You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

3429 lines
124KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006-2007 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * VC-1 and WMV3 decoder
  25. *
  26. */
  27. #include "internal.h"
  28. #include "dsputil.h"
  29. #include "avcodec.h"
  30. #include "mpegvideo.h"
  31. #include "h263.h"
  32. #include "vc1.h"
  33. #include "vc1data.h"
  34. #include "vc1acdata.h"
  35. #include "msmpeg4data.h"
  36. #include "unary.h"
  37. #include "simple_idct.h"
  38. #include "mathops.h"
  39. #include "vdpau_internal.h"
  40. #undef NDEBUG
  41. #include <assert.h>
  42. #define MB_INTRA_VLC_BITS 9
  43. #define DC_VLC_BITS 9
  44. #define AC_VLC_BITS 9
  45. static const uint16_t table_mb_intra[64][2];
  46. static const uint16_t vlc_offs[] = {
  47. 0, 520, 552, 616, 1128, 1160, 1224, 1740, 1772, 1836, 1900, 2436,
  48. 2986, 3050, 3610, 4154, 4218, 4746, 5326, 5390, 5902, 6554, 7658, 8620,
  49. 9262, 10202, 10756, 11310, 12228, 15078
  50. };
  51. /**
  52. * Init VC-1 specific tables and VC1Context members
  53. * @param v The VC1Context to initialize
  54. * @return Status
  55. */
  56. static int vc1_init_common(VC1Context *v)
  57. {
  58. static int done = 0;
  59. int i = 0;
  60. static VLC_TYPE vlc_table[15078][2];
  61. v->hrd_rate = v->hrd_buffer = NULL;
  62. /* VLC tables */
  63. if(!done)
  64. {
  65. INIT_VLC_STATIC(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  66. ff_vc1_bfraction_bits, 1, 1,
  67. ff_vc1_bfraction_codes, 1, 1, 1 << VC1_BFRACTION_VLC_BITS);
  68. INIT_VLC_STATIC(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  69. ff_vc1_norm2_bits, 1, 1,
  70. ff_vc1_norm2_codes, 1, 1, 1 << VC1_NORM2_VLC_BITS);
  71. INIT_VLC_STATIC(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  72. ff_vc1_norm6_bits, 1, 1,
  73. ff_vc1_norm6_codes, 2, 2, 556);
  74. INIT_VLC_STATIC(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  75. ff_vc1_imode_bits, 1, 1,
  76. ff_vc1_imode_codes, 1, 1, 1 << VC1_IMODE_VLC_BITS);
  77. for (i=0; i<3; i++)
  78. {
  79. ff_vc1_ttmb_vlc[i].table = &vlc_table[vlc_offs[i*3+0]];
  80. ff_vc1_ttmb_vlc[i].table_allocated = vlc_offs[i*3+1] - vlc_offs[i*3+0];
  81. init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  82. ff_vc1_ttmb_bits[i], 1, 1,
  83. ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  84. ff_vc1_ttblk_vlc[i].table = &vlc_table[vlc_offs[i*3+1]];
  85. ff_vc1_ttblk_vlc[i].table_allocated = vlc_offs[i*3+2] - vlc_offs[i*3+1];
  86. init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  87. ff_vc1_ttblk_bits[i], 1, 1,
  88. ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  89. ff_vc1_subblkpat_vlc[i].table = &vlc_table[vlc_offs[i*3+2]];
  90. ff_vc1_subblkpat_vlc[i].table_allocated = vlc_offs[i*3+3] - vlc_offs[i*3+2];
  91. init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  92. ff_vc1_subblkpat_bits[i], 1, 1,
  93. ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  94. }
  95. for(i=0; i<4; i++)
  96. {
  97. ff_vc1_4mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i*3+9]];
  98. ff_vc1_4mv_block_pattern_vlc[i].table_allocated = vlc_offs[i*3+10] - vlc_offs[i*3+9];
  99. init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  100. ff_vc1_4mv_block_pattern_bits[i], 1, 1,
  101. ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
  102. ff_vc1_cbpcy_p_vlc[i].table = &vlc_table[vlc_offs[i*3+10]];
  103. ff_vc1_cbpcy_p_vlc[i].table_allocated = vlc_offs[i*3+11] - vlc_offs[i*3+10];
  104. init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  105. ff_vc1_cbpcy_p_bits[i], 1, 1,
  106. ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  107. ff_vc1_mv_diff_vlc[i].table = &vlc_table[vlc_offs[i*3+11]];
  108. ff_vc1_mv_diff_vlc[i].table_allocated = vlc_offs[i*3+12] - vlc_offs[i*3+11];
  109. init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  110. ff_vc1_mv_diff_bits[i], 1, 1,
  111. ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
  112. }
  113. for(i=0; i<8; i++){
  114. ff_vc1_ac_coeff_table[i].table = &vlc_table[vlc_offs[i+21]];
  115. ff_vc1_ac_coeff_table[i].table_allocated = vlc_offs[i+22] - vlc_offs[i+21];
  116. init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  117. &vc1_ac_tables[i][0][1], 8, 4,
  118. &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC);
  119. }
  120. done = 1;
  121. }
  122. /* Other defaults */
  123. v->pq = -1;
  124. v->mvrange = 0; /* 7.1.1.18, p80 */
  125. return 0;
  126. }
  127. /***********************************************************************/
  128. /**
  129. * @defgroup vc1bitplane VC-1 Bitplane decoding
  130. * @see 8.7, p56
  131. * @{
  132. */
  133. /**
  134. * Imode types
  135. * @{
  136. */
  137. enum Imode {
  138. IMODE_RAW,
  139. IMODE_NORM2,
  140. IMODE_DIFF2,
  141. IMODE_NORM6,
  142. IMODE_DIFF6,
  143. IMODE_ROWSKIP,
  144. IMODE_COLSKIP
  145. };
  146. /** @} */ //imode defines
  147. /** @} */ //Bitplane group
  148. static void vc1_loop_filter_iblk(VC1Context *v, int pq)
  149. {
  150. MpegEncContext *s = &v->s;
  151. int j;
  152. if (!s->first_slice_line) {
  153. v->vc1dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
  154. if (s->mb_x)
  155. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16*s->linesize, s->linesize, pq);
  156. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16*s->linesize+8, s->linesize, pq);
  157. for(j = 0; j < 2; j++){
  158. v->vc1dsp.vc1_v_loop_filter8(s->dest[j+1], s->uvlinesize, pq);
  159. if (s->mb_x)
  160. v->vc1dsp.vc1_h_loop_filter8(s->dest[j+1]-8*s->uvlinesize, s->uvlinesize, pq);
  161. }
  162. }
  163. v->vc1dsp.vc1_v_loop_filter16(s->dest[0] + 8*s->linesize, s->linesize, pq);
  164. if (s->mb_y == s->mb_height-1) {
  165. if (s->mb_x) {
  166. v->vc1dsp.vc1_h_loop_filter16(s->dest[0], s->linesize, pq);
  167. v->vc1dsp.vc1_h_loop_filter8(s->dest[1], s->uvlinesize, pq);
  168. v->vc1dsp.vc1_h_loop_filter8(s->dest[2], s->uvlinesize, pq);
  169. }
  170. v->vc1dsp.vc1_h_loop_filter16(s->dest[0] + 8, s->linesize, pq);
  171. }
  172. }
  173. /** Do motion compensation over 1 macroblock
  174. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  175. */
  176. static void vc1_mc_1mv(VC1Context *v, int dir)
  177. {
  178. MpegEncContext *s = &v->s;
  179. DSPContext *dsp = &v->s.dsp;
  180. uint8_t *srcY, *srcU, *srcV;
  181. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  182. if(!v->s.last_picture.data[0])return;
  183. mx = s->mv[dir][0][0];
  184. my = s->mv[dir][0][1];
  185. // store motion vectors for further use in B frames
  186. if(s->pict_type == FF_P_TYPE) {
  187. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  188. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  189. }
  190. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  191. uvmy = (my + ((my & 3) == 3)) >> 1;
  192. if(v->fastuvmc) {
  193. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  194. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  195. }
  196. if(!dir) {
  197. srcY = s->last_picture.data[0];
  198. srcU = s->last_picture.data[1];
  199. srcV = s->last_picture.data[2];
  200. } else {
  201. srcY = s->next_picture.data[0];
  202. srcU = s->next_picture.data[1];
  203. srcV = s->next_picture.data[2];
  204. }
  205. src_x = s->mb_x * 16 + (mx >> 2);
  206. src_y = s->mb_y * 16 + (my >> 2);
  207. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  208. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  209. if(v->profile != PROFILE_ADVANCED){
  210. src_x = av_clip( src_x, -16, s->mb_width * 16);
  211. src_y = av_clip( src_y, -16, s->mb_height * 16);
  212. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  213. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  214. }else{
  215. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  216. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  217. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  218. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  219. }
  220. srcY += src_y * s->linesize + src_x;
  221. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  222. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  223. /* for grayscale we should not try to read from unknown area */
  224. if(s->flags & CODEC_FLAG_GRAY) {
  225. srcU = s->edge_emu_buffer + 18 * s->linesize;
  226. srcV = s->edge_emu_buffer + 18 * s->linesize;
  227. }
  228. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  229. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  230. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  231. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  232. srcY -= s->mspel * (1 + s->linesize);
  233. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  234. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  235. srcY = s->edge_emu_buffer;
  236. s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  237. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  238. s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  239. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  240. srcU = uvbuf;
  241. srcV = uvbuf + 16;
  242. /* if we deal with range reduction we need to scale source blocks */
  243. if(v->rangeredfrm) {
  244. int i, j;
  245. uint8_t *src, *src2;
  246. src = srcY;
  247. for(j = 0; j < 17 + s->mspel*2; j++) {
  248. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  249. src += s->linesize;
  250. }
  251. src = srcU; src2 = srcV;
  252. for(j = 0; j < 9; j++) {
  253. for(i = 0; i < 9; i++) {
  254. src[i] = ((src[i] - 128) >> 1) + 128;
  255. src2[i] = ((src2[i] - 128) >> 1) + 128;
  256. }
  257. src += s->uvlinesize;
  258. src2 += s->uvlinesize;
  259. }
  260. }
  261. /* if we deal with intensity compensation we need to scale source blocks */
  262. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  263. int i, j;
  264. uint8_t *src, *src2;
  265. src = srcY;
  266. for(j = 0; j < 17 + s->mspel*2; j++) {
  267. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  268. src += s->linesize;
  269. }
  270. src = srcU; src2 = srcV;
  271. for(j = 0; j < 9; j++) {
  272. for(i = 0; i < 9; i++) {
  273. src[i] = v->lutuv[src[i]];
  274. src2[i] = v->lutuv[src2[i]];
  275. }
  276. src += s->uvlinesize;
  277. src2 += s->uvlinesize;
  278. }
  279. }
  280. srcY += s->mspel * (1 + s->linesize);
  281. }
  282. if(s->mspel) {
  283. dxy = ((my & 3) << 2) | (mx & 3);
  284. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  285. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  286. srcY += s->linesize * 8;
  287. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  288. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  289. } else { // hpel mc - always used for luma
  290. dxy = (my & 2) | ((mx & 2) >> 1);
  291. if(!v->rnd)
  292. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  293. else
  294. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  295. }
  296. if(s->flags & CODEC_FLAG_GRAY) return;
  297. /* Chroma MC always uses qpel bilinear */
  298. uvmx = (uvmx&3)<<1;
  299. uvmy = (uvmy&3)<<1;
  300. if(!v->rnd){
  301. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  302. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  303. }else{
  304. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  305. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  306. }
  307. }
  308. /** Do motion compensation for 4-MV macroblock - luminance block
  309. */
  310. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  311. {
  312. MpegEncContext *s = &v->s;
  313. DSPContext *dsp = &v->s.dsp;
  314. uint8_t *srcY;
  315. int dxy, mx, my, src_x, src_y;
  316. int off;
  317. if(!v->s.last_picture.data[0])return;
  318. mx = s->mv[0][n][0];
  319. my = s->mv[0][n][1];
  320. srcY = s->last_picture.data[0];
  321. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  322. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  323. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  324. if(v->profile != PROFILE_ADVANCED){
  325. src_x = av_clip( src_x, -16, s->mb_width * 16);
  326. src_y = av_clip( src_y, -16, s->mb_height * 16);
  327. }else{
  328. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  329. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  330. }
  331. srcY += src_y * s->linesize + src_x;
  332. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  333. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  334. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  335. srcY -= s->mspel * (1 + s->linesize);
  336. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  337. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  338. srcY = s->edge_emu_buffer;
  339. /* if we deal with range reduction we need to scale source blocks */
  340. if(v->rangeredfrm) {
  341. int i, j;
  342. uint8_t *src;
  343. src = srcY;
  344. for(j = 0; j < 9 + s->mspel*2; j++) {
  345. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  346. src += s->linesize;
  347. }
  348. }
  349. /* if we deal with intensity compensation we need to scale source blocks */
  350. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  351. int i, j;
  352. uint8_t *src;
  353. src = srcY;
  354. for(j = 0; j < 9 + s->mspel*2; j++) {
  355. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  356. src += s->linesize;
  357. }
  358. }
  359. srcY += s->mspel * (1 + s->linesize);
  360. }
  361. if(s->mspel) {
  362. dxy = ((my & 3) << 2) | (mx & 3);
  363. v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  364. } else { // hpel mc - always used for luma
  365. dxy = (my & 2) | ((mx & 2) >> 1);
  366. if(!v->rnd)
  367. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  368. else
  369. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  370. }
  371. }
  372. static inline int median4(int a, int b, int c, int d)
  373. {
  374. if(a < b) {
  375. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  376. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  377. } else {
  378. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  379. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  380. }
  381. }
  382. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  383. */
  384. static void vc1_mc_4mv_chroma(VC1Context *v)
  385. {
  386. MpegEncContext *s = &v->s;
  387. DSPContext *dsp = &v->s.dsp;
  388. uint8_t *srcU, *srcV;
  389. int uvmx, uvmy, uvsrc_x, uvsrc_y;
  390. int i, idx, tx = 0, ty = 0;
  391. int mvx[4], mvy[4], intra[4];
  392. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  393. if(!v->s.last_picture.data[0])return;
  394. if(s->flags & CODEC_FLAG_GRAY) return;
  395. for(i = 0; i < 4; i++) {
  396. mvx[i] = s->mv[0][i][0];
  397. mvy[i] = s->mv[0][i][1];
  398. intra[i] = v->mb_type[0][s->block_index[i]];
  399. }
  400. /* calculate chroma MV vector from four luma MVs */
  401. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  402. if(!idx) { // all blocks are inter
  403. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  404. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  405. } else if(count[idx] == 1) { // 3 inter blocks
  406. switch(idx) {
  407. case 0x1:
  408. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  409. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  410. break;
  411. case 0x2:
  412. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  413. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  414. break;
  415. case 0x4:
  416. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  417. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  418. break;
  419. case 0x8:
  420. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  421. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  422. break;
  423. }
  424. } else if(count[idx] == 2) {
  425. int t1 = 0, t2 = 0;
  426. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  427. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  428. tx = (mvx[t1] + mvx[t2]) / 2;
  429. ty = (mvy[t1] + mvy[t2]) / 2;
  430. } else {
  431. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  432. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  433. return; //no need to do MC for inter blocks
  434. }
  435. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  436. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  437. uvmx = (tx + ((tx&3) == 3)) >> 1;
  438. uvmy = (ty + ((ty&3) == 3)) >> 1;
  439. if(v->fastuvmc) {
  440. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  441. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  442. }
  443. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  444. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  445. if(v->profile != PROFILE_ADVANCED){
  446. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  447. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  448. }else{
  449. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  450. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  451. }
  452. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  453. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  454. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  455. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  456. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  457. s->dsp.emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  458. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  459. s->dsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  460. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  461. srcU = s->edge_emu_buffer;
  462. srcV = s->edge_emu_buffer + 16;
  463. /* if we deal with range reduction we need to scale source blocks */
  464. if(v->rangeredfrm) {
  465. int i, j;
  466. uint8_t *src, *src2;
  467. src = srcU; src2 = srcV;
  468. for(j = 0; j < 9; j++) {
  469. for(i = 0; i < 9; i++) {
  470. src[i] = ((src[i] - 128) >> 1) + 128;
  471. src2[i] = ((src2[i] - 128) >> 1) + 128;
  472. }
  473. src += s->uvlinesize;
  474. src2 += s->uvlinesize;
  475. }
  476. }
  477. /* if we deal with intensity compensation we need to scale source blocks */
  478. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  479. int i, j;
  480. uint8_t *src, *src2;
  481. src = srcU; src2 = srcV;
  482. for(j = 0; j < 9; j++) {
  483. for(i = 0; i < 9; i++) {
  484. src[i] = v->lutuv[src[i]];
  485. src2[i] = v->lutuv[src2[i]];
  486. }
  487. src += s->uvlinesize;
  488. src2 += s->uvlinesize;
  489. }
  490. }
  491. }
  492. /* Chroma MC always uses qpel bilinear */
  493. uvmx = (uvmx&3)<<1;
  494. uvmy = (uvmy&3)<<1;
  495. if(!v->rnd){
  496. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  497. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  498. }else{
  499. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  500. v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  501. }
  502. }
  503. /***********************************************************************/
  504. /**
  505. * @defgroup vc1block VC-1 Block-level functions
  506. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  507. * @{
  508. */
  509. /**
  510. * @def GET_MQUANT
  511. * @brief Get macroblock-level quantizer scale
  512. */
  513. #define GET_MQUANT() \
  514. if (v->dquantfrm) \
  515. { \
  516. int edges = 0; \
  517. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  518. { \
  519. if (v->dqbilevel) \
  520. { \
  521. mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
  522. } \
  523. else \
  524. { \
  525. mqdiff = get_bits(gb, 3); \
  526. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  527. else mquant = get_bits(gb, 5); \
  528. } \
  529. } \
  530. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  531. edges = 1 << v->dqsbedge; \
  532. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  533. edges = (3 << v->dqsbedge) % 15; \
  534. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  535. edges = 15; \
  536. if((edges&1) && !s->mb_x) \
  537. mquant = v->altpq; \
  538. if((edges&2) && s->first_slice_line) \
  539. mquant = v->altpq; \
  540. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  541. mquant = v->altpq; \
  542. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  543. mquant = v->altpq; \
  544. }
  545. /**
  546. * @def GET_MVDATA(_dmv_x, _dmv_y)
  547. * @brief Get MV differentials
  548. * @see MVDATA decoding from 8.3.5.2, p(1)20
  549. * @param _dmv_x Horizontal differential for decoded MV
  550. * @param _dmv_y Vertical differential for decoded MV
  551. */
  552. #define GET_MVDATA(_dmv_x, _dmv_y) \
  553. index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table,\
  554. VC1_MV_DIFF_VLC_BITS, 2); \
  555. if (index > 36) \
  556. { \
  557. mb_has_coeffs = 1; \
  558. index -= 37; \
  559. } \
  560. else mb_has_coeffs = 0; \
  561. s->mb_intra = 0; \
  562. if (!index) { _dmv_x = _dmv_y = 0; } \
  563. else if (index == 35) \
  564. { \
  565. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  566. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  567. } \
  568. else if (index == 36) \
  569. { \
  570. _dmv_x = 0; \
  571. _dmv_y = 0; \
  572. s->mb_intra = 1; \
  573. } \
  574. else \
  575. { \
  576. index1 = index%6; \
  577. if (!s->quarter_sample && index1 == 5) val = 1; \
  578. else val = 0; \
  579. if(size_table[index1] - val > 0) \
  580. val = get_bits(gb, size_table[index1] - val); \
  581. else val = 0; \
  582. sign = 0 - (val&1); \
  583. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  584. \
  585. index1 = index/6; \
  586. if (!s->quarter_sample && index1 == 5) val = 1; \
  587. else val = 0; \
  588. if(size_table[index1] - val > 0) \
  589. val = get_bits(gb, size_table[index1] - val); \
  590. else val = 0; \
  591. sign = 0 - (val&1); \
  592. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  593. }
  594. /** Predict and set motion vector
  595. */
  596. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  597. {
  598. int xy, wrap, off = 0;
  599. int16_t *A, *B, *C;
  600. int px, py;
  601. int sum;
  602. /* scale MV difference to be quad-pel */
  603. dmv_x <<= 1 - s->quarter_sample;
  604. dmv_y <<= 1 - s->quarter_sample;
  605. wrap = s->b8_stride;
  606. xy = s->block_index[n];
  607. if(s->mb_intra){
  608. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  609. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  610. s->current_picture.motion_val[1][xy][0] = 0;
  611. s->current_picture.motion_val[1][xy][1] = 0;
  612. if(mv1) { /* duplicate motion data for 1-MV block */
  613. s->current_picture.motion_val[0][xy + 1][0] = 0;
  614. s->current_picture.motion_val[0][xy + 1][1] = 0;
  615. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  616. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  617. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  618. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  619. s->current_picture.motion_val[1][xy + 1][0] = 0;
  620. s->current_picture.motion_val[1][xy + 1][1] = 0;
  621. s->current_picture.motion_val[1][xy + wrap][0] = 0;
  622. s->current_picture.motion_val[1][xy + wrap][1] = 0;
  623. s->current_picture.motion_val[1][xy + wrap + 1][0] = 0;
  624. s->current_picture.motion_val[1][xy + wrap + 1][1] = 0;
  625. }
  626. return;
  627. }
  628. C = s->current_picture.motion_val[0][xy - 1];
  629. A = s->current_picture.motion_val[0][xy - wrap];
  630. if(mv1)
  631. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  632. else {
  633. //in 4-MV mode different blocks have different B predictor position
  634. switch(n){
  635. case 0:
  636. off = (s->mb_x > 0) ? -1 : 1;
  637. break;
  638. case 1:
  639. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  640. break;
  641. case 2:
  642. off = 1;
  643. break;
  644. case 3:
  645. off = -1;
  646. }
  647. }
  648. B = s->current_picture.motion_val[0][xy - wrap + off];
  649. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  650. if(s->mb_width == 1) {
  651. px = A[0];
  652. py = A[1];
  653. } else {
  654. px = mid_pred(A[0], B[0], C[0]);
  655. py = mid_pred(A[1], B[1], C[1]);
  656. }
  657. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  658. px = C[0];
  659. py = C[1];
  660. } else {
  661. px = py = 0;
  662. }
  663. /* Pullback MV as specified in 8.3.5.3.4 */
  664. {
  665. int qx, qy, X, Y;
  666. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  667. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  668. X = (s->mb_width << 6) - 4;
  669. Y = (s->mb_height << 6) - 4;
  670. if(mv1) {
  671. if(qx + px < -60) px = -60 - qx;
  672. if(qy + py < -60) py = -60 - qy;
  673. } else {
  674. if(qx + px < -28) px = -28 - qx;
  675. if(qy + py < -28) py = -28 - qy;
  676. }
  677. if(qx + px > X) px = X - qx;
  678. if(qy + py > Y) py = Y - qy;
  679. }
  680. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  681. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  682. if(is_intra[xy - wrap])
  683. sum = FFABS(px) + FFABS(py);
  684. else
  685. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  686. if(sum > 32) {
  687. if(get_bits1(&s->gb)) {
  688. px = A[0];
  689. py = A[1];
  690. } else {
  691. px = C[0];
  692. py = C[1];
  693. }
  694. } else {
  695. if(is_intra[xy - 1])
  696. sum = FFABS(px) + FFABS(py);
  697. else
  698. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  699. if(sum > 32) {
  700. if(get_bits1(&s->gb)) {
  701. px = A[0];
  702. py = A[1];
  703. } else {
  704. px = C[0];
  705. py = C[1];
  706. }
  707. }
  708. }
  709. }
  710. /* store MV using signed modulus of MV range defined in 4.11 */
  711. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  712. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  713. if(mv1) { /* duplicate motion data for 1-MV block */
  714. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  715. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  716. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  717. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  718. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  719. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  720. }
  721. }
  722. /** Motion compensation for direct or interpolated blocks in B-frames
  723. */
  724. static void vc1_interp_mc(VC1Context *v)
  725. {
  726. MpegEncContext *s = &v->s;
  727. DSPContext *dsp = &v->s.dsp;
  728. uint8_t *srcY, *srcU, *srcV;
  729. int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  730. if(!v->s.next_picture.data[0])return;
  731. mx = s->mv[1][0][0];
  732. my = s->mv[1][0][1];
  733. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  734. uvmy = (my + ((my & 3) == 3)) >> 1;
  735. if(v->fastuvmc) {
  736. uvmx = uvmx + ((uvmx<0)?-(uvmx&1):(uvmx&1));
  737. uvmy = uvmy + ((uvmy<0)?-(uvmy&1):(uvmy&1));
  738. }
  739. srcY = s->next_picture.data[0];
  740. srcU = s->next_picture.data[1];
  741. srcV = s->next_picture.data[2];
  742. src_x = s->mb_x * 16 + (mx >> 2);
  743. src_y = s->mb_y * 16 + (my >> 2);
  744. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  745. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  746. if(v->profile != PROFILE_ADVANCED){
  747. src_x = av_clip( src_x, -16, s->mb_width * 16);
  748. src_y = av_clip( src_y, -16, s->mb_height * 16);
  749. uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
  750. uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
  751. }else{
  752. src_x = av_clip( src_x, -17, s->avctx->coded_width);
  753. src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
  754. uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
  755. uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
  756. }
  757. srcY += src_y * s->linesize + src_x;
  758. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  759. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  760. /* for grayscale we should not try to read from unknown area */
  761. if(s->flags & CODEC_FLAG_GRAY) {
  762. srcU = s->edge_emu_buffer + 18 * s->linesize;
  763. srcV = s->edge_emu_buffer + 18 * s->linesize;
  764. }
  765. if(v->rangeredfrm
  766. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  767. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  768. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  769. srcY -= s->mspel * (1 + s->linesize);
  770. s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  771. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  772. srcY = s->edge_emu_buffer;
  773. s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  774. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  775. s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  776. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  777. srcU = uvbuf;
  778. srcV = uvbuf + 16;
  779. /* if we deal with range reduction we need to scale source blocks */
  780. if(v->rangeredfrm) {
  781. int i, j;
  782. uint8_t *src, *src2;
  783. src = srcY;
  784. for(j = 0; j < 17 + s->mspel*2; j++) {
  785. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  786. src += s->linesize;
  787. }
  788. src = srcU; src2 = srcV;
  789. for(j = 0; j < 9; j++) {
  790. for(i = 0; i < 9; i++) {
  791. src[i] = ((src[i] - 128) >> 1) + 128;
  792. src2[i] = ((src2[i] - 128) >> 1) + 128;
  793. }
  794. src += s->uvlinesize;
  795. src2 += s->uvlinesize;
  796. }
  797. }
  798. srcY += s->mspel * (1 + s->linesize);
  799. }
  800. if(s->mspel) {
  801. dxy = ((my & 3) << 2) | (mx & 3);
  802. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  803. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  804. srcY += s->linesize * 8;
  805. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  806. v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  807. } else { // hpel mc
  808. dxy = (my & 2) | ((mx & 2) >> 1);
  809. if(!v->rnd)
  810. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  811. else
  812. dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  813. }
  814. if(s->flags & CODEC_FLAG_GRAY) return;
  815. /* Chroma MC always uses qpel blilinear */
  816. uvmx = (uvmx&3)<<1;
  817. uvmy = (uvmy&3)<<1;
  818. if(!v->rnd){
  819. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  820. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  821. }else{
  822. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  823. v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  824. }
  825. }
  826. static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  827. {
  828. int n = bfrac;
  829. #if B_FRACTION_DEN==256
  830. if(inv)
  831. n -= 256;
  832. if(!qs)
  833. return 2 * ((value * n + 255) >> 9);
  834. return (value * n + 128) >> 8;
  835. #else
  836. if(inv)
  837. n -= B_FRACTION_DEN;
  838. if(!qs)
  839. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  840. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  841. #endif
  842. }
  843. /** Reconstruct motion vector for B-frame and do motion compensation
  844. */
  845. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  846. {
  847. if(v->use_ic) {
  848. v->mv_mode2 = v->mv_mode;
  849. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  850. }
  851. if(direct) {
  852. vc1_mc_1mv(v, 0);
  853. vc1_interp_mc(v);
  854. if(v->use_ic) v->mv_mode = v->mv_mode2;
  855. return;
  856. }
  857. if(mode == BMV_TYPE_INTERPOLATED) {
  858. vc1_mc_1mv(v, 0);
  859. vc1_interp_mc(v);
  860. if(v->use_ic) v->mv_mode = v->mv_mode2;
  861. return;
  862. }
  863. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  864. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  865. if(v->use_ic) v->mv_mode = v->mv_mode2;
  866. }
  867. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  868. {
  869. MpegEncContext *s = &v->s;
  870. int xy, wrap, off = 0;
  871. int16_t *A, *B, *C;
  872. int px, py;
  873. int sum;
  874. int r_x, r_y;
  875. const uint8_t *is_intra = v->mb_type[0];
  876. r_x = v->range_x;
  877. r_y = v->range_y;
  878. /* scale MV difference to be quad-pel */
  879. dmv_x[0] <<= 1 - s->quarter_sample;
  880. dmv_y[0] <<= 1 - s->quarter_sample;
  881. dmv_x[1] <<= 1 - s->quarter_sample;
  882. dmv_y[1] <<= 1 - s->quarter_sample;
  883. wrap = s->b8_stride;
  884. xy = s->block_index[0];
  885. if(s->mb_intra) {
  886. s->current_picture.motion_val[0][xy][0] =
  887. s->current_picture.motion_val[0][xy][1] =
  888. s->current_picture.motion_val[1][xy][0] =
  889. s->current_picture.motion_val[1][xy][1] = 0;
  890. return;
  891. }
  892. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  893. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  894. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  895. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  896. /* Pullback predicted motion vectors as specified in 8.4.5.4 */
  897. s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  898. s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  899. s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
  900. s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
  901. if(direct) {
  902. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  903. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  904. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  905. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  906. return;
  907. }
  908. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  909. C = s->current_picture.motion_val[0][xy - 2];
  910. A = s->current_picture.motion_val[0][xy - wrap*2];
  911. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  912. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  913. if(!s->mb_x) C[0] = C[1] = 0;
  914. if(!s->first_slice_line) { // predictor A is not out of bounds
  915. if(s->mb_width == 1) {
  916. px = A[0];
  917. py = A[1];
  918. } else {
  919. px = mid_pred(A[0], B[0], C[0]);
  920. py = mid_pred(A[1], B[1], C[1]);
  921. }
  922. } else if(s->mb_x) { // predictor C is not out of bounds
  923. px = C[0];
  924. py = C[1];
  925. } else {
  926. px = py = 0;
  927. }
  928. /* Pullback MV as specified in 8.3.5.3.4 */
  929. {
  930. int qx, qy, X, Y;
  931. if(v->profile < PROFILE_ADVANCED) {
  932. qx = (s->mb_x << 5);
  933. qy = (s->mb_y << 5);
  934. X = (s->mb_width << 5) - 4;
  935. Y = (s->mb_height << 5) - 4;
  936. if(qx + px < -28) px = -28 - qx;
  937. if(qy + py < -28) py = -28 - qy;
  938. if(qx + px > X) px = X - qx;
  939. if(qy + py > Y) py = Y - qy;
  940. } else {
  941. qx = (s->mb_x << 6);
  942. qy = (s->mb_y << 6);
  943. X = (s->mb_width << 6) - 4;
  944. Y = (s->mb_height << 6) - 4;
  945. if(qx + px < -60) px = -60 - qx;
  946. if(qy + py < -60) py = -60 - qy;
  947. if(qx + px > X) px = X - qx;
  948. if(qy + py > Y) py = Y - qy;
  949. }
  950. }
  951. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  952. if(0 && !s->first_slice_line && s->mb_x) {
  953. if(is_intra[xy - wrap])
  954. sum = FFABS(px) + FFABS(py);
  955. else
  956. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  957. if(sum > 32) {
  958. if(get_bits1(&s->gb)) {
  959. px = A[0];
  960. py = A[1];
  961. } else {
  962. px = C[0];
  963. py = C[1];
  964. }
  965. } else {
  966. if(is_intra[xy - 2])
  967. sum = FFABS(px) + FFABS(py);
  968. else
  969. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  970. if(sum > 32) {
  971. if(get_bits1(&s->gb)) {
  972. px = A[0];
  973. py = A[1];
  974. } else {
  975. px = C[0];
  976. py = C[1];
  977. }
  978. }
  979. }
  980. }
  981. /* store MV using signed modulus of MV range defined in 4.11 */
  982. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  983. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  984. }
  985. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  986. C = s->current_picture.motion_val[1][xy - 2];
  987. A = s->current_picture.motion_val[1][xy - wrap*2];
  988. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  989. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  990. if(!s->mb_x) C[0] = C[1] = 0;
  991. if(!s->first_slice_line) { // predictor A is not out of bounds
  992. if(s->mb_width == 1) {
  993. px = A[0];
  994. py = A[1];
  995. } else {
  996. px = mid_pred(A[0], B[0], C[0]);
  997. py = mid_pred(A[1], B[1], C[1]);
  998. }
  999. } else if(s->mb_x) { // predictor C is not out of bounds
  1000. px = C[0];
  1001. py = C[1];
  1002. } else {
  1003. px = py = 0;
  1004. }
  1005. /* Pullback MV as specified in 8.3.5.3.4 */
  1006. {
  1007. int qx, qy, X, Y;
  1008. if(v->profile < PROFILE_ADVANCED) {
  1009. qx = (s->mb_x << 5);
  1010. qy = (s->mb_y << 5);
  1011. X = (s->mb_width << 5) - 4;
  1012. Y = (s->mb_height << 5) - 4;
  1013. if(qx + px < -28) px = -28 - qx;
  1014. if(qy + py < -28) py = -28 - qy;
  1015. if(qx + px > X) px = X - qx;
  1016. if(qy + py > Y) py = Y - qy;
  1017. } else {
  1018. qx = (s->mb_x << 6);
  1019. qy = (s->mb_y << 6);
  1020. X = (s->mb_width << 6) - 4;
  1021. Y = (s->mb_height << 6) - 4;
  1022. if(qx + px < -60) px = -60 - qx;
  1023. if(qy + py < -60) py = -60 - qy;
  1024. if(qx + px > X) px = X - qx;
  1025. if(qy + py > Y) py = Y - qy;
  1026. }
  1027. }
  1028. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1029. if(0 && !s->first_slice_line && s->mb_x) {
  1030. if(is_intra[xy - wrap])
  1031. sum = FFABS(px) + FFABS(py);
  1032. else
  1033. sum = FFABS(px - A[0]) + FFABS(py - A[1]);
  1034. if(sum > 32) {
  1035. if(get_bits1(&s->gb)) {
  1036. px = A[0];
  1037. py = A[1];
  1038. } else {
  1039. px = C[0];
  1040. py = C[1];
  1041. }
  1042. } else {
  1043. if(is_intra[xy - 2])
  1044. sum = FFABS(px) + FFABS(py);
  1045. else
  1046. sum = FFABS(px - C[0]) + FFABS(py - C[1]);
  1047. if(sum > 32) {
  1048. if(get_bits1(&s->gb)) {
  1049. px = A[0];
  1050. py = A[1];
  1051. } else {
  1052. px = C[0];
  1053. py = C[1];
  1054. }
  1055. }
  1056. }
  1057. }
  1058. /* store MV using signed modulus of MV range defined in 4.11 */
  1059. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  1060. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  1061. }
  1062. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1063. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1064. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1065. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1066. }
  1067. /** Get predicted DC value for I-frames only
  1068. * prediction dir: left=0, top=1
  1069. * @param s MpegEncContext
  1070. * @param overlap flag indicating that overlap filtering is used
  1071. * @param pq integer part of picture quantizer
  1072. * @param[in] n block index in the current MB
  1073. * @param dc_val_ptr Pointer to DC predictor
  1074. * @param dir_ptr Prediction direction for use in AC prediction
  1075. */
  1076. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1077. int16_t **dc_val_ptr, int *dir_ptr)
  1078. {
  1079. int a, b, c, wrap, pred, scale;
  1080. int16_t *dc_val;
  1081. static const uint16_t dcpred[32] = {
  1082. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  1083. 114, 102, 93, 85, 79, 73, 68, 64,
  1084. 60, 57, 54, 51, 49, 47, 45, 43,
  1085. 41, 39, 38, 37, 35, 34, 33
  1086. };
  1087. /* find prediction - wmv3_dc_scale always used here in fact */
  1088. if (n < 4) scale = s->y_dc_scale;
  1089. else scale = s->c_dc_scale;
  1090. wrap = s->block_wrap[n];
  1091. dc_val= s->dc_val[0] + s->block_index[n];
  1092. /* B A
  1093. * C X
  1094. */
  1095. c = dc_val[ - 1];
  1096. b = dc_val[ - 1 - wrap];
  1097. a = dc_val[ - wrap];
  1098. if (pq < 9 || !overlap)
  1099. {
  1100. /* Set outer values */
  1101. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  1102. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  1103. }
  1104. else
  1105. {
  1106. /* Set outer values */
  1107. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  1108. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  1109. }
  1110. if (abs(a - b) <= abs(b - c)) {
  1111. pred = c;
  1112. *dir_ptr = 1;//left
  1113. } else {
  1114. pred = a;
  1115. *dir_ptr = 0;//top
  1116. }
  1117. /* update predictor */
  1118. *dc_val_ptr = &dc_val[0];
  1119. return pred;
  1120. }
  1121. /** Get predicted DC value
  1122. * prediction dir: left=0, top=1
  1123. * @param s MpegEncContext
  1124. * @param overlap flag indicating that overlap filtering is used
  1125. * @param pq integer part of picture quantizer
  1126. * @param[in] n block index in the current MB
  1127. * @param a_avail flag indicating top block availability
  1128. * @param c_avail flag indicating left block availability
  1129. * @param dc_val_ptr Pointer to DC predictor
  1130. * @param dir_ptr Prediction direction for use in AC prediction
  1131. */
  1132. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  1133. int a_avail, int c_avail,
  1134. int16_t **dc_val_ptr, int *dir_ptr)
  1135. {
  1136. int a, b, c, wrap, pred;
  1137. int16_t *dc_val;
  1138. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1139. int q1, q2 = 0;
  1140. wrap = s->block_wrap[n];
  1141. dc_val= s->dc_val[0] + s->block_index[n];
  1142. /* B A
  1143. * C X
  1144. */
  1145. c = dc_val[ - 1];
  1146. b = dc_val[ - 1 - wrap];
  1147. a = dc_val[ - wrap];
  1148. /* scale predictors if needed */
  1149. q1 = s->current_picture.qscale_table[mb_pos];
  1150. if(c_avail && (n!= 1 && n!=3)) {
  1151. q2 = s->current_picture.qscale_table[mb_pos - 1];
  1152. if(q2 && q2 != q1)
  1153. c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1154. }
  1155. if(a_avail && (n!= 2 && n!=3)) {
  1156. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1157. if(q2 && q2 != q1)
  1158. a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1159. }
  1160. if(a_avail && c_avail && (n!=3)) {
  1161. int off = mb_pos;
  1162. if(n != 1) off--;
  1163. if(n != 2) off -= s->mb_stride;
  1164. q2 = s->current_picture.qscale_table[off];
  1165. if(q2 && q2 != q1)
  1166. b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  1167. }
  1168. if(a_avail && c_avail) {
  1169. if(abs(a - b) <= abs(b - c)) {
  1170. pred = c;
  1171. *dir_ptr = 1;//left
  1172. } else {
  1173. pred = a;
  1174. *dir_ptr = 0;//top
  1175. }
  1176. } else if(a_avail) {
  1177. pred = a;
  1178. *dir_ptr = 0;//top
  1179. } else if(c_avail) {
  1180. pred = c;
  1181. *dir_ptr = 1;//left
  1182. } else {
  1183. pred = 0;
  1184. *dir_ptr = 1;//left
  1185. }
  1186. /* update predictor */
  1187. *dc_val_ptr = &dc_val[0];
  1188. return pred;
  1189. }
  1190. /** @} */ // Block group
  1191. /**
  1192. * @defgroup vc1_std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  1193. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1194. * @{
  1195. */
  1196. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  1197. {
  1198. int xy, wrap, pred, a, b, c;
  1199. xy = s->block_index[n];
  1200. wrap = s->b8_stride;
  1201. /* B C
  1202. * A X
  1203. */
  1204. a = s->coded_block[xy - 1 ];
  1205. b = s->coded_block[xy - 1 - wrap];
  1206. c = s->coded_block[xy - wrap];
  1207. if (b == c) {
  1208. pred = a;
  1209. } else {
  1210. pred = c;
  1211. }
  1212. /* store value */
  1213. *coded_block_ptr = &s->coded_block[xy];
  1214. return pred;
  1215. }
  1216. /**
  1217. * Decode one AC coefficient
  1218. * @param v The VC1 context
  1219. * @param last Last coefficient
  1220. * @param skip How much zero coefficients to skip
  1221. * @param value Decoded AC coefficient value
  1222. * @param codingset set of VLC to decode data
  1223. * @see 8.1.3.4
  1224. */
  1225. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  1226. {
  1227. GetBitContext *gb = &v->s.gb;
  1228. int index, escape, run = 0, level = 0, lst = 0;
  1229. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1230. if (index != vc1_ac_sizes[codingset] - 1) {
  1231. run = vc1_index_decode_table[codingset][index][0];
  1232. level = vc1_index_decode_table[codingset][index][1];
  1233. lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
  1234. if(get_bits1(gb))
  1235. level = -level;
  1236. } else {
  1237. escape = decode210(gb);
  1238. if (escape != 2) {
  1239. index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  1240. run = vc1_index_decode_table[codingset][index][0];
  1241. level = vc1_index_decode_table[codingset][index][1];
  1242. lst = index >= vc1_last_decode_table[codingset];
  1243. if(escape == 0) {
  1244. if(lst)
  1245. level += vc1_last_delta_level_table[codingset][run];
  1246. else
  1247. level += vc1_delta_level_table[codingset][run];
  1248. } else {
  1249. if(lst)
  1250. run += vc1_last_delta_run_table[codingset][level] + 1;
  1251. else
  1252. run += vc1_delta_run_table[codingset][level] + 1;
  1253. }
  1254. if(get_bits1(gb))
  1255. level = -level;
  1256. } else {
  1257. int sign;
  1258. lst = get_bits1(gb);
  1259. if(v->s.esc3_level_length == 0) {
  1260. if(v->pq < 8 || v->dquantfrm) { // table 59
  1261. v->s.esc3_level_length = get_bits(gb, 3);
  1262. if(!v->s.esc3_level_length)
  1263. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  1264. } else { //table 60
  1265. v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
  1266. }
  1267. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  1268. }
  1269. run = get_bits(gb, v->s.esc3_run_length);
  1270. sign = get_bits1(gb);
  1271. level = get_bits(gb, v->s.esc3_level_length);
  1272. if(sign)
  1273. level = -level;
  1274. }
  1275. }
  1276. *last = lst;
  1277. *skip = run;
  1278. *value = level;
  1279. }
  1280. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1281. * @param v VC1Context
  1282. * @param block block to decode
  1283. * @param[in] n subblock index
  1284. * @param coded are AC coeffs present or not
  1285. * @param codingset set of VLC to decode data
  1286. */
  1287. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  1288. {
  1289. GetBitContext *gb = &v->s.gb;
  1290. MpegEncContext *s = &v->s;
  1291. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1292. int i;
  1293. int16_t *dc_val;
  1294. int16_t *ac_val, *ac_val2;
  1295. int dcdiff;
  1296. /* Get DC differential */
  1297. if (n < 4) {
  1298. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1299. } else {
  1300. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1301. }
  1302. if (dcdiff < 0){
  1303. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1304. return -1;
  1305. }
  1306. if (dcdiff)
  1307. {
  1308. if (dcdiff == 119 /* ESC index value */)
  1309. {
  1310. /* TODO: Optimize */
  1311. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  1312. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  1313. else dcdiff = get_bits(gb, 8);
  1314. }
  1315. else
  1316. {
  1317. if (v->pq == 1)
  1318. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1319. else if (v->pq == 2)
  1320. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1321. }
  1322. if (get_bits1(gb))
  1323. dcdiff = -dcdiff;
  1324. }
  1325. /* Prediction */
  1326. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  1327. *dc_val = dcdiff;
  1328. /* Store the quantized DC coeff, used for prediction */
  1329. if (n < 4) {
  1330. block[0] = dcdiff * s->y_dc_scale;
  1331. } else {
  1332. block[0] = dcdiff * s->c_dc_scale;
  1333. }
  1334. /* Skip ? */
  1335. if (!coded) {
  1336. goto not_coded;
  1337. }
  1338. //AC Decoding
  1339. i = 1;
  1340. {
  1341. int last = 0, skip, value;
  1342. const uint8_t *zz_table;
  1343. int scale;
  1344. int k;
  1345. scale = v->pq * 2 + v->halfpq;
  1346. if(v->s.ac_pred) {
  1347. if(!dc_pred_dir)
  1348. zz_table = v->zz_8x8[2];
  1349. else
  1350. zz_table = v->zz_8x8[3];
  1351. } else
  1352. zz_table = v->zz_8x8[1];
  1353. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1354. ac_val2 = ac_val;
  1355. if(dc_pred_dir) //left
  1356. ac_val -= 16;
  1357. else //top
  1358. ac_val -= 16 * s->block_wrap[n];
  1359. while (!last) {
  1360. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1361. i += skip;
  1362. if(i > 63)
  1363. break;
  1364. block[zz_table[i++]] = value;
  1365. }
  1366. /* apply AC prediction if needed */
  1367. if(s->ac_pred) {
  1368. if(dc_pred_dir) { //left
  1369. for(k = 1; k < 8; k++)
  1370. block[k] += ac_val[k];
  1371. } else { //top
  1372. for(k = 1; k < 8; k++)
  1373. block[k << 3] += ac_val[k + 8];
  1374. }
  1375. }
  1376. /* save AC coeffs for further prediction */
  1377. for(k = 1; k < 8; k++) {
  1378. ac_val2[k] = block[k];
  1379. ac_val2[k + 8] = block[k << 3];
  1380. }
  1381. /* scale AC coeffs */
  1382. for(k = 1; k < 64; k++)
  1383. if(block[k]) {
  1384. block[k] *= scale;
  1385. if(!v->pquantizer)
  1386. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1387. }
  1388. if(s->ac_pred) i = 63;
  1389. }
  1390. not_coded:
  1391. if(!coded) {
  1392. int k, scale;
  1393. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1394. ac_val2 = ac_val;
  1395. i = 0;
  1396. scale = v->pq * 2 + v->halfpq;
  1397. memset(ac_val2, 0, 16 * 2);
  1398. if(dc_pred_dir) {//left
  1399. ac_val -= 16;
  1400. if(s->ac_pred)
  1401. memcpy(ac_val2, ac_val, 8 * 2);
  1402. } else {//top
  1403. ac_val -= 16 * s->block_wrap[n];
  1404. if(s->ac_pred)
  1405. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1406. }
  1407. /* apply AC prediction if needed */
  1408. if(s->ac_pred) {
  1409. if(dc_pred_dir) { //left
  1410. for(k = 1; k < 8; k++) {
  1411. block[k] = ac_val[k] * scale;
  1412. if(!v->pquantizer && block[k])
  1413. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  1414. }
  1415. } else { //top
  1416. for(k = 1; k < 8; k++) {
  1417. block[k << 3] = ac_val[k + 8] * scale;
  1418. if(!v->pquantizer && block[k << 3])
  1419. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  1420. }
  1421. }
  1422. i = 63;
  1423. }
  1424. }
  1425. s->block_last_index[n] = i;
  1426. return 0;
  1427. }
  1428. /** Decode intra block in intra frames - should be faster than decode_intra_block
  1429. * @param v VC1Context
  1430. * @param block block to decode
  1431. * @param[in] n subblock number
  1432. * @param coded are AC coeffs present or not
  1433. * @param codingset set of VLC to decode data
  1434. * @param mquant quantizer value for this macroblock
  1435. */
  1436. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  1437. {
  1438. GetBitContext *gb = &v->s.gb;
  1439. MpegEncContext *s = &v->s;
  1440. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1441. int i;
  1442. int16_t *dc_val;
  1443. int16_t *ac_val, *ac_val2;
  1444. int dcdiff;
  1445. int a_avail = v->a_avail, c_avail = v->c_avail;
  1446. int use_pred = s->ac_pred;
  1447. int scale;
  1448. int q1, q2 = 0;
  1449. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1450. /* Get DC differential */
  1451. if (n < 4) {
  1452. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1453. } else {
  1454. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1455. }
  1456. if (dcdiff < 0){
  1457. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1458. return -1;
  1459. }
  1460. if (dcdiff)
  1461. {
  1462. if (dcdiff == 119 /* ESC index value */)
  1463. {
  1464. /* TODO: Optimize */
  1465. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1466. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1467. else dcdiff = get_bits(gb, 8);
  1468. }
  1469. else
  1470. {
  1471. if (mquant == 1)
  1472. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1473. else if (mquant == 2)
  1474. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1475. }
  1476. if (get_bits1(gb))
  1477. dcdiff = -dcdiff;
  1478. }
  1479. /* Prediction */
  1480. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  1481. *dc_val = dcdiff;
  1482. /* Store the quantized DC coeff, used for prediction */
  1483. if (n < 4) {
  1484. block[0] = dcdiff * s->y_dc_scale;
  1485. } else {
  1486. block[0] = dcdiff * s->c_dc_scale;
  1487. }
  1488. //AC Decoding
  1489. i = 1;
  1490. /* check if AC is needed at all */
  1491. if(!a_avail && !c_avail) use_pred = 0;
  1492. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1493. ac_val2 = ac_val;
  1494. scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
  1495. if(dc_pred_dir) //left
  1496. ac_val -= 16;
  1497. else //top
  1498. ac_val -= 16 * s->block_wrap[n];
  1499. q1 = s->current_picture.qscale_table[mb_pos];
  1500. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1501. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1502. if(dc_pred_dir && n==1) q2 = q1;
  1503. if(!dc_pred_dir && n==2) q2 = q1;
  1504. if(n==3) q2 = q1;
  1505. if(coded) {
  1506. int last = 0, skip, value;
  1507. const uint8_t *zz_table;
  1508. int k;
  1509. if(v->s.ac_pred) {
  1510. if(!dc_pred_dir)
  1511. zz_table = v->zz_8x8[2];
  1512. else
  1513. zz_table = v->zz_8x8[3];
  1514. } else
  1515. zz_table = v->zz_8x8[1];
  1516. while (!last) {
  1517. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1518. i += skip;
  1519. if(i > 63)
  1520. break;
  1521. block[zz_table[i++]] = value;
  1522. }
  1523. /* apply AC prediction if needed */
  1524. if(use_pred) {
  1525. /* scale predictors if needed*/
  1526. if(q2 && q1!=q2) {
  1527. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1528. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1529. if(dc_pred_dir) { //left
  1530. for(k = 1; k < 8; k++)
  1531. block[k] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1532. } else { //top
  1533. for(k = 1; k < 8; k++)
  1534. block[k << 3] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1535. }
  1536. } else {
  1537. if(dc_pred_dir) { //left
  1538. for(k = 1; k < 8; k++)
  1539. block[k] += ac_val[k];
  1540. } else { //top
  1541. for(k = 1; k < 8; k++)
  1542. block[k << 3] += ac_val[k + 8];
  1543. }
  1544. }
  1545. }
  1546. /* save AC coeffs for further prediction */
  1547. for(k = 1; k < 8; k++) {
  1548. ac_val2[k] = block[k];
  1549. ac_val2[k + 8] = block[k << 3];
  1550. }
  1551. /* scale AC coeffs */
  1552. for(k = 1; k < 64; k++)
  1553. if(block[k]) {
  1554. block[k] *= scale;
  1555. if(!v->pquantizer)
  1556. block[k] += (block[k] < 0) ? -mquant : mquant;
  1557. }
  1558. if(use_pred) i = 63;
  1559. } else { // no AC coeffs
  1560. int k;
  1561. memset(ac_val2, 0, 16 * 2);
  1562. if(dc_pred_dir) {//left
  1563. if(use_pred) {
  1564. memcpy(ac_val2, ac_val, 8 * 2);
  1565. if(q2 && q1!=q2) {
  1566. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1567. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1568. for(k = 1; k < 8; k++)
  1569. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1570. }
  1571. }
  1572. } else {//top
  1573. if(use_pred) {
  1574. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1575. if(q2 && q1!=q2) {
  1576. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1577. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1578. for(k = 1; k < 8; k++)
  1579. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1580. }
  1581. }
  1582. }
  1583. /* apply AC prediction if needed */
  1584. if(use_pred) {
  1585. if(dc_pred_dir) { //left
  1586. for(k = 1; k < 8; k++) {
  1587. block[k] = ac_val2[k] * scale;
  1588. if(!v->pquantizer && block[k])
  1589. block[k] += (block[k] < 0) ? -mquant : mquant;
  1590. }
  1591. } else { //top
  1592. for(k = 1; k < 8; k++) {
  1593. block[k << 3] = ac_val2[k + 8] * scale;
  1594. if(!v->pquantizer && block[k << 3])
  1595. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  1596. }
  1597. }
  1598. i = 63;
  1599. }
  1600. }
  1601. s->block_last_index[n] = i;
  1602. return 0;
  1603. }
  1604. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  1605. * @param v VC1Context
  1606. * @param block block to decode
  1607. * @param[in] n subblock index
  1608. * @param coded are AC coeffs present or not
  1609. * @param mquant block quantizer
  1610. * @param codingset set of VLC to decode data
  1611. */
  1612. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  1613. {
  1614. GetBitContext *gb = &v->s.gb;
  1615. MpegEncContext *s = &v->s;
  1616. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  1617. int i;
  1618. int16_t *dc_val;
  1619. int16_t *ac_val, *ac_val2;
  1620. int dcdiff;
  1621. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1622. int a_avail = v->a_avail, c_avail = v->c_avail;
  1623. int use_pred = s->ac_pred;
  1624. int scale;
  1625. int q1, q2 = 0;
  1626. s->dsp.clear_block(block);
  1627. /* XXX: Guard against dumb values of mquant */
  1628. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  1629. /* Set DC scale - y and c use the same */
  1630. s->y_dc_scale = s->y_dc_scale_table[mquant];
  1631. s->c_dc_scale = s->c_dc_scale_table[mquant];
  1632. /* Get DC differential */
  1633. if (n < 4) {
  1634. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1635. } else {
  1636. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  1637. }
  1638. if (dcdiff < 0){
  1639. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  1640. return -1;
  1641. }
  1642. if (dcdiff)
  1643. {
  1644. if (dcdiff == 119 /* ESC index value */)
  1645. {
  1646. /* TODO: Optimize */
  1647. if (mquant == 1) dcdiff = get_bits(gb, 10);
  1648. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  1649. else dcdiff = get_bits(gb, 8);
  1650. }
  1651. else
  1652. {
  1653. if (mquant == 1)
  1654. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  1655. else if (mquant == 2)
  1656. dcdiff = (dcdiff<<1) + get_bits1(gb) - 1;
  1657. }
  1658. if (get_bits1(gb))
  1659. dcdiff = -dcdiff;
  1660. }
  1661. /* Prediction */
  1662. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  1663. *dc_val = dcdiff;
  1664. /* Store the quantized DC coeff, used for prediction */
  1665. if (n < 4) {
  1666. block[0] = dcdiff * s->y_dc_scale;
  1667. } else {
  1668. block[0] = dcdiff * s->c_dc_scale;
  1669. }
  1670. //AC Decoding
  1671. i = 1;
  1672. /* check if AC is needed at all and adjust direction if needed */
  1673. if(!a_avail) dc_pred_dir = 1;
  1674. if(!c_avail) dc_pred_dir = 0;
  1675. if(!a_avail && !c_avail) use_pred = 0;
  1676. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  1677. ac_val2 = ac_val;
  1678. scale = mquant * 2 + v->halfpq;
  1679. if(dc_pred_dir) //left
  1680. ac_val -= 16;
  1681. else //top
  1682. ac_val -= 16 * s->block_wrap[n];
  1683. q1 = s->current_picture.qscale_table[mb_pos];
  1684. if(dc_pred_dir && c_avail && mb_pos) q2 = s->current_picture.qscale_table[mb_pos - 1];
  1685. if(!dc_pred_dir && a_avail && mb_pos >= s->mb_stride) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  1686. if(dc_pred_dir && n==1) q2 = q1;
  1687. if(!dc_pred_dir && n==2) q2 = q1;
  1688. if(n==3) q2 = q1;
  1689. if(coded) {
  1690. int last = 0, skip, value;
  1691. int k;
  1692. while (!last) {
  1693. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  1694. i += skip;
  1695. if(i > 63)
  1696. break;
  1697. block[v->zz_8x8[0][i++]] = value;
  1698. }
  1699. /* apply AC prediction if needed */
  1700. if(use_pred) {
  1701. /* scale predictors if needed*/
  1702. if(q2 && q1!=q2) {
  1703. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1704. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1705. if(dc_pred_dir) { //left
  1706. for(k = 1; k < 8; k++)
  1707. block[k] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1708. } else { //top
  1709. for(k = 1; k < 8; k++)
  1710. block[k << 3] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1711. }
  1712. } else {
  1713. if(dc_pred_dir) { //left
  1714. for(k = 1; k < 8; k++)
  1715. block[k] += ac_val[k];
  1716. } else { //top
  1717. for(k = 1; k < 8; k++)
  1718. block[k << 3] += ac_val[k + 8];
  1719. }
  1720. }
  1721. }
  1722. /* save AC coeffs for further prediction */
  1723. for(k = 1; k < 8; k++) {
  1724. ac_val2[k] = block[k];
  1725. ac_val2[k + 8] = block[k << 3];
  1726. }
  1727. /* scale AC coeffs */
  1728. for(k = 1; k < 64; k++)
  1729. if(block[k]) {
  1730. block[k] *= scale;
  1731. if(!v->pquantizer)
  1732. block[k] += (block[k] < 0) ? -mquant : mquant;
  1733. }
  1734. if(use_pred) i = 63;
  1735. } else { // no AC coeffs
  1736. int k;
  1737. memset(ac_val2, 0, 16 * 2);
  1738. if(dc_pred_dir) {//left
  1739. if(use_pred) {
  1740. memcpy(ac_val2, ac_val, 8 * 2);
  1741. if(q2 && q1!=q2) {
  1742. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1743. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1744. for(k = 1; k < 8; k++)
  1745. ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1746. }
  1747. }
  1748. } else {//top
  1749. if(use_pred) {
  1750. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  1751. if(q2 && q1!=q2) {
  1752. q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
  1753. q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
  1754. for(k = 1; k < 8; k++)
  1755. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  1756. }
  1757. }
  1758. }
  1759. /* apply AC prediction if needed */
  1760. if(use_pred) {
  1761. if(dc_pred_dir) { //left
  1762. for(k = 1; k < 8; k++) {
  1763. block[k] = ac_val2[k] * scale;
  1764. if(!v->pquantizer && block[k])
  1765. block[k] += (block[k] < 0) ? -mquant : mquant;
  1766. }
  1767. } else { //top
  1768. for(k = 1; k < 8; k++) {
  1769. block[k << 3] = ac_val2[k + 8] * scale;
  1770. if(!v->pquantizer && block[k << 3])
  1771. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  1772. }
  1773. }
  1774. i = 63;
  1775. }
  1776. }
  1777. s->block_last_index[n] = i;
  1778. return 0;
  1779. }
  1780. /** Decode P block
  1781. */
  1782. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block,
  1783. uint8_t *dst, int linesize, int skip_block, int apply_filter, int cbp_top, int cbp_left)
  1784. {
  1785. MpegEncContext *s = &v->s;
  1786. GetBitContext *gb = &s->gb;
  1787. int i, j;
  1788. int subblkpat = 0;
  1789. int scale, off, idx, last, skip, value;
  1790. int ttblk = ttmb & 7;
  1791. int pat = 0;
  1792. s->dsp.clear_block(block);
  1793. if(ttmb == -1) {
  1794. ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  1795. }
  1796. if(ttblk == TT_4X4) {
  1797. subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  1798. }
  1799. if((ttblk != TT_8X8 && ttblk != TT_4X4)
  1800. && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
  1801. || (!v->res_rtm_flag && !first_block))) {
  1802. subblkpat = decode012(gb);
  1803. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  1804. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  1805. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  1806. }
  1807. scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
  1808. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  1809. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  1810. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  1811. ttblk = TT_8X4;
  1812. }
  1813. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  1814. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  1815. ttblk = TT_4X8;
  1816. }
  1817. switch(ttblk) {
  1818. case TT_8X8:
  1819. pat = 0xF;
  1820. i = 0;
  1821. last = 0;
  1822. while (!last) {
  1823. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1824. i += skip;
  1825. if(i > 63)
  1826. break;
  1827. idx = v->zz_8x8[0][i++];
  1828. block[idx] = value * scale;
  1829. if(!v->pquantizer)
  1830. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1831. }
  1832. if(!skip_block){
  1833. if(i==1)
  1834. v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
  1835. else{
  1836. v->vc1dsp.vc1_inv_trans_8x8_add(dst, linesize, block);
  1837. }
  1838. if(apply_filter && cbp_top & 0xC)
  1839. v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
  1840. if(apply_filter && cbp_left & 0xA)
  1841. v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
  1842. }
  1843. break;
  1844. case TT_4X4:
  1845. pat = ~subblkpat & 0xF;
  1846. for(j = 0; j < 4; j++) {
  1847. last = subblkpat & (1 << (3 - j));
  1848. i = 0;
  1849. off = (j & 1) * 4 + (j & 2) * 16;
  1850. while (!last) {
  1851. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1852. i += skip;
  1853. if(i > 15)
  1854. break;
  1855. idx = ff_vc1_simple_progressive_4x4_zz[i++];
  1856. block[idx + off] = value * scale;
  1857. if(!v->pquantizer)
  1858. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  1859. }
  1860. if(!(subblkpat & (1 << (3 - j))) && !skip_block){
  1861. if(i==1)
  1862. v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  1863. else
  1864. v->vc1dsp.vc1_inv_trans_4x4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, block + off);
  1865. if(apply_filter && (j&2 ? pat & (1<<(j-2)) : (cbp_top & (1 << (j + 2)))))
  1866. v->vc1dsp.vc1_v_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  1867. if(apply_filter && (j&1 ? pat & (1<<(j-1)) : (cbp_left & (1 << (j + 1)))))
  1868. v->vc1dsp.vc1_h_loop_filter4(dst + (j&1)*4 + (j&2)*2*linesize, linesize, v->pq);
  1869. }
  1870. }
  1871. break;
  1872. case TT_8X4:
  1873. pat = ~((subblkpat & 2)*6 + (subblkpat & 1)*3) & 0xF;
  1874. for(j = 0; j < 2; j++) {
  1875. last = subblkpat & (1 << (1 - j));
  1876. i = 0;
  1877. off = j * 32;
  1878. while (!last) {
  1879. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1880. i += skip;
  1881. if(i > 31)
  1882. break;
  1883. idx = v->zz_8x4[i++]+off;
  1884. block[idx] = value * scale;
  1885. if(!v->pquantizer)
  1886. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1887. }
  1888. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  1889. if(i==1)
  1890. v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j*4*linesize, linesize, block + off);
  1891. else
  1892. v->vc1dsp.vc1_inv_trans_8x4(dst + j*4*linesize, linesize, block + off);
  1893. if(apply_filter && j ? pat & 0x3 : (cbp_top & 0xC))
  1894. v->vc1dsp.vc1_v_loop_filter8(dst + j*4*linesize, linesize, v->pq);
  1895. if(apply_filter && cbp_left & (2 << j))
  1896. v->vc1dsp.vc1_h_loop_filter4(dst + j*4*linesize, linesize, v->pq);
  1897. }
  1898. }
  1899. break;
  1900. case TT_4X8:
  1901. pat = ~(subblkpat*5) & 0xF;
  1902. for(j = 0; j < 2; j++) {
  1903. last = subblkpat & (1 << (1 - j));
  1904. i = 0;
  1905. off = j * 4;
  1906. while (!last) {
  1907. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  1908. i += skip;
  1909. if(i > 31)
  1910. break;
  1911. idx = v->zz_4x8[i++]+off;
  1912. block[idx] = value * scale;
  1913. if(!v->pquantizer)
  1914. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  1915. }
  1916. if(!(subblkpat & (1 << (1 - j))) && !skip_block){
  1917. if(i==1)
  1918. v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j*4, linesize, block + off);
  1919. else
  1920. v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
  1921. if(apply_filter && cbp_top & (2 << j))
  1922. v->vc1dsp.vc1_v_loop_filter4(dst + j*4, linesize, v->pq);
  1923. if(apply_filter && j ? pat & 0x5 : (cbp_left & 0xA))
  1924. v->vc1dsp.vc1_h_loop_filter8(dst + j*4, linesize, v->pq);
  1925. }
  1926. }
  1927. break;
  1928. }
  1929. return pat;
  1930. }
  1931. /** @} */ // Macroblock group
  1932. static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
  1933. static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  1934. /** Decode one P-frame MB (in Simple/Main profile)
  1935. */
  1936. static int vc1_decode_p_mb(VC1Context *v)
  1937. {
  1938. MpegEncContext *s = &v->s;
  1939. GetBitContext *gb = &s->gb;
  1940. int i;
  1941. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  1942. int cbp; /* cbp decoding stuff */
  1943. int mqdiff, mquant; /* MB quantization */
  1944. int ttmb = v->ttfrm; /* MB Transform type */
  1945. int mb_has_coeffs = 1; /* last_flag */
  1946. int dmv_x, dmv_y; /* Differential MV components */
  1947. int index, index1; /* LUT indexes */
  1948. int val, sign; /* temp values */
  1949. int first_block = 1;
  1950. int dst_idx, off;
  1951. int skipped, fourmv;
  1952. int block_cbp = 0, pat;
  1953. int apply_loop_filter;
  1954. mquant = v->pq; /* Loosy initialization */
  1955. if (v->mv_type_is_raw)
  1956. fourmv = get_bits1(gb);
  1957. else
  1958. fourmv = v->mv_type_mb_plane[mb_pos];
  1959. if (v->skip_is_raw)
  1960. skipped = get_bits1(gb);
  1961. else
  1962. skipped = v->s.mbskip_table[mb_pos];
  1963. apply_loop_filter = s->loop_filter && !(s->avctx->skip_loop_filter >= AVDISCARD_NONKEY);
  1964. if (!fourmv) /* 1MV mode */
  1965. {
  1966. if (!skipped)
  1967. {
  1968. vc1_idct_func idct8x8_fn;
  1969. GET_MVDATA(dmv_x, dmv_y);
  1970. if (s->mb_intra) {
  1971. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  1972. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  1973. }
  1974. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  1975. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  1976. /* FIXME Set DC val for inter block ? */
  1977. if (s->mb_intra && !mb_has_coeffs)
  1978. {
  1979. GET_MQUANT();
  1980. s->ac_pred = get_bits1(gb);
  1981. cbp = 0;
  1982. }
  1983. else if (mb_has_coeffs)
  1984. {
  1985. if (s->mb_intra) s->ac_pred = get_bits1(gb);
  1986. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  1987. GET_MQUANT();
  1988. }
  1989. else
  1990. {
  1991. mquant = v->pq;
  1992. cbp = 0;
  1993. }
  1994. s->current_picture.qscale_table[mb_pos] = mquant;
  1995. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  1996. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
  1997. VC1_TTMB_VLC_BITS, 2);
  1998. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  1999. dst_idx = 0;
  2000. idct8x8_fn = v->vc1dsp.vc1_inv_trans_8x8_put_signed[!!v->rangeredfrm];
  2001. for (i=0; i<6; i++)
  2002. {
  2003. s->dc_val[0][s->block_index[i]] = 0;
  2004. dst_idx += i >> 2;
  2005. val = ((cbp >> (5 - i)) & 1);
  2006. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2007. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2008. if(s->mb_intra) {
  2009. /* check if prediction blocks A and C are available */
  2010. v->a_avail = v->c_avail = 0;
  2011. if(i == 2 || i == 3 || !s->first_slice_line)
  2012. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2013. if(i == 1 || i == 3 || s->mb_x)
  2014. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2015. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2016. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2017. idct8x8_fn(s->dest[dst_idx] + off,
  2018. i & 4 ? s->uvlinesize : s->linesize,
  2019. s->block[i]);
  2020. if(v->pq >= 9 && v->overlap) {
  2021. if(v->c_avail)
  2022. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2023. if(v->a_avail)
  2024. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2025. }
  2026. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2027. int left_cbp, top_cbp;
  2028. if(i & 4){
  2029. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2030. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2031. }else{
  2032. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2033. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2034. }
  2035. if(left_cbp & 0xC)
  2036. v->vc1dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2037. if(top_cbp & 0xA)
  2038. v->vc1dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2039. }
  2040. block_cbp |= 0xF << (i << 2);
  2041. } else if(val) {
  2042. int left_cbp = 0, top_cbp = 0, filter = 0;
  2043. if(apply_loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2044. filter = 1;
  2045. if(i & 4){
  2046. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2047. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2048. }else{
  2049. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2050. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2051. }
  2052. if(left_cbp & 0xC)
  2053. v->vc1dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2054. if(top_cbp & 0xA)
  2055. v->vc1dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2056. }
  2057. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2058. block_cbp |= pat << (i << 2);
  2059. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2060. first_block = 0;
  2061. }
  2062. }
  2063. }
  2064. else //Skipped
  2065. {
  2066. s->mb_intra = 0;
  2067. for(i = 0; i < 6; i++) {
  2068. v->mb_type[0][s->block_index[i]] = 0;
  2069. s->dc_val[0][s->block_index[i]] = 0;
  2070. }
  2071. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  2072. s->current_picture.qscale_table[mb_pos] = 0;
  2073. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  2074. vc1_mc_1mv(v, 0);
  2075. return 0;
  2076. }
  2077. } //1MV mode
  2078. else //4MV mode
  2079. {
  2080. if (!skipped /* unskipped MB */)
  2081. {
  2082. int intra_count = 0, coded_inter = 0;
  2083. int is_intra[6], is_coded[6];
  2084. vc1_idct_func idct8x8_fn;
  2085. /* Get CBPCY */
  2086. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2087. for (i=0; i<6; i++)
  2088. {
  2089. val = ((cbp >> (5 - i)) & 1);
  2090. s->dc_val[0][s->block_index[i]] = 0;
  2091. s->mb_intra = 0;
  2092. if(i < 4) {
  2093. dmv_x = dmv_y = 0;
  2094. s->mb_intra = 0;
  2095. mb_has_coeffs = 0;
  2096. if(val) {
  2097. GET_MVDATA(dmv_x, dmv_y);
  2098. }
  2099. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  2100. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  2101. intra_count += s->mb_intra;
  2102. is_intra[i] = s->mb_intra;
  2103. is_coded[i] = mb_has_coeffs;
  2104. }
  2105. if(i&4){
  2106. is_intra[i] = (intra_count >= 3);
  2107. is_coded[i] = val;
  2108. }
  2109. if(i == 4) vc1_mc_4mv_chroma(v);
  2110. v->mb_type[0][s->block_index[i]] = is_intra[i];
  2111. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  2112. }
  2113. // if there are no coded blocks then don't do anything more
  2114. if(!intra_count && !coded_inter) return 0;
  2115. dst_idx = 0;
  2116. GET_MQUANT();
  2117. s->current_picture.qscale_table[mb_pos] = mquant;
  2118. /* test if block is intra and has pred */
  2119. {
  2120. int intrapred = 0;
  2121. for(i=0; i<6; i++)
  2122. if(is_intra[i]) {
  2123. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  2124. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  2125. intrapred = 1;
  2126. break;
  2127. }
  2128. }
  2129. if(intrapred)s->ac_pred = get_bits1(gb);
  2130. else s->ac_pred = 0;
  2131. }
  2132. if (!v->ttmbf && coded_inter)
  2133. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2134. idct8x8_fn = v->vc1dsp.vc1_inv_trans_8x8_put_signed[!!v->rangeredfrm];
  2135. for (i=0; i<6; i++)
  2136. {
  2137. dst_idx += i >> 2;
  2138. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2139. s->mb_intra = is_intra[i];
  2140. if (is_intra[i]) {
  2141. /* check if prediction blocks A and C are available */
  2142. v->a_avail = v->c_avail = 0;
  2143. if(i == 2 || i == 3 || !s->first_slice_line)
  2144. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2145. if(i == 1 || i == 3 || s->mb_x)
  2146. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2147. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  2148. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2149. idct8x8_fn(s->dest[dst_idx] + off,
  2150. (i&4)?s->uvlinesize:s->linesize,
  2151. s->block[i]);
  2152. if(v->pq >= 9 && v->overlap) {
  2153. if(v->c_avail)
  2154. v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2155. if(v->a_avail)
  2156. v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
  2157. }
  2158. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2159. int left_cbp, top_cbp;
  2160. if(i & 4){
  2161. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2162. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2163. }else{
  2164. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2165. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2166. }
  2167. if(left_cbp & 0xC)
  2168. v->vc1dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2169. if(top_cbp & 0xA)
  2170. v->vc1dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2171. }
  2172. block_cbp |= 0xF << (i << 2);
  2173. } else if(is_coded[i]) {
  2174. int left_cbp = 0, top_cbp = 0, filter = 0;
  2175. if(v->s.loop_filter && s->mb_x && s->mb_x != (s->mb_width - 1) && s->mb_y && s->mb_y != (s->mb_height - 1)){
  2176. filter = 1;
  2177. if(i & 4){
  2178. left_cbp = v->cbp[s->mb_x - 1] >> (i * 4);
  2179. top_cbp = v->cbp[s->mb_x - s->mb_stride] >> (i * 4);
  2180. }else{
  2181. left_cbp = (i & 1) ? (cbp >> ((i-1)*4)) : (v->cbp[s->mb_x - 1] >> ((i+1)*4));
  2182. top_cbp = (i & 2) ? (cbp >> ((i-2)*4)) : (v->cbp[s->mb_x - s->mb_stride] >> ((i+2)*4));
  2183. }
  2184. if(left_cbp & 0xC)
  2185. v->vc1dsp.vc1_v_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2186. if(top_cbp & 0xA)
  2187. v->vc1dsp.vc1_h_loop_filter8(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize, v->pq);
  2188. }
  2189. pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), filter, left_cbp, top_cbp);
  2190. block_cbp |= pat << (i << 2);
  2191. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2192. first_block = 0;
  2193. }
  2194. }
  2195. return 0;
  2196. }
  2197. else //Skipped MB
  2198. {
  2199. s->mb_intra = 0;
  2200. s->current_picture.qscale_table[mb_pos] = 0;
  2201. for (i=0; i<6; i++) {
  2202. v->mb_type[0][s->block_index[i]] = 0;
  2203. s->dc_val[0][s->block_index[i]] = 0;
  2204. }
  2205. for (i=0; i<4; i++)
  2206. {
  2207. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  2208. vc1_mc_4mv_luma(v, i);
  2209. }
  2210. vc1_mc_4mv_chroma(v);
  2211. s->current_picture.qscale_table[mb_pos] = 0;
  2212. return 0;
  2213. }
  2214. }
  2215. v->cbp[s->mb_x] = block_cbp;
  2216. /* Should never happen */
  2217. return -1;
  2218. }
  2219. /** Decode one B-frame MB (in Main profile)
  2220. */
  2221. static void vc1_decode_b_mb(VC1Context *v)
  2222. {
  2223. MpegEncContext *s = &v->s;
  2224. GetBitContext *gb = &s->gb;
  2225. int i;
  2226. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2227. int cbp = 0; /* cbp decoding stuff */
  2228. int mqdiff, mquant; /* MB quantization */
  2229. int ttmb = v->ttfrm; /* MB Transform type */
  2230. int mb_has_coeffs = 0; /* last_flag */
  2231. int index, index1; /* LUT indexes */
  2232. int val, sign; /* temp values */
  2233. int first_block = 1;
  2234. int dst_idx, off;
  2235. int skipped, direct;
  2236. int dmv_x[2], dmv_y[2];
  2237. int bmvtype = BMV_TYPE_BACKWARD;
  2238. vc1_idct_func idct8x8_fn;
  2239. mquant = v->pq; /* Loosy initialization */
  2240. s->mb_intra = 0;
  2241. if (v->dmb_is_raw)
  2242. direct = get_bits1(gb);
  2243. else
  2244. direct = v->direct_mb_plane[mb_pos];
  2245. if (v->skip_is_raw)
  2246. skipped = get_bits1(gb);
  2247. else
  2248. skipped = v->s.mbskip_table[mb_pos];
  2249. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  2250. for(i = 0; i < 6; i++) {
  2251. v->mb_type[0][s->block_index[i]] = 0;
  2252. s->dc_val[0][s->block_index[i]] = 0;
  2253. }
  2254. s->current_picture.qscale_table[mb_pos] = 0;
  2255. if (!direct) {
  2256. if (!skipped) {
  2257. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2258. dmv_x[1] = dmv_x[0];
  2259. dmv_y[1] = dmv_y[0];
  2260. }
  2261. if(skipped || !s->mb_intra) {
  2262. bmvtype = decode012(gb);
  2263. switch(bmvtype) {
  2264. case 0:
  2265. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  2266. break;
  2267. case 1:
  2268. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  2269. break;
  2270. case 2:
  2271. bmvtype = BMV_TYPE_INTERPOLATED;
  2272. dmv_x[0] = dmv_y[0] = 0;
  2273. }
  2274. }
  2275. }
  2276. for(i = 0; i < 6; i++)
  2277. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2278. if (skipped) {
  2279. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  2280. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2281. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2282. return;
  2283. }
  2284. if (direct) {
  2285. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2286. GET_MQUANT();
  2287. s->mb_intra = 0;
  2288. s->current_picture.qscale_table[mb_pos] = mquant;
  2289. if(!v->ttmbf)
  2290. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2291. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  2292. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2293. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2294. } else {
  2295. if(!mb_has_coeffs && !s->mb_intra) {
  2296. /* no coded blocks - effectively skipped */
  2297. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2298. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2299. return;
  2300. }
  2301. if(s->mb_intra && !mb_has_coeffs) {
  2302. GET_MQUANT();
  2303. s->current_picture.qscale_table[mb_pos] = mquant;
  2304. s->ac_pred = get_bits1(gb);
  2305. cbp = 0;
  2306. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2307. } else {
  2308. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  2309. GET_MVDATA(dmv_x[0], dmv_y[0]);
  2310. if(!mb_has_coeffs) {
  2311. /* interpolated skipped block */
  2312. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2313. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2314. return;
  2315. }
  2316. }
  2317. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  2318. if(!s->mb_intra) {
  2319. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  2320. }
  2321. if(s->mb_intra)
  2322. s->ac_pred = get_bits1(gb);
  2323. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  2324. GET_MQUANT();
  2325. s->current_picture.qscale_table[mb_pos] = mquant;
  2326. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  2327. ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  2328. }
  2329. }
  2330. dst_idx = 0;
  2331. idct8x8_fn = v->vc1dsp.vc1_inv_trans_8x8_put_signed[!!v->rangeredfrm];
  2332. for (i=0; i<6; i++)
  2333. {
  2334. s->dc_val[0][s->block_index[i]] = 0;
  2335. dst_idx += i >> 2;
  2336. val = ((cbp >> (5 - i)) & 1);
  2337. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  2338. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  2339. if(s->mb_intra) {
  2340. /* check if prediction blocks A and C are available */
  2341. v->a_avail = v->c_avail = 0;
  2342. if(i == 2 || i == 3 || !s->first_slice_line)
  2343. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  2344. if(i == 1 || i == 3 || s->mb_x)
  2345. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  2346. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  2347. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  2348. idct8x8_fn(s->dest[dst_idx] + off,
  2349. i & 4 ? s->uvlinesize : s->linesize,
  2350. s->block[i]);
  2351. } else if(val) {
  2352. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block, s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize, (i&4) && (s->flags & CODEC_FLAG_GRAY), 0, 0, 0);
  2353. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  2354. first_block = 0;
  2355. }
  2356. }
  2357. }
  2358. /** Decode blocks of I-frame
  2359. */
  2360. static void vc1_decode_i_blocks(VC1Context *v)
  2361. {
  2362. int k;
  2363. MpegEncContext *s = &v->s;
  2364. int cbp, val;
  2365. uint8_t *coded_val;
  2366. int mb_pos;
  2367. vc1_idct_func idct8x8_fn;
  2368. /* select codingmode used for VLC tables selection */
  2369. switch(v->y_ac_table_index){
  2370. case 0:
  2371. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2372. break;
  2373. case 1:
  2374. v->codingset = CS_HIGH_MOT_INTRA;
  2375. break;
  2376. case 2:
  2377. v->codingset = CS_MID_RATE_INTRA;
  2378. break;
  2379. }
  2380. switch(v->c_ac_table_index){
  2381. case 0:
  2382. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2383. break;
  2384. case 1:
  2385. v->codingset2 = CS_HIGH_MOT_INTER;
  2386. break;
  2387. case 2:
  2388. v->codingset2 = CS_MID_RATE_INTER;
  2389. break;
  2390. }
  2391. /* Set DC scale - y and c use the same */
  2392. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  2393. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  2394. //do frame decode
  2395. s->mb_x = s->mb_y = 0;
  2396. s->mb_intra = 1;
  2397. s->first_slice_line = 1;
  2398. if(v->pq >= 9 && v->overlap) {
  2399. idct8x8_fn = v->vc1dsp.vc1_inv_trans_8x8_put_signed[!!v->rangeredfrm];
  2400. } else
  2401. idct8x8_fn = v->vc1dsp.vc1_inv_trans_8x8_put[!!v->rangeredfrm];
  2402. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2403. s->mb_x = 0;
  2404. ff_init_block_index(s);
  2405. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2406. uint8_t *dst[6];
  2407. ff_update_block_index(s);
  2408. dst[0] = s->dest[0];
  2409. dst[1] = dst[0] + 8;
  2410. dst[2] = s->dest[0] + s->linesize * 8;
  2411. dst[3] = dst[2] + 8;
  2412. dst[4] = s->dest[1];
  2413. dst[5] = s->dest[2];
  2414. s->dsp.clear_blocks(s->block[0]);
  2415. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  2416. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2417. s->current_picture.qscale_table[mb_pos] = v->pq;
  2418. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2419. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2420. // do actual MB decoding and displaying
  2421. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2422. v->s.ac_pred = get_bits1(&v->s.gb);
  2423. for(k = 0; k < 6; k++) {
  2424. val = ((cbp >> (5 - k)) & 1);
  2425. if (k < 4) {
  2426. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2427. val = val ^ pred;
  2428. *coded_val = val;
  2429. }
  2430. cbp |= val << (5 - k);
  2431. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  2432. if (k > 3 && (s->flags & CODEC_FLAG_GRAY)) continue;
  2433. idct8x8_fn(dst[k],
  2434. k & 4 ? s->uvlinesize : s->linesize,
  2435. s->block[k]);
  2436. }
  2437. if(v->pq >= 9 && v->overlap) {
  2438. if(s->mb_x) {
  2439. v->vc1dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2440. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2441. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2442. v->vc1dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2443. v->vc1dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2444. }
  2445. }
  2446. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2447. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2448. if(!s->first_slice_line) {
  2449. v->vc1dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2450. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2451. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2452. v->vc1dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2453. v->vc1dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2454. }
  2455. }
  2456. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2457. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2458. }
  2459. if(v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  2460. if(get_bits_count(&s->gb) > v->bits) {
  2461. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2462. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2463. return;
  2464. }
  2465. }
  2466. if (!v->s.loop_filter)
  2467. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2468. else if (s->mb_y)
  2469. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2470. s->first_slice_line = 0;
  2471. }
  2472. if (v->s.loop_filter)
  2473. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2474. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2475. }
  2476. /** Decode blocks of I-frame for advanced profile
  2477. */
  2478. static void vc1_decode_i_blocks_adv(VC1Context *v)
  2479. {
  2480. int k;
  2481. MpegEncContext *s = &v->s;
  2482. int cbp, val;
  2483. uint8_t *coded_val;
  2484. int mb_pos;
  2485. int mquant = v->pq;
  2486. int mqdiff;
  2487. int overlap;
  2488. GetBitContext *gb = &s->gb;
  2489. vc1_idct_func idct8x8_fn;
  2490. /* select codingmode used for VLC tables selection */
  2491. switch(v->y_ac_table_index){
  2492. case 0:
  2493. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2494. break;
  2495. case 1:
  2496. v->codingset = CS_HIGH_MOT_INTRA;
  2497. break;
  2498. case 2:
  2499. v->codingset = CS_MID_RATE_INTRA;
  2500. break;
  2501. }
  2502. switch(v->c_ac_table_index){
  2503. case 0:
  2504. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2505. break;
  2506. case 1:
  2507. v->codingset2 = CS_HIGH_MOT_INTER;
  2508. break;
  2509. case 2:
  2510. v->codingset2 = CS_MID_RATE_INTER;
  2511. break;
  2512. }
  2513. //do frame decode
  2514. s->mb_x = s->mb_y = 0;
  2515. s->mb_intra = 1;
  2516. s->first_slice_line = 1;
  2517. idct8x8_fn = v->vc1dsp.vc1_inv_trans_8x8_put_signed[0];
  2518. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2519. s->mb_x = 0;
  2520. ff_init_block_index(s);
  2521. for(;s->mb_x < s->mb_width; s->mb_x++) {
  2522. uint8_t *dst[6];
  2523. ff_update_block_index(s);
  2524. dst[0] = s->dest[0];
  2525. dst[1] = dst[0] + 8;
  2526. dst[2] = s->dest[0] + s->linesize * 8;
  2527. dst[3] = dst[2] + 8;
  2528. dst[4] = s->dest[1];
  2529. dst[5] = s->dest[2];
  2530. s->dsp.clear_blocks(s->block[0]);
  2531. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2532. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  2533. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  2534. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  2535. // do actual MB decoding and displaying
  2536. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  2537. if(v->acpred_is_raw)
  2538. v->s.ac_pred = get_bits1(&v->s.gb);
  2539. else
  2540. v->s.ac_pred = v->acpred_plane[mb_pos];
  2541. if(v->condover == CONDOVER_SELECT) {
  2542. if(v->overflg_is_raw)
  2543. overlap = get_bits1(&v->s.gb);
  2544. else
  2545. overlap = v->over_flags_plane[mb_pos];
  2546. } else
  2547. overlap = (v->condover == CONDOVER_ALL);
  2548. GET_MQUANT();
  2549. s->current_picture.qscale_table[mb_pos] = mquant;
  2550. /* Set DC scale - y and c use the same */
  2551. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2552. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2553. for(k = 0; k < 6; k++) {
  2554. val = ((cbp >> (5 - k)) & 1);
  2555. if (k < 4) {
  2556. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  2557. val = val ^ pred;
  2558. *coded_val = val;
  2559. }
  2560. cbp |= val << (5 - k);
  2561. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  2562. v->c_avail = !!s->mb_x || (k==1 || k==3);
  2563. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  2564. if (k > 3 && (s->flags & CODEC_FLAG_GRAY)) continue;
  2565. idct8x8_fn(dst[k],
  2566. k & 4 ? s->uvlinesize : s->linesize,
  2567. s->block[k]);
  2568. }
  2569. if(overlap) {
  2570. if(s->mb_x) {
  2571. v->vc1dsp.vc1_h_overlap(s->dest[0], s->linesize);
  2572. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2573. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2574. v->vc1dsp.vc1_h_overlap(s->dest[1], s->uvlinesize);
  2575. v->vc1dsp.vc1_h_overlap(s->dest[2], s->uvlinesize);
  2576. }
  2577. }
  2578. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize);
  2579. v->vc1dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2580. if(!s->first_slice_line) {
  2581. v->vc1dsp.vc1_v_overlap(s->dest[0], s->linesize);
  2582. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize);
  2583. if(!(s->flags & CODEC_FLAG_GRAY)) {
  2584. v->vc1dsp.vc1_v_overlap(s->dest[1], s->uvlinesize);
  2585. v->vc1dsp.vc1_v_overlap(s->dest[2], s->uvlinesize);
  2586. }
  2587. }
  2588. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize);
  2589. v->vc1dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize);
  2590. }
  2591. if(v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  2592. if(get_bits_count(&s->gb) > v->bits) {
  2593. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2594. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  2595. return;
  2596. }
  2597. }
  2598. if (!v->s.loop_filter)
  2599. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2600. else if (s->mb_y)
  2601. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2602. s->first_slice_line = 0;
  2603. }
  2604. if (v->s.loop_filter)
  2605. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2606. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2607. }
  2608. static void vc1_decode_p_blocks(VC1Context *v)
  2609. {
  2610. MpegEncContext *s = &v->s;
  2611. /* select codingmode used for VLC tables selection */
  2612. switch(v->c_ac_table_index){
  2613. case 0:
  2614. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2615. break;
  2616. case 1:
  2617. v->codingset = CS_HIGH_MOT_INTRA;
  2618. break;
  2619. case 2:
  2620. v->codingset = CS_MID_RATE_INTRA;
  2621. break;
  2622. }
  2623. switch(v->c_ac_table_index){
  2624. case 0:
  2625. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2626. break;
  2627. case 1:
  2628. v->codingset2 = CS_HIGH_MOT_INTER;
  2629. break;
  2630. case 2:
  2631. v->codingset2 = CS_MID_RATE_INTER;
  2632. break;
  2633. }
  2634. s->first_slice_line = 1;
  2635. memset(v->cbp_base, 0, sizeof(v->cbp_base[0])*2*s->mb_stride);
  2636. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2637. s->mb_x = 0;
  2638. ff_init_block_index(s);
  2639. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2640. ff_update_block_index(s);
  2641. vc1_decode_p_mb(v);
  2642. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2643. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2644. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2645. return;
  2646. }
  2647. }
  2648. memmove(v->cbp_base, v->cbp, sizeof(v->cbp_base[0])*s->mb_stride);
  2649. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2650. s->first_slice_line = 0;
  2651. }
  2652. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2653. }
  2654. static void vc1_decode_b_blocks(VC1Context *v)
  2655. {
  2656. MpegEncContext *s = &v->s;
  2657. /* select codingmode used for VLC tables selection */
  2658. switch(v->c_ac_table_index){
  2659. case 0:
  2660. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  2661. break;
  2662. case 1:
  2663. v->codingset = CS_HIGH_MOT_INTRA;
  2664. break;
  2665. case 2:
  2666. v->codingset = CS_MID_RATE_INTRA;
  2667. break;
  2668. }
  2669. switch(v->c_ac_table_index){
  2670. case 0:
  2671. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  2672. break;
  2673. case 1:
  2674. v->codingset2 = CS_HIGH_MOT_INTER;
  2675. break;
  2676. case 2:
  2677. v->codingset2 = CS_MID_RATE_INTER;
  2678. break;
  2679. }
  2680. s->first_slice_line = 1;
  2681. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2682. s->mb_x = 0;
  2683. ff_init_block_index(s);
  2684. for(; s->mb_x < s->mb_width; s->mb_x++) {
  2685. ff_update_block_index(s);
  2686. vc1_decode_b_mb(v);
  2687. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  2688. ff_er_add_slice(s, 0, 0, s->mb_x, s->mb_y, (AC_END|DC_END|MV_END));
  2689. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  2690. return;
  2691. }
  2692. if(v->s.loop_filter) vc1_loop_filter_iblk(v, v->pq);
  2693. }
  2694. if (!v->s.loop_filter)
  2695. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2696. else if (s->mb_y)
  2697. ff_draw_horiz_band(s, (s->mb_y-1) * 16, 16);
  2698. s->first_slice_line = 0;
  2699. }
  2700. if (v->s.loop_filter)
  2701. ff_draw_horiz_band(s, (s->mb_height-1)*16, 16);
  2702. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2703. }
  2704. static void vc1_decode_skip_blocks(VC1Context *v)
  2705. {
  2706. MpegEncContext *s = &v->s;
  2707. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  2708. s->first_slice_line = 1;
  2709. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  2710. s->mb_x = 0;
  2711. ff_init_block_index(s);
  2712. ff_update_block_index(s);
  2713. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  2714. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2715. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  2716. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  2717. s->first_slice_line = 0;
  2718. }
  2719. s->pict_type = FF_P_TYPE;
  2720. }
  2721. static void vc1_decode_blocks(VC1Context *v)
  2722. {
  2723. v->s.esc3_level_length = 0;
  2724. if(v->x8_type){
  2725. ff_intrax8_decode_picture(&v->x8, 2*v->pq+v->halfpq, v->pq*(!v->pquantizer) );
  2726. }else{
  2727. switch(v->s.pict_type) {
  2728. case FF_I_TYPE:
  2729. if(v->profile == PROFILE_ADVANCED)
  2730. vc1_decode_i_blocks_adv(v);
  2731. else
  2732. vc1_decode_i_blocks(v);
  2733. break;
  2734. case FF_P_TYPE:
  2735. if(v->p_frame_skipped)
  2736. vc1_decode_skip_blocks(v);
  2737. else
  2738. vc1_decode_p_blocks(v);
  2739. break;
  2740. case FF_B_TYPE:
  2741. if(v->bi_type){
  2742. if(v->profile == PROFILE_ADVANCED)
  2743. vc1_decode_i_blocks_adv(v);
  2744. else
  2745. vc1_decode_i_blocks(v);
  2746. }else
  2747. vc1_decode_b_blocks(v);
  2748. break;
  2749. }
  2750. }
  2751. }
  2752. /** Initialize a VC1/WMV3 decoder
  2753. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2754. * @todo TODO: Decypher remaining bits in extra_data
  2755. */
  2756. static av_cold int vc1_decode_init(AVCodecContext *avctx)
  2757. {
  2758. VC1Context *v = avctx->priv_data;
  2759. MpegEncContext *s = &v->s;
  2760. GetBitContext gb;
  2761. int i;
  2762. if (!avctx->extradata_size || !avctx->extradata) return -1;
  2763. if (!(avctx->flags & CODEC_FLAG_GRAY))
  2764. avctx->pix_fmt = avctx->get_format(avctx, avctx->codec->pix_fmts);
  2765. else
  2766. avctx->pix_fmt = PIX_FMT_GRAY8;
  2767. avctx->hwaccel = ff_find_hwaccel(avctx->codec->id, avctx->pix_fmt);
  2768. v->s.avctx = avctx;
  2769. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  2770. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  2771. if(avctx->idct_algo==FF_IDCT_AUTO){
  2772. avctx->idct_algo=FF_IDCT_WMV2;
  2773. }
  2774. if(ff_msmpeg4_decode_init(avctx) < 0)
  2775. return -1;
  2776. if (vc1_init_common(v) < 0) return -1;
  2777. ff_vc1dsp_init(&v->vc1dsp);
  2778. for (i = 0; i < 64; i++) {
  2779. #define transpose(x) ((x>>3) | ((x&7)<<3))
  2780. v->zz_8x8[0][i] = transpose(wmv1_scantable[0][i]);
  2781. v->zz_8x8[1][i] = transpose(wmv1_scantable[1][i]);
  2782. v->zz_8x8[2][i] = transpose(wmv1_scantable[2][i]);
  2783. v->zz_8x8[3][i] = transpose(wmv1_scantable[3][i]);
  2784. }
  2785. avctx->coded_width = avctx->width;
  2786. avctx->coded_height = avctx->height;
  2787. if (avctx->codec_id == CODEC_ID_WMV3)
  2788. {
  2789. int count = 0;
  2790. // looks like WMV3 has a sequence header stored in the extradata
  2791. // advanced sequence header may be before the first frame
  2792. // the last byte of the extradata is a version number, 1 for the
  2793. // samples we can decode
  2794. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  2795. if (vc1_decode_sequence_header(avctx, v, &gb) < 0)
  2796. return -1;
  2797. count = avctx->extradata_size*8 - get_bits_count(&gb);
  2798. if (count>0)
  2799. {
  2800. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  2801. count, get_bits(&gb, count));
  2802. }
  2803. else if (count < 0)
  2804. {
  2805. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  2806. }
  2807. } else { // VC1/WVC1
  2808. const uint8_t *start = avctx->extradata;
  2809. uint8_t *end = avctx->extradata + avctx->extradata_size;
  2810. const uint8_t *next;
  2811. int size, buf2_size;
  2812. uint8_t *buf2 = NULL;
  2813. int seq_initialized = 0, ep_initialized = 0;
  2814. if(avctx->extradata_size < 16) {
  2815. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", avctx->extradata_size);
  2816. return -1;
  2817. }
  2818. buf2 = av_mallocz(avctx->extradata_size + FF_INPUT_BUFFER_PADDING_SIZE);
  2819. start = find_next_marker(start, end); // in WVC1 extradata first byte is its size, but can be 0 in mkv
  2820. next = start;
  2821. for(; next < end; start = next){
  2822. next = find_next_marker(start + 4, end);
  2823. size = next - start - 4;
  2824. if(size <= 0) continue;
  2825. buf2_size = vc1_unescape_buffer(start + 4, size, buf2);
  2826. init_get_bits(&gb, buf2, buf2_size * 8);
  2827. switch(AV_RB32(start)){
  2828. case VC1_CODE_SEQHDR:
  2829. if(vc1_decode_sequence_header(avctx, v, &gb) < 0){
  2830. av_free(buf2);
  2831. return -1;
  2832. }
  2833. seq_initialized = 1;
  2834. break;
  2835. case VC1_CODE_ENTRYPOINT:
  2836. if(vc1_decode_entry_point(avctx, v, &gb) < 0){
  2837. av_free(buf2);
  2838. return -1;
  2839. }
  2840. ep_initialized = 1;
  2841. break;
  2842. }
  2843. }
  2844. av_free(buf2);
  2845. if(!seq_initialized || !ep_initialized){
  2846. av_log(avctx, AV_LOG_ERROR, "Incomplete extradata\n");
  2847. return -1;
  2848. }
  2849. }
  2850. avctx->profile = v->profile;
  2851. if (v->profile == PROFILE_ADVANCED)
  2852. avctx->level = v->level;
  2853. avctx->has_b_frames= !!(avctx->max_b_frames);
  2854. s->low_delay = !avctx->has_b_frames;
  2855. s->mb_width = (avctx->coded_width+15)>>4;
  2856. s->mb_height = (avctx->coded_height+15)>>4;
  2857. /* Allocate mb bitplanes */
  2858. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2859. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  2860. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  2861. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  2862. v->cbp_base = av_malloc(sizeof(v->cbp_base[0]) * 2 * s->mb_stride);
  2863. v->cbp = v->cbp_base + s->mb_stride;
  2864. /* allocate block type info in that way so it could be used with s->block_index[] */
  2865. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  2866. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  2867. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  2868. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  2869. /* Init coded blocks info */
  2870. if (v->profile == PROFILE_ADVANCED)
  2871. {
  2872. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  2873. // return -1;
  2874. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  2875. // return -1;
  2876. }
  2877. ff_intrax8_common_init(&v->x8,s);
  2878. return 0;
  2879. }
  2880. /** Decode a VC1/WMV3 frame
  2881. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  2882. */
  2883. static int vc1_decode_frame(AVCodecContext *avctx,
  2884. void *data, int *data_size,
  2885. AVPacket *avpkt)
  2886. {
  2887. const uint8_t *buf = avpkt->data;
  2888. int buf_size = avpkt->size;
  2889. VC1Context *v = avctx->priv_data;
  2890. MpegEncContext *s = &v->s;
  2891. AVFrame *pict = data;
  2892. uint8_t *buf2 = NULL;
  2893. const uint8_t *buf_start = buf;
  2894. /* no supplementary picture */
  2895. if (buf_size == 0 || (buf_size == 4 && AV_RB32(buf) == VC1_CODE_ENDOFSEQ)) {
  2896. /* special case for last picture */
  2897. if (s->low_delay==0 && s->next_picture_ptr) {
  2898. *pict= *(AVFrame*)s->next_picture_ptr;
  2899. s->next_picture_ptr= NULL;
  2900. *data_size = sizeof(AVFrame);
  2901. }
  2902. return 0;
  2903. }
  2904. /* We need to set current_picture_ptr before reading the header,
  2905. * otherwise we cannot store anything in there. */
  2906. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  2907. int i= ff_find_unused_picture(s, 0);
  2908. s->current_picture_ptr= &s->picture[i];
  2909. }
  2910. if (s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU){
  2911. if (v->profile < PROFILE_ADVANCED)
  2912. avctx->pix_fmt = PIX_FMT_VDPAU_WMV3;
  2913. else
  2914. avctx->pix_fmt = PIX_FMT_VDPAU_VC1;
  2915. }
  2916. //for advanced profile we may need to parse and unescape data
  2917. if (avctx->codec_id == CODEC_ID_VC1) {
  2918. int buf_size2 = 0;
  2919. buf2 = av_mallocz(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  2920. if(IS_MARKER(AV_RB32(buf))){ /* frame starts with marker and needs to be parsed */
  2921. const uint8_t *start, *end, *next;
  2922. int size;
  2923. next = buf;
  2924. for(start = buf, end = buf + buf_size; next < end; start = next){
  2925. next = find_next_marker(start + 4, end);
  2926. size = next - start - 4;
  2927. if(size <= 0) continue;
  2928. switch(AV_RB32(start)){
  2929. case VC1_CODE_FRAME:
  2930. if (avctx->hwaccel ||
  2931. s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  2932. buf_start = start;
  2933. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  2934. break;
  2935. case VC1_CODE_ENTRYPOINT: /* it should be before frame data */
  2936. buf_size2 = vc1_unescape_buffer(start + 4, size, buf2);
  2937. init_get_bits(&s->gb, buf2, buf_size2*8);
  2938. vc1_decode_entry_point(avctx, v, &s->gb);
  2939. break;
  2940. case VC1_CODE_SLICE:
  2941. av_log(avctx, AV_LOG_ERROR, "Sliced decoding is not implemented (yet)\n");
  2942. av_free(buf2);
  2943. return -1;
  2944. }
  2945. }
  2946. }else if(v->interlace && ((buf[0] & 0xC0) == 0xC0)){ /* WVC1 interlaced stores both fields divided by marker */
  2947. const uint8_t *divider;
  2948. divider = find_next_marker(buf, buf + buf_size);
  2949. if((divider == (buf + buf_size)) || AV_RB32(divider) != VC1_CODE_FIELD){
  2950. av_log(avctx, AV_LOG_ERROR, "Error in WVC1 interlaced frame\n");
  2951. av_free(buf2);
  2952. return -1;
  2953. }
  2954. buf_size2 = vc1_unescape_buffer(buf, divider - buf, buf2);
  2955. // TODO
  2956. if(!v->warn_interlaced++)
  2957. av_log(v->s.avctx, AV_LOG_ERROR, "Interlaced WVC1 support is not implemented\n");
  2958. av_free(buf2);return -1;
  2959. }else{
  2960. buf_size2 = vc1_unescape_buffer(buf, buf_size, buf2);
  2961. }
  2962. init_get_bits(&s->gb, buf2, buf_size2*8);
  2963. } else
  2964. init_get_bits(&s->gb, buf, buf_size*8);
  2965. // do parse frame header
  2966. if(v->profile < PROFILE_ADVANCED) {
  2967. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  2968. av_free(buf2);
  2969. return -1;
  2970. }
  2971. } else {
  2972. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  2973. av_free(buf2);
  2974. return -1;
  2975. }
  2976. }
  2977. if(v->res_sprite && (s->pict_type!=FF_I_TYPE)){
  2978. av_free(buf2);
  2979. return -1;
  2980. }
  2981. // for hurry_up==5
  2982. s->current_picture.pict_type= s->pict_type;
  2983. s->current_picture.key_frame= s->pict_type == FF_I_TYPE;
  2984. /* skip B-frames if we don't have reference frames */
  2985. if(s->last_picture_ptr==NULL && (s->pict_type==FF_B_TYPE || s->dropable)){
  2986. av_free(buf2);
  2987. return -1;//buf_size;
  2988. }
  2989. /* skip b frames if we are in a hurry */
  2990. if(avctx->hurry_up && s->pict_type==FF_B_TYPE) return -1;//buf_size;
  2991. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==FF_B_TYPE)
  2992. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=FF_I_TYPE)
  2993. || avctx->skip_frame >= AVDISCARD_ALL) {
  2994. av_free(buf2);
  2995. return buf_size;
  2996. }
  2997. /* skip everything if we are in a hurry>=5 */
  2998. if(avctx->hurry_up>=5) {
  2999. av_free(buf2);
  3000. return -1;//buf_size;
  3001. }
  3002. if(s->next_p_frame_damaged){
  3003. if(s->pict_type==FF_B_TYPE)
  3004. return buf_size;
  3005. else
  3006. s->next_p_frame_damaged=0;
  3007. }
  3008. if(MPV_frame_start(s, avctx) < 0) {
  3009. av_free(buf2);
  3010. return -1;
  3011. }
  3012. s->me.qpel_put= s->dsp.put_qpel_pixels_tab;
  3013. s->me.qpel_avg= s->dsp.avg_qpel_pixels_tab;
  3014. if ((CONFIG_VC1_VDPAU_DECODER)
  3015. &&s->avctx->codec->capabilities&CODEC_CAP_HWACCEL_VDPAU)
  3016. ff_vdpau_vc1_decode_picture(s, buf_start, (buf + buf_size) - buf_start);
  3017. else if (avctx->hwaccel) {
  3018. if (avctx->hwaccel->start_frame(avctx, buf, buf_size) < 0)
  3019. return -1;
  3020. if (avctx->hwaccel->decode_slice(avctx, buf_start, (buf + buf_size) - buf_start) < 0)
  3021. return -1;
  3022. if (avctx->hwaccel->end_frame(avctx) < 0)
  3023. return -1;
  3024. } else {
  3025. ff_er_frame_start(s);
  3026. v->bits = buf_size * 8;
  3027. vc1_decode_blocks(v);
  3028. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3029. // if(get_bits_count(&s->gb) > buf_size * 8)
  3030. // return -1;
  3031. ff_er_frame_end(s);
  3032. }
  3033. MPV_frame_end(s);
  3034. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3035. assert(s->current_picture.pict_type == s->pict_type);
  3036. if (s->pict_type == FF_B_TYPE || s->low_delay) {
  3037. *pict= *(AVFrame*)s->current_picture_ptr;
  3038. } else if (s->last_picture_ptr != NULL) {
  3039. *pict= *(AVFrame*)s->last_picture_ptr;
  3040. }
  3041. if(s->last_picture_ptr || s->low_delay){
  3042. *data_size = sizeof(AVFrame);
  3043. ff_print_debug_info(s, pict);
  3044. }
  3045. av_free(buf2);
  3046. return buf_size;
  3047. }
  3048. /** Close a VC1/WMV3 decoder
  3049. * @warning Initial try at using MpegEncContext stuff
  3050. */
  3051. static av_cold int vc1_decode_end(AVCodecContext *avctx)
  3052. {
  3053. VC1Context *v = avctx->priv_data;
  3054. av_freep(&v->hrd_rate);
  3055. av_freep(&v->hrd_buffer);
  3056. MPV_common_end(&v->s);
  3057. av_freep(&v->mv_type_mb_plane);
  3058. av_freep(&v->direct_mb_plane);
  3059. av_freep(&v->acpred_plane);
  3060. av_freep(&v->over_flags_plane);
  3061. av_freep(&v->mb_type_base);
  3062. av_freep(&v->cbp_base);
  3063. ff_intrax8_common_end(&v->x8);
  3064. return 0;
  3065. }
  3066. static const AVProfile profiles[] = {
  3067. { FF_PROFILE_VC1_SIMPLE, "Simple" },
  3068. { FF_PROFILE_VC1_MAIN, "Main" },
  3069. { FF_PROFILE_VC1_COMPLEX, "Complex" },
  3070. { FF_PROFILE_VC1_ADVANCED, "Advanced" },
  3071. { FF_PROFILE_UNKNOWN },
  3072. };
  3073. AVCodec ff_vc1_decoder = {
  3074. "vc1",
  3075. AVMEDIA_TYPE_VIDEO,
  3076. CODEC_ID_VC1,
  3077. sizeof(VC1Context),
  3078. vc1_decode_init,
  3079. NULL,
  3080. vc1_decode_end,
  3081. vc1_decode_frame,
  3082. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3083. NULL,
  3084. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1"),
  3085. .pix_fmts = ff_hwaccel_pixfmt_list_420,
  3086. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  3087. };
  3088. #if CONFIG_WMV3_DECODER
  3089. AVCodec ff_wmv3_decoder = {
  3090. "wmv3",
  3091. AVMEDIA_TYPE_VIDEO,
  3092. CODEC_ID_WMV3,
  3093. sizeof(VC1Context),
  3094. vc1_decode_init,
  3095. NULL,
  3096. vc1_decode_end,
  3097. vc1_decode_frame,
  3098. CODEC_CAP_DR1 | CODEC_CAP_DELAY,
  3099. NULL,
  3100. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9"),
  3101. .pix_fmts = ff_hwaccel_pixfmt_list_420,
  3102. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  3103. };
  3104. #endif
  3105. #if CONFIG_WMV3_VDPAU_DECODER
  3106. AVCodec ff_wmv3_vdpau_decoder = {
  3107. "wmv3_vdpau",
  3108. AVMEDIA_TYPE_VIDEO,
  3109. CODEC_ID_WMV3,
  3110. sizeof(VC1Context),
  3111. vc1_decode_init,
  3112. NULL,
  3113. vc1_decode_end,
  3114. vc1_decode_frame,
  3115. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3116. NULL,
  3117. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Video 9 VDPAU"),
  3118. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_WMV3, PIX_FMT_NONE},
  3119. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  3120. };
  3121. #endif
  3122. #if CONFIG_VC1_VDPAU_DECODER
  3123. AVCodec ff_vc1_vdpau_decoder = {
  3124. "vc1_vdpau",
  3125. AVMEDIA_TYPE_VIDEO,
  3126. CODEC_ID_VC1,
  3127. sizeof(VC1Context),
  3128. vc1_decode_init,
  3129. NULL,
  3130. vc1_decode_end,
  3131. vc1_decode_frame,
  3132. CODEC_CAP_DR1 | CODEC_CAP_DELAY | CODEC_CAP_HWACCEL_VDPAU,
  3133. NULL,
  3134. .long_name = NULL_IF_CONFIG_SMALL("SMPTE VC-1 VDPAU"),
  3135. .pix_fmts = (const enum PixelFormat[]){PIX_FMT_VDPAU_VC1, PIX_FMT_NONE},
  3136. .profiles = NULL_IF_CONFIG_SMALL(profiles)
  3137. };
  3138. #endif