You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

272 lines
7.8KB

  1. /**
  2. * LPC utility code
  3. * Copyright (c) 2006 Justin Ruggles <justin.ruggles@gmail.com>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. #include "libavutil/lls.h"
  22. #define LPC_USE_DOUBLE
  23. #include "lpc.h"
  24. /**
  25. * Apply Welch window function to audio block
  26. */
  27. static void lpc_apply_welch_window_c(const int32_t *data, int len,
  28. double *w_data)
  29. {
  30. int i, n2;
  31. double w;
  32. double c;
  33. assert(!(len&1)); //the optimization in r11881 does not support odd len
  34. //if someone wants odd len extend the change in r11881
  35. n2 = (len >> 1);
  36. c = 2.0 / (len - 1.0);
  37. w_data+=n2;
  38. data+=n2;
  39. for(i=0; i<n2; i++) {
  40. w = c - n2 + i;
  41. w = 1.0 - (w * w);
  42. w_data[-i-1] = data[-i-1] * w;
  43. w_data[+i ] = data[+i ] * w;
  44. }
  45. }
  46. /**
  47. * Calculate autocorrelation data from audio samples
  48. * A Welch window function is applied before calculation.
  49. */
  50. static void lpc_compute_autocorr_c(const double *data, int len, int lag,
  51. double *autoc)
  52. {
  53. int i, j;
  54. for(j=0; j<lag; j+=2){
  55. double sum0 = 1.0, sum1 = 1.0;
  56. for(i=j; i<len; i++){
  57. sum0 += data[i] * data[i-j];
  58. sum1 += data[i] * data[i-j-1];
  59. }
  60. autoc[j ] = sum0;
  61. autoc[j+1] = sum1;
  62. }
  63. if(j==lag){
  64. double sum = 1.0;
  65. for(i=j-1; i<len; i+=2){
  66. sum += data[i ] * data[i-j ]
  67. + data[i+1] * data[i-j+1];
  68. }
  69. autoc[j] = sum;
  70. }
  71. }
  72. /**
  73. * Quantize LPC coefficients
  74. */
  75. static void quantize_lpc_coefs(double *lpc_in, int order, int precision,
  76. int32_t *lpc_out, int *shift, int max_shift, int zero_shift)
  77. {
  78. int i;
  79. double cmax, error;
  80. int32_t qmax;
  81. int sh;
  82. /* define maximum levels */
  83. qmax = (1 << (precision - 1)) - 1;
  84. /* find maximum coefficient value */
  85. cmax = 0.0;
  86. for(i=0; i<order; i++) {
  87. cmax= FFMAX(cmax, fabs(lpc_in[i]));
  88. }
  89. /* if maximum value quantizes to zero, return all zeros */
  90. if(cmax * (1 << max_shift) < 1.0) {
  91. *shift = zero_shift;
  92. memset(lpc_out, 0, sizeof(int32_t) * order);
  93. return;
  94. }
  95. /* calculate level shift which scales max coeff to available bits */
  96. sh = max_shift;
  97. while((cmax * (1 << sh) > qmax) && (sh > 0)) {
  98. sh--;
  99. }
  100. /* since negative shift values are unsupported in decoder, scale down
  101. coefficients instead */
  102. if(sh == 0 && cmax > qmax) {
  103. double scale = ((double)qmax) / cmax;
  104. for(i=0; i<order; i++) {
  105. lpc_in[i] *= scale;
  106. }
  107. }
  108. /* output quantized coefficients and level shift */
  109. error=0;
  110. for(i=0; i<order; i++) {
  111. error -= lpc_in[i] * (1 << sh);
  112. lpc_out[i] = av_clip(lrintf(error), -qmax, qmax);
  113. error -= lpc_out[i];
  114. }
  115. *shift = sh;
  116. }
  117. static int estimate_best_order(double *ref, int min_order, int max_order)
  118. {
  119. int i, est;
  120. est = min_order;
  121. for(i=max_order-1; i>=min_order-1; i--) {
  122. if(ref[i] > 0.10) {
  123. est = i+1;
  124. break;
  125. }
  126. }
  127. return est;
  128. }
  129. /**
  130. * Calculate LPC coefficients for multiple orders
  131. *
  132. * @param use_lpc LPC method for determining coefficients
  133. * 0 = LPC with fixed pre-defined coeffs
  134. * 1 = LPC with coeffs determined by Levinson-Durbin recursion
  135. * 2+ = LPC with coeffs determined by Cholesky factorization using (use_lpc-1) passes.
  136. */
  137. int ff_lpc_calc_coefs(LPCContext *s,
  138. const int32_t *samples, int blocksize, int min_order,
  139. int max_order, int precision,
  140. int32_t coefs[][MAX_LPC_ORDER], int *shift,
  141. enum AVLPCType lpc_type, int lpc_passes,
  142. int omethod, int max_shift, int zero_shift)
  143. {
  144. double autoc[MAX_LPC_ORDER+1];
  145. double ref[MAX_LPC_ORDER];
  146. double lpc[MAX_LPC_ORDER][MAX_LPC_ORDER];
  147. int i, j, pass;
  148. int opt_order;
  149. assert(max_order >= MIN_LPC_ORDER && max_order <= MAX_LPC_ORDER &&
  150. lpc_type > AV_LPC_TYPE_FIXED);
  151. /* reinit LPC context if parameters have changed */
  152. if (blocksize != s->blocksize || max_order != s->max_order ||
  153. lpc_type != s->lpc_type) {
  154. ff_lpc_end(s);
  155. ff_lpc_init(s, blocksize, max_order, lpc_type);
  156. }
  157. if (lpc_type == AV_LPC_TYPE_LEVINSON) {
  158. double *windowed_samples = s->windowed_samples + max_order;
  159. s->lpc_apply_welch_window(samples, blocksize, windowed_samples);
  160. s->lpc_compute_autocorr(windowed_samples, blocksize, max_order, autoc);
  161. compute_lpc_coefs(autoc, max_order, &lpc[0][0], MAX_LPC_ORDER, 0, 1);
  162. for(i=0; i<max_order; i++)
  163. ref[i] = fabs(lpc[i][i]);
  164. } else if (lpc_type == AV_LPC_TYPE_CHOLESKY) {
  165. LLSModel m[2];
  166. double var[MAX_LPC_ORDER+1], av_uninit(weight);
  167. for(pass=0; pass<lpc_passes; pass++){
  168. av_init_lls(&m[pass&1], max_order);
  169. weight=0;
  170. for(i=max_order; i<blocksize; i++){
  171. for(j=0; j<=max_order; j++)
  172. var[j]= samples[i-j];
  173. if(pass){
  174. double eval, inv, rinv;
  175. eval= av_evaluate_lls(&m[(pass-1)&1], var+1, max_order-1);
  176. eval= (512>>pass) + fabs(eval - var[0]);
  177. inv = 1/eval;
  178. rinv = sqrt(inv);
  179. for(j=0; j<=max_order; j++)
  180. var[j] *= rinv;
  181. weight += inv;
  182. }else
  183. weight++;
  184. av_update_lls(&m[pass&1], var, 1.0);
  185. }
  186. av_solve_lls(&m[pass&1], 0.001, 0);
  187. }
  188. for(i=0; i<max_order; i++){
  189. for(j=0; j<max_order; j++)
  190. lpc[i][j]=-m[(pass-1)&1].coeff[i][j];
  191. ref[i]= sqrt(m[(pass-1)&1].variance[i] / weight) * (blocksize - max_order) / 4000;
  192. }
  193. for(i=max_order-1; i>0; i--)
  194. ref[i] = ref[i-1] - ref[i];
  195. }
  196. opt_order = max_order;
  197. if(omethod == ORDER_METHOD_EST) {
  198. opt_order = estimate_best_order(ref, min_order, max_order);
  199. i = opt_order-1;
  200. quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
  201. } else {
  202. for(i=min_order-1; i<max_order; i++) {
  203. quantize_lpc_coefs(lpc[i], i+1, precision, coefs[i], &shift[i], max_shift, zero_shift);
  204. }
  205. }
  206. return opt_order;
  207. }
  208. av_cold int ff_lpc_init(LPCContext *s, int blocksize, int max_order,
  209. enum AVLPCType lpc_type)
  210. {
  211. s->blocksize = blocksize;
  212. s->max_order = max_order;
  213. s->lpc_type = lpc_type;
  214. if (lpc_type == AV_LPC_TYPE_LEVINSON) {
  215. s->windowed_samples = av_mallocz((blocksize + max_order + 2) *
  216. sizeof(*s->windowed_samples));
  217. if (!s->windowed_samples)
  218. return AVERROR(ENOMEM);
  219. } else {
  220. s->windowed_samples = NULL;
  221. }
  222. s->lpc_apply_welch_window = lpc_apply_welch_window_c;
  223. s->lpc_compute_autocorr = lpc_compute_autocorr_c;
  224. if (HAVE_MMX)
  225. ff_lpc_init_x86(s);
  226. return 0;
  227. }
  228. av_cold void ff_lpc_end(LPCContext *s)
  229. {
  230. av_freep(&s->windowed_samples);
  231. }