 )
  2033. return 0;
  2034. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  2035. return 1;
  2036. if( get_cabac_noinline( &h->cabac, &h->cabac_state[64+3] ) == 0 )
  2037. return 2;
  2038. else
  2039. return 3;
  2040. }
  2041. static int decode_cabac_mb_cbp_luma( H264Context *h) {
  2042. int cbp_b, cbp_a, ctx, cbp = 0;
  2043. cbp_a = h->slice_table[h->left_mb_xy[0]] == h->slice_num ? h->left_cbp : -1;
  2044. cbp_b = h->slice_table[h->top_mb_xy] == h->slice_num ? h->top_cbp : -1;
  2045. ctx = !(cbp_a & 0x02) + 2 * !(cbp_b & 0x04);
  2046. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]);
  2047. ctx = !(cbp & 0x01) + 2 * !(cbp_b & 0x08);
  2048. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 1;
  2049. ctx = !(cbp_a & 0x08) + 2 * !(cbp & 0x01);
  2050. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 2;
  2051. ctx = !(cbp & 0x04) + 2 * !(cbp & 0x02);
  2052. cbp |= get_cabac_noinline(&h->cabac, &h->cabac_state[73 + ctx]) << 3;
  2053. return cbp;
  2054. }
  2055. static int decode_cabac_mb_cbp_chroma( H264Context *h) {
  2056. int ctx;
  2057. int cbp_a, cbp_b;
  2058. cbp_a = (h->left_cbp>>4)&0x03;
  2059. cbp_b = (h-> top_cbp>>4)&0x03;
  2060. ctx = 0;
  2061. if( cbp_a > 0 ) ctx++;
  2062. if( cbp_b > 0 ) ctx += 2;
  2063. if( get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] ) == 0 )
  2064. return 0;
  2065. ctx = 4;
  2066. if( cbp_a == 2 ) ctx++;
  2067. if( cbp_b == 2 ) ctx += 2;
  2068. return 1 + get_cabac_noinline( &h->cabac, &h->cabac_state[77 + ctx] );
  2069. }
  2070. static int decode_cabac_mb_dqp( H264Context *h) {
  2071. int ctx= h->last_qscale_diff != 0;
  2072. int val = 0;
  2073. while( get_cabac_noinline( &h->cabac, &h->cabac_state[60 + ctx] ) ) {
  2074. ctx= 2+(ctx>>1);
  2075. val++;
  2076. if(val > 102) //prevent infinite loop
  2077. return INT_MIN;
  2078. }
  2079. if( val&0x01 )
  2080. return (val + 1)>>1 ;
  2081. else
  2082. return -((val + 1)>>1);
  2083. }
  2084. static int decode_cabac_p_mb_sub_type( H264Context *h ) {
  2085. if( get_cabac( &h->cabac, &h->cabac_state[21] ) )
  2086. return 0; /* 8x8 */
  2087. if( !get_cabac( &h->cabac, &h->cabac_state[22] ) )
  2088. return 1; /* 8x4 */
  2089. if( get_cabac( &h->cabac, &h->cabac_state[23] ) )
  2090. return 2; /* 4x8 */
  2091. return 3; /* 4x4 */
  2092. }
  2093. static int decode_cabac_b_mb_sub_type( H264Context *h ) {
  2094. int type;
  2095. if( !get_cabac( &h->cabac, &h->cabac_state[36] ) )
  2096. return 0; /* B_Direct_8x8 */
  2097. if( !get_cabac( &h->cabac, &h->cabac_state[37] ) )
  2098. return 1 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L0_8x8, B_L1_8x8 */
  2099. type = 3;
  2100. if( get_cabac( &h->cabac, &h->cabac_state[38] ) ) {
  2101. if( get_cabac( &h->cabac, &h->cabac_state[39] ) )
  2102. return 11 + get_cabac( &h->cabac, &h->cabac_state[39] ); /* B_L1_4x4, B_Bi_4x4 */
  2103. type += 4;
  2104. }
  2105. type += 2*get_cabac( &h->cabac, &h->cabac_state[39] );
  2106. type += get_cabac( &h->cabac, &h->cabac_state[39] );
  2107. return type;
  2108. }
  2109. static inline int decode_cabac_mb_transform_size( H264Context *h ) {
  2110. return get_cabac_noinline( &h->cabac, &h->cabac_state[399 + h->neighbor_transform_size] );
  2111. }
  2112. static int decode_cabac_mb_ref( H264Context *h, int list, int n ) {
  2113. int refa = h->ref_cache[list][scan8[n] - 1];
  2114. int refb = h->ref_cache[list][scan8[n] - 8];
  2115. int ref = 0;
  2116. int ctx = 0;
  2117. if( h->slice_type_nos == FF_B_TYPE) {
  2118. if( refa > 0 && !h->direct_cache[scan8[n] - 1] )
  2119. ctx++;
  2120. if( refb > 0 && !h->direct_cache[scan8[n] - 8] )
  2121. ctx += 2;
  2122. } else {
  2123. if( refa > 0 )
  2124. ctx++;
  2125. if( refb > 0 )
  2126. ctx += 2;
  2127. }
  2128. while( get_cabac( &h->cabac, &h->cabac_state[54+ctx] ) ) {
  2129. ref++;
  2130. ctx = (ctx>>2)+4;
  2131. if(ref >= 32 /*h->ref_list[list]*/){
  2132. return -1;
  2133. }
  2134. }
  2135. return ref;
  2136. }
  2137. static int decode_cabac_mb_mvd( H264Context *h, int list, int n, int l ) {
  2138. int amvd = abs( h->mvd_cache[list][scan8[n] - 1][l] ) +
  2139. abs( h->mvd_cache[list][scan8[n] - 8][l] );
  2140. int ctxbase = (l == 0) ? 40 : 47;
  2141. int mvd;
  2142. int ctx = (amvd>2) + (amvd>32);
  2143. if(!get_cabac(&h->cabac, &h->cabac_state[ctxbase+ctx]))
  2144. return 0;
  2145. mvd= 1;
  2146. ctx= 3;
  2147. while( mvd < 9 && get_cabac( &h->cabac, &h->cabac_state[ctxbase+ctx] ) ) {
  2148. mvd++;
  2149. if( ctx < 6 )
  2150. ctx++;
  2151. }
  2152. if( mvd >= 9 ) {
  2153. int k = 3;
  2154. while( get_cabac_bypass( &h->cabac ) ) {
  2155. mvd += 1 << k;
  2156. k++;
  2157. if(k>24){
  2158. av_log(h->s.avctx, AV_LOG_ERROR, "overflow in decode_cabac_mb_mvd\n");
  2159. return INT_MIN;
  2160. }
  2161. }
  2162. while( k-- ) {
  2163. if( get_cabac_bypass( &h->cabac ) )
  2164. mvd += 1 << k;
  2165. }
  2166. }
  2167. return get_cabac_bypass_sign( &h->cabac, -mvd );
  2168. }
  2169. static av_always_inline int get_cabac_cbf_ctx( H264Context *h, int cat, int idx, int is_dc ) {
  2170. int nza, nzb;
  2171. int ctx = 0;
  2172. if( is_dc ) {
  2173. if( cat == 0 ) {
  2174. nza = h->left_cbp&0x100;
  2175. nzb = h-> top_cbp&0x100;
  2176. } else {
  2177. nza = (h->left_cbp>>(6+idx))&0x01;
  2178. nzb = (h-> top_cbp>>(6+idx))&0x01;
  2179. }
  2180. } else {
  2181. assert(cat == 1 || cat == 2 || cat == 4);
  2182. nza = h->non_zero_count_cache[scan8[idx] - 1];
  2183. nzb = h->non_zero_count_cache[scan8[idx] - 8];
  2184. }
  2185. if( nza > 0 )
  2186. ctx++;
  2187. if( nzb > 0 )
  2188. ctx += 2;
  2189. return ctx + 4 * cat;
  2190. }
  2191. DECLARE_ASM_CONST(1, uint8_t, last_coeff_flag_offset_8x8[63]) = {
  2192. 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  2193. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  2194. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  2195. 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8
  2196. };
  2197. static av_always_inline void decode_cabac_residual_internal( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff, int is_dc ) {
  2198. static const int significant_coeff_flag_offset[2][6] = {
  2199. { 105+0, 105+15, 105+29, 105+44, 105+47, 402 },
  2200. { 277+0, 277+15, 277+29, 277+44, 277+47, 436 }
  2201. };
  2202. static const int last_coeff_flag_offset[2][6] = {
  2203. { 166+0, 166+15, 166+29, 166+44, 166+47, 417 },
  2204. { 338+0, 338+15, 338+29, 338+44, 338+47, 451 }
  2205. };
  2206. static const int coeff_abs_level_m1_offset[6] = {
  2207. 227+0, 227+10, 227+20, 227+30, 227+39, 426
  2208. };
  2209. static const uint8_t significant_coeff_flag_offset_8x8[2][63] = {
  2210. { 0, 1, 2, 3, 4, 5, 5, 4, 4, 3, 3, 4, 4, 4, 5, 5,
  2211. 4, 4, 4, 4, 3, 3, 6, 7, 7, 7, 8, 9,10, 9, 8, 7,
  2212. 7, 6,11,12,13,11, 6, 7, 8, 9,14,10, 9, 8, 6,11,
  2213. 12,13,11, 6, 9,14,10, 9,11,12,13,11,14,10,12 },
  2214. { 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 7, 8, 4, 5,
  2215. 6, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,11,12,11,
  2216. 9, 9,10,10, 8,11,12,11, 9, 9,10,10, 8,13,13, 9,
  2217. 9,10,10, 8,13,13, 9, 9,10,10,14,14,14,14,14 }
  2218. };
  2219. /* node ctx: 0..3: abslevel1 (with abslevelgt1 == 0).
  2220. * 4..7: abslevelgt1 + 3 (and abslevel1 doesn't matter).
  2221. * map node ctx => cabac ctx for level=1 */
  2222. static const uint8_t coeff_abs_level1_ctx[8] = { 1, 2, 3, 4, 0, 0, 0, 0 };
  2223. /* map node ctx => cabac ctx for level>1 */
  2224. static const uint8_t coeff_abs_levelgt1_ctx[8] = { 5, 5, 5, 5, 6, 7, 8, 9 };
  2225. static const uint8_t coeff_abs_level_transition[2][8] = {
  2226. /* update node ctx after decoding a level=1 */
  2227. { 1, 2, 3, 3, 4, 5, 6, 7 },
  2228. /* update node ctx after decoding a level>1 */
  2229. { 4, 4, 4, 4, 5, 6, 7, 7 }
  2230. };
  2231. int index[64];
  2232. int av_unused last;
  2233. int coeff_count = 0;
  2234. int node_ctx = 0;
  2235. uint8_t *significant_coeff_ctx_base;
  2236. uint8_t *last_coeff_ctx_base;
  2237. uint8_t *abs_level_m1_ctx_base;
  2238. #if !ARCH_X86
  2239. #define CABAC_ON_STACK
  2240. #endif
  2241. #ifdef CABAC_ON_STACK
  2242. #define CC &cc
  2243. CABACContext cc;
  2244. cc.range = h->cabac.range;
  2245. cc.low = h->cabac.low;
  2246. cc.bytestream= h->cabac.bytestream;
  2247. #else
  2248. #define CC &h->cabac
  2249. #endif
  2250. /* cat: 0-> DC 16x16 n = 0
  2251. * 1-> AC 16x16 n = luma4x4idx
  2252. * 2-> Luma4x4 n = luma4x4idx
  2253. * 3-> DC Chroma n = iCbCr
  2254. * 4-> AC Chroma n = 16 + 4 * iCbCr + chroma4x4idx
  2255. * 5-> Luma8x8 n = 4 * luma8x8idx
  2256. */
  2257. /* read coded block flag */
  2258. if( is_dc || cat != 5 ) {
  2259. if( get_cabac( CC, &h->cabac_state[85 + get_cabac_cbf_ctx( h, cat, n, is_dc ) ] ) == 0 ) {
  2260. if( !is_dc )
  2261. h->non_zero_count_cache[scan8[n]] = 0;
  2262. #ifdef CABAC_ON_STACK
  2263. h->cabac.range = cc.range ;
  2264. h->cabac.low = cc.low ;
  2265. h->cabac.bytestream= cc.bytestream;
  2266. #endif
  2267. return;
  2268. }
  2269. }
  2270. significant_coeff_ctx_base = h->cabac_state
  2271. + significant_coeff_flag_offset[MB_FIELD][cat];
  2272. last_coeff_ctx_base = h->cabac_state
  2273. + last_coeff_flag_offset[MB_FIELD][cat];
  2274. abs_level_m1_ctx_base = h->cabac_state
  2275. + coeff_abs_level_m1_offset[cat];
  2276. if( !is_dc && cat == 5 ) {
  2277. #define DECODE_SIGNIFICANCE( coefs, sig_off, last_off ) \
  2278. for(last= 0; last < coefs; last++) { \
  2279. uint8_t *sig_ctx = significant_coeff_ctx_base + sig_off; \
  2280. if( get_cabac( CC, sig_ctx )) { \
  2281. uint8_t *last_ctx = last_coeff_ctx_base + last_off; \
  2282. index[coeff_count++] = last; \
  2283. if( get_cabac( CC, last_ctx ) ) { \
  2284. last= max_coeff; \
  2285. break; \
  2286. } \
  2287. } \
  2288. }\
  2289. if( last == max_coeff -1 ) {\
  2290. index[coeff_count++] = last;\
  2291. }
  2292. const uint8_t *sig_off = significant_coeff_flag_offset_8x8[MB_FIELD];
  2293. #if ARCH_X86 && HAVE_7REGS && HAVE_EBX_AVAILABLE && !defined(BROKEN_RELOCATIONS)
  2294. coeff_count= decode_significance_8x8_x86(CC, significant_coeff_ctx_base, index, sig_off);
  2295. } else {
  2296. coeff_count= decode_significance_x86(CC, max_coeff, significant_coeff_ctx_base, index);
  2297. #else
  2298. DECODE_SIGNIFICANCE( 63, sig_off[last], last_coeff_flag_offset_8x8[last] );
  2299. } else {
  2300. DECODE_SIGNIFICANCE( max_coeff - 1, last, last );
  2301. #endif
  2302. }
  2303. assert(coeff_count > 0);
  2304. if( is_dc ) {
  2305. if( cat == 0 )
  2306. h->cbp_table[h->mb_xy] |= 0x100;
  2307. else
  2308. h->cbp_table[h->mb_xy] |= 0x40 << n;
  2309. } else {
  2310. if( cat == 5 )
  2311. fill_rectangle(&h->non_zero_count_cache[scan8[n]], 2, 2, 8, coeff_count, 1);
  2312. else {
  2313. assert( cat == 1 || cat == 2 || cat == 4 );
  2314. h->non_zero_count_cache[scan8[n]] = coeff_count;
  2315. }
  2316. }
  2317. do {
  2318. uint8_t *ctx = coeff_abs_level1_ctx[node_ctx] + abs_level_m1_ctx_base;
  2319. int j= scantable[index[--coeff_count]];
  2320. if( get_cabac( CC, ctx ) == 0 ) {
  2321. node_ctx = coeff_abs_level_transition[0][node_ctx];
  2322. if( is_dc ) {
  2323. block[j] = get_cabac_bypass_sign( CC, -1);
  2324. }else{
  2325. block[j] = (get_cabac_bypass_sign( CC, -qmul[j]) + 32) >> 6;
  2326. }
  2327. } else {
  2328. int coeff_abs = 2;
  2329. ctx = coeff_abs_levelgt1_ctx[node_ctx] + abs_level_m1_ctx_base;
  2330. node_ctx = coeff_abs_level_transition[1][node_ctx];
  2331. while( coeff_abs < 15 && get_cabac( CC, ctx ) ) {
  2332. coeff_abs++;
  2333. }
  2334. if( coeff_abs >= 15 ) {
  2335. int j = 0;
  2336. while( get_cabac_bypass( CC ) ) {
  2337. j++;
  2338. }
  2339. coeff_abs=1;
  2340. while( j-- ) {
  2341. coeff_abs += coeff_abs + get_cabac_bypass( CC );
  2342. }
  2343. coeff_abs+= 14;
  2344. }
  2345. if( is_dc ) {
  2346. block[j] = get_cabac_bypass_sign( CC, -coeff_abs );
  2347. }else{
  2348. block[j] = (get_cabac_bypass_sign( CC, -coeff_abs ) * qmul[j] + 32) >> 6;
  2349. }
  2350. }
  2351. } while( coeff_count );
  2352. #ifdef CABAC_ON_STACK
  2353. h->cabac.range = cc.range ;
  2354. h->cabac.low = cc.low ;
  2355. h->cabac.bytestream= cc.bytestream;
  2356. #endif
  2357. }
  2358. #if !CONFIG_SMALL
  2359. static void decode_cabac_residual_dc( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff ) {
  2360. decode_cabac_residual_internal(h, block, cat, n, scantable, qmul, max_coeff, 1);
  2361. }
  2362. static void decode_cabac_residual_nondc( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff ) {
  2363. decode_cabac_residual_internal(h, block, cat, n, scantable, qmul, max_coeff, 0);
  2364. }
  2365. #endif
  2366. static void decode_cabac_residual( H264Context *h, DCTELEM *block, int cat, int n, const uint8_t *scantable, const uint32_t *qmul, int max_coeff ) {
  2367. #if CONFIG_SMALL
  2368. decode_cabac_residual_internal(h, block, cat, n, scantable, qmul, max_coeff, cat == 0 || cat == 3);
  2369. #else
  2370. if( cat == 0 || cat == 3 ) decode_cabac_residual_dc(h, block, cat, n, scantable, qmul, max_coeff);
  2371. else decode_cabac_residual_nondc(h, block, cat, n, scantable, qmul, max_coeff);
  2372. #endif
  2373. }
  2374. static inline void compute_mb_neighbors(H264Context *h)
  2375. {
  2376. MpegEncContext * const s = &h->s;
  2377. const int mb_xy = h->mb_xy;
  2378. h->top_mb_xy = mb_xy - s->mb_stride;
  2379. h->left_mb_xy[0] = mb_xy - 1;
  2380. if(FRAME_MBAFF){
  2381. const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
  2382. const int top_pair_xy = pair_xy - s->mb_stride;
  2383. const int top_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
  2384. const int left_mb_field_flag = IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
  2385. const int curr_mb_field_flag = MB_FIELD;
  2386. const int bottom = (s->mb_y & 1);
  2387. if (curr_mb_field_flag && (bottom || top_mb_field_flag)){
  2388. h->top_mb_xy -= s->mb_stride;
  2389. }
  2390. if (!left_mb_field_flag == curr_mb_field_flag) {
  2391. h->left_mb_xy[0] = pair_xy - 1;
  2392. }
  2393. } else if (FIELD_PICTURE) {
  2394. h->top_mb_xy -= s->mb_stride;
  2395. }
  2396. return;
  2397. }
  2398. /**
  2399. * decodes a macroblock
  2400. * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
  2401. */
  2402. static int decode_mb_cabac(H264Context *h) {
  2403. MpegEncContext * const s = &h->s;
  2404. int mb_xy;
  2405. int mb_type, partition_count, cbp = 0;
  2406. int dct8x8_allowed= h->pps.transform_8x8_mode;
  2407. mb_xy = h->mb_xy = s->mb_x + s->mb_y*s->mb_stride;
  2408. tprintf(s->avctx, "pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);
  2409. if( h->slice_type_nos != FF_I_TYPE ) {
  2410. int skip;
  2411. /* a skipped mb needs the aff flag from the following mb */
  2412. if( FRAME_MBAFF && s->mb_x==0 && (s->mb_y&1)==0 )
  2413. predict_field_decoding_flag(h);
  2414. if( FRAME_MBAFF && (s->mb_y&1)==1 && h->prev_mb_skipped )
  2415. skip = h->next_mb_skipped;
  2416. else
  2417. skip = decode_cabac_mb_skip( h, s->mb_x, s->mb_y );
  2418. /* read skip flags */
  2419. if( skip ) {
  2420. if( FRAME_MBAFF && (s->mb_y&1)==0 ){
  2421. s->current_picture.mb_type[mb_xy] = MB_TYPE_SKIP;
  2422. h->next_mb_skipped = decode_cabac_mb_skip( h, s->mb_x, s->mb_y+1 );
  2423. if(!h->next_mb_skipped)
  2424. h->mb_mbaff = h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  2425. }
  2426. decode_mb_skip(h);
  2427. h->cbp_table[mb_xy] = 0;
  2428. h->chroma_pred_mode_table[mb_xy] = 0;
  2429. h->last_qscale_diff = 0;
  2430. return 0;
  2431. }
  2432. }
  2433. if(FRAME_MBAFF){
  2434. if( (s->mb_y&1) == 0 )
  2435. h->mb_mbaff =
  2436. h->mb_field_decoding_flag = decode_cabac_field_decoding_flag(h);
  2437. }
  2438. h->prev_mb_skipped = 0;
  2439. compute_mb_neighbors(h);
  2440. if( h->slice_type_nos == FF_B_TYPE ) {
  2441. mb_type = decode_cabac_mb_type_b( h );
  2442. if( mb_type < 23 ){
  2443. partition_count= b_mb_type_info[mb_type].partition_count;
  2444. mb_type= b_mb_type_info[mb_type].type;
  2445. }else{
  2446. mb_type -= 23;
  2447. goto decode_intra_mb;
  2448. }
  2449. } else if( h->slice_type_nos == FF_P_TYPE ) {
  2450. if( get_cabac_noinline( &h->cabac, &h->cabac_state[14] ) == 0 ) {
  2451. /* P-type */
  2452. if( get_cabac_noinline( &h->cabac, &h->cabac_state[15] ) == 0 ) {
  2453. /* P_L0_D16x16, P_8x8 */
  2454. mb_type= 3 * get_cabac_noinline( &h->cabac, &h->cabac_state[16] );
  2455. } else {
  2456. /* P_L0_D8x16, P_L0_D16x8 */
  2457. mb_type= 2 - get_cabac_noinline( &h->cabac, &h->cabac_state[17] );
  2458. }
  2459. partition_count= p_mb_type_info[mb_type].partition_count;
  2460. mb_type= p_mb_type_info[mb_type].type;
  2461. } else {
  2462. mb_type= decode_cabac_intra_mb_type(h, 17, 0);
  2463. goto decode_intra_mb;
  2464. }
  2465. } else {
  2466. mb_type= decode_cabac_intra_mb_type(h, 3, 1);
  2467. if(h->slice_type == FF_SI_TYPE && mb_type)
  2468. mb_type--;
  2469. assert(h->slice_type_nos == FF_I_TYPE);
  2470. decode_intra_mb:
  2471. partition_count = 0;
  2472. cbp= i_mb_type_info[mb_type].cbp;
  2473. h->intra16x16_pred_mode= i_mb_type_info[mb_type].pred_mode;
  2474. mb_type= i_mb_type_info[mb_type].type;
  2475. }
  2476. if(MB_FIELD)
  2477. mb_type |= MB_TYPE_INTERLACED;
  2478. h->slice_table[ mb_xy ]= h->slice_num;
  2479. if(IS_INTRA_PCM(mb_type)) {
  2480. const uint8_t *ptr;
  2481. // We assume these blocks are very rare so we do not optimize it.
  2482. // FIXME The two following lines get the bitstream position in the cabac
  2483. // decode, I think it should be done by a function in cabac.h (or cabac.c).
  2484. ptr= h->cabac.bytestream;
  2485. if(h->cabac.low&0x1) ptr--;
  2486. if(CABAC_BITS==16){
  2487. if(h->cabac.low&0x1FF) ptr--;
  2488. }
  2489. // The pixels are stored in the same order as levels in h->mb array.
  2490. memcpy(h->mb, ptr, 256); ptr+=256;
  2491. if(CHROMA){
  2492. memcpy(h->mb+128, ptr, 128); ptr+=128;
  2493. }
  2494. ff_init_cabac_decoder(&h->cabac, ptr, h->cabac.bytestream_end - ptr);
  2495. // All blocks are present
  2496. h->cbp_table[mb_xy] = 0x1ef;
  2497. h->chroma_pred_mode_table[mb_xy] = 0;
  2498. // In deblocking, the quantizer is 0
  2499. s->current_picture.qscale_table[mb_xy]= 0;
  2500. // All coeffs are present
  2501. memset(h->non_zero_count[mb_xy], 16, 16);
  2502. s->current_picture.mb_type[mb_xy]= mb_type;
  2503. h->last_qscale_diff = 0;
  2504. return 0;
  2505. }
  2506. if(MB_MBAFF){
  2507. h->ref_count[0] <<= 1;
  2508. h->ref_count[1] <<= 1;
  2509. }
  2510. fill_caches(h, mb_type, 0);
  2511. if( IS_INTRA( mb_type ) ) {
  2512. int i, pred_mode;
  2513. if( IS_INTRA4x4( mb_type ) ) {
  2514. if( dct8x8_allowed && decode_cabac_mb_transform_size( h ) ) {
  2515. mb_type |= MB_TYPE_8x8DCT;
  2516. for( i = 0; i < 16; i+=4 ) {
  2517. int pred = pred_intra_mode( h, i );
  2518. int mode = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  2519. fill_rectangle( &h->intra4x4_pred_mode_cache[ scan8[i] ], 2, 2, 8, mode, 1 );
  2520. }
  2521. } else {
  2522. for( i = 0; i < 16; i++ ) {
  2523. int pred = pred_intra_mode( h, i );
  2524. h->intra4x4_pred_mode_cache[ scan8[i] ] = decode_cabac_mb_intra4x4_pred_mode( h, pred );
  2525. //av_log( s->avctx, AV_LOG_ERROR, "i4x4 pred=%d mode=%d\n", pred, h->intra4x4_pred_mode_cache[ scan8[i] ] );
  2526. }
  2527. }
  2528. ff_h264_write_back_intra_pred_mode(h);
  2529. if( ff_h264_check_intra4x4_pred_mode(h) < 0 ) return -1;
  2530. } else {
  2531. h->intra16x16_pred_mode= ff_h264_check_intra_pred_mode( h, h->intra16x16_pred_mode );
  2532. if( h->intra16x16_pred_mode < 0 ) return -1;
  2533. }
  2534. if(CHROMA){
  2535. h->chroma_pred_mode_table[mb_xy] =
  2536. pred_mode = decode_cabac_mb_chroma_pre_mode( h );
  2537. pred_mode= ff_h264_check_intra_pred_mode( h, pred_mode );
  2538. if( pred_mode < 0 ) return -1;
  2539. h->chroma_pred_mode= pred_mode;
  2540. }
  2541. } else if( partition_count == 4 ) {
  2542. int i, j, sub_partition_count[4], list, ref[2][4];
  2543. if( h->slice_type_nos == FF_B_TYPE ) {
  2544. for( i = 0; i < 4; i++ ) {
  2545. h->sub_mb_type[i] = decode_cabac_b_mb_sub_type( h );
  2546. sub_partition_count[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  2547. h->sub_mb_type[i]= b_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  2548. }
  2549. if( IS_DIRECT(h->sub_mb_type[0] | h->sub_mb_type[1] |
  2550. h->sub_mb_type[2] | h->sub_mb_type[3]) ) {
  2551. ff_h264_pred_direct_motion(h, &mb_type);
  2552. h->ref_cache[0][scan8[4]] =
  2553. h->ref_cache[1][scan8[4]] =
  2554. h->ref_cache[0][scan8[12]] =
  2555. h->ref_cache[1][scan8[12]] = PART_NOT_AVAILABLE;
  2556. if( h->ref_count[0] > 1 || h->ref_count[1] > 1 ) {
  2557. for( i = 0; i < 4; i++ )
  2558. if( IS_DIRECT(h->sub_mb_type[i]) )
  2559. fill_rectangle( &h->direct_cache[scan8[4*i]], 2, 2, 8, 1, 1 );
  2560. }
  2561. }
  2562. } else {
  2563. for( i = 0; i < 4; i++ ) {
  2564. h->sub_mb_type[i] = decode_cabac_p_mb_sub_type( h );
  2565. sub_partition_count[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].partition_count;
  2566. h->sub_mb_type[i]= p_sub_mb_type_info[ h->sub_mb_type[i] ].type;
  2567. }
  2568. }
  2569. for( list = 0; list < h->list_count; list++ ) {
  2570. for( i = 0; i < 4; i++ ) {
  2571. if(IS_DIRECT(h->sub_mb_type[i])) continue;
  2572. if(IS_DIR(h->sub_mb_type[i], 0, list)){
  2573. if( h->ref_count[list] > 1 ){
  2574. ref[list][i] = decode_cabac_mb_ref( h, list, 4*i );
  2575. if(ref[list][i] >= (unsigned)h->ref_count[list]){
  2576. av_log(s->avctx, AV_LOG_ERROR, "Reference %d >= %d\n", ref[list][i], h->ref_count[list]);
  2577. return -1;
  2578. }
  2579. }else
  2580. ref[list][i] = 0;
  2581. } else {
  2582. ref[list][i] = -1;
  2583. }
  2584. h->ref_cache[list][ scan8[4*i]+1 ]=
  2585. h->ref_cache[list][ scan8[4*i]+8 ]=h->ref_cache[list][ scan8[4*i]+9 ]= ref[list][i];
  2586. }
  2587. }
  2588. if(dct8x8_allowed)
  2589. dct8x8_allowed = get_dct8x8_allowed(h);
  2590. for(list=0; list<h->list_count; list++){
  2591. for(i=0; i<4; i++){
  2592. h->ref_cache[list][ scan8[4*i] ]=h->ref_cache[list][ scan8[4*i]+1 ];
  2593. if(IS_DIRECT(h->sub_mb_type[i])){
  2594. fill_rectangle(h->mvd_cache[list][scan8[4*i]], 2, 2, 8, 0, 4);
  2595. continue;
  2596. }
  2597. if(IS_DIR(h->sub_mb_type[i], 0, list) && !IS_DIRECT(h->sub_mb_type[i])){
  2598. const int sub_mb_type= h->sub_mb_type[i];
  2599. const int block_width= (sub_mb_type & (MB_TYPE_16x16|MB_TYPE_16x8)) ? 2 : 1;
  2600. for(j=0; j<sub_partition_count[i]; j++){
  2601. int mpx, mpy;
  2602. int mx, my;
  2603. const int index= 4*i + block_width*j;
  2604. int16_t (* mv_cache)[2]= &h->mv_cache[list][ scan8[index] ];
  2605. int16_t (* mvd_cache)[2]= &h->mvd_cache[list][ scan8[index] ];
  2606. pred_motion(h, index, block_width, list, h->ref_cache[list][ scan8[index] ], &mpx, &mpy);
  2607. mx = mpx + decode_cabac_mb_mvd( h, list, index, 0 );
  2608. my = mpy + decode_cabac_mb_mvd( h, list, index, 1 );
  2609. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  2610. if(IS_SUB_8X8(sub_mb_type)){
  2611. mv_cache[ 1 ][0]=
  2612. mv_cache[ 8 ][0]= mv_cache[ 9 ][0]= mx;
  2613. mv_cache[ 1 ][1]=
  2614. mv_cache[ 8 ][1]= mv_cache[ 9 ][1]= my;
  2615. mvd_cache[ 1 ][0]=
  2616. mvd_cache[ 8 ][0]= mvd_cache[ 9 ][0]= mx - mpx;
  2617. mvd_cache[ 1 ][1]=
  2618. mvd_cache[ 8 ][1]= mvd_cache[ 9 ][1]= my - mpy;
  2619. }else if(IS_SUB_8X4(sub_mb_type)){
  2620. mv_cache[ 1 ][0]= mx;
  2621. mv_cache[ 1 ][1]= my;
  2622. mvd_cache[ 1 ][0]= mx - mpx;
  2623. mvd_cache[ 1 ][1]= my - mpy;
  2624. }else if(IS_SUB_4X8(sub_mb_type)){
  2625. mv_cache[ 8 ][0]= mx;
  2626. mv_cache[ 8 ][1]= my;
  2627. mvd_cache[ 8 ][0]= mx - mpx;
  2628. mvd_cache[ 8 ][1]= my - mpy;
  2629. }
  2630. mv_cache[ 0 ][0]= mx;
  2631. mv_cache[ 0 ][1]= my;
  2632. mvd_cache[ 0 ][0]= mx - mpx;
  2633. mvd_cache[ 0 ][1]= my - mpy;
  2634. }
  2635. }else{
  2636. uint32_t *p= (uint32_t *)&h->mv_cache[list][ scan8[4*i] ][0];
  2637. uint32_t *pd= (uint32_t *)&h->mvd_cache[list][ scan8[4*i] ][0];
  2638. p[0] = p[1] = p[8] = p[9] = 0;
  2639. pd[0]= pd[1]= pd[8]= pd[9]= 0;
  2640. }
  2641. }
  2642. }
  2643. } else if( IS_DIRECT(mb_type) ) {
  2644. ff_h264_pred_direct_motion(h, &mb_type);
  2645. fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
  2646. fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
  2647. dct8x8_allowed &= h->sps.direct_8x8_inference_flag;
  2648. } else {
  2649. int list, mx, my, i, mpx, mpy;
  2650. if(IS_16X16(mb_type)){
  2651. for(list=0; list<h->list_count; list++){
  2652. if(IS_DIR(mb_type, 0, list)){
  2653. int ref;
  2654. if(h->ref_count[list] > 1){
  2655. ref= decode_cabac_mb_ref(h, list, 0);
  2656. if(ref >= (unsigned)h->ref_count[list]){
  2657. av_log(s->avctx, AV_LOG_ERROR, "Reference %d >= %d\n", ref, h->ref_count[list]);
  2658. return -1;
  2659. }
  2660. }else
  2661. ref=0;
  2662. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, ref, 1);
  2663. }else
  2664. fill_rectangle(&h->ref_cache[list][ scan8[0] ], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1); //FIXME factorize and the other fill_rect below too
  2665. }
  2666. for(list=0; list<h->list_count; list++){
  2667. if(IS_DIR(mb_type, 0, list)){
  2668. pred_motion(h, 0, 4, list, h->ref_cache[list][ scan8[0] ], &mpx, &mpy);
  2669. mx = mpx + decode_cabac_mb_mvd( h, list, 0, 0 );
  2670. my = mpy + decode_cabac_mb_mvd( h, list, 0, 1 );
  2671. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  2672. fill_rectangle(h->mvd_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  2673. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, pack16to32(mx,my), 4);
  2674. }else
  2675. fill_rectangle(h->mv_cache[list][ scan8[0] ], 4, 4, 8, 0, 4);
  2676. }
  2677. }
  2678. else if(IS_16X8(mb_type)){
  2679. for(list=0; list<h->list_count; list++){
  2680. for(i=0; i<2; i++){
  2681. if(IS_DIR(mb_type, i, list)){
  2682. int ref;
  2683. if(h->ref_count[list] > 1){
  2684. ref= decode_cabac_mb_ref( h, list, 8*i );
  2685. if(ref >= (unsigned)h->ref_count[list]){
  2686. av_log(s->avctx, AV_LOG_ERROR, "Reference %d >= %d\n", ref, h->ref_count[list]);
  2687. return -1;
  2688. }
  2689. }else
  2690. ref=0;
  2691. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, ref, 1);
  2692. }else
  2693. fill_rectangle(&h->ref_cache[list][ scan8[0] + 16*i ], 4, 2, 8, (LIST_NOT_USED&0xFF), 1);
  2694. }
  2695. }
  2696. for(list=0; list<h->list_count; list++){
  2697. for(i=0; i<2; i++){
  2698. if(IS_DIR(mb_type, i, list)){
  2699. pred_16x8_motion(h, 8*i, list, h->ref_cache[list][scan8[0] + 16*i], &mpx, &mpy);
  2700. mx = mpx + decode_cabac_mb_mvd( h, list, 8*i, 0 );
  2701. my = mpy + decode_cabac_mb_mvd( h, list, 8*i, 1 );
  2702. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  2703. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx-mpx,my-mpy), 4);
  2704. fill_rectangle(h->mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, pack16to32(mx,my), 4);
  2705. }else{
  2706. fill_rectangle(h->mvd_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  2707. fill_rectangle(h-> mv_cache[list][ scan8[0] + 16*i ], 4, 2, 8, 0, 4);
  2708. }
  2709. }
  2710. }
  2711. }else{
  2712. assert(IS_8X16(mb_type));
  2713. for(list=0; list<h->list_count; list++){
  2714. for(i=0; i<2; i++){
  2715. if(IS_DIR(mb_type, i, list)){ //FIXME optimize
  2716. int ref;
  2717. if(h->ref_count[list] > 1){
  2718. ref= decode_cabac_mb_ref( h, list, 4*i );
  2719. if(ref >= (unsigned)h->ref_count[list]){
  2720. av_log(s->avctx, AV_LOG_ERROR, "Reference %d >= %d\n", ref, h->ref_count[list]);
  2721. return -1;
  2722. }
  2723. }else
  2724. ref=0;
  2725. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, ref, 1);
  2726. }else
  2727. fill_rectangle(&h->ref_cache[list][ scan8[0] + 2*i ], 2, 4, 8, (LIST_NOT_USED&0xFF), 1);
  2728. }
  2729. }
  2730. for(list=0; list<h->list_count; list++){
  2731. for(i=0; i<2; i++){
  2732. if(IS_DIR(mb_type, i, list)){
  2733. pred_8x16_motion(h, i*4, list, h->ref_cache[list][ scan8[0] + 2*i ], &mpx, &mpy);
  2734. mx = mpx + decode_cabac_mb_mvd( h, list, 4*i, 0 );
  2735. my = mpy + decode_cabac_mb_mvd( h, list, 4*i, 1 );
  2736. tprintf(s->avctx, "final mv:%d %d\n", mx, my);
  2737. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx-mpx,my-mpy), 4);
  2738. fill_rectangle(h->mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, pack16to32(mx,my), 4);
  2739. }else{
  2740. fill_rectangle(h->mvd_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  2741. fill_rectangle(h-> mv_cache[list][ scan8[0] + 2*i ], 2, 4, 8, 0, 4);
  2742. }
  2743. }
  2744. }
  2745. }
  2746. }
  2747. if( IS_INTER( mb_type ) ) {
  2748. h->chroma_pred_mode_table[mb_xy] = 0;
  2749. write_back_motion( h, mb_type );
  2750. }
  2751. if( !IS_INTRA16x16( mb_type ) ) {
  2752. cbp = decode_cabac_mb_cbp_luma( h );
  2753. if(CHROMA)
  2754. cbp |= decode_cabac_mb_cbp_chroma( h ) << 4;
  2755. }
  2756. h->cbp_table[mb_xy] = h->cbp = cbp;
  2757. if( dct8x8_allowed && (cbp&15) && !IS_INTRA( mb_type ) ) {
  2758. if( decode_cabac_mb_transform_size( h ) )
  2759. mb_type |= MB_TYPE_8x8DCT;
  2760. }
  2761. s->current_picture.mb_type[mb_xy]= mb_type;
  2762. if( cbp || IS_INTRA16x16( mb_type ) ) {
  2763. const uint8_t *scan, *scan8x8, *dc_scan;
  2764. const uint32_t *qmul;
  2765. int dqp;
  2766. if(IS_INTERLACED(mb_type)){
  2767. scan8x8= s->qscale ? h->field_scan8x8 : h->field_scan8x8_q0;
  2768. scan= s->qscale ? h->field_scan : h->field_scan_q0;
  2769. dc_scan= luma_dc_field_scan;
  2770. }else{
  2771. scan8x8= s->qscale ? h->zigzag_scan8x8 : h->zigzag_scan8x8_q0;
  2772. scan= s->qscale ? h->zigzag_scan : h->zigzag_scan_q0;
  2773. dc_scan= luma_dc_zigzag_scan;
  2774. }
  2775. h->last_qscale_diff = dqp = decode_cabac_mb_dqp( h );
  2776. if( dqp == INT_MIN ){
  2777. av_log(h->s.avctx, AV_LOG_ERROR, "cabac decode of qscale diff failed at %d %d\n", s->mb_x, s->mb_y);
  2778. return -1;
  2779. }
  2780. s->qscale += dqp;
  2781. if(((unsigned)s->qscale) > 51){
  2782. if(s->qscale<0) s->qscale+= 52;
  2783. else s->qscale-= 52;
  2784. }
  2785. h->chroma_qp[0] = get_chroma_qp(h, 0, s->qscale);
  2786. h->chroma_qp[1] = get_chroma_qp(h, 1, s->qscale);
  2787. if( IS_INTRA16x16( mb_type ) ) {
  2788. int i;
  2789. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 DC\n" );
  2790. decode_cabac_residual( h, h->mb, 0, 0, dc_scan, NULL, 16);
  2791. if( cbp&15 ) {
  2792. qmul = h->dequant4_coeff[0][s->qscale];
  2793. for( i = 0; i < 16; i++ ) {
  2794. //av_log( s->avctx, AV_LOG_ERROR, "INTRA16x16 AC:%d\n", i );
  2795. decode_cabac_residual(h, h->mb + 16*i, 1, i, scan + 1, qmul, 15);
  2796. }
  2797. } else {
  2798. fill_rectangle(&h->non_zero_count_cache[scan8[0]], 4, 4, 8, 0, 1);
  2799. }
  2800. } else {
  2801. int i8x8, i4x4;
  2802. for( i8x8 = 0; i8x8 < 4; i8x8++ ) {
  2803. if( cbp & (1<<i8x8) ) {
  2804. if( IS_8x8DCT(mb_type) ) {
  2805. decode_cabac_residual(h, h->mb + 64*i8x8, 5, 4*i8x8,
  2806. scan8x8, h->dequant8_coeff[IS_INTRA( mb_type ) ? 0:1][s->qscale], 64);
  2807. } else {
  2808. qmul = h->dequant4_coeff[IS_INTRA( mb_type ) ? 0:3][s->qscale];
  2809. for( i4x4 = 0; i4x4 < 4; i4x4++ ) {
  2810. const int index = 4*i8x8 + i4x4;
  2811. //av_log( s->avctx, AV_LOG_ERROR, "Luma4x4: %d\n", index );
  2812. //START_TIMER
  2813. decode_cabac_residual(h, h->mb + 16*index, 2, index, scan, qmul, 16);
  2814. //STOP_TIMER("decode_residual")
  2815. }
  2816. }
  2817. } else {
  2818. uint8_t * const nnz= &h->non_zero_count_cache[ scan8[4*i8x8] ];
  2819. nnz[0] = nnz[1] = nnz[8] = nnz[9] = 0;
  2820. }
  2821. }
  2822. }
  2823. if( cbp&0x30 ){
  2824. int c;
  2825. for( c = 0; c < 2; c++ ) {
  2826. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-DC\n",c );
  2827. decode_cabac_residual(h, h->mb + 256 + 16*4*c, 3, c, chroma_dc_scan, NULL, 4);
  2828. }
  2829. }
  2830. if( cbp&0x20 ) {
  2831. int c, i;
  2832. for( c = 0; c < 2; c++ ) {
  2833. qmul = h->dequant4_coeff[c+1+(IS_INTRA( mb_type ) ? 0:3)][h->chroma_qp[c]];
  2834. for( i = 0; i < 4; i++ ) {
  2835. const int index = 16 + 4 * c + i;
  2836. //av_log( s->avctx, AV_LOG_ERROR, "INTRA C%d-AC %d\n",c, index - 16 );
  2837. decode_cabac_residual(h, h->mb + 16*index, 4, index, scan + 1, qmul, 15);
  2838. }
  2839. }
  2840. } else {
  2841. uint8_t * const nnz= &h->non_zero_count_cache[0];
  2842. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  2843. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  2844. }
  2845. } else {
  2846. uint8_t * const nnz= &h->non_zero_count_cache[0];
  2847. fill_rectangle(&nnz[scan8[0]], 4, 4, 8, 0, 1);
  2848. nnz[ scan8[16]+0 ] = nnz[ scan8[16]+1 ] =nnz[ scan8[16]+8 ] =nnz[ scan8[16]+9 ] =
  2849. nnz[ scan8[20]+0 ] = nnz[ scan8[20]+1 ] =nnz[ scan8[20]+8 ] =nnz[ scan8[20]+9 ] = 0;
  2850. h->last_qscale_diff = 0;
  2851. }
  2852. s->current_picture.qscale_table[mb_xy]= s->qscale;
  2853. write_back_non_zero_count(h);
  2854. if(MB_MBAFF){
  2855. h->ref_count[0] >>= 1;
  2856. h->ref_count[1] >>= 1;
  2857. }
  2858. return 0;
  2859. }
  2860. static int decode_slice(struct AVCodecContext *avctx, void *arg){
  2861. H264Context *h = *(void**)arg;
  2862. MpegEncContext * const s = &h->s;
  2863. const int part_mask= s->partitioned_frame ? (AC_END|AC_ERROR) : 0x7F;
  2864. s->mb_skip_run= -1;
  2865. h->is_complex = FRAME_MBAFF || s->picture_structure != PICT_FRAME || s->codec_id != CODEC_ID_H264 ||
  2866. (CONFIG_GRAY && (s->flags&CODEC_FLAG_GRAY));
  2867. if( h->pps.cabac ) {
  2868. int i;
  2869. /* realign */
  2870. align_get_bits( &s->gb );
  2871. /* init cabac */
  2872. ff_init_cabac_states( &h->cabac);
  2873. ff_init_cabac_decoder( &h->cabac,
  2874. s->gb.buffer + get_bits_count(&s->gb)/8,
  2875. (get_bits_left(&s->gb) + 7)/8);
  2876. /* calculate pre-state */
  2877. for( i= 0; i < 460; i++ ) {
  2878. int pre;
  2879. if( h->slice_type_nos == FF_I_TYPE )
  2880. pre = av_clip( ((cabac_context_init_I[i][0] * s->qscale) >>4 ) + cabac_context_init_I[i][1], 1, 126 );
  2881. else
  2882. pre = av_clip( ((cabac_context_init_PB[h->cabac_init_idc][i][0] * s->qscale) >>4 ) + cabac_context_init_PB[h->cabac_init_idc][i][1], 1, 126 );
  2883. if( pre <= 63 )
  2884. h->cabac_state[i] = 2 * ( 63 - pre ) + 0;
  2885. else
  2886. h->cabac_state[i] = 2 * ( pre - 64 ) + 1;
  2887. }
  2888. for(;;){
  2889. //START_TIMER
  2890. int ret = decode_mb_cabac(h);
  2891. int eos;
  2892. //STOP_TIMER("decode_mb_cabac")
  2893. if(ret>=0) ff_h264_hl_decode_mb(h);
  2894. if( ret >= 0 && FRAME_MBAFF ) { //FIXME optimal? or let mb_decode decode 16x32 ?
  2895. s->mb_y++;
  2896. ret = decode_mb_cabac(h);
  2897. if(ret>=0) ff_h264_hl_decode_mb(h);
  2898. s->mb_y--;
  2899. }
  2900. eos = get_cabac_terminate( &h->cabac );
  2901. if( ret < 0 || h->cabac.bytestream > h->cabac.bytestream_end + 2) {
  2902. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d, bytestream (%td)\n", s->mb_x, s->mb_y, h->cabac.bytestream_end - h->cabac.bytestream);
  2903. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2904. return -1;
  2905. }
  2906. if( ++s->mb_x >= s->mb_width ) {
  2907. s->mb_x = 0;
  2908. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  2909. ++s->mb_y;
  2910. if(FIELD_OR_MBAFF_PICTURE) {
  2911. ++s->mb_y;
  2912. }
  2913. }
  2914. if( eos || s->mb_y >= s->mb_height ) {
  2915. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  2916. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2917. return 0;
  2918. }
  2919. }
  2920. } else {
  2921. for(;;){
  2922. int ret = ff_h264_decode_mb_cavlc(h);
  2923. if(ret>=0) ff_h264_hl_decode_mb(h);
  2924. if(ret>=0 && FRAME_MBAFF){ //FIXME optimal? or let mb_decode decode 16x32 ?
  2925. s->mb_y++;
  2926. ret = ff_h264_decode_mb_cavlc(h);
  2927. if(ret>=0) ff_h264_hl_decode_mb(h);
  2928. s->mb_y--;
  2929. }
  2930. if(ret<0){
  2931. av_log(h->s.avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  2932. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2933. return -1;
  2934. }
  2935. if(++s->mb_x >= s->mb_width){
  2936. s->mb_x=0;
  2937. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  2938. ++s->mb_y;
  2939. if(FIELD_OR_MBAFF_PICTURE) {
  2940. ++s->mb_y;
  2941. }
  2942. if(s->mb_y >= s->mb_height){
  2943. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  2944. if(get_bits_count(&s->gb) == s->gb.size_in_bits ) {
  2945. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2946. return 0;
  2947. }else{
  2948. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2949. return -1;
  2950. }
  2951. }
  2952. }
  2953. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->mb_skip_run<=0){
  2954. tprintf(s->avctx, "slice end %d %d\n", get_bits_count(&s->gb), s->gb.size_in_bits);
  2955. if(get_bits_count(&s->gb) == s->gb.size_in_bits ){
  2956. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2957. return 0;
  2958. }else{
  2959. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2960. return -1;
  2961. }
  2962. }
  2963. }
  2964. }
  2965. #if 0
  2966. for(;s->mb_y < s->mb_height; s->mb_y++){
  2967. for(;s->mb_x < s->mb_width; s->mb_x++){
  2968. int ret= decode_mb(h);
  2969. ff_h264_hl_decode_mb(h);
  2970. if(ret<0){
  2971. av_log(s->avctx, AV_LOG_ERROR, "error while decoding MB %d %d\n", s->mb_x, s->mb_y);
  2972. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2973. return -1;
  2974. }
  2975. if(++s->mb_x >= s->mb_width){
  2976. s->mb_x=0;
  2977. if(++s->mb_y >= s->mb_height){
  2978. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  2979. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2980. return 0;
  2981. }else{
  2982. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2983. return -1;
  2984. }
  2985. }
  2986. }
  2987. if(get_bits_count(s->?gb) >= s->gb?.size_in_bits){
  2988. if(get_bits_count(s->gb) == s->gb.size_in_bits){
  2989. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, (AC_END|DC_END|MV_END)&part_mask);
  2990. return 0;
  2991. }else{
  2992. ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x, s->mb_y, (AC_ERROR|DC_ERROR|MV_ERROR)&part_mask);
  2993. return -1;
  2994. }
  2995. }
  2996. }
  2997. s->mb_x=0;
  2998. ff_draw_horiz_band(s, 16*s->mb_y, 16);
  2999. }
  3000. #endif
  3001. return -1; //not reached
  3002. }
  3003. /**
  3004. * Call decode_slice() for each context.
  3005. *
  3006. * @param h h264 master context
  3007. * @param context_count number of contexts to execute
  3008. */
  3009. static void execute_decode_slices(H264Context *h, int context_count){
  3010. MpegEncContext * const s = &h->s;
  3011. AVCodecContext * const avctx= s->avctx;
  3012. H264Context *hx;
  3013. int i;
  3014. if (s->avctx->hwaccel)
  3015. return;
  3016. if(s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3017. return;
  3018. if(context_count == 1) {
  3019. decode_slice(avctx, &h);
  3020. } else {
  3021. for(i = 1; i < context_count; i++) {
  3022. hx = h->thread_context[i];
  3023. hx->s.error_recognition = avctx->error_recognition;
  3024. hx->s.error_count = 0;
  3025. }
  3026. avctx->execute(avctx, (void *)decode_slice,
  3027. h->thread_context, NULL, context_count, sizeof(void*));
  3028. /* pull back stuff from slices to master context */
  3029. hx = h->thread_context[context_count - 1];
  3030. s->mb_x = hx->s.mb_x;
  3031. s->mb_y = hx->s.mb_y;
  3032. s->dropable = hx->s.dropable;
  3033. s->picture_structure = hx->s.picture_structure;
  3034. for(i = 1; i < context_count; i++)
  3035. h->s.error_count += h->thread_context[i]->s.error_count;
  3036. }
  3037. }
  3038. static int decode_nal_units(H264Context *h, const uint8_t *buf, int buf_size){
  3039. MpegEncContext * const s = &h->s;
  3040. AVCodecContext * const avctx= s->avctx;
  3041. int buf_index=0;
  3042. H264Context *hx; ///< thread context
  3043. int context_count = 0;
  3044. int next_avc= h->is_avc ? 0 : buf_size;
  3045. h->max_contexts = avctx->thread_count;
  3046. #if 0
  3047. int i;
  3048. for(i=0; i<50; i++){
  3049. av_log(NULL, AV_LOG_ERROR,"%02X ", buf[i]);
  3050. }
  3051. #endif
  3052. if(!(s->flags2 & CODEC_FLAG2_CHUNKS)){
  3053. h->current_slice = 0;
  3054. if (!s->first_field)
  3055. s->current_picture_ptr= NULL;
  3056. ff_h264_reset_sei(h);
  3057. }
  3058. for(;;){
  3059. int consumed;
  3060. int dst_length;
  3061. int bit_length;
  3062. const uint8_t *ptr;
  3063. int i, nalsize = 0;
  3064. int err;
  3065. if(buf_index >= next_avc) {
  3066. if(buf_index >= buf_size) break;
  3067. nalsize = 0;
  3068. for(i = 0; i < h->nal_length_size; i++)
  3069. nalsize = (nalsize << 8) | buf[buf_index++];
  3070. if(nalsize <= 1 || nalsize > buf_size - buf_index){
  3071. if(nalsize == 1){
  3072. buf_index++;
  3073. continue;
  3074. }else{
  3075. av_log(h->s.avctx, AV_LOG_ERROR, "AVC: nal size %d\n", nalsize);
  3076. break;
  3077. }
  3078. }
  3079. next_avc= buf_index + nalsize;
  3080. } else {
  3081. // start code prefix search
  3082. for(; buf_index + 3 < next_avc; buf_index++){
  3083. // This should always succeed in the first iteration.
  3084. if(buf[buf_index] == 0 && buf[buf_index+1] == 0 && buf[buf_index+2] == 1)
  3085. break;
  3086. }
  3087. if(buf_index+3 >= buf_size) break;
  3088. buf_index+=3;
  3089. if(buf_index >= next_avc) continue;
  3090. }
  3091. hx = h->thread_context[context_count];
  3092. ptr= ff_h264_decode_nal(hx, buf + buf_index, &dst_length, &consumed, next_avc - buf_index);
  3093. if (ptr==NULL || dst_length < 0){
  3094. return -1;
  3095. }
  3096. while(ptr[dst_length - 1] == 0 && dst_length > 0)
  3097. dst_length--;
  3098. bit_length= !dst_length ? 0 : (8*dst_length - ff_h264_decode_rbsp_trailing(h, ptr + dst_length - 1));
  3099. if(s->avctx->debug&FF_DEBUG_STARTCODE){
  3100. av_log(h->s.avctx, AV_LOG_DEBUG, "NAL %d at %d/%d length %d\n", hx->nal_unit_type, buf_index, buf_size, dst_length);
  3101. }
  3102. if (h->is_avc && (nalsize != consumed) && nalsize){
  3103. av_log(h->s.avctx, AV_LOG_DEBUG, "AVC: Consumed only %d bytes instead of %d\n", consumed, nalsize);
  3104. }
  3105. buf_index += consumed;
  3106. if( (s->hurry_up == 1 && h->nal_ref_idc == 0) //FIXME do not discard SEI id
  3107. ||(avctx->skip_frame >= AVDISCARD_NONREF && h->nal_ref_idc == 0))
  3108. continue;
  3109. again:
  3110. err = 0;
  3111. switch(hx->nal_unit_type){
  3112. case NAL_IDR_SLICE:
  3113. if (h->nal_unit_type != NAL_IDR_SLICE) {
  3114. av_log(h->s.avctx, AV_LOG_ERROR, "Invalid mix of idr and non-idr slices");
  3115. return -1;
  3116. }
  3117. idr(h); //FIXME ensure we don't loose some frames if there is reordering
  3118. case NAL_SLICE:
  3119. init_get_bits(&hx->s.gb, ptr, bit_length);
  3120. hx->intra_gb_ptr=
  3121. hx->inter_gb_ptr= &hx->s.gb;
  3122. hx->s.data_partitioning = 0;
  3123. if((err = decode_slice_header(hx, h)))
  3124. break;
  3125. if (s->avctx->hwaccel && h->current_slice == 1) {
  3126. if (s->avctx->hwaccel->start_frame(s->avctx, NULL, 0) < 0)
  3127. return -1;
  3128. }
  3129. s->current_picture_ptr->key_frame |=
  3130. (hx->nal_unit_type == NAL_IDR_SLICE) ||
  3131. (h->sei_recovery_frame_cnt >= 0);
  3132. if(hx->redundant_pic_count==0 && hx->s.hurry_up < 5
  3133. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  3134. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  3135. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  3136. && avctx->skip_frame < AVDISCARD_ALL){
  3137. if(avctx->hwaccel) {
  3138. if (avctx->hwaccel->decode_slice(avctx, &buf[buf_index - consumed], consumed) < 0)
  3139. return -1;
  3140. }else
  3141. if(CONFIG_H264_VDPAU_DECODER && s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  3142. static const uint8_t start_code[] = {0x00, 0x00, 0x01};
  3143. ff_vdpau_add_data_chunk(s, start_code, sizeof(start_code));
  3144. ff_vdpau_add_data_chunk(s, &buf[buf_index - consumed], consumed );
  3145. }else
  3146. context_count++;
  3147. }
  3148. break;
  3149. case NAL_DPA:
  3150. init_get_bits(&hx->s.gb, ptr, bit_length);
  3151. hx->intra_gb_ptr=
  3152. hx->inter_gb_ptr= NULL;
  3153. if ((err = decode_slice_header(hx, h)) < 0)
  3154. break;
  3155. hx->s.data_partitioning = 1;
  3156. break;
  3157. case NAL_DPB:
  3158. init_get_bits(&hx->intra_gb, ptr, bit_length);
  3159. hx->intra_gb_ptr= &hx->intra_gb;
  3160. break;
  3161. case NAL_DPC:
  3162. init_get_bits(&hx->inter_gb, ptr, bit_length);
  3163. hx->inter_gb_ptr= &hx->inter_gb;
  3164. if(hx->redundant_pic_count==0 && hx->intra_gb_ptr && hx->s.data_partitioning
  3165. && s->context_initialized
  3166. && s->hurry_up < 5
  3167. && (avctx->skip_frame < AVDISCARD_NONREF || hx->nal_ref_idc)
  3168. && (avctx->skip_frame < AVDISCARD_BIDIR || hx->slice_type_nos!=FF_B_TYPE)
  3169. && (avctx->skip_frame < AVDISCARD_NONKEY || hx->slice_type_nos==FF_I_TYPE)
  3170. && avctx->skip_frame < AVDISCARD_ALL)
  3171. context_count++;
  3172. break;
  3173. case NAL_SEI:
  3174. init_get_bits(&s->gb, ptr, bit_length);
  3175. ff_h264_decode_sei(h);
  3176. break;
  3177. case NAL_SPS:
  3178. init_get_bits(&s->gb, ptr, bit_length);
  3179. ff_h264_decode_seq_parameter_set(h);
  3180. if(s->flags& CODEC_FLAG_LOW_DELAY)
  3181. s->low_delay=1;
  3182. if(avctx->has_b_frames < 2)
  3183. avctx->has_b_frames= !s->low_delay;
  3184. break;
  3185. case NAL_PPS:
  3186. init_get_bits(&s->gb, ptr, bit_length);
  3187. ff_h264_decode_picture_parameter_set(h, bit_length);
  3188. break;
  3189. case NAL_AUD:
  3190. case NAL_END_SEQUENCE:
  3191. case NAL_END_STREAM:
  3192. case NAL_FILLER_DATA:
  3193. case NAL_SPS_EXT:
  3194. case NAL_AUXILIARY_SLICE:
  3195. break;
  3196. default:
  3197. av_log(avctx, AV_LOG_DEBUG, "Unknown NAL code: %d (%d bits)\n", hx->nal_unit_type, bit_length);
  3198. }
  3199. if(context_count == h->max_contexts) {
  3200. execute_decode_slices(h, context_count);
  3201. context_count = 0;
  3202. }
  3203. if (err < 0)
  3204. av_log(h->s.avctx, AV_LOG_ERROR, "decode_slice_header error\n");
  3205. else if(err == 1) {
  3206. /* Slice could not be decoded in parallel mode, copy down
  3207. * NAL unit stuff to context 0 and restart. Note that
  3208. * rbsp_buffer is not transferred, but since we no longer
  3209. * run in parallel mode this should not be an issue. */
  3210. h->nal_unit_type = hx->nal_unit_type;
  3211. h->nal_ref_idc = hx->nal_ref_idc;
  3212. hx = h;
  3213. goto again;
  3214. }
  3215. }
  3216. if(context_count)
  3217. execute_decode_slices(h, context_count);
  3218. return buf_index;
  3219. }
  3220. /**
  3221. * returns the number of bytes consumed for building the current frame
  3222. */
  3223. static int get_consumed_bytes(MpegEncContext *s, int pos, int buf_size){
  3224. if(pos==0) pos=1; //avoid infinite loops (i doubt that is needed but ...)
  3225. if(pos+10>buf_size) pos=buf_size; // oops ;)
  3226. return pos;
  3227. }
  3228. static int decode_frame(AVCodecContext *avctx,
  3229. void *data, int *data_size,
  3230. AVPacket *avpkt)
  3231. {
  3232. const uint8_t *buf = avpkt->data;
  3233. int buf_size = avpkt->size;
  3234. H264Context *h = avctx->priv_data;
  3235. MpegEncContext *s = &h->s;
  3236. AVFrame *pict = data;
  3237. int buf_index;
  3238. s->flags= avctx->flags;
  3239. s->flags2= avctx->flags2;
  3240. /* end of stream, output what is still in the buffers */
  3241. if (buf_size == 0) {
  3242. Picture *out;
  3243. int i, out_idx;
  3244. //FIXME factorize this with the output code below
  3245. out = h->delayed_pic[0];
  3246. out_idx = 0;
  3247. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame && !h->delayed_pic[i]->mmco_reset; i++)
  3248. if(h->delayed_pic[i]->poc < out->poc){
  3249. out = h->delayed_pic[i];
  3250. out_idx = i;
  3251. }
  3252. for(i=out_idx; h->delayed_pic[i]; i++)
  3253. h->delayed_pic[i] = h->delayed_pic[i+1];
  3254. if(out){
  3255. *data_size = sizeof(AVFrame);
  3256. *pict= *(AVFrame*)out;
  3257. }
  3258. return 0;
  3259. }
  3260. if(h->is_avc && !h->got_avcC) {
  3261. int i, cnt, nalsize;
  3262. unsigned char *p = avctx->extradata;
  3263. if(avctx->extradata_size < 7) {
  3264. av_log(avctx, AV_LOG_ERROR, "avcC too short\n");
  3265. return -1;
  3266. }
  3267. if(*p != 1) {
  3268. av_log(avctx, AV_LOG_ERROR, "Unknown avcC version %d\n", *p);
  3269. return -1;
  3270. }
  3271. /* sps and pps in the avcC always have length coded with 2 bytes,
  3272. so put a fake nal_length_size = 2 while parsing them */
  3273. h->nal_length_size = 2;
  3274. // Decode sps from avcC
  3275. cnt = *(p+5) & 0x1f; // Number of sps
  3276. p += 6;
  3277. for (i = 0; i < cnt; i++) {
  3278. nalsize = AV_RB16(p) + 2;
  3279. if(decode_nal_units(h, p, nalsize) < 0) {
  3280. av_log(avctx, AV_LOG_ERROR, "Decoding sps %d from avcC failed\n", i);
  3281. return -1;
  3282. }
  3283. p += nalsize;
  3284. }
  3285. // Decode pps from avcC
  3286. cnt = *(p++); // Number of pps
  3287. for (i = 0; i < cnt; i++) {
  3288. nalsize = AV_RB16(p) + 2;
  3289. if(decode_nal_units(h, p, nalsize) != nalsize) {
  3290. av_log(avctx, AV_LOG_ERROR, "Decoding pps %d from avcC failed\n", i);
  3291. return -1;
  3292. }
  3293. p += nalsize;
  3294. }
  3295. // Now store right nal length size, that will be use to parse all other nals
  3296. h->nal_length_size = ((*(((char*)(avctx->extradata))+4))&0x03)+1;
  3297. // Do not reparse avcC
  3298. h->got_avcC = 1;
  3299. }
  3300. if(!h->got_avcC && !h->is_avc && s->avctx->extradata_size){
  3301. if(decode_nal_units(h, s->avctx->extradata, s->avctx->extradata_size) < 0)
  3302. return -1;
  3303. h->got_avcC = 1;
  3304. }
  3305. buf_index=decode_nal_units(h, buf, buf_size);
  3306. if(buf_index < 0)
  3307. return -1;
  3308. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) && !s->current_picture_ptr){
  3309. if (avctx->skip_frame >= AVDISCARD_NONREF || s->hurry_up) return 0;
  3310. av_log(avctx, AV_LOG_ERROR, "no frame!\n");
  3311. return -1;
  3312. }
  3313. if(!(s->flags2 & CODEC_FLAG2_CHUNKS) || (s->mb_y >= s->mb_height && s->mb_height)){
  3314. Picture *out = s->current_picture_ptr;
  3315. Picture *cur = s->current_picture_ptr;
  3316. int i, pics, out_of_order, out_idx;
  3317. field_end(h);
  3318. if (cur->field_poc[0]==INT_MAX || cur->field_poc[1]==INT_MAX) {
  3319. /* Wait for second field. */
  3320. *data_size = 0;
  3321. } else {
  3322. cur->interlaced_frame = 0;
  3323. cur->repeat_pict = 0;
  3324. /* Signal interlacing information externally. */
  3325. /* Prioritize picture timing SEI information over used decoding process if it exists. */
  3326. if(h->sps.pic_struct_present_flag){
  3327. switch (h->sei_pic_struct)
  3328. {
  3329. case SEI_PIC_STRUCT_FRAME:
  3330. break;
  3331. case SEI_PIC_STRUCT_TOP_FIELD:
  3332. case SEI_PIC_STRUCT_BOTTOM_FIELD:
  3333. cur->interlaced_frame = 1;
  3334. break;
  3335. case SEI_PIC_STRUCT_TOP_BOTTOM:
  3336. case SEI_PIC_STRUCT_BOTTOM_TOP:
  3337. if (FIELD_OR_MBAFF_PICTURE)
  3338. cur->interlaced_frame = 1;
  3339. else
  3340. // try to flag soft telecine progressive
  3341. cur->interlaced_frame = h->prev_interlaced_frame;
  3342. break;
  3343. case SEI_PIC_STRUCT_TOP_BOTTOM_TOP:
  3344. case SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM:
  3345. // Signal the possibility of telecined film externally (pic_struct 5,6)
  3346. // From these hints, let the applications decide if they apply deinterlacing.
  3347. cur->repeat_pict = 1;
  3348. break;
  3349. case SEI_PIC_STRUCT_FRAME_DOUBLING:
  3350. // Force progressive here, as doubling interlaced frame is a bad idea.
  3351. cur->repeat_pict = 2;
  3352. break;
  3353. case SEI_PIC_STRUCT_FRAME_TRIPLING:
  3354. cur->repeat_pict = 4;
  3355. break;
  3356. }
  3357. if ((h->sei_ct_type & 3) && h->sei_pic_struct <= SEI_PIC_STRUCT_BOTTOM_TOP)
  3358. cur->interlaced_frame = (h->sei_ct_type & (1<<1)) != 0;
  3359. }else{
  3360. /* Derive interlacing flag from used decoding process. */
  3361. cur->interlaced_frame = FIELD_OR_MBAFF_PICTURE;
  3362. }
  3363. h->prev_interlaced_frame = cur->interlaced_frame;
  3364. if (cur->field_poc[0] != cur->field_poc[1]){
  3365. /* Derive top_field_first from field pocs. */
  3366. cur->top_field_first = cur->field_poc[0] < cur->field_poc[1];
  3367. }else{
  3368. if(cur->interlaced_frame || h->sps.pic_struct_present_flag){
  3369. /* Use picture timing SEI information. Even if it is a information of a past frame, better than nothing. */
  3370. if(h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM
  3371. || h->sei_pic_struct == SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
  3372. cur->top_field_first = 1;
  3373. else
  3374. cur->top_field_first = 0;
  3375. }else{
  3376. /* Most likely progressive */
  3377. cur->top_field_first = 0;
  3378. }
  3379. }
  3380. //FIXME do something with unavailable reference frames
  3381. /* Sort B-frames into display order */
  3382. if(h->sps.bitstream_restriction_flag
  3383. && s->avctx->has_b_frames < h->sps.num_reorder_frames){
  3384. s->avctx->has_b_frames = h->sps.num_reorder_frames;
  3385. s->low_delay = 0;
  3386. }
  3387. if( s->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT
  3388. && !h->sps.bitstream_restriction_flag){
  3389. s->avctx->has_b_frames= MAX_DELAYED_PIC_COUNT;
  3390. s->low_delay= 0;
  3391. }
  3392. pics = 0;
  3393. while(h->delayed_pic[pics]) pics++;
  3394. assert(pics <= MAX_DELAYED_PIC_COUNT);
  3395. h->delayed_pic[pics++] = cur;
  3396. if(cur->reference == 0)
  3397. cur->reference = DELAYED_PIC_REF;
  3398. out = h->delayed_pic[0];
  3399. out_idx = 0;
  3400. for(i=1; h->delayed_pic[i] && !h->delayed_pic[i]->key_frame && !h->delayed_pic[i]->mmco_reset; i++)
  3401. if(h->delayed_pic[i]->poc < out->poc){
  3402. out = h->delayed_pic[i];
  3403. out_idx = i;
  3404. }
  3405. if(s->avctx->has_b_frames == 0 && (h->delayed_pic[0]->key_frame || h->delayed_pic[0]->mmco_reset))
  3406. h->outputed_poc= INT_MIN;
  3407. out_of_order = out->poc < h->outputed_poc;
  3408. if(h->sps.bitstream_restriction_flag && s->avctx->has_b_frames >= h->sps.num_reorder_frames)
  3409. { }
  3410. else if((out_of_order && pics-1 == s->avctx->has_b_frames && s->avctx->has_b_frames < MAX_DELAYED_PIC_COUNT)
  3411. || (s->low_delay &&
  3412. ((h->outputed_poc != INT_MIN && out->poc > h->outputed_poc + 2)
  3413. || cur->pict_type == FF_B_TYPE)))
  3414. {
  3415. s->low_delay = 0;
  3416. s->avctx->has_b_frames++;
  3417. }
  3418. if(out_of_order || pics > s->avctx->has_b_frames){
  3419. out->reference &= ~DELAYED_PIC_REF;
  3420. for(i=out_idx; h->delayed_pic[i]; i++)
  3421. h->delayed_pic[i] = h->delayed_pic[i+1];
  3422. }
  3423. if(!out_of_order && pics > s->avctx->has_b_frames){
  3424. *data_size = sizeof(AVFrame);
  3425. if(out_idx==0 && h->delayed_pic[0] && (h->delayed_pic[0]->key_frame || h->delayed_pic[0]->mmco_reset)) {
  3426. h->outputed_poc = INT_MIN;
  3427. } else
  3428. h->outputed_poc = out->poc;
  3429. *pict= *(AVFrame*)out;
  3430. }else{
  3431. av_log(avctx, AV_LOG_DEBUG, "no picture\n");
  3432. }
  3433. }
  3434. }
  3435. assert(pict->data[0] || !*data_size);
  3436. ff_print_debug_info(s, pict);
  3437. //printf("out %d\n", (int)pict->data[0]);
  3438. return get_consumed_bytes(s, buf_index, buf_size);
  3439. }
  3440. #if 0
  3441. static inline void fill_mb_avail(H264Context *h){
  3442. MpegEncContext * const s = &h->s;
  3443. const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
  3444. if(s->mb_y){
  3445. h->mb_avail[0]= s->mb_x && h->slice_table[mb_xy - s->mb_stride - 1] == h->slice_num;
  3446. h->mb_avail[1]= h->slice_table[mb_xy - s->mb_stride ] == h->slice_num;
  3447. h->mb_avail[2]= s->mb_x+1 < s->mb_width && h->slice_table[mb_xy - s->mb_stride + 1] == h->slice_num;
  3448. }else{
  3449. h->mb_avail[0]=
  3450. h->mb_avail[1]=
  3451. h->mb_avail[2]= 0;
  3452. }
  3453. h->mb_avail[3]= s->mb_x && h->slice_table[mb_xy - 1] == h->slice_num;
  3454. h->mb_avail[4]= 1; //FIXME move out
  3455. h->mb_avail[5]= 0; //FIXME move out
  3456. }
  3457. #endif
  3458. #ifdef TEST
  3459. #undef printf
  3460. #undef random
  3461. #define COUNT 8000
  3462. #define SIZE (COUNT*40)
  3463. int main(void){
  3464. int i;
  3465. uint8_t temp[SIZE];
  3466. PutBitContext pb;
  3467. GetBitContext gb;
  3468. // int int_temp[10000];
  3469. DSPContext dsp;
  3470. AVCodecContext avctx;
  3471. dsputil_init(&dsp, &avctx);
  3472. init_put_bits(&pb, temp, SIZE);
  3473. printf("testing unsigned exp golomb\n");
  3474. for(i=0; i<COUNT; i++){
  3475. START_TIMER
  3476. set_ue_golomb(&pb, i);
  3477. STOP_TIMER("set_ue_golomb");
  3478. }
  3479. flush_put_bits(&pb);
  3480. init_get_bits(&gb, temp, 8*SIZE);
  3481. for(i=0; i<COUNT; i++){
  3482. int j, s;
  3483. s= show_bits(&gb, 24);
  3484. START_TIMER
  3485. j= get_ue_golomb(&gb);
  3486. if(j != i){
  3487. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  3488. // return -1;
  3489. }
  3490. STOP_TIMER("get_ue_golomb");
  3491. }
  3492. init_put_bits(&pb, temp, SIZE);
  3493. printf("testing signed exp golomb\n");
  3494. for(i=0; i<COUNT; i++){
  3495. START_TIMER
  3496. set_se_golomb(&pb, i - COUNT/2);
  3497. STOP_TIMER("set_se_golomb");
  3498. }
  3499. flush_put_bits(&pb);
  3500. init_get_bits(&gb, temp, 8*SIZE);
  3501. for(i=0; i<COUNT; i++){
  3502. int j, s;
  3503. s= show_bits(&gb, 24);
  3504. START_TIMER
  3505. j= get_se_golomb(&gb);
  3506. if(j != i - COUNT/2){
  3507. printf("mismatch! at %d (%d should be %d) bits:%6X\n", i, j, i, s);
  3508. // return -1;
  3509. }
  3510. STOP_TIMER("get_se_golomb");
  3511. }
  3512. #if 0
  3513. printf("testing 4x4 (I)DCT\n");
  3514. DCTELEM block[16];
  3515. uint8_t src[16], ref[16];
  3516. uint64_t error= 0, max_error=0;
  3517. for(i=0; i<COUNT; i++){
  3518. int j;
  3519. // printf("%d %d %d\n", r1, r2, (r2-r1)*16);
  3520. for(j=0; j<16; j++){
  3521. ref[j]= random()%255;
  3522. src[j]= random()%255;
  3523. }
  3524. h264_diff_dct_c(block, src, ref, 4);
  3525. //normalize
  3526. for(j=0; j<16; j++){
  3527. // printf("%d ", block[j]);
  3528. block[j]= block[j]*4;
  3529. if(j&1) block[j]= (block[j]*4 + 2)/5;
  3530. if(j&4) block[j]= (block[j]*4 + 2)/5;
  3531. }
  3532. // printf("\n");
  3533. s->dsp.h264_idct_add(ref, block, 4);
  3534. /* for(j=0; j<16; j++){
  3535. printf("%d ", ref[j]);
  3536. }
  3537. printf("\n");*/
  3538. for(j=0; j<16; j++){
  3539. int diff= FFABS(src[j] - ref[j]);
  3540. error+= diff*diff;
  3541. max_error= FFMAX(max_error, diff);
  3542. }
  3543. }
  3544. printf("error=%f max_error=%d\n", ((float)error)/COUNT/16, (int)max_error );
  3545. printf("testing quantizer\n");
  3546. for(qp=0; qp<52; qp++){
  3547. for(i=0; i<16; i++)
  3548. src1_block[i]= src2_block[i]= random()%255;
  3549. }
  3550. printf("Testing NAL layer\n");
  3551. uint8_t bitstream[COUNT];
  3552. uint8_t nal[COUNT*2];
  3553. H264Context h;
  3554. memset(&h, 0, sizeof(H264Context));
  3555. for(i=0; i<COUNT; i++){
  3556. int zeros= i;
  3557. int nal_length;
  3558. int consumed;
  3559. int out_length;
  3560. uint8_t *out;
  3561. int j;
  3562. for(j=0; j<COUNT; j++){
  3563. bitstream[j]= (random() % 255) + 1;
  3564. }
  3565. for(j=0; j<zeros; j++){
  3566. int pos= random() % COUNT;
  3567. while(bitstream[pos] == 0){
  3568. pos++;
  3569. pos %= COUNT;
  3570. }
  3571. bitstream[pos]=0;
  3572. }
  3573. START_TIMER
  3574. nal_length= encode_nal(&h, nal, bitstream, COUNT, COUNT*2);
  3575. if(nal_length<0){
  3576. printf("encoding failed\n");
  3577. return -1;
  3578. }
  3579. out= ff_h264_decode_nal(&h, nal, &out_length, &consumed, nal_length);
  3580. STOP_TIMER("NAL")
  3581. if(out_length != COUNT){
  3582. printf("incorrect length %d %d\n", out_length, COUNT);
  3583. return -1;
  3584. }
  3585. if(consumed != nal_length){
  3586. printf("incorrect consumed length %d %d\n", nal_length, consumed);
  3587. return -1;
  3588. }
  3589. if(memcmp(bitstream, out, COUNT)){
  3590. printf("mismatch\n");
  3591. return -1;
  3592. }
  3593. }
  3594. #endif
  3595. printf("Testing RBSP\n");
  3596. return 0;
  3597. }
  3598. #endif /* TEST */
  3599. av_cold void ff_h264_free_context(H264Context *h)
  3600. {
  3601. int i;
  3602. free_tables(h); //FIXME cleanup init stuff perhaps
  3603. for(i = 0; i < MAX_SPS_COUNT; i++)
  3604. av_freep(h->sps_buffers + i);
  3605. for(i = 0; i < MAX_PPS_COUNT; i++)
  3606. av_freep(h->pps_buffers + i);
  3607. }
  3608. av_cold int ff_h264_decode_end(AVCodecContext *avctx)
  3609. {
  3610. H264Context *h = avctx->priv_data;
  3611. MpegEncContext *s = &h->s;
  3612. ff_h264_free_context(h);
  3613. MPV_common_end(s);
  3614. // memset(h, 0, sizeof(H264Context));
  3615. return 0;
  3616. }
  3617. AVCodec h264_decoder = {
  3618. "h264",
  3619. CODEC_TYPE_VIDEO,
  3620. CODEC_ID_H264,
  3621. sizeof(H264Context),
  3622. ff_h264_decode_init,
  3623. NULL,
  3624. ff_h264_decode_end,
  3625. decode_frame,
  3626. /*CODEC_CAP_DRAW_HORIZ_BAND |*/ CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3627. .flush= flush_dpb,
  3628. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10"),
  3629. .pix_fmts= ff_hwaccel_pixfmt_list_420,
  3630. };
  3631. #if CONFIG_H264_VDPAU_DECODER
  3632. AVCodec h264_vdpau_decoder = {
  3633. "h264_vdpau",
  3634. CODEC_TYPE_VIDEO,
  3635. CODEC_ID_H264,
  3636. sizeof(H264Context),
  3637. ff_h264_decode_init,
  3638. NULL,
  3639. ff_h264_decode_end,
  3640. decode_frame,
  3641. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3642. .flush= flush_dpb,
  3643. .long_name = NULL_IF_CONFIG_SMALL("H.264 / AVC / MPEG-4 AVC / MPEG-4 part 10 (VDPAU acceleration)"),
  3644. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_H264, PIX_FMT_NONE},
  3645. };
  3646. #endif