You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

305 lines
7.6KB

  1. /*
  2. * FFT/IFFT transforms
  3. * Copyright (c) 2008 Loren Merritt
  4. * Copyright (c) 2002 Fabrice Bellard
  5. * Partly based on libdjbfft by D. J. Bernstein
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file
  25. * FFT/IFFT transforms.
  26. */
  27. #include <stdlib.h>
  28. #include <string.h>
  29. #include "libavutil/mathematics.h"
  30. #include "fft.h"
  31. /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
  32. #if !CONFIG_HARDCODED_TABLES
  33. COSTABLE(16);
  34. COSTABLE(32);
  35. COSTABLE(64);
  36. COSTABLE(128);
  37. COSTABLE(256);
  38. COSTABLE(512);
  39. COSTABLE(1024);
  40. COSTABLE(2048);
  41. COSTABLE(4096);
  42. COSTABLE(8192);
  43. COSTABLE(16384);
  44. COSTABLE(32768);
  45. COSTABLE(65536);
  46. #endif
  47. COSTABLE_CONST FFTSample * const ff_cos_tabs[] = {
  48. NULL, NULL, NULL, NULL,
  49. ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
  50. ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
  51. };
  52. static void ff_fft_permute_c(FFTContext *s, FFTComplex *z);
  53. static void ff_fft_calc_c(FFTContext *s, FFTComplex *z);
  54. static int split_radix_permutation(int i, int n, int inverse)
  55. {
  56. int m;
  57. if(n <= 2) return i&1;
  58. m = n >> 1;
  59. if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
  60. m >>= 1;
  61. if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
  62. else return split_radix_permutation(i, m, inverse)*4 - 1;
  63. }
  64. av_cold void ff_init_ff_cos_tabs(int index)
  65. {
  66. #if !CONFIG_HARDCODED_TABLES
  67. int i;
  68. int m = 1<<index;
  69. double freq = 2*M_PI/m;
  70. FFTSample *tab = ff_cos_tabs[index];
  71. for(i=0; i<=m/4; i++)
  72. tab[i] = cos(i*freq);
  73. for(i=1; i<m/4; i++)
  74. tab[m/2-i] = tab[i];
  75. #endif
  76. }
  77. av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
  78. {
  79. int i, j, n;
  80. if (nbits < 2 || nbits > 16)
  81. goto fail;
  82. s->nbits = nbits;
  83. n = 1 << nbits;
  84. s->revtab = av_malloc(n * sizeof(uint16_t));
  85. if (!s->revtab)
  86. goto fail;
  87. s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
  88. if (!s->tmp_buf)
  89. goto fail;
  90. s->inverse = inverse;
  91. s->fft_permutation = FF_FFT_PERM_DEFAULT;
  92. s->fft_permute = ff_fft_permute_c;
  93. s->fft_calc = ff_fft_calc_c;
  94. #if CONFIG_MDCT
  95. s->imdct_calc = ff_imdct_calc_c;
  96. s->imdct_half = ff_imdct_half_c;
  97. s->mdct_calc = ff_mdct_calc_c;
  98. #endif
  99. if (ARCH_ARM) ff_fft_init_arm(s);
  100. if (HAVE_ALTIVEC) ff_fft_init_altivec(s);
  101. if (HAVE_MMX) ff_fft_init_mmx(s);
  102. for(j=4; j<=nbits; j++) {
  103. ff_init_ff_cos_tabs(j);
  104. }
  105. for(i=0; i<n; i++) {
  106. int j = i;
  107. if (s->fft_permutation == FF_FFT_PERM_SWAP_LSBS)
  108. j = (j&~3) | ((j>>1)&1) | ((j<<1)&2);
  109. s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] = j;
  110. }
  111. return 0;
  112. fail:
  113. av_freep(&s->revtab);
  114. av_freep(&s->tmp_buf);
  115. return -1;
  116. }
  117. static void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
  118. {
  119. int j, np;
  120. const uint16_t *revtab = s->revtab;
  121. np = 1 << s->nbits;
  122. /* TODO: handle split-radix permute in a more optimal way, probably in-place */
  123. for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
  124. memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
  125. }
  126. av_cold void ff_fft_end(FFTContext *s)
  127. {
  128. av_freep(&s->revtab);
  129. av_freep(&s->tmp_buf);
  130. }
  131. #define sqrthalf (float)M_SQRT1_2
  132. #define BF(x,y,a,b) {\
  133. x = a - b;\
  134. y = a + b;\
  135. }
  136. #define BUTTERFLIES(a0,a1,a2,a3) {\
  137. BF(t3, t5, t5, t1);\
  138. BF(a2.re, a0.re, a0.re, t5);\
  139. BF(a3.im, a1.im, a1.im, t3);\
  140. BF(t4, t6, t2, t6);\
  141. BF(a3.re, a1.re, a1.re, t4);\
  142. BF(a2.im, a0.im, a0.im, t6);\
  143. }
  144. // force loading all the inputs before storing any.
  145. // this is slightly slower for small data, but avoids store->load aliasing
  146. // for addresses separated by large powers of 2.
  147. #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
  148. FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
  149. BF(t3, t5, t5, t1);\
  150. BF(a2.re, a0.re, r0, t5);\
  151. BF(a3.im, a1.im, i1, t3);\
  152. BF(t4, t6, t2, t6);\
  153. BF(a3.re, a1.re, r1, t4);\
  154. BF(a2.im, a0.im, i0, t6);\
  155. }
  156. #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
  157. t1 = a2.re * wre + a2.im * wim;\
  158. t2 = a2.im * wre - a2.re * wim;\
  159. t5 = a3.re * wre - a3.im * wim;\
  160. t6 = a3.im * wre + a3.re * wim;\
  161. BUTTERFLIES(a0,a1,a2,a3)\
  162. }
  163. #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
  164. t1 = a2.re;\
  165. t2 = a2.im;\
  166. t5 = a3.re;\
  167. t6 = a3.im;\
  168. BUTTERFLIES(a0,a1,a2,a3)\
  169. }
  170. /* z[0...8n-1], w[1...2n-1] */
  171. #define PASS(name)\
  172. static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
  173. {\
  174. FFTSample t1, t2, t3, t4, t5, t6;\
  175. int o1 = 2*n;\
  176. int o2 = 4*n;\
  177. int o3 = 6*n;\
  178. const FFTSample *wim = wre+o1;\
  179. n--;\
  180. \
  181. TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
  182. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  183. do {\
  184. z += 2;\
  185. wre += 2;\
  186. wim -= 2;\
  187. TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
  188. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  189. } while(--n);\
  190. }
  191. PASS(pass)
  192. #undef BUTTERFLIES
  193. #define BUTTERFLIES BUTTERFLIES_BIG
  194. PASS(pass_big)
  195. #define DECL_FFT(n,n2,n4)\
  196. static void fft##n(FFTComplex *z)\
  197. {\
  198. fft##n2(z);\
  199. fft##n4(z+n4*2);\
  200. fft##n4(z+n4*3);\
  201. pass(z,ff_cos_##n,n4/2);\
  202. }
  203. static void fft4(FFTComplex *z)
  204. {
  205. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  206. BF(t3, t1, z[0].re, z[1].re);
  207. BF(t8, t6, z[3].re, z[2].re);
  208. BF(z[2].re, z[0].re, t1, t6);
  209. BF(t4, t2, z[0].im, z[1].im);
  210. BF(t7, t5, z[2].im, z[3].im);
  211. BF(z[3].im, z[1].im, t4, t8);
  212. BF(z[3].re, z[1].re, t3, t7);
  213. BF(z[2].im, z[0].im, t2, t5);
  214. }
  215. static void fft8(FFTComplex *z)
  216. {
  217. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  218. fft4(z);
  219. BF(t1, z[5].re, z[4].re, -z[5].re);
  220. BF(t2, z[5].im, z[4].im, -z[5].im);
  221. BF(t3, z[7].re, z[6].re, -z[7].re);
  222. BF(t4, z[7].im, z[6].im, -z[7].im);
  223. BF(t8, t1, t3, t1);
  224. BF(t7, t2, t2, t4);
  225. BF(z[4].re, z[0].re, z[0].re, t1);
  226. BF(z[4].im, z[0].im, z[0].im, t2);
  227. BF(z[6].re, z[2].re, z[2].re, t7);
  228. BF(z[6].im, z[2].im, z[2].im, t8);
  229. TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
  230. }
  231. #if !CONFIG_SMALL
  232. static void fft16(FFTComplex *z)
  233. {
  234. FFTSample t1, t2, t3, t4, t5, t6;
  235. fft8(z);
  236. fft4(z+8);
  237. fft4(z+12);
  238. TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
  239. TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
  240. TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]);
  241. TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]);
  242. }
  243. #else
  244. DECL_FFT(16,8,4)
  245. #endif
  246. DECL_FFT(32,16,8)
  247. DECL_FFT(64,32,16)
  248. DECL_FFT(128,64,32)
  249. DECL_FFT(256,128,64)
  250. DECL_FFT(512,256,128)
  251. #if !CONFIG_SMALL
  252. #define pass pass_big
  253. #endif
  254. DECL_FFT(1024,512,256)
  255. DECL_FFT(2048,1024,512)
  256. DECL_FFT(4096,2048,1024)
  257. DECL_FFT(8192,4096,2048)
  258. DECL_FFT(16384,8192,4096)
  259. DECL_FFT(32768,16384,8192)
  260. DECL_FFT(65536,32768,16384)
  261. static void (* const fft_dispatch[])(FFTComplex*) = {
  262. fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
  263. fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
  264. };
  265. static void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
  266. {
  267. fft_dispatch[s->nbits-2](z);
  268. }