You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

525 lines
17KB

  1. /*
  2. * WMA compatible codec
  3. * Copyright (c) 2002-2007 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "avcodec.h"
  22. #include "wma.h"
  23. #include "wmadata.h"
  24. #undef NDEBUG
  25. #include <assert.h>
  26. /* XXX: use same run/length optimization as mpeg decoders */
  27. //FIXME maybe split decode / encode or pass flag
  28. static void init_coef_vlc(VLC *vlc, uint16_t **prun_table,
  29. float **plevel_table, uint16_t **pint_table,
  30. const CoefVLCTable *vlc_table)
  31. {
  32. int n = vlc_table->n;
  33. const uint8_t *table_bits = vlc_table->huffbits;
  34. const uint32_t *table_codes = vlc_table->huffcodes;
  35. const uint16_t *levels_table = vlc_table->levels;
  36. uint16_t *run_table, *level_table, *int_table;
  37. float *flevel_table;
  38. int i, l, j, k, level;
  39. init_vlc(vlc, VLCBITS, n, table_bits, 1, 1, table_codes, 4, 4, 0);
  40. run_table = av_malloc(n * sizeof(uint16_t));
  41. level_table = av_malloc(n * sizeof(uint16_t));
  42. flevel_table= av_malloc(n * sizeof(*flevel_table));
  43. int_table = av_malloc(n * sizeof(uint16_t));
  44. i = 2;
  45. level = 1;
  46. k = 0;
  47. while (i < n) {
  48. int_table[k] = i;
  49. l = levels_table[k++];
  50. for (j = 0; j < l; j++) {
  51. run_table[i] = j;
  52. level_table[i] = level;
  53. flevel_table[i]= level;
  54. i++;
  55. }
  56. level++;
  57. }
  58. *prun_table = run_table;
  59. *plevel_table = flevel_table;
  60. *pint_table = int_table;
  61. av_free(level_table);
  62. }
  63. /**
  64. *@brief Get the samples per frame for this stream.
  65. *@param sample_rate output sample_rate
  66. *@param version wma version
  67. *@param decode_flags codec compression features
  68. *@return log2 of the number of output samples per frame
  69. */
  70. int av_cold ff_wma_get_frame_len_bits(int sample_rate, int version,
  71. unsigned int decode_flags)
  72. {
  73. int frame_len_bits;
  74. if (sample_rate <= 16000) {
  75. frame_len_bits = 9;
  76. } else if (sample_rate <= 22050 ||
  77. (sample_rate <= 32000 && version == 1)) {
  78. frame_len_bits = 10;
  79. } else if (sample_rate <= 48000) {
  80. frame_len_bits = 11;
  81. } else if (sample_rate <= 96000) {
  82. frame_len_bits = 12;
  83. } else {
  84. frame_len_bits = 13;
  85. }
  86. if (version == 3) {
  87. int tmp = decode_flags & 0x6;
  88. if (tmp == 0x2) {
  89. ++frame_len_bits;
  90. } else if (tmp == 0x4) {
  91. --frame_len_bits;
  92. } else if (tmp == 0x6) {
  93. frame_len_bits -= 2;
  94. }
  95. }
  96. return frame_len_bits;
  97. }
  98. int ff_wma_init(AVCodecContext *avctx, int flags2)
  99. {
  100. WMACodecContext *s = avctx->priv_data;
  101. int i;
  102. float bps1, high_freq;
  103. volatile float bps;
  104. int sample_rate1;
  105. int coef_vlc_table;
  106. if ( avctx->sample_rate <= 0 || avctx->sample_rate > 50000
  107. || avctx->channels <= 0 || avctx->channels > 8
  108. || avctx->bit_rate <= 0)
  109. return -1;
  110. s->sample_rate = avctx->sample_rate;
  111. s->nb_channels = avctx->channels;
  112. s->bit_rate = avctx->bit_rate;
  113. s->block_align = avctx->block_align;
  114. dsputil_init(&s->dsp, avctx);
  115. ff_fmt_convert_init(&s->fmt_conv, avctx);
  116. if (avctx->codec->id == CODEC_ID_WMAV1) {
  117. s->version = 1;
  118. } else {
  119. s->version = 2;
  120. }
  121. /* compute MDCT block size */
  122. s->frame_len_bits = ff_wma_get_frame_len_bits(s->sample_rate, s->version, 0);
  123. s->frame_len = 1 << s->frame_len_bits;
  124. if (s->use_variable_block_len) {
  125. int nb_max, nb;
  126. nb = ((flags2 >> 3) & 3) + 1;
  127. if ((s->bit_rate / s->nb_channels) >= 32000)
  128. nb += 2;
  129. nb_max = s->frame_len_bits - BLOCK_MIN_BITS;
  130. if (nb > nb_max)
  131. nb = nb_max;
  132. s->nb_block_sizes = nb + 1;
  133. } else {
  134. s->nb_block_sizes = 1;
  135. }
  136. /* init rate dependent parameters */
  137. s->use_noise_coding = 1;
  138. high_freq = s->sample_rate * 0.5;
  139. /* if version 2, then the rates are normalized */
  140. sample_rate1 = s->sample_rate;
  141. if (s->version == 2) {
  142. if (sample_rate1 >= 44100) {
  143. sample_rate1 = 44100;
  144. } else if (sample_rate1 >= 22050) {
  145. sample_rate1 = 22050;
  146. } else if (sample_rate1 >= 16000) {
  147. sample_rate1 = 16000;
  148. } else if (sample_rate1 >= 11025) {
  149. sample_rate1 = 11025;
  150. } else if (sample_rate1 >= 8000) {
  151. sample_rate1 = 8000;
  152. }
  153. }
  154. bps = (float)s->bit_rate / (float)(s->nb_channels * s->sample_rate);
  155. s->byte_offset_bits = av_log2((int)(bps * s->frame_len / 8.0 + 0.5)) + 2;
  156. /* compute high frequency value and choose if noise coding should
  157. be activated */
  158. bps1 = bps;
  159. if (s->nb_channels == 2)
  160. bps1 = bps * 1.6;
  161. if (sample_rate1 == 44100) {
  162. if (bps1 >= 0.61) {
  163. s->use_noise_coding = 0;
  164. } else {
  165. high_freq = high_freq * 0.4;
  166. }
  167. } else if (sample_rate1 == 22050) {
  168. if (bps1 >= 1.16) {
  169. s->use_noise_coding = 0;
  170. } else if (bps1 >= 0.72) {
  171. high_freq = high_freq * 0.7;
  172. } else {
  173. high_freq = high_freq * 0.6;
  174. }
  175. } else if (sample_rate1 == 16000) {
  176. if (bps > 0.5) {
  177. high_freq = high_freq * 0.5;
  178. } else {
  179. high_freq = high_freq * 0.3;
  180. }
  181. } else if (sample_rate1 == 11025) {
  182. high_freq = high_freq * 0.7;
  183. } else if (sample_rate1 == 8000) {
  184. if (bps <= 0.625) {
  185. high_freq = high_freq * 0.5;
  186. } else if (bps > 0.75) {
  187. s->use_noise_coding = 0;
  188. } else {
  189. high_freq = high_freq * 0.65;
  190. }
  191. } else {
  192. if (bps >= 0.8) {
  193. high_freq = high_freq * 0.75;
  194. } else if (bps >= 0.6) {
  195. high_freq = high_freq * 0.6;
  196. } else {
  197. high_freq = high_freq * 0.5;
  198. }
  199. }
  200. av_dlog(s->avctx, "flags2=0x%x\n", flags2);
  201. av_dlog(s->avctx, "version=%d channels=%d sample_rate=%d bitrate=%d block_align=%d\n",
  202. s->version, s->nb_channels, s->sample_rate, s->bit_rate,
  203. s->block_align);
  204. av_dlog(s->avctx, "bps=%f bps1=%f high_freq=%f bitoffset=%d\n",
  205. bps, bps1, high_freq, s->byte_offset_bits);
  206. av_dlog(s->avctx, "use_noise_coding=%d use_exp_vlc=%d nb_block_sizes=%d\n",
  207. s->use_noise_coding, s->use_exp_vlc, s->nb_block_sizes);
  208. /* compute the scale factor band sizes for each MDCT block size */
  209. {
  210. int a, b, pos, lpos, k, block_len, i, j, n;
  211. const uint8_t *table;
  212. if (s->version == 1) {
  213. s->coefs_start = 3;
  214. } else {
  215. s->coefs_start = 0;
  216. }
  217. for (k = 0; k < s->nb_block_sizes; k++) {
  218. block_len = s->frame_len >> k;
  219. if (s->version == 1) {
  220. lpos = 0;
  221. for (i = 0; i < 25; i++) {
  222. a = ff_wma_critical_freqs[i];
  223. b = s->sample_rate;
  224. pos = ((block_len * 2 * a) + (b >> 1)) / b;
  225. if (pos > block_len)
  226. pos = block_len;
  227. s->exponent_bands[0][i] = pos - lpos;
  228. if (pos >= block_len) {
  229. i++;
  230. break;
  231. }
  232. lpos = pos;
  233. }
  234. s->exponent_sizes[0] = i;
  235. } else {
  236. /* hardcoded tables */
  237. table = NULL;
  238. a = s->frame_len_bits - BLOCK_MIN_BITS - k;
  239. if (a < 3) {
  240. if (s->sample_rate >= 44100) {
  241. table = exponent_band_44100[a];
  242. } else if (s->sample_rate >= 32000) {
  243. table = exponent_band_32000[a];
  244. } else if (s->sample_rate >= 22050) {
  245. table = exponent_band_22050[a];
  246. }
  247. }
  248. if (table) {
  249. n = *table++;
  250. for (i = 0; i < n; i++)
  251. s->exponent_bands[k][i] = table[i];
  252. s->exponent_sizes[k] = n;
  253. } else {
  254. j = 0;
  255. lpos = 0;
  256. for (i = 0; i < 25; i++) {
  257. a = ff_wma_critical_freqs[i];
  258. b = s->sample_rate;
  259. pos = ((block_len * 2 * a) + (b << 1)) / (4 * b);
  260. pos <<= 2;
  261. if (pos > block_len)
  262. pos = block_len;
  263. if (pos > lpos)
  264. s->exponent_bands[k][j++] = pos - lpos;
  265. if (pos >= block_len)
  266. break;
  267. lpos = pos;
  268. }
  269. s->exponent_sizes[k] = j;
  270. }
  271. }
  272. /* max number of coefs */
  273. s->coefs_end[k] = (s->frame_len - ((s->frame_len * 9) / 100)) >> k;
  274. /* high freq computation */
  275. s->high_band_start[k] = (int)((block_len * 2 * high_freq) /
  276. s->sample_rate + 0.5);
  277. n = s->exponent_sizes[k];
  278. j = 0;
  279. pos = 0;
  280. for (i = 0; i < n; i++) {
  281. int start, end;
  282. start = pos;
  283. pos += s->exponent_bands[k][i];
  284. end = pos;
  285. if (start < s->high_band_start[k])
  286. start = s->high_band_start[k];
  287. if (end > s->coefs_end[k])
  288. end = s->coefs_end[k];
  289. if (end > start)
  290. s->exponent_high_bands[k][j++] = end - start;
  291. }
  292. s->exponent_high_sizes[k] = j;
  293. #if 0
  294. tprintf(s->avctx, "%5d: coefs_end=%d high_band_start=%d nb_high_bands=%d: ",
  295. s->frame_len >> k,
  296. s->coefs_end[k],
  297. s->high_band_start[k],
  298. s->exponent_high_sizes[k]);
  299. for (j = 0; j < s->exponent_high_sizes[k]; j++)
  300. tprintf(s->avctx, " %d", s->exponent_high_bands[k][j]);
  301. tprintf(s->avctx, "\n");
  302. #endif
  303. }
  304. }
  305. #ifdef TRACE
  306. {
  307. int i, j;
  308. for (i = 0; i < s->nb_block_sizes; i++) {
  309. tprintf(s->avctx, "%5d: n=%2d:",
  310. s->frame_len >> i,
  311. s->exponent_sizes[i]);
  312. for (j = 0; j < s->exponent_sizes[i]; j++)
  313. tprintf(s->avctx, " %d", s->exponent_bands[i][j]);
  314. tprintf(s->avctx, "\n");
  315. }
  316. }
  317. #endif
  318. /* init MDCT windows : simple sinus window */
  319. for (i = 0; i < s->nb_block_sizes; i++) {
  320. ff_init_ff_sine_windows(s->frame_len_bits - i);
  321. s->windows[i] = ff_sine_windows[s->frame_len_bits - i];
  322. }
  323. s->reset_block_lengths = 1;
  324. if (s->use_noise_coding) {
  325. /* init the noise generator */
  326. if (s->use_exp_vlc) {
  327. s->noise_mult = 0.02;
  328. } else {
  329. s->noise_mult = 0.04;
  330. }
  331. #ifdef TRACE
  332. for (i = 0; i < NOISE_TAB_SIZE; i++)
  333. s->noise_table[i] = 1.0 * s->noise_mult;
  334. #else
  335. {
  336. unsigned int seed;
  337. float norm;
  338. seed = 1;
  339. norm = (1.0 / (float)(1LL << 31)) * sqrt(3) * s->noise_mult;
  340. for (i = 0; i < NOISE_TAB_SIZE; i++) {
  341. seed = seed * 314159 + 1;
  342. s->noise_table[i] = (float)((int)seed) * norm;
  343. }
  344. }
  345. #endif
  346. }
  347. /* choose the VLC tables for the coefficients */
  348. coef_vlc_table = 2;
  349. if (s->sample_rate >= 32000) {
  350. if (bps1 < 0.72) {
  351. coef_vlc_table = 0;
  352. } else if (bps1 < 1.16) {
  353. coef_vlc_table = 1;
  354. }
  355. }
  356. s->coef_vlcs[0]= &coef_vlcs[coef_vlc_table * 2 ];
  357. s->coef_vlcs[1]= &coef_vlcs[coef_vlc_table * 2 + 1];
  358. init_coef_vlc(&s->coef_vlc[0], &s->run_table[0], &s->level_table[0], &s->int_table[0],
  359. s->coef_vlcs[0]);
  360. init_coef_vlc(&s->coef_vlc[1], &s->run_table[1], &s->level_table[1], &s->int_table[1],
  361. s->coef_vlcs[1]);
  362. return 0;
  363. }
  364. int ff_wma_total_gain_to_bits(int total_gain)
  365. {
  366. if (total_gain < 15) return 13;
  367. else if (total_gain < 32) return 12;
  368. else if (total_gain < 40) return 11;
  369. else if (total_gain < 45) return 10;
  370. else return 9;
  371. }
  372. int ff_wma_end(AVCodecContext *avctx)
  373. {
  374. WMACodecContext *s = avctx->priv_data;
  375. int i;
  376. for (i = 0; i < s->nb_block_sizes; i++)
  377. ff_mdct_end(&s->mdct_ctx[i]);
  378. if (s->use_exp_vlc) {
  379. free_vlc(&s->exp_vlc);
  380. }
  381. if (s->use_noise_coding) {
  382. free_vlc(&s->hgain_vlc);
  383. }
  384. for (i = 0; i < 2; i++) {
  385. free_vlc(&s->coef_vlc[i]);
  386. av_free(s->run_table[i]);
  387. av_free(s->level_table[i]);
  388. av_free(s->int_table[i]);
  389. }
  390. return 0;
  391. }
  392. /**
  393. * Decode an uncompressed coefficient.
  394. * @param gb GetBitContext
  395. * @return the decoded coefficient
  396. */
  397. unsigned int ff_wma_get_large_val(GetBitContext* gb)
  398. {
  399. /** consumes up to 34 bits */
  400. int n_bits = 8;
  401. /** decode length */
  402. if (get_bits1(gb)) {
  403. n_bits += 8;
  404. if (get_bits1(gb)) {
  405. n_bits += 8;
  406. if (get_bits1(gb)) {
  407. n_bits += 7;
  408. }
  409. }
  410. }
  411. return get_bits_long(gb, n_bits);
  412. }
  413. /**
  414. * Decode run level compressed coefficients.
  415. * @param avctx codec context
  416. * @param gb bitstream reader context
  417. * @param vlc vlc table for get_vlc2
  418. * @param level_table level codes
  419. * @param run_table run codes
  420. * @param version 0 for wma1,2 1 for wmapro
  421. * @param ptr output buffer
  422. * @param offset offset in the output buffer
  423. * @param num_coefs number of input coefficents
  424. * @param block_len input buffer length (2^n)
  425. * @param frame_len_bits number of bits for escaped run codes
  426. * @param coef_nb_bits number of bits for escaped level codes
  427. * @return 0 on success, -1 otherwise
  428. */
  429. int ff_wma_run_level_decode(AVCodecContext* avctx, GetBitContext* gb,
  430. VLC *vlc,
  431. const float *level_table, const uint16_t *run_table,
  432. int version, WMACoef *ptr, int offset,
  433. int num_coefs, int block_len, int frame_len_bits,
  434. int coef_nb_bits)
  435. {
  436. int code, level, sign;
  437. const uint32_t *ilvl = (const uint32_t*)level_table;
  438. uint32_t *iptr = (uint32_t*)ptr;
  439. const unsigned int coef_mask = block_len - 1;
  440. for (; offset < num_coefs; offset++) {
  441. code = get_vlc2(gb, vlc->table, VLCBITS, VLCMAX);
  442. if (code > 1) {
  443. /** normal code */
  444. offset += run_table[code];
  445. sign = get_bits1(gb) - 1;
  446. iptr[offset & coef_mask] = ilvl[code] ^ sign<<31;
  447. } else if (code == 1) {
  448. /** EOB */
  449. break;
  450. } else {
  451. /** escape */
  452. if (!version) {
  453. level = get_bits(gb, coef_nb_bits);
  454. /** NOTE: this is rather suboptimal. reading
  455. block_len_bits would be better */
  456. offset += get_bits(gb, frame_len_bits);
  457. } else {
  458. level = ff_wma_get_large_val(gb);
  459. /** escape decode */
  460. if (get_bits1(gb)) {
  461. if (get_bits1(gb)) {
  462. if (get_bits1(gb)) {
  463. av_log(avctx,AV_LOG_ERROR,
  464. "broken escape sequence\n");
  465. return -1;
  466. } else
  467. offset += get_bits(gb, frame_len_bits) + 4;
  468. } else
  469. offset += get_bits(gb, 2) + 1;
  470. }
  471. }
  472. sign = get_bits1(gb) - 1;
  473. ptr[offset & coef_mask] = (level^sign) - sign;
  474. }
  475. }
  476. /** NOTE: EOB can be omitted */
  477. if (offset > num_coefs) {
  478. av_log(avctx, AV_LOG_ERROR, "overflow in spectral RLE, ignoring\n");
  479. return -1;
  480. }
  481. return 0;
  482. }