You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2413 lines
87KB

  1. /*
  2. * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
  3. *
  4. * This file is part of FFmpeg.
  5. *
  6. * FFmpeg is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2.1 of the License, or (at your option) any later version.
  10. *
  11. * FFmpeg is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with FFmpeg; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. #include "config.h"
  21. #define _DEFAULT_SOURCE
  22. #define _SVID_SOURCE // needed for MAP_ANONYMOUS
  23. #define _DARWIN_C_SOURCE // needed for MAP_ANON
  24. #include <inttypes.h>
  25. #include <math.h>
  26. #include <stdio.h>
  27. #include <string.h>
  28. #if HAVE_SYS_MMAN_H
  29. #include <sys/mman.h>
  30. #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
  31. #define MAP_ANONYMOUS MAP_ANON
  32. #endif
  33. #endif
  34. #if HAVE_VIRTUALALLOC
  35. #define WIN32_LEAN_AND_MEAN
  36. #include <windows.h>
  37. #endif
  38. #include "libavutil/attributes.h"
  39. #include "libavutil/avassert.h"
  40. #include "libavutil/avutil.h"
  41. #include "libavutil/bswap.h"
  42. #include "libavutil/cpu.h"
  43. #include "libavutil/imgutils.h"
  44. #include "libavutil/intreadwrite.h"
  45. #include "libavutil/libm.h"
  46. #include "libavutil/mathematics.h"
  47. #include "libavutil/opt.h"
  48. #include "libavutil/pixdesc.h"
  49. #include "libavutil/ppc/cpu.h"
  50. #include "libavutil/x86/asm.h"
  51. #include "libavutil/x86/cpu.h"
  52. #include "rgb2rgb.h"
  53. #include "swscale.h"
  54. #include "swscale_internal.h"
  55. static void handle_formats(SwsContext *c);
  56. unsigned swscale_version(void)
  57. {
  58. av_assert0(LIBSWSCALE_VERSION_MICRO >= 100);
  59. return LIBSWSCALE_VERSION_INT;
  60. }
  61. const char *swscale_configuration(void)
  62. {
  63. return FFMPEG_CONFIGURATION;
  64. }
  65. const char *swscale_license(void)
  66. {
  67. #define LICENSE_PREFIX "libswscale license: "
  68. return LICENSE_PREFIX FFMPEG_LICENSE + sizeof(LICENSE_PREFIX) - 1;
  69. }
  70. typedef struct FormatEntry {
  71. uint8_t is_supported_in :1;
  72. uint8_t is_supported_out :1;
  73. uint8_t is_supported_endianness :1;
  74. } FormatEntry;
  75. static const FormatEntry format_entries[AV_PIX_FMT_NB] = {
  76. [AV_PIX_FMT_YUV420P] = { 1, 1 },
  77. [AV_PIX_FMT_YUYV422] = { 1, 1 },
  78. [AV_PIX_FMT_RGB24] = { 1, 1 },
  79. [AV_PIX_FMT_BGR24] = { 1, 1 },
  80. [AV_PIX_FMT_YUV422P] = { 1, 1 },
  81. [AV_PIX_FMT_YUV444P] = { 1, 1 },
  82. [AV_PIX_FMT_YUV410P] = { 1, 1 },
  83. [AV_PIX_FMT_YUV411P] = { 1, 1 },
  84. [AV_PIX_FMT_GRAY8] = { 1, 1 },
  85. [AV_PIX_FMT_MONOWHITE] = { 1, 1 },
  86. [AV_PIX_FMT_MONOBLACK] = { 1, 1 },
  87. [AV_PIX_FMT_PAL8] = { 1, 0 },
  88. [AV_PIX_FMT_YUVJ420P] = { 1, 1 },
  89. [AV_PIX_FMT_YUVJ411P] = { 1, 1 },
  90. [AV_PIX_FMT_YUVJ422P] = { 1, 1 },
  91. [AV_PIX_FMT_YUVJ444P] = { 1, 1 },
  92. [AV_PIX_FMT_YVYU422] = { 1, 1 },
  93. [AV_PIX_FMT_UYVY422] = { 1, 1 },
  94. [AV_PIX_FMT_UYYVYY411] = { 0, 0 },
  95. [AV_PIX_FMT_BGR8] = { 1, 1 },
  96. [AV_PIX_FMT_BGR4] = { 0, 1 },
  97. [AV_PIX_FMT_BGR4_BYTE] = { 1, 1 },
  98. [AV_PIX_FMT_RGB8] = { 1, 1 },
  99. [AV_PIX_FMT_RGB4] = { 0, 1 },
  100. [AV_PIX_FMT_RGB4_BYTE] = { 1, 1 },
  101. [AV_PIX_FMT_NV12] = { 1, 1 },
  102. [AV_PIX_FMT_NV21] = { 1, 1 },
  103. [AV_PIX_FMT_ARGB] = { 1, 1 },
  104. [AV_PIX_FMT_RGBA] = { 1, 1 },
  105. [AV_PIX_FMT_ABGR] = { 1, 1 },
  106. [AV_PIX_FMT_BGRA] = { 1, 1 },
  107. [AV_PIX_FMT_0RGB] = { 1, 1 },
  108. [AV_PIX_FMT_RGB0] = { 1, 1 },
  109. [AV_PIX_FMT_0BGR] = { 1, 1 },
  110. [AV_PIX_FMT_BGR0] = { 1, 1 },
  111. [AV_PIX_FMT_GRAY16BE] = { 1, 1 },
  112. [AV_PIX_FMT_GRAY16LE] = { 1, 1 },
  113. [AV_PIX_FMT_YUV440P] = { 1, 1 },
  114. [AV_PIX_FMT_YUVJ440P] = { 1, 1 },
  115. [AV_PIX_FMT_YUV440P10LE] = { 1, 1 },
  116. [AV_PIX_FMT_YUV440P10BE] = { 1, 1 },
  117. [AV_PIX_FMT_YUV440P12LE] = { 1, 1 },
  118. [AV_PIX_FMT_YUV440P12BE] = { 1, 1 },
  119. [AV_PIX_FMT_YUVA420P] = { 1, 1 },
  120. [AV_PIX_FMT_YUVA422P] = { 1, 1 },
  121. [AV_PIX_FMT_YUVA444P] = { 1, 1 },
  122. [AV_PIX_FMT_YUVA420P9BE] = { 1, 1 },
  123. [AV_PIX_FMT_YUVA420P9LE] = { 1, 1 },
  124. [AV_PIX_FMT_YUVA422P9BE] = { 1, 1 },
  125. [AV_PIX_FMT_YUVA422P9LE] = { 1, 1 },
  126. [AV_PIX_FMT_YUVA444P9BE] = { 1, 1 },
  127. [AV_PIX_FMT_YUVA444P9LE] = { 1, 1 },
  128. [AV_PIX_FMT_YUVA420P10BE]= { 1, 1 },
  129. [AV_PIX_FMT_YUVA420P10LE]= { 1, 1 },
  130. [AV_PIX_FMT_YUVA422P10BE]= { 1, 1 },
  131. [AV_PIX_FMT_YUVA422P10LE]= { 1, 1 },
  132. [AV_PIX_FMT_YUVA444P10BE]= { 1, 1 },
  133. [AV_PIX_FMT_YUVA444P10LE]= { 1, 1 },
  134. [AV_PIX_FMT_YUVA420P16BE]= { 1, 1 },
  135. [AV_PIX_FMT_YUVA420P16LE]= { 1, 1 },
  136. [AV_PIX_FMT_YUVA422P16BE]= { 1, 1 },
  137. [AV_PIX_FMT_YUVA422P16LE]= { 1, 1 },
  138. [AV_PIX_FMT_YUVA444P16BE]= { 1, 1 },
  139. [AV_PIX_FMT_YUVA444P16LE]= { 1, 1 },
  140. [AV_PIX_FMT_RGB48BE] = { 1, 1 },
  141. [AV_PIX_FMT_RGB48LE] = { 1, 1 },
  142. [AV_PIX_FMT_RGBA64BE] = { 1, 1, 1 },
  143. [AV_PIX_FMT_RGBA64LE] = { 1, 1, 1 },
  144. [AV_PIX_FMT_RGB565BE] = { 1, 1 },
  145. [AV_PIX_FMT_RGB565LE] = { 1, 1 },
  146. [AV_PIX_FMT_RGB555BE] = { 1, 1 },
  147. [AV_PIX_FMT_RGB555LE] = { 1, 1 },
  148. [AV_PIX_FMT_BGR565BE] = { 1, 1 },
  149. [AV_PIX_FMT_BGR565LE] = { 1, 1 },
  150. [AV_PIX_FMT_BGR555BE] = { 1, 1 },
  151. [AV_PIX_FMT_BGR555LE] = { 1, 1 },
  152. [AV_PIX_FMT_YUV420P16LE] = { 1, 1 },
  153. [AV_PIX_FMT_YUV420P16BE] = { 1, 1 },
  154. [AV_PIX_FMT_YUV422P16LE] = { 1, 1 },
  155. [AV_PIX_FMT_YUV422P16BE] = { 1, 1 },
  156. [AV_PIX_FMT_YUV444P16LE] = { 1, 1 },
  157. [AV_PIX_FMT_YUV444P16BE] = { 1, 1 },
  158. [AV_PIX_FMT_RGB444LE] = { 1, 1 },
  159. [AV_PIX_FMT_RGB444BE] = { 1, 1 },
  160. [AV_PIX_FMT_BGR444LE] = { 1, 1 },
  161. [AV_PIX_FMT_BGR444BE] = { 1, 1 },
  162. [AV_PIX_FMT_YA8] = { 1, 1 },
  163. [AV_PIX_FMT_YA16BE] = { 1, 0 },
  164. [AV_PIX_FMT_YA16LE] = { 1, 0 },
  165. [AV_PIX_FMT_BGR48BE] = { 1, 1 },
  166. [AV_PIX_FMT_BGR48LE] = { 1, 1 },
  167. [AV_PIX_FMT_BGRA64BE] = { 1, 1, 1 },
  168. [AV_PIX_FMT_BGRA64LE] = { 1, 1, 1 },
  169. [AV_PIX_FMT_YUV420P9BE] = { 1, 1 },
  170. [AV_PIX_FMT_YUV420P9LE] = { 1, 1 },
  171. [AV_PIX_FMT_YUV420P10BE] = { 1, 1 },
  172. [AV_PIX_FMT_YUV420P10LE] = { 1, 1 },
  173. [AV_PIX_FMT_YUV420P12BE] = { 1, 1 },
  174. [AV_PIX_FMT_YUV420P12LE] = { 1, 1 },
  175. [AV_PIX_FMT_YUV420P14BE] = { 1, 1 },
  176. [AV_PIX_FMT_YUV420P14LE] = { 1, 1 },
  177. [AV_PIX_FMT_YUV422P9BE] = { 1, 1 },
  178. [AV_PIX_FMT_YUV422P9LE] = { 1, 1 },
  179. [AV_PIX_FMT_YUV422P10BE] = { 1, 1 },
  180. [AV_PIX_FMT_YUV422P10LE] = { 1, 1 },
  181. [AV_PIX_FMT_YUV422P12BE] = { 1, 1 },
  182. [AV_PIX_FMT_YUV422P12LE] = { 1, 1 },
  183. [AV_PIX_FMT_YUV422P14BE] = { 1, 1 },
  184. [AV_PIX_FMT_YUV422P14LE] = { 1, 1 },
  185. [AV_PIX_FMT_YUV444P9BE] = { 1, 1 },
  186. [AV_PIX_FMT_YUV444P9LE] = { 1, 1 },
  187. [AV_PIX_FMT_YUV444P10BE] = { 1, 1 },
  188. [AV_PIX_FMT_YUV444P10LE] = { 1, 1 },
  189. [AV_PIX_FMT_YUV444P12BE] = { 1, 1 },
  190. [AV_PIX_FMT_YUV444P12LE] = { 1, 1 },
  191. [AV_PIX_FMT_YUV444P14BE] = { 1, 1 },
  192. [AV_PIX_FMT_YUV444P14LE] = { 1, 1 },
  193. [AV_PIX_FMT_GBRP] = { 1, 1 },
  194. [AV_PIX_FMT_GBRP9LE] = { 1, 1 },
  195. [AV_PIX_FMT_GBRP9BE] = { 1, 1 },
  196. [AV_PIX_FMT_GBRP10LE] = { 1, 1 },
  197. [AV_PIX_FMT_GBRP10BE] = { 1, 1 },
  198. [AV_PIX_FMT_GBRP12LE] = { 1, 1 },
  199. [AV_PIX_FMT_GBRP12BE] = { 1, 1 },
  200. [AV_PIX_FMT_GBRAP12LE] = { 1, 0 },
  201. [AV_PIX_FMT_GBRAP12BE] = { 1, 0 },
  202. [AV_PIX_FMT_GBRP14LE] = { 1, 1 },
  203. [AV_PIX_FMT_GBRP14BE] = { 1, 1 },
  204. [AV_PIX_FMT_GBRP16LE] = { 1, 0 },
  205. [AV_PIX_FMT_GBRP16BE] = { 1, 0 },
  206. [AV_PIX_FMT_GBRAP] = { 1, 1 },
  207. [AV_PIX_FMT_GBRAP16LE] = { 1, 0 },
  208. [AV_PIX_FMT_GBRAP16BE] = { 1, 0 },
  209. [AV_PIX_FMT_BAYER_BGGR8] = { 1, 0 },
  210. [AV_PIX_FMT_BAYER_RGGB8] = { 1, 0 },
  211. [AV_PIX_FMT_BAYER_GBRG8] = { 1, 0 },
  212. [AV_PIX_FMT_BAYER_GRBG8] = { 1, 0 },
  213. [AV_PIX_FMT_BAYER_BGGR16LE] = { 1, 0 },
  214. [AV_PIX_FMT_BAYER_BGGR16BE] = { 1, 0 },
  215. [AV_PIX_FMT_BAYER_RGGB16LE] = { 1, 0 },
  216. [AV_PIX_FMT_BAYER_RGGB16BE] = { 1, 0 },
  217. [AV_PIX_FMT_BAYER_GBRG16LE] = { 1, 0 },
  218. [AV_PIX_FMT_BAYER_GBRG16BE] = { 1, 0 },
  219. [AV_PIX_FMT_BAYER_GRBG16LE] = { 1, 0 },
  220. [AV_PIX_FMT_BAYER_GRBG16BE] = { 1, 0 },
  221. [AV_PIX_FMT_XYZ12BE] = { 1, 1, 1 },
  222. [AV_PIX_FMT_XYZ12LE] = { 1, 1, 1 },
  223. [AV_PIX_FMT_AYUV64LE] = { 1, 1},
  224. [AV_PIX_FMT_P010LE] = { 1, 0 },
  225. [AV_PIX_FMT_P010BE] = { 1, 0 },
  226. };
  227. int sws_isSupportedInput(enum AVPixelFormat pix_fmt)
  228. {
  229. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  230. format_entries[pix_fmt].is_supported_in : 0;
  231. }
  232. int sws_isSupportedOutput(enum AVPixelFormat pix_fmt)
  233. {
  234. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  235. format_entries[pix_fmt].is_supported_out : 0;
  236. }
  237. int sws_isSupportedEndiannessConversion(enum AVPixelFormat pix_fmt)
  238. {
  239. return (unsigned)pix_fmt < AV_PIX_FMT_NB ?
  240. format_entries[pix_fmt].is_supported_endianness : 0;
  241. }
  242. static double getSplineCoeff(double a, double b, double c, double d,
  243. double dist)
  244. {
  245. if (dist <= 1.0)
  246. return ((d * dist + c) * dist + b) * dist + a;
  247. else
  248. return getSplineCoeff(0.0,
  249. b + 2.0 * c + 3.0 * d,
  250. c + 3.0 * d,
  251. -b - 3.0 * c - 6.0 * d,
  252. dist - 1.0);
  253. }
  254. static av_cold int get_local_pos(SwsContext *s, int chr_subsample, int pos, int dir)
  255. {
  256. if (pos == -1 || pos <= -513) {
  257. pos = (128 << chr_subsample) - 128;
  258. }
  259. pos += 128; // relative to ideal left edge
  260. return pos >> chr_subsample;
  261. }
  262. typedef struct {
  263. int flag; ///< flag associated to the algorithm
  264. const char *description; ///< human-readable description
  265. int size_factor; ///< size factor used when initing the filters
  266. } ScaleAlgorithm;
  267. static const ScaleAlgorithm scale_algorithms[] = {
  268. { SWS_AREA, "area averaging", 1 /* downscale only, for upscale it is bilinear */ },
  269. { SWS_BICUBIC, "bicubic", 4 },
  270. { SWS_BICUBLIN, "luma bicubic / chroma bilinear", -1 },
  271. { SWS_BILINEAR, "bilinear", 2 },
  272. { SWS_FAST_BILINEAR, "fast bilinear", -1 },
  273. { SWS_GAUSS, "Gaussian", 8 /* infinite ;) */ },
  274. { SWS_LANCZOS, "Lanczos", -1 /* custom */ },
  275. { SWS_POINT, "nearest neighbor / point", -1 },
  276. { SWS_SINC, "sinc", 20 /* infinite ;) */ },
  277. { SWS_SPLINE, "bicubic spline", 20 /* infinite :)*/ },
  278. { SWS_X, "experimental", 8 },
  279. };
  280. static av_cold int initFilter(int16_t **outFilter, int32_t **filterPos,
  281. int *outFilterSize, int xInc, int srcW,
  282. int dstW, int filterAlign, int one,
  283. int flags, int cpu_flags,
  284. SwsVector *srcFilter, SwsVector *dstFilter,
  285. double param[2], int srcPos, int dstPos)
  286. {
  287. int i;
  288. int filterSize;
  289. int filter2Size;
  290. int minFilterSize;
  291. int64_t *filter = NULL;
  292. int64_t *filter2 = NULL;
  293. const int64_t fone = 1LL << (54 - FFMIN(av_log2(srcW/dstW), 8));
  294. int ret = -1;
  295. emms_c(); // FIXME should not be required but IS (even for non-MMX versions)
  296. // NOTE: the +3 is for the MMX(+1) / SSE(+3) scaler which reads over the end
  297. FF_ALLOC_ARRAY_OR_GOTO(NULL, *filterPos, (dstW + 3), sizeof(**filterPos), fail);
  298. if (FFABS(xInc - 0x10000) < 10 && srcPos == dstPos) { // unscaled
  299. int i;
  300. filterSize = 1;
  301. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter,
  302. dstW, sizeof(*filter) * filterSize, fail);
  303. for (i = 0; i < dstW; i++) {
  304. filter[i * filterSize] = fone;
  305. (*filterPos)[i] = i;
  306. }
  307. } else if (flags & SWS_POINT) { // lame looking point sampling mode
  308. int i;
  309. int64_t xDstInSrc;
  310. filterSize = 1;
  311. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  312. dstW, sizeof(*filter) * filterSize, fail);
  313. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  314. for (i = 0; i < dstW; i++) {
  315. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  316. (*filterPos)[i] = xx;
  317. filter[i] = fone;
  318. xDstInSrc += xInc;
  319. }
  320. } else if ((xInc <= (1 << 16) && (flags & SWS_AREA)) ||
  321. (flags & SWS_FAST_BILINEAR)) { // bilinear upscale
  322. int i;
  323. int64_t xDstInSrc;
  324. filterSize = 2;
  325. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  326. dstW, sizeof(*filter) * filterSize, fail);
  327. xDstInSrc = ((dstPos*(int64_t)xInc)>>8) - ((srcPos*0x8000LL)>>7);
  328. for (i = 0; i < dstW; i++) {
  329. int xx = (xDstInSrc - ((filterSize - 1) << 15) + (1 << 15)) >> 16;
  330. int j;
  331. (*filterPos)[i] = xx;
  332. // bilinear upscale / linear interpolate / area averaging
  333. for (j = 0; j < filterSize; j++) {
  334. int64_t coeff= fone - FFABS(((int64_t)xx<<16) - xDstInSrc)*(fone>>16);
  335. if (coeff < 0)
  336. coeff = 0;
  337. filter[i * filterSize + j] = coeff;
  338. xx++;
  339. }
  340. xDstInSrc += xInc;
  341. }
  342. } else {
  343. int64_t xDstInSrc;
  344. int sizeFactor = -1;
  345. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  346. if (flags & scale_algorithms[i].flag && scale_algorithms[i].size_factor > 0) {
  347. sizeFactor = scale_algorithms[i].size_factor;
  348. break;
  349. }
  350. }
  351. if (flags & SWS_LANCZOS)
  352. sizeFactor = param[0] != SWS_PARAM_DEFAULT ? ceil(2 * param[0]) : 6;
  353. av_assert0(sizeFactor > 0);
  354. if (xInc <= 1 << 16)
  355. filterSize = 1 + sizeFactor; // upscale
  356. else
  357. filterSize = 1 + (sizeFactor * srcW + dstW - 1) / dstW;
  358. filterSize = FFMIN(filterSize, srcW - 2);
  359. filterSize = FFMAX(filterSize, 1);
  360. FF_ALLOC_ARRAY_OR_GOTO(NULL, filter,
  361. dstW, sizeof(*filter) * filterSize, fail);
  362. xDstInSrc = ((dstPos*(int64_t)xInc)>>7) - ((srcPos*0x10000LL)>>7);
  363. for (i = 0; i < dstW; i++) {
  364. int xx = (xDstInSrc - (filterSize - 2) * (1LL<<16)) / (1 << 17);
  365. int j;
  366. (*filterPos)[i] = xx;
  367. for (j = 0; j < filterSize; j++) {
  368. int64_t d = (FFABS(((int64_t)xx * (1 << 17)) - xDstInSrc)) << 13;
  369. double floatd;
  370. int64_t coeff;
  371. if (xInc > 1 << 16)
  372. d = d * dstW / srcW;
  373. floatd = d * (1.0 / (1 << 30));
  374. if (flags & SWS_BICUBIC) {
  375. int64_t B = (param[0] != SWS_PARAM_DEFAULT ? param[0] : 0) * (1 << 24);
  376. int64_t C = (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1 << 24);
  377. if (d >= 1LL << 31) {
  378. coeff = 0.0;
  379. } else {
  380. int64_t dd = (d * d) >> 30;
  381. int64_t ddd = (dd * d) >> 30;
  382. if (d < 1LL << 30)
  383. coeff = (12 * (1 << 24) - 9 * B - 6 * C) * ddd +
  384. (-18 * (1 << 24) + 12 * B + 6 * C) * dd +
  385. (6 * (1 << 24) - 2 * B) * (1 << 30);
  386. else
  387. coeff = (-B - 6 * C) * ddd +
  388. (6 * B + 30 * C) * dd +
  389. (-12 * B - 48 * C) * d +
  390. (8 * B + 24 * C) * (1 << 30);
  391. }
  392. coeff /= (1LL<<54)/fone;
  393. }
  394. #if 0
  395. else if (flags & SWS_X) {
  396. double p = param ? param * 0.01 : 0.3;
  397. coeff = d ? sin(d * M_PI) / (d * M_PI) : 1.0;
  398. coeff *= pow(2.0, -p * d * d);
  399. }
  400. #endif
  401. else if (flags & SWS_X) {
  402. double A = param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
  403. double c;
  404. if (floatd < 1.0)
  405. c = cos(floatd * M_PI);
  406. else
  407. c = -1.0;
  408. if (c < 0.0)
  409. c = -pow(-c, A);
  410. else
  411. c = pow(c, A);
  412. coeff = (c * 0.5 + 0.5) * fone;
  413. } else if (flags & SWS_AREA) {
  414. int64_t d2 = d - (1 << 29);
  415. if (d2 * xInc < -(1LL << (29 + 16)))
  416. coeff = 1.0 * (1LL << (30 + 16));
  417. else if (d2 * xInc < (1LL << (29 + 16)))
  418. coeff = -d2 * xInc + (1LL << (29 + 16));
  419. else
  420. coeff = 0.0;
  421. coeff *= fone >> (30 + 16);
  422. } else if (flags & SWS_GAUSS) {
  423. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  424. coeff = exp2(-p * floatd * floatd) * fone;
  425. } else if (flags & SWS_SINC) {
  426. coeff = (d ? sin(floatd * M_PI) / (floatd * M_PI) : 1.0) * fone;
  427. } else if (flags & SWS_LANCZOS) {
  428. double p = param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
  429. coeff = (d ? sin(floatd * M_PI) * sin(floatd * M_PI / p) /
  430. (floatd * floatd * M_PI * M_PI / p) : 1.0) * fone;
  431. if (floatd > p)
  432. coeff = 0;
  433. } else if (flags & SWS_BILINEAR) {
  434. coeff = (1 << 30) - d;
  435. if (coeff < 0)
  436. coeff = 0;
  437. coeff *= fone >> 30;
  438. } else if (flags & SWS_SPLINE) {
  439. double p = -2.196152422706632;
  440. coeff = getSplineCoeff(1.0, 0.0, p, -p - 1.0, floatd) * fone;
  441. } else {
  442. av_assert0(0);
  443. }
  444. filter[i * filterSize + j] = coeff;
  445. xx++;
  446. }
  447. xDstInSrc += 2 * xInc;
  448. }
  449. }
  450. /* apply src & dst Filter to filter -> filter2
  451. * av_free(filter);
  452. */
  453. av_assert0(filterSize > 0);
  454. filter2Size = filterSize;
  455. if (srcFilter)
  456. filter2Size += srcFilter->length - 1;
  457. if (dstFilter)
  458. filter2Size += dstFilter->length - 1;
  459. av_assert0(filter2Size > 0);
  460. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, filter2, dstW, filter2Size * sizeof(*filter2), fail);
  461. for (i = 0; i < dstW; i++) {
  462. int j, k;
  463. if (srcFilter) {
  464. for (k = 0; k < srcFilter->length; k++) {
  465. for (j = 0; j < filterSize; j++)
  466. filter2[i * filter2Size + k + j] +=
  467. srcFilter->coeff[k] * filter[i * filterSize + j];
  468. }
  469. } else {
  470. for (j = 0; j < filterSize; j++)
  471. filter2[i * filter2Size + j] = filter[i * filterSize + j];
  472. }
  473. // FIXME dstFilter
  474. (*filterPos)[i] += (filterSize - 1) / 2 - (filter2Size - 1) / 2;
  475. }
  476. av_freep(&filter);
  477. /* try to reduce the filter-size (step1 find size and shift left) */
  478. // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
  479. minFilterSize = 0;
  480. for (i = dstW - 1; i >= 0; i--) {
  481. int min = filter2Size;
  482. int j;
  483. int64_t cutOff = 0.0;
  484. /* get rid of near zero elements on the left by shifting left */
  485. for (j = 0; j < filter2Size; j++) {
  486. int k;
  487. cutOff += FFABS(filter2[i * filter2Size]);
  488. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  489. break;
  490. /* preserve monotonicity because the core can't handle the
  491. * filter otherwise */
  492. if (i < dstW - 1 && (*filterPos)[i] >= (*filterPos)[i + 1])
  493. break;
  494. // move filter coefficients left
  495. for (k = 1; k < filter2Size; k++)
  496. filter2[i * filter2Size + k - 1] = filter2[i * filter2Size + k];
  497. filter2[i * filter2Size + k - 1] = 0;
  498. (*filterPos)[i]++;
  499. }
  500. cutOff = 0;
  501. /* count near zeros on the right */
  502. for (j = filter2Size - 1; j > 0; j--) {
  503. cutOff += FFABS(filter2[i * filter2Size + j]);
  504. if (cutOff > SWS_MAX_REDUCE_CUTOFF * fone)
  505. break;
  506. min--;
  507. }
  508. if (min > minFilterSize)
  509. minFilterSize = min;
  510. }
  511. if (PPC_ALTIVEC(cpu_flags)) {
  512. // we can handle the special case 4, so we don't want to go the full 8
  513. if (minFilterSize < 5)
  514. filterAlign = 4;
  515. /* We really don't want to waste our time doing useless computation, so
  516. * fall back on the scalar C code for very small filters.
  517. * Vectorizing is worth it only if you have a decent-sized vector. */
  518. if (minFilterSize < 3)
  519. filterAlign = 1;
  520. }
  521. if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
  522. // special case for unscaled vertical filtering
  523. if (minFilterSize == 1 && filterAlign == 2)
  524. filterAlign = 1;
  525. }
  526. av_assert0(minFilterSize > 0);
  527. filterSize = (minFilterSize + (filterAlign - 1)) & (~(filterAlign - 1));
  528. av_assert0(filterSize > 0);
  529. filter = av_malloc_array(dstW, filterSize * sizeof(*filter));
  530. if (!filter)
  531. goto fail;
  532. if (filterSize >= MAX_FILTER_SIZE * 16 /
  533. ((flags & SWS_ACCURATE_RND) ? APCK_SIZE : 16)) {
  534. ret = RETCODE_USE_CASCADE;
  535. goto fail;
  536. }
  537. *outFilterSize = filterSize;
  538. if (flags & SWS_PRINT_INFO)
  539. av_log(NULL, AV_LOG_VERBOSE,
  540. "SwScaler: reducing / aligning filtersize %d -> %d\n",
  541. filter2Size, filterSize);
  542. /* try to reduce the filter-size (step2 reduce it) */
  543. for (i = 0; i < dstW; i++) {
  544. int j;
  545. for (j = 0; j < filterSize; j++) {
  546. if (j >= filter2Size)
  547. filter[i * filterSize + j] = 0;
  548. else
  549. filter[i * filterSize + j] = filter2[i * filter2Size + j];
  550. if ((flags & SWS_BITEXACT) && j >= minFilterSize)
  551. filter[i * filterSize + j] = 0;
  552. }
  553. }
  554. // FIXME try to align filterPos if possible
  555. // fix borders
  556. for (i = 0; i < dstW; i++) {
  557. int j;
  558. if ((*filterPos)[i] < 0) {
  559. // move filter coefficients left to compensate for filterPos
  560. for (j = 1; j < filterSize; j++) {
  561. int left = FFMAX(j + (*filterPos)[i], 0);
  562. filter[i * filterSize + left] += filter[i * filterSize + j];
  563. filter[i * filterSize + j] = 0;
  564. }
  565. (*filterPos)[i]= 0;
  566. }
  567. if ((*filterPos)[i] + filterSize > srcW) {
  568. int shift = (*filterPos)[i] + FFMIN(filterSize - srcW, 0);
  569. int64_t acc = 0;
  570. for (j = filterSize - 1; j >= 0; j--) {
  571. if ((*filterPos)[i] + j >= srcW) {
  572. acc += filter[i * filterSize + j];
  573. filter[i * filterSize + j] = 0;
  574. }
  575. }
  576. for (j = filterSize - 1; j >= 0; j--) {
  577. if (j < shift) {
  578. filter[i * filterSize + j] = 0;
  579. } else {
  580. filter[i * filterSize + j] = filter[i * filterSize + j - shift];
  581. }
  582. }
  583. (*filterPos)[i]-= shift;
  584. filter[i * filterSize + srcW - 1 - (*filterPos)[i]] += acc;
  585. }
  586. av_assert0((*filterPos)[i] >= 0);
  587. av_assert0((*filterPos)[i] < srcW);
  588. if ((*filterPos)[i] + filterSize > srcW) {
  589. for (j = 0; j < filterSize; j++) {
  590. av_assert0((*filterPos)[i] + j < srcW || !filter[i * filterSize + j]);
  591. }
  592. }
  593. }
  594. // Note the +1 is for the MMX scaler which reads over the end
  595. /* align at 16 for AltiVec (needed by hScale_altivec_real) */
  596. FF_ALLOCZ_ARRAY_OR_GOTO(NULL, *outFilter,
  597. (dstW + 3), *outFilterSize * sizeof(int16_t), fail);
  598. /* normalize & store in outFilter */
  599. for (i = 0; i < dstW; i++) {
  600. int j;
  601. int64_t error = 0;
  602. int64_t sum = 0;
  603. for (j = 0; j < filterSize; j++) {
  604. sum += filter[i * filterSize + j];
  605. }
  606. sum = (sum + one / 2) / one;
  607. if (!sum) {
  608. av_log(NULL, AV_LOG_WARNING, "SwScaler: zero vector in scaling\n");
  609. sum = 1;
  610. }
  611. for (j = 0; j < *outFilterSize; j++) {
  612. int64_t v = filter[i * filterSize + j] + error;
  613. int intV = ROUNDED_DIV(v, sum);
  614. (*outFilter)[i * (*outFilterSize) + j] = intV;
  615. error = v - intV * sum;
  616. }
  617. }
  618. (*filterPos)[dstW + 0] =
  619. (*filterPos)[dstW + 1] =
  620. (*filterPos)[dstW + 2] = (*filterPos)[dstW - 1]; /* the MMX/SSE scaler will
  621. * read over the end */
  622. for (i = 0; i < *outFilterSize; i++) {
  623. int k = (dstW - 1) * (*outFilterSize) + i;
  624. (*outFilter)[k + 1 * (*outFilterSize)] =
  625. (*outFilter)[k + 2 * (*outFilterSize)] =
  626. (*outFilter)[k + 3 * (*outFilterSize)] = (*outFilter)[k];
  627. }
  628. ret = 0;
  629. fail:
  630. if(ret < 0)
  631. av_log(NULL, ret == RETCODE_USE_CASCADE ? AV_LOG_DEBUG : AV_LOG_ERROR, "sws: initFilter failed\n");
  632. av_free(filter);
  633. av_free(filter2);
  634. return ret;
  635. }
  636. static void fill_rgb2yuv_table(SwsContext *c, const int table[4], int dstRange)
  637. {
  638. int64_t W, V, Z, Cy, Cu, Cv;
  639. int64_t vr = table[0];
  640. int64_t ub = table[1];
  641. int64_t ug = -table[2];
  642. int64_t vg = -table[3];
  643. int64_t ONE = 65536;
  644. int64_t cy = ONE;
  645. uint8_t *p = (uint8_t*)c->input_rgb2yuv_table;
  646. int i;
  647. static const int8_t map[] = {
  648. BY_IDX, GY_IDX, -1 , BY_IDX, BY_IDX, GY_IDX, -1 , BY_IDX,
  649. RY_IDX, -1 , GY_IDX, RY_IDX, RY_IDX, -1 , GY_IDX, RY_IDX,
  650. RY_IDX, GY_IDX, -1 , RY_IDX, RY_IDX, GY_IDX, -1 , RY_IDX,
  651. BY_IDX, -1 , GY_IDX, BY_IDX, BY_IDX, -1 , GY_IDX, BY_IDX,
  652. BU_IDX, GU_IDX, -1 , BU_IDX, BU_IDX, GU_IDX, -1 , BU_IDX,
  653. RU_IDX, -1 , GU_IDX, RU_IDX, RU_IDX, -1 , GU_IDX, RU_IDX,
  654. RU_IDX, GU_IDX, -1 , RU_IDX, RU_IDX, GU_IDX, -1 , RU_IDX,
  655. BU_IDX, -1 , GU_IDX, BU_IDX, BU_IDX, -1 , GU_IDX, BU_IDX,
  656. BV_IDX, GV_IDX, -1 , BV_IDX, BV_IDX, GV_IDX, -1 , BV_IDX,
  657. RV_IDX, -1 , GV_IDX, RV_IDX, RV_IDX, -1 , GV_IDX, RV_IDX,
  658. RV_IDX, GV_IDX, -1 , RV_IDX, RV_IDX, GV_IDX, -1 , RV_IDX,
  659. BV_IDX, -1 , GV_IDX, BV_IDX, BV_IDX, -1 , GV_IDX, BV_IDX,
  660. RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX,
  661. BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX, BY_IDX, RY_IDX,
  662. GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 ,
  663. -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX, -1 , GY_IDX,
  664. RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX,
  665. BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX, BU_IDX, RU_IDX,
  666. GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 ,
  667. -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX, -1 , GU_IDX,
  668. RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX,
  669. BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX, BV_IDX, RV_IDX,
  670. GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 ,
  671. -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, -1 , GV_IDX, //23
  672. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //24
  673. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //25
  674. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //26
  675. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //27
  676. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //28
  677. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //29
  678. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //30
  679. -1 , -1 , -1 , -1 , -1 , -1 , -1 , -1 , //31
  680. BY_IDX, GY_IDX, RY_IDX, -1 , -1 , -1 , -1 , -1 , //32
  681. BU_IDX, GU_IDX, RU_IDX, -1 , -1 , -1 , -1 , -1 , //33
  682. BV_IDX, GV_IDX, RV_IDX, -1 , -1 , -1 , -1 , -1 , //34
  683. };
  684. dstRange = 0; //FIXME range = 1 is handled elsewhere
  685. if (!dstRange) {
  686. cy = cy * 255 / 219;
  687. } else {
  688. vr = vr * 224 / 255;
  689. ub = ub * 224 / 255;
  690. ug = ug * 224 / 255;
  691. vg = vg * 224 / 255;
  692. }
  693. W = ROUNDED_DIV(ONE*ONE*ug, ub);
  694. V = ROUNDED_DIV(ONE*ONE*vg, vr);
  695. Z = ONE*ONE-W-V;
  696. Cy = ROUNDED_DIV(cy*Z, ONE);
  697. Cu = ROUNDED_DIV(ub*Z, ONE);
  698. Cv = ROUNDED_DIV(vr*Z, ONE);
  699. c->input_rgb2yuv_table[RY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cy);
  700. c->input_rgb2yuv_table[GY_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cy);
  701. c->input_rgb2yuv_table[BY_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cy);
  702. c->input_rgb2yuv_table[RU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*V , Cu);
  703. c->input_rgb2yuv_table[GU_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cu);
  704. c->input_rgb2yuv_table[BU_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(Z+W) , Cu);
  705. c->input_rgb2yuv_table[RV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*(V+Z) , Cv);
  706. c->input_rgb2yuv_table[GV_IDX] = -ROUNDED_DIV((1 << RGB2YUV_SHIFT)*ONE*ONE , Cv);
  707. c->input_rgb2yuv_table[BV_IDX] = ROUNDED_DIV((1 << RGB2YUV_SHIFT)*W , Cv);
  708. if(/*!dstRange && */!memcmp(table, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], sizeof(ff_yuv2rgb_coeffs[SWS_CS_DEFAULT]))) {
  709. c->input_rgb2yuv_table[BY_IDX] = ((int)(0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  710. c->input_rgb2yuv_table[BV_IDX] = (-(int)(0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  711. c->input_rgb2yuv_table[BU_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  712. c->input_rgb2yuv_table[GY_IDX] = ((int)(0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  713. c->input_rgb2yuv_table[GV_IDX] = (-(int)(0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  714. c->input_rgb2yuv_table[GU_IDX] = (-(int)(0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  715. c->input_rgb2yuv_table[RY_IDX] = ((int)(0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  716. c->input_rgb2yuv_table[RV_IDX] = ((int)(0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  717. c->input_rgb2yuv_table[RU_IDX] = (-(int)(0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5));
  718. }
  719. for(i=0; i<FF_ARRAY_ELEMS(map); i++)
  720. AV_WL16(p + 16*4 + 2*i, map[i] >= 0 ? c->input_rgb2yuv_table[map[i]] : 0);
  721. }
  722. static void fill_xyztables(struct SwsContext *c)
  723. {
  724. int i;
  725. double xyzgamma = XYZ_GAMMA;
  726. double rgbgamma = 1.0 / RGB_GAMMA;
  727. double xyzgammainv = 1.0 / XYZ_GAMMA;
  728. double rgbgammainv = RGB_GAMMA;
  729. static const int16_t xyz2rgb_matrix[3][4] = {
  730. {13270, -6295, -2041},
  731. {-3969, 7682, 170},
  732. { 228, -835, 4329} };
  733. static const int16_t rgb2xyz_matrix[3][4] = {
  734. {1689, 1464, 739},
  735. { 871, 2929, 296},
  736. { 79, 488, 3891} };
  737. static int16_t xyzgamma_tab[4096], rgbgamma_tab[4096], xyzgammainv_tab[4096], rgbgammainv_tab[4096];
  738. memcpy(c->xyz2rgb_matrix, xyz2rgb_matrix, sizeof(c->xyz2rgb_matrix));
  739. memcpy(c->rgb2xyz_matrix, rgb2xyz_matrix, sizeof(c->rgb2xyz_matrix));
  740. c->xyzgamma = xyzgamma_tab;
  741. c->rgbgamma = rgbgamma_tab;
  742. c->xyzgammainv = xyzgammainv_tab;
  743. c->rgbgammainv = rgbgammainv_tab;
  744. if (rgbgamma_tab[4095])
  745. return;
  746. /* set gamma vectors */
  747. for (i = 0; i < 4096; i++) {
  748. xyzgamma_tab[i] = lrint(pow(i / 4095.0, xyzgamma) * 4095.0);
  749. rgbgamma_tab[i] = lrint(pow(i / 4095.0, rgbgamma) * 4095.0);
  750. xyzgammainv_tab[i] = lrint(pow(i / 4095.0, xyzgammainv) * 4095.0);
  751. rgbgammainv_tab[i] = lrint(pow(i / 4095.0, rgbgammainv) * 4095.0);
  752. }
  753. }
  754. int sws_setColorspaceDetails(struct SwsContext *c, const int inv_table[4],
  755. int srcRange, const int table[4], int dstRange,
  756. int brightness, int contrast, int saturation)
  757. {
  758. const AVPixFmtDescriptor *desc_dst;
  759. const AVPixFmtDescriptor *desc_src;
  760. int need_reinit = 0;
  761. handle_formats(c);
  762. desc_dst = av_pix_fmt_desc_get(c->dstFormat);
  763. desc_src = av_pix_fmt_desc_get(c->srcFormat);
  764. if(!isYUV(c->dstFormat) && !isGray(c->dstFormat))
  765. dstRange = 0;
  766. if(!isYUV(c->srcFormat) && !isGray(c->srcFormat))
  767. srcRange = 0;
  768. if (c->srcRange != srcRange ||
  769. c->dstRange != dstRange ||
  770. c->brightness != brightness ||
  771. c->contrast != contrast ||
  772. c->saturation != saturation ||
  773. memcmp(c->srcColorspaceTable, inv_table, sizeof(int) * 4) ||
  774. memcmp(c->dstColorspaceTable, table, sizeof(int) * 4)
  775. )
  776. need_reinit = 1;
  777. memmove(c->srcColorspaceTable, inv_table, sizeof(int) * 4);
  778. memmove(c->dstColorspaceTable, table, sizeof(int) * 4);
  779. c->brightness = brightness;
  780. c->contrast = contrast;
  781. c->saturation = saturation;
  782. c->srcRange = srcRange;
  783. c->dstRange = dstRange;
  784. //The srcBpc check is possibly wrong but we seem to lack a definitive reference to test this
  785. //and what we have in ticket 2939 looks better with this check
  786. if (need_reinit && (c->srcBpc == 8 || !isYUV(c->srcFormat)))
  787. ff_sws_init_range_convert(c);
  788. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  789. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  790. if (c->cascaded_context[c->cascaded_mainindex])
  791. return sws_setColorspaceDetails(c->cascaded_context[c->cascaded_mainindex],inv_table, srcRange,table, dstRange, brightness, contrast, saturation);
  792. if (!need_reinit)
  793. return 0;
  794. if ((isYUV(c->dstFormat) || isGray(c->dstFormat)) && (isYUV(c->srcFormat) || isGray(c->srcFormat))) {
  795. if (!c->cascaded_context[0] &&
  796. memcmp(c->dstColorspaceTable, c->srcColorspaceTable, sizeof(int) * 4) &&
  797. c->srcW && c->srcH && c->dstW && c->dstH) {
  798. enum AVPixelFormat tmp_format;
  799. int tmp_width, tmp_height;
  800. int srcW = c->srcW;
  801. int srcH = c->srcH;
  802. int dstW = c->dstW;
  803. int dstH = c->dstH;
  804. int ret;
  805. av_log(c, AV_LOG_VERBOSE, "YUV color matrix differs for YUV->YUV, using intermediate RGB to convert\n");
  806. if (isNBPS(c->dstFormat) || is16BPS(c->dstFormat)) {
  807. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  808. tmp_format = AV_PIX_FMT_BGRA64;
  809. } else {
  810. tmp_format = AV_PIX_FMT_BGR48;
  811. }
  812. } else {
  813. if (isALPHA(c->srcFormat) && isALPHA(c->dstFormat)) {
  814. tmp_format = AV_PIX_FMT_BGRA;
  815. } else {
  816. tmp_format = AV_PIX_FMT_BGR24;
  817. }
  818. }
  819. if (srcW*srcH > dstW*dstH) {
  820. tmp_width = dstW;
  821. tmp_height = dstH;
  822. } else {
  823. tmp_width = srcW;
  824. tmp_height = srcH;
  825. }
  826. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  827. tmp_width, tmp_height, tmp_format, 64);
  828. if (ret < 0)
  829. return ret;
  830. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, c->srcFormat,
  831. tmp_width, tmp_height, tmp_format,
  832. c->flags, c->param);
  833. if (!c->cascaded_context[0])
  834. return -1;
  835. c->cascaded_context[0]->alphablend = c->alphablend;
  836. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  837. if (ret < 0)
  838. return ret;
  839. //we set both src and dst depending on that the RGB side will be ignored
  840. sws_setColorspaceDetails(c->cascaded_context[0], inv_table,
  841. srcRange, table, dstRange,
  842. brightness, contrast, saturation);
  843. c->cascaded_context[1] = sws_getContext(tmp_width, tmp_height, tmp_format,
  844. dstW, dstH, c->dstFormat,
  845. c->flags, NULL, NULL, c->param);
  846. if (!c->cascaded_context[1])
  847. return -1;
  848. sws_setColorspaceDetails(c->cascaded_context[1], inv_table,
  849. srcRange, table, dstRange,
  850. 0, 1 << 16, 1 << 16);
  851. return 0;
  852. }
  853. return -1;
  854. }
  855. if (!isYUV(c->dstFormat) && !isGray(c->dstFormat)) {
  856. ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness,
  857. contrast, saturation);
  858. // FIXME factorize
  859. if (ARCH_PPC)
  860. ff_yuv2rgb_init_tables_ppc(c, inv_table, brightness,
  861. contrast, saturation);
  862. }
  863. fill_rgb2yuv_table(c, table, dstRange);
  864. return 0;
  865. }
  866. int sws_getColorspaceDetails(struct SwsContext *c, int **inv_table,
  867. int *srcRange, int **table, int *dstRange,
  868. int *brightness, int *contrast, int *saturation)
  869. {
  870. if (!c )
  871. return -1;
  872. *inv_table = c->srcColorspaceTable;
  873. *table = c->dstColorspaceTable;
  874. *srcRange = c->srcRange;
  875. *dstRange = c->dstRange;
  876. *brightness = c->brightness;
  877. *contrast = c->contrast;
  878. *saturation = c->saturation;
  879. return 0;
  880. }
  881. static int handle_jpeg(enum AVPixelFormat *format)
  882. {
  883. switch (*format) {
  884. case AV_PIX_FMT_YUVJ420P:
  885. *format = AV_PIX_FMT_YUV420P;
  886. return 1;
  887. case AV_PIX_FMT_YUVJ411P:
  888. *format = AV_PIX_FMT_YUV411P;
  889. return 1;
  890. case AV_PIX_FMT_YUVJ422P:
  891. *format = AV_PIX_FMT_YUV422P;
  892. return 1;
  893. case AV_PIX_FMT_YUVJ444P:
  894. *format = AV_PIX_FMT_YUV444P;
  895. return 1;
  896. case AV_PIX_FMT_YUVJ440P:
  897. *format = AV_PIX_FMT_YUV440P;
  898. return 1;
  899. case AV_PIX_FMT_GRAY8:
  900. case AV_PIX_FMT_YA8:
  901. case AV_PIX_FMT_GRAY16LE:
  902. case AV_PIX_FMT_GRAY16BE:
  903. case AV_PIX_FMT_YA16BE:
  904. case AV_PIX_FMT_YA16LE:
  905. return 1;
  906. default:
  907. return 0;
  908. }
  909. }
  910. static int handle_0alpha(enum AVPixelFormat *format)
  911. {
  912. switch (*format) {
  913. case AV_PIX_FMT_0BGR : *format = AV_PIX_FMT_ABGR ; return 1;
  914. case AV_PIX_FMT_BGR0 : *format = AV_PIX_FMT_BGRA ; return 4;
  915. case AV_PIX_FMT_0RGB : *format = AV_PIX_FMT_ARGB ; return 1;
  916. case AV_PIX_FMT_RGB0 : *format = AV_PIX_FMT_RGBA ; return 4;
  917. default: return 0;
  918. }
  919. }
  920. static int handle_xyz(enum AVPixelFormat *format)
  921. {
  922. switch (*format) {
  923. case AV_PIX_FMT_XYZ12BE : *format = AV_PIX_FMT_RGB48BE; return 1;
  924. case AV_PIX_FMT_XYZ12LE : *format = AV_PIX_FMT_RGB48LE; return 1;
  925. default: return 0;
  926. }
  927. }
  928. static void handle_formats(SwsContext *c)
  929. {
  930. c->src0Alpha |= handle_0alpha(&c->srcFormat);
  931. c->dst0Alpha |= handle_0alpha(&c->dstFormat);
  932. c->srcXYZ |= handle_xyz(&c->srcFormat);
  933. c->dstXYZ |= handle_xyz(&c->dstFormat);
  934. if (c->srcXYZ || c->dstXYZ)
  935. fill_xyztables(c);
  936. }
  937. SwsContext *sws_alloc_context(void)
  938. {
  939. SwsContext *c = av_mallocz(sizeof(SwsContext));
  940. av_assert0(offsetof(SwsContext, redDither) + DITHER32_INT == offsetof(SwsContext, dither32));
  941. if (c) {
  942. c->av_class = &ff_sws_context_class;
  943. av_opt_set_defaults(c);
  944. }
  945. return c;
  946. }
  947. static uint16_t * alloc_gamma_tbl(double e)
  948. {
  949. int i = 0;
  950. uint16_t * tbl;
  951. tbl = (uint16_t*)av_malloc(sizeof(uint16_t) * 1 << 16);
  952. if (!tbl)
  953. return NULL;
  954. for (i = 0; i < 65536; ++i) {
  955. tbl[i] = pow(i / 65535.0, e) * 65535.0;
  956. }
  957. return tbl;
  958. }
  959. static enum AVPixelFormat alphaless_fmt(enum AVPixelFormat fmt)
  960. {
  961. switch(fmt) {
  962. case AV_PIX_FMT_ARGB: return AV_PIX_FMT_RGB24;
  963. case AV_PIX_FMT_RGBA: return AV_PIX_FMT_RGB24;
  964. case AV_PIX_FMT_ABGR: return AV_PIX_FMT_BGR24;
  965. case AV_PIX_FMT_BGRA: return AV_PIX_FMT_BGR24;
  966. case AV_PIX_FMT_YA8: return AV_PIX_FMT_GRAY8;
  967. case AV_PIX_FMT_YUVA420P: return AV_PIX_FMT_YUV420P;
  968. case AV_PIX_FMT_YUVA422P: return AV_PIX_FMT_YUV422P;
  969. case AV_PIX_FMT_YUVA444P: return AV_PIX_FMT_YUV444P;
  970. case AV_PIX_FMT_GBRAP: return AV_PIX_FMT_GBRP;
  971. case AV_PIX_FMT_GBRAP12LE: return AV_PIX_FMT_GBRP12;
  972. case AV_PIX_FMT_GBRAP12BE: return AV_PIX_FMT_GBRP12;
  973. case AV_PIX_FMT_GBRAP16LE: return AV_PIX_FMT_GBRP16;
  974. case AV_PIX_FMT_GBRAP16BE: return AV_PIX_FMT_GBRP16;
  975. case AV_PIX_FMT_RGBA64LE: return AV_PIX_FMT_RGB48;
  976. case AV_PIX_FMT_RGBA64BE: return AV_PIX_FMT_RGB48;
  977. case AV_PIX_FMT_BGRA64LE: return AV_PIX_FMT_BGR48;
  978. case AV_PIX_FMT_BGRA64BE: return AV_PIX_FMT_BGR48;
  979. case AV_PIX_FMT_YA16BE: return AV_PIX_FMT_GRAY16;
  980. case AV_PIX_FMT_YA16LE: return AV_PIX_FMT_GRAY16;
  981. case AV_PIX_FMT_YUVA420P9BE: return AV_PIX_FMT_YUV420P9;
  982. case AV_PIX_FMT_YUVA422P9BE: return AV_PIX_FMT_YUV422P9;
  983. case AV_PIX_FMT_YUVA444P9BE: return AV_PIX_FMT_YUV444P9;
  984. case AV_PIX_FMT_YUVA420P9LE: return AV_PIX_FMT_YUV420P9;
  985. case AV_PIX_FMT_YUVA422P9LE: return AV_PIX_FMT_YUV422P9;
  986. case AV_PIX_FMT_YUVA444P9LE: return AV_PIX_FMT_YUV444P9;
  987. case AV_PIX_FMT_YUVA420P10BE: return AV_PIX_FMT_YUV420P10;
  988. case AV_PIX_FMT_YUVA422P10BE: return AV_PIX_FMT_YUV422P10;
  989. case AV_PIX_FMT_YUVA444P10BE: return AV_PIX_FMT_YUV444P10;
  990. case AV_PIX_FMT_YUVA420P10LE: return AV_PIX_FMT_YUV420P10;
  991. case AV_PIX_FMT_YUVA422P10LE: return AV_PIX_FMT_YUV422P10;
  992. case AV_PIX_FMT_YUVA444P10LE: return AV_PIX_FMT_YUV444P10;
  993. case AV_PIX_FMT_YUVA420P16BE: return AV_PIX_FMT_YUV420P16;
  994. case AV_PIX_FMT_YUVA422P16BE: return AV_PIX_FMT_YUV422P16;
  995. case AV_PIX_FMT_YUVA444P16BE: return AV_PIX_FMT_YUV444P16;
  996. case AV_PIX_FMT_YUVA420P16LE: return AV_PIX_FMT_YUV420P16;
  997. case AV_PIX_FMT_YUVA422P16LE: return AV_PIX_FMT_YUV422P16;
  998. case AV_PIX_FMT_YUVA444P16LE: return AV_PIX_FMT_YUV444P16;
  999. // case AV_PIX_FMT_AYUV64LE:
  1000. // case AV_PIX_FMT_AYUV64BE:
  1001. // case AV_PIX_FMT_PAL8:
  1002. default: return AV_PIX_FMT_NONE;
  1003. }
  1004. }
  1005. av_cold int sws_init_context(SwsContext *c, SwsFilter *srcFilter,
  1006. SwsFilter *dstFilter)
  1007. {
  1008. int i, j;
  1009. int usesVFilter, usesHFilter;
  1010. int unscaled;
  1011. SwsFilter dummyFilter = { NULL, NULL, NULL, NULL };
  1012. int srcW = c->srcW;
  1013. int srcH = c->srcH;
  1014. int dstW = c->dstW;
  1015. int dstH = c->dstH;
  1016. int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 66, 16);
  1017. int flags, cpu_flags;
  1018. enum AVPixelFormat srcFormat = c->srcFormat;
  1019. enum AVPixelFormat dstFormat = c->dstFormat;
  1020. const AVPixFmtDescriptor *desc_src;
  1021. const AVPixFmtDescriptor *desc_dst;
  1022. int ret = 0;
  1023. enum AVPixelFormat tmpFmt;
  1024. cpu_flags = av_get_cpu_flags();
  1025. flags = c->flags;
  1026. emms_c();
  1027. if (!rgb15to16)
  1028. ff_sws_rgb2rgb_init();
  1029. unscaled = (srcW == dstW && srcH == dstH);
  1030. c->srcRange |= handle_jpeg(&c->srcFormat);
  1031. c->dstRange |= handle_jpeg(&c->dstFormat);
  1032. if(srcFormat!=c->srcFormat || dstFormat!=c->dstFormat)
  1033. av_log(c, AV_LOG_WARNING, "deprecated pixel format used, make sure you did set range correctly\n");
  1034. if (!c->contrast && !c->saturation && !c->dstFormatBpp)
  1035. sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange,
  1036. ff_yuv2rgb_coeffs[SWS_CS_DEFAULT],
  1037. c->dstRange, 0, 1 << 16, 1 << 16);
  1038. handle_formats(c);
  1039. srcFormat = c->srcFormat;
  1040. dstFormat = c->dstFormat;
  1041. desc_src = av_pix_fmt_desc_get(srcFormat);
  1042. desc_dst = av_pix_fmt_desc_get(dstFormat);
  1043. // If the source has no alpha then disable alpha blendaway
  1044. if (c->src0Alpha)
  1045. c->alphablend = SWS_ALPHA_BLEND_NONE;
  1046. if (!(unscaled && sws_isSupportedEndiannessConversion(srcFormat) &&
  1047. av_pix_fmt_swap_endianness(srcFormat) == dstFormat)) {
  1048. if (!sws_isSupportedInput(srcFormat)) {
  1049. av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n",
  1050. av_get_pix_fmt_name(srcFormat));
  1051. return AVERROR(EINVAL);
  1052. }
  1053. if (!sws_isSupportedOutput(dstFormat)) {
  1054. av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n",
  1055. av_get_pix_fmt_name(dstFormat));
  1056. return AVERROR(EINVAL);
  1057. }
  1058. }
  1059. av_assert2(desc_src && desc_dst);
  1060. i = flags & (SWS_POINT |
  1061. SWS_AREA |
  1062. SWS_BILINEAR |
  1063. SWS_FAST_BILINEAR |
  1064. SWS_BICUBIC |
  1065. SWS_X |
  1066. SWS_GAUSS |
  1067. SWS_LANCZOS |
  1068. SWS_SINC |
  1069. SWS_SPLINE |
  1070. SWS_BICUBLIN);
  1071. /* provide a default scaler if not set by caller */
  1072. if (!i) {
  1073. if (dstW < srcW && dstH < srcH)
  1074. flags |= SWS_BICUBIC;
  1075. else if (dstW > srcW && dstH > srcH)
  1076. flags |= SWS_BICUBIC;
  1077. else
  1078. flags |= SWS_BICUBIC;
  1079. c->flags = flags;
  1080. } else if (i & (i - 1)) {
  1081. av_log(c, AV_LOG_ERROR,
  1082. "Exactly one scaler algorithm must be chosen, got %X\n", i);
  1083. return AVERROR(EINVAL);
  1084. }
  1085. /* sanity check */
  1086. if (srcW < 1 || srcH < 1 || dstW < 1 || dstH < 1) {
  1087. /* FIXME check if these are enough and try to lower them after
  1088. * fixing the relevant parts of the code */
  1089. av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
  1090. srcW, srcH, dstW, dstH);
  1091. return AVERROR(EINVAL);
  1092. }
  1093. if (flags & SWS_FAST_BILINEAR) {
  1094. if (srcW < 8 || dstW < 8) {
  1095. flags ^= SWS_FAST_BILINEAR | SWS_BILINEAR;
  1096. c->flags = flags;
  1097. }
  1098. }
  1099. if (!dstFilter)
  1100. dstFilter = &dummyFilter;
  1101. if (!srcFilter)
  1102. srcFilter = &dummyFilter;
  1103. c->lumXInc = (((int64_t)srcW << 16) + (dstW >> 1)) / dstW;
  1104. c->lumYInc = (((int64_t)srcH << 16) + (dstH >> 1)) / dstH;
  1105. c->dstFormatBpp = av_get_bits_per_pixel(desc_dst);
  1106. c->srcFormatBpp = av_get_bits_per_pixel(desc_src);
  1107. c->vRounder = 4 * 0x0001000100010001ULL;
  1108. usesVFilter = (srcFilter->lumV && srcFilter->lumV->length > 1) ||
  1109. (srcFilter->chrV && srcFilter->chrV->length > 1) ||
  1110. (dstFilter->lumV && dstFilter->lumV->length > 1) ||
  1111. (dstFilter->chrV && dstFilter->chrV->length > 1);
  1112. usesHFilter = (srcFilter->lumH && srcFilter->lumH->length > 1) ||
  1113. (srcFilter->chrH && srcFilter->chrH->length > 1) ||
  1114. (dstFilter->lumH && dstFilter->lumH->length > 1) ||
  1115. (dstFilter->chrH && dstFilter->chrH->length > 1);
  1116. av_pix_fmt_get_chroma_sub_sample(srcFormat, &c->chrSrcHSubSample, &c->chrSrcVSubSample);
  1117. av_pix_fmt_get_chroma_sub_sample(dstFormat, &c->chrDstHSubSample, &c->chrDstVSubSample);
  1118. if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) {
  1119. if (dstW&1) {
  1120. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to odd output size\n");
  1121. flags |= SWS_FULL_CHR_H_INT;
  1122. c->flags = flags;
  1123. }
  1124. if ( c->chrSrcHSubSample == 0
  1125. && c->chrSrcVSubSample == 0
  1126. && c->dither != SWS_DITHER_BAYER //SWS_FULL_CHR_H_INT is currently not supported with SWS_DITHER_BAYER
  1127. && !(c->flags & SWS_FAST_BILINEAR)
  1128. ) {
  1129. av_log(c, AV_LOG_DEBUG, "Forcing full internal H chroma due to input having non subsampled chroma\n");
  1130. flags |= SWS_FULL_CHR_H_INT;
  1131. c->flags = flags;
  1132. }
  1133. }
  1134. if (c->dither == SWS_DITHER_AUTO) {
  1135. if (flags & SWS_ERROR_DIFFUSION)
  1136. c->dither = SWS_DITHER_ED;
  1137. }
  1138. if(dstFormat == AV_PIX_FMT_BGR4_BYTE ||
  1139. dstFormat == AV_PIX_FMT_RGB4_BYTE ||
  1140. dstFormat == AV_PIX_FMT_BGR8 ||
  1141. dstFormat == AV_PIX_FMT_RGB8) {
  1142. if (c->dither == SWS_DITHER_AUTO)
  1143. c->dither = (flags & SWS_FULL_CHR_H_INT) ? SWS_DITHER_ED : SWS_DITHER_BAYER;
  1144. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1145. if (c->dither == SWS_DITHER_ED || c->dither == SWS_DITHER_A_DITHER || c->dither == SWS_DITHER_X_DITHER) {
  1146. av_log(c, AV_LOG_DEBUG,
  1147. "Desired dithering only supported in full chroma interpolation for destination format '%s'\n",
  1148. av_get_pix_fmt_name(dstFormat));
  1149. flags |= SWS_FULL_CHR_H_INT;
  1150. c->flags = flags;
  1151. }
  1152. }
  1153. if (flags & SWS_FULL_CHR_H_INT) {
  1154. if (c->dither == SWS_DITHER_BAYER) {
  1155. av_log(c, AV_LOG_DEBUG,
  1156. "Ordered dither is not supported in full chroma interpolation for destination format '%s'\n",
  1157. av_get_pix_fmt_name(dstFormat));
  1158. c->dither = SWS_DITHER_ED;
  1159. }
  1160. }
  1161. }
  1162. if (isPlanarRGB(dstFormat)) {
  1163. if (!(flags & SWS_FULL_CHR_H_INT)) {
  1164. av_log(c, AV_LOG_DEBUG,
  1165. "%s output is not supported with half chroma resolution, switching to full\n",
  1166. av_get_pix_fmt_name(dstFormat));
  1167. flags |= SWS_FULL_CHR_H_INT;
  1168. c->flags = flags;
  1169. }
  1170. }
  1171. /* reuse chroma for 2 pixels RGB/BGR unless user wants full
  1172. * chroma interpolation */
  1173. if (flags & SWS_FULL_CHR_H_INT &&
  1174. isAnyRGB(dstFormat) &&
  1175. !isPlanarRGB(dstFormat) &&
  1176. dstFormat != AV_PIX_FMT_RGBA64LE &&
  1177. dstFormat != AV_PIX_FMT_RGBA64BE &&
  1178. dstFormat != AV_PIX_FMT_BGRA64LE &&
  1179. dstFormat != AV_PIX_FMT_BGRA64BE &&
  1180. dstFormat != AV_PIX_FMT_RGB48LE &&
  1181. dstFormat != AV_PIX_FMT_RGB48BE &&
  1182. dstFormat != AV_PIX_FMT_BGR48LE &&
  1183. dstFormat != AV_PIX_FMT_BGR48BE &&
  1184. dstFormat != AV_PIX_FMT_RGBA &&
  1185. dstFormat != AV_PIX_FMT_ARGB &&
  1186. dstFormat != AV_PIX_FMT_BGRA &&
  1187. dstFormat != AV_PIX_FMT_ABGR &&
  1188. dstFormat != AV_PIX_FMT_RGB24 &&
  1189. dstFormat != AV_PIX_FMT_BGR24 &&
  1190. dstFormat != AV_PIX_FMT_BGR4_BYTE &&
  1191. dstFormat != AV_PIX_FMT_RGB4_BYTE &&
  1192. dstFormat != AV_PIX_FMT_BGR8 &&
  1193. dstFormat != AV_PIX_FMT_RGB8
  1194. ) {
  1195. av_log(c, AV_LOG_WARNING,
  1196. "full chroma interpolation for destination format '%s' not yet implemented\n",
  1197. av_get_pix_fmt_name(dstFormat));
  1198. flags &= ~SWS_FULL_CHR_H_INT;
  1199. c->flags = flags;
  1200. }
  1201. if (isAnyRGB(dstFormat) && !(flags & SWS_FULL_CHR_H_INT))
  1202. c->chrDstHSubSample = 1;
  1203. // drop some chroma lines if the user wants it
  1204. c->vChrDrop = (flags & SWS_SRC_V_CHR_DROP_MASK) >>
  1205. SWS_SRC_V_CHR_DROP_SHIFT;
  1206. c->chrSrcVSubSample += c->vChrDrop;
  1207. /* drop every other pixel for chroma calculation unless user
  1208. * wants full chroma */
  1209. if (isAnyRGB(srcFormat) && !(flags & SWS_FULL_CHR_H_INP) &&
  1210. srcFormat != AV_PIX_FMT_RGB8 && srcFormat != AV_PIX_FMT_BGR8 &&
  1211. srcFormat != AV_PIX_FMT_RGB4 && srcFormat != AV_PIX_FMT_BGR4 &&
  1212. srcFormat != AV_PIX_FMT_RGB4_BYTE && srcFormat != AV_PIX_FMT_BGR4_BYTE &&
  1213. srcFormat != AV_PIX_FMT_GBRP9BE && srcFormat != AV_PIX_FMT_GBRP9LE &&
  1214. srcFormat != AV_PIX_FMT_GBRP10BE && srcFormat != AV_PIX_FMT_GBRP10LE &&
  1215. srcFormat != AV_PIX_FMT_GBRP12BE && srcFormat != AV_PIX_FMT_GBRP12LE &&
  1216. srcFormat != AV_PIX_FMT_GBRAP12BE && srcFormat != AV_PIX_FMT_GBRAP12LE &&
  1217. srcFormat != AV_PIX_FMT_GBRP14BE && srcFormat != AV_PIX_FMT_GBRP14LE &&
  1218. srcFormat != AV_PIX_FMT_GBRP16BE && srcFormat != AV_PIX_FMT_GBRP16LE &&
  1219. srcFormat != AV_PIX_FMT_GBRAP16BE && srcFormat != AV_PIX_FMT_GBRAP16LE &&
  1220. ((dstW >> c->chrDstHSubSample) <= (srcW >> 1) ||
  1221. (flags & SWS_FAST_BILINEAR)))
  1222. c->chrSrcHSubSample = 1;
  1223. // Note the AV_CEIL_RSHIFT is so that we always round toward +inf.
  1224. c->chrSrcW = AV_CEIL_RSHIFT(srcW, c->chrSrcHSubSample);
  1225. c->chrSrcH = AV_CEIL_RSHIFT(srcH, c->chrSrcVSubSample);
  1226. c->chrDstW = AV_CEIL_RSHIFT(dstW, c->chrDstHSubSample);
  1227. c->chrDstH = AV_CEIL_RSHIFT(dstH, c->chrDstVSubSample);
  1228. FF_ALLOCZ_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW*2+78, 16) * 2, fail);
  1229. c->srcBpc = desc_src->comp[0].depth;
  1230. if (c->srcBpc < 8)
  1231. c->srcBpc = 8;
  1232. c->dstBpc = desc_dst->comp[0].depth;
  1233. if (c->dstBpc < 8)
  1234. c->dstBpc = 8;
  1235. if (isAnyRGB(srcFormat) || srcFormat == AV_PIX_FMT_PAL8)
  1236. c->srcBpc = 16;
  1237. if (c->dstBpc == 16)
  1238. dst_stride <<= 1;
  1239. if (INLINE_MMXEXT(cpu_flags) && c->srcBpc == 8 && c->dstBpc <= 14) {
  1240. c->canMMXEXTBeUsed = dstW >= srcW && (dstW & 31) == 0 &&
  1241. c->chrDstW >= c->chrSrcW &&
  1242. (srcW & 15) == 0;
  1243. if (!c->canMMXEXTBeUsed && dstW >= srcW && c->chrDstW >= c->chrSrcW && (srcW & 15) == 0
  1244. && (flags & SWS_FAST_BILINEAR)) {
  1245. if (flags & SWS_PRINT_INFO)
  1246. av_log(c, AV_LOG_INFO,
  1247. "output width is not a multiple of 32 -> no MMXEXT scaler\n");
  1248. }
  1249. if (usesHFilter || isNBPS(c->srcFormat) || is16BPS(c->srcFormat) || isAnyRGB(c->srcFormat))
  1250. c->canMMXEXTBeUsed = 0;
  1251. } else
  1252. c->canMMXEXTBeUsed = 0;
  1253. c->chrXInc = (((int64_t)c->chrSrcW << 16) + (c->chrDstW >> 1)) / c->chrDstW;
  1254. c->chrYInc = (((int64_t)c->chrSrcH << 16) + (c->chrDstH >> 1)) / c->chrDstH;
  1255. /* Match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src
  1256. * to pixel n-2 of dst, but only for the FAST_BILINEAR mode otherwise do
  1257. * correct scaling.
  1258. * n-2 is the last chrominance sample available.
  1259. * This is not perfect, but no one should notice the difference, the more
  1260. * correct variant would be like the vertical one, but that would require
  1261. * some special code for the first and last pixel */
  1262. if (flags & SWS_FAST_BILINEAR) {
  1263. if (c->canMMXEXTBeUsed) {
  1264. c->lumXInc += 20;
  1265. c->chrXInc += 20;
  1266. }
  1267. // we don't use the x86 asm scaler if MMX is available
  1268. else if (INLINE_MMX(cpu_flags) && c->dstBpc <= 14) {
  1269. c->lumXInc = ((int64_t)(srcW - 2) << 16) / (dstW - 2) - 20;
  1270. c->chrXInc = ((int64_t)(c->chrSrcW - 2) << 16) / (c->chrDstW - 2) - 20;
  1271. }
  1272. }
  1273. // hardcoded for now
  1274. c->gamma_value = 2.2;
  1275. tmpFmt = AV_PIX_FMT_RGBA64LE;
  1276. if (!unscaled && c->gamma_flag && (srcFormat != tmpFmt || dstFormat != tmpFmt)) {
  1277. SwsContext *c2;
  1278. c->cascaded_context[0] = NULL;
  1279. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1280. srcW, srcH, tmpFmt, 64);
  1281. if (ret < 0)
  1282. return ret;
  1283. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1284. srcW, srcH, tmpFmt,
  1285. flags, NULL, NULL, c->param);
  1286. if (!c->cascaded_context[0]) {
  1287. return -1;
  1288. }
  1289. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFmt,
  1290. dstW, dstH, tmpFmt,
  1291. flags, srcFilter, dstFilter, c->param);
  1292. if (!c->cascaded_context[1])
  1293. return -1;
  1294. c2 = c->cascaded_context[1];
  1295. c2->is_internal_gamma = 1;
  1296. c2->gamma = alloc_gamma_tbl( c->gamma_value);
  1297. c2->inv_gamma = alloc_gamma_tbl(1.f/c->gamma_value);
  1298. if (!c2->gamma || !c2->inv_gamma)
  1299. return AVERROR(ENOMEM);
  1300. // is_internal_flag is set after creating the context
  1301. // to properly create the gamma convert FilterDescriptor
  1302. // we have to re-initialize it
  1303. ff_free_filters(c2);
  1304. if (ff_init_filters(c2) < 0) {
  1305. sws_freeContext(c2);
  1306. return -1;
  1307. }
  1308. c->cascaded_context[2] = NULL;
  1309. if (dstFormat != tmpFmt) {
  1310. ret = av_image_alloc(c->cascaded1_tmp, c->cascaded1_tmpStride,
  1311. dstW, dstH, tmpFmt, 64);
  1312. if (ret < 0)
  1313. return ret;
  1314. c->cascaded_context[2] = sws_getContext(dstW, dstH, tmpFmt,
  1315. dstW, dstH, dstFormat,
  1316. flags, NULL, NULL, c->param);
  1317. if (!c->cascaded_context[2])
  1318. return -1;
  1319. }
  1320. return 0;
  1321. }
  1322. if (isBayer(srcFormat)) {
  1323. if (!unscaled ||
  1324. (dstFormat != AV_PIX_FMT_RGB24 && dstFormat != AV_PIX_FMT_YUV420P)) {
  1325. enum AVPixelFormat tmpFormat = AV_PIX_FMT_RGB24;
  1326. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1327. srcW, srcH, tmpFormat, 64);
  1328. if (ret < 0)
  1329. return ret;
  1330. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1331. srcW, srcH, tmpFormat,
  1332. flags, srcFilter, NULL, c->param);
  1333. if (!c->cascaded_context[0])
  1334. return -1;
  1335. c->cascaded_context[1] = sws_getContext(srcW, srcH, tmpFormat,
  1336. dstW, dstH, dstFormat,
  1337. flags, NULL, dstFilter, c->param);
  1338. if (!c->cascaded_context[1])
  1339. return -1;
  1340. return 0;
  1341. }
  1342. }
  1343. if (CONFIG_SWSCALE_ALPHA && isALPHA(srcFormat) && !isALPHA(dstFormat)) {
  1344. enum AVPixelFormat tmpFormat = alphaless_fmt(srcFormat);
  1345. if (tmpFormat != AV_PIX_FMT_NONE && c->alphablend != SWS_ALPHA_BLEND_NONE)
  1346. if (!unscaled ||
  1347. dstFormat != tmpFormat ||
  1348. usesHFilter || usesVFilter ||
  1349. c->srcRange != c->dstRange
  1350. ) {
  1351. c->cascaded_mainindex = 1;
  1352. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1353. srcW, srcH, tmpFormat, 64);
  1354. if (ret < 0)
  1355. return ret;
  1356. c->cascaded_context[0] = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1357. srcW, srcH, tmpFormat,
  1358. flags, c->param);
  1359. if (!c->cascaded_context[0])
  1360. return -1;
  1361. c->cascaded_context[0]->alphablend = c->alphablend;
  1362. ret = sws_init_context(c->cascaded_context[0], NULL , NULL);
  1363. if (ret < 0)
  1364. return ret;
  1365. c->cascaded_context[1] = sws_alloc_set_opts(srcW, srcH, tmpFormat,
  1366. dstW, dstH, dstFormat,
  1367. flags, c->param);
  1368. if (!c->cascaded_context[1])
  1369. return -1;
  1370. c->cascaded_context[1]->srcRange = c->srcRange;
  1371. c->cascaded_context[1]->dstRange = c->dstRange;
  1372. ret = sws_init_context(c->cascaded_context[1], srcFilter , dstFilter);
  1373. if (ret < 0)
  1374. return ret;
  1375. return 0;
  1376. }
  1377. }
  1378. #define USE_MMAP (HAVE_MMAP && HAVE_MPROTECT && defined MAP_ANONYMOUS)
  1379. /* precalculate horizontal scaler filter coefficients */
  1380. {
  1381. #if HAVE_MMXEXT_INLINE
  1382. // can't downscale !!!
  1383. if (c->canMMXEXTBeUsed && (flags & SWS_FAST_BILINEAR)) {
  1384. c->lumMmxextFilterCodeSize = ff_init_hscaler_mmxext(dstW, c->lumXInc, NULL,
  1385. NULL, NULL, 8);
  1386. c->chrMmxextFilterCodeSize = ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc,
  1387. NULL, NULL, NULL, 4);
  1388. #if USE_MMAP
  1389. c->lumMmxextFilterCode = mmap(NULL, c->lumMmxextFilterCodeSize,
  1390. PROT_READ | PROT_WRITE,
  1391. MAP_PRIVATE | MAP_ANONYMOUS,
  1392. -1, 0);
  1393. c->chrMmxextFilterCode = mmap(NULL, c->chrMmxextFilterCodeSize,
  1394. PROT_READ | PROT_WRITE,
  1395. MAP_PRIVATE | MAP_ANONYMOUS,
  1396. -1, 0);
  1397. #elif HAVE_VIRTUALALLOC
  1398. c->lumMmxextFilterCode = VirtualAlloc(NULL,
  1399. c->lumMmxextFilterCodeSize,
  1400. MEM_COMMIT,
  1401. PAGE_EXECUTE_READWRITE);
  1402. c->chrMmxextFilterCode = VirtualAlloc(NULL,
  1403. c->chrMmxextFilterCodeSize,
  1404. MEM_COMMIT,
  1405. PAGE_EXECUTE_READWRITE);
  1406. #else
  1407. c->lumMmxextFilterCode = av_malloc(c->lumMmxextFilterCodeSize);
  1408. c->chrMmxextFilterCode = av_malloc(c->chrMmxextFilterCodeSize);
  1409. #endif
  1410. #ifdef MAP_ANONYMOUS
  1411. if (c->lumMmxextFilterCode == MAP_FAILED || c->chrMmxextFilterCode == MAP_FAILED)
  1412. #else
  1413. if (!c->lumMmxextFilterCode || !c->chrMmxextFilterCode)
  1414. #endif
  1415. {
  1416. av_log(c, AV_LOG_ERROR, "Failed to allocate MMX2FilterCode\n");
  1417. return AVERROR(ENOMEM);
  1418. }
  1419. FF_ALLOCZ_OR_GOTO(c, c->hLumFilter, (dstW / 8 + 8) * sizeof(int16_t), fail);
  1420. FF_ALLOCZ_OR_GOTO(c, c->hChrFilter, (c->chrDstW / 4 + 8) * sizeof(int16_t), fail);
  1421. FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW / 2 / 8 + 8) * sizeof(int32_t), fail);
  1422. FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW / 2 / 4 + 8) * sizeof(int32_t), fail);
  1423. ff_init_hscaler_mmxext( dstW, c->lumXInc, c->lumMmxextFilterCode,
  1424. c->hLumFilter, (uint32_t*)c->hLumFilterPos, 8);
  1425. ff_init_hscaler_mmxext(c->chrDstW, c->chrXInc, c->chrMmxextFilterCode,
  1426. c->hChrFilter, (uint32_t*)c->hChrFilterPos, 4);
  1427. #if USE_MMAP
  1428. if ( mprotect(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1
  1429. || mprotect(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize, PROT_EXEC | PROT_READ) == -1) {
  1430. av_log(c, AV_LOG_ERROR, "mprotect failed, cannot use fast bilinear scaler\n");
  1431. goto fail;
  1432. }
  1433. #endif
  1434. } else
  1435. #endif /* HAVE_MMXEXT_INLINE */
  1436. {
  1437. const int filterAlign = X86_MMX(cpu_flags) ? 4 :
  1438. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1439. if ((ret = initFilter(&c->hLumFilter, &c->hLumFilterPos,
  1440. &c->hLumFilterSize, c->lumXInc,
  1441. srcW, dstW, filterAlign, 1 << 14,
  1442. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1443. cpu_flags, srcFilter->lumH, dstFilter->lumH,
  1444. c->param,
  1445. get_local_pos(c, 0, 0, 0),
  1446. get_local_pos(c, 0, 0, 0))) < 0)
  1447. goto fail;
  1448. if ((ret = initFilter(&c->hChrFilter, &c->hChrFilterPos,
  1449. &c->hChrFilterSize, c->chrXInc,
  1450. c->chrSrcW, c->chrDstW, filterAlign, 1 << 14,
  1451. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1452. cpu_flags, srcFilter->chrH, dstFilter->chrH,
  1453. c->param,
  1454. get_local_pos(c, c->chrSrcHSubSample, c->src_h_chr_pos, 0),
  1455. get_local_pos(c, c->chrDstHSubSample, c->dst_h_chr_pos, 0))) < 0)
  1456. goto fail;
  1457. }
  1458. } // initialize horizontal stuff
  1459. /* precalculate vertical scaler filter coefficients */
  1460. {
  1461. const int filterAlign = X86_MMX(cpu_flags) ? 2 :
  1462. PPC_ALTIVEC(cpu_flags) ? 8 : 1;
  1463. if ((ret = initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize,
  1464. c->lumYInc, srcH, dstH, filterAlign, (1 << 12),
  1465. (flags & SWS_BICUBLIN) ? (flags | SWS_BICUBIC) : flags,
  1466. cpu_flags, srcFilter->lumV, dstFilter->lumV,
  1467. c->param,
  1468. get_local_pos(c, 0, 0, 1),
  1469. get_local_pos(c, 0, 0, 1))) < 0)
  1470. goto fail;
  1471. if ((ret = initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize,
  1472. c->chrYInc, c->chrSrcH, c->chrDstH,
  1473. filterAlign, (1 << 12),
  1474. (flags & SWS_BICUBLIN) ? (flags | SWS_BILINEAR) : flags,
  1475. cpu_flags, srcFilter->chrV, dstFilter->chrV,
  1476. c->param,
  1477. get_local_pos(c, c->chrSrcVSubSample, c->src_v_chr_pos, 1),
  1478. get_local_pos(c, c->chrDstVSubSample, c->dst_v_chr_pos, 1))) < 0)
  1479. goto fail;
  1480. #if HAVE_ALTIVEC
  1481. FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof(vector signed short) * c->vLumFilterSize * c->dstH, fail);
  1482. FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof(vector signed short) * c->vChrFilterSize * c->chrDstH, fail);
  1483. for (i = 0; i < c->vLumFilterSize * c->dstH; i++) {
  1484. int j;
  1485. short *p = (short *)&c->vYCoeffsBank[i];
  1486. for (j = 0; j < 8; j++)
  1487. p[j] = c->vLumFilter[i];
  1488. }
  1489. for (i = 0; i < c->vChrFilterSize * c->chrDstH; i++) {
  1490. int j;
  1491. short *p = (short *)&c->vCCoeffsBank[i];
  1492. for (j = 0; j < 8; j++)
  1493. p[j] = c->vChrFilter[i];
  1494. }
  1495. #endif
  1496. }
  1497. // calculate buffer sizes so that they won't run out while handling these damn slices
  1498. c->vLumBufSize = c->vLumFilterSize;
  1499. c->vChrBufSize = c->vChrFilterSize;
  1500. for (i = 0; i < dstH; i++) {
  1501. int chrI = (int64_t)i * c->chrDstH / dstH;
  1502. int nextSlice = FFMAX(c->vLumFilterPos[i] + c->vLumFilterSize - 1,
  1503. ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)
  1504. << c->chrSrcVSubSample));
  1505. nextSlice >>= c->chrSrcVSubSample;
  1506. nextSlice <<= c->chrSrcVSubSample;
  1507. if (c->vLumFilterPos[i] + c->vLumBufSize < nextSlice)
  1508. c->vLumBufSize = nextSlice - c->vLumFilterPos[i];
  1509. if (c->vChrFilterPos[chrI] + c->vChrBufSize <
  1510. (nextSlice >> c->chrSrcVSubSample))
  1511. c->vChrBufSize = (nextSlice >> c->chrSrcVSubSample) -
  1512. c->vChrFilterPos[chrI];
  1513. }
  1514. for (i = 0; i < 4; i++)
  1515. FF_ALLOCZ_OR_GOTO(c, c->dither_error[i], (c->dstW+2) * sizeof(int), fail);
  1516. /* Allocate pixbufs (we use dynamic allocation because otherwise we would
  1517. * need to allocate several megabytes to handle all possible cases) */
  1518. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1519. FF_ALLOCZ_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1520. FF_ALLOCZ_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize * 3 * sizeof(int16_t *), fail);
  1521. if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
  1522. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize * 3 * sizeof(int16_t *), fail);
  1523. /* Note we need at least one pixel more at the end because of the MMX code
  1524. * (just in case someone wants to replace the 4000/8000). */
  1525. /* align at 16 bytes for AltiVec */
  1526. for (i = 0; i < c->vLumBufSize; i++) {
  1527. FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i + c->vLumBufSize],
  1528. dst_stride + 16, fail);
  1529. c->lumPixBuf[i] = c->lumPixBuf[i + c->vLumBufSize];
  1530. }
  1531. // 64 / c->scalingBpp is the same as 16 / sizeof(scaling_intermediate)
  1532. c->uv_off = (dst_stride>>1) + 64 / (c->dstBpc &~ 7);
  1533. c->uv_offx2 = dst_stride + 16;
  1534. for (i = 0; i < c->vChrBufSize; i++) {
  1535. FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i + c->vChrBufSize],
  1536. dst_stride * 2 + 32, fail);
  1537. c->chrUPixBuf[i] = c->chrUPixBuf[i + c->vChrBufSize];
  1538. c->chrVPixBuf[i] = c->chrVPixBuf[i + c->vChrBufSize]
  1539. = c->chrUPixBuf[i] + (dst_stride >> 1) + 8;
  1540. }
  1541. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
  1542. for (i = 0; i < c->vLumBufSize; i++) {
  1543. FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i + c->vLumBufSize],
  1544. dst_stride + 16, fail);
  1545. c->alpPixBuf[i] = c->alpPixBuf[i + c->vLumBufSize];
  1546. }
  1547. // try to avoid drawing green stuff between the right end and the stride end
  1548. for (i = 0; i < c->vChrBufSize; i++)
  1549. if(desc_dst->comp[0].depth == 16){
  1550. av_assert0(c->dstBpc > 14);
  1551. for(j=0; j<dst_stride/2+1; j++)
  1552. ((int32_t*)(c->chrUPixBuf[i]))[j] = 1<<18;
  1553. } else
  1554. for(j=0; j<dst_stride+1; j++)
  1555. ((int16_t*)(c->chrUPixBuf[i]))[j] = 1<<14;
  1556. av_assert0(c->chrDstH <= dstH);
  1557. if (flags & SWS_PRINT_INFO) {
  1558. const char *scaler = NULL, *cpucaps;
  1559. for (i = 0; i < FF_ARRAY_ELEMS(scale_algorithms); i++) {
  1560. if (flags & scale_algorithms[i].flag) {
  1561. scaler = scale_algorithms[i].description;
  1562. break;
  1563. }
  1564. }
  1565. if (!scaler)
  1566. scaler = "ehh flags invalid?!";
  1567. av_log(c, AV_LOG_INFO, "%s scaler, from %s to %s%s ",
  1568. scaler,
  1569. av_get_pix_fmt_name(srcFormat),
  1570. #ifdef DITHER1XBPP
  1571. dstFormat == AV_PIX_FMT_BGR555 || dstFormat == AV_PIX_FMT_BGR565 ||
  1572. dstFormat == AV_PIX_FMT_RGB444BE || dstFormat == AV_PIX_FMT_RGB444LE ||
  1573. dstFormat == AV_PIX_FMT_BGR444BE || dstFormat == AV_PIX_FMT_BGR444LE ?
  1574. "dithered " : "",
  1575. #else
  1576. "",
  1577. #endif
  1578. av_get_pix_fmt_name(dstFormat));
  1579. if (INLINE_MMXEXT(cpu_flags))
  1580. cpucaps = "MMXEXT";
  1581. else if (INLINE_AMD3DNOW(cpu_flags))
  1582. cpucaps = "3DNOW";
  1583. else if (INLINE_MMX(cpu_flags))
  1584. cpucaps = "MMX";
  1585. else if (PPC_ALTIVEC(cpu_flags))
  1586. cpucaps = "AltiVec";
  1587. else
  1588. cpucaps = "C";
  1589. av_log(c, AV_LOG_INFO, "using %s\n", cpucaps);
  1590. av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
  1591. av_log(c, AV_LOG_DEBUG,
  1592. "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1593. c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
  1594. av_log(c, AV_LOG_DEBUG,
  1595. "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
  1596. c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH,
  1597. c->chrXInc, c->chrYInc);
  1598. }
  1599. /* alpha blend special case, note this has been split via cascaded contexts if its scaled */
  1600. if (unscaled && !usesHFilter && !usesVFilter &&
  1601. c->alphablend != SWS_ALPHA_BLEND_NONE &&
  1602. isALPHA(srcFormat) &&
  1603. (c->srcRange == c->dstRange || isAnyRGB(dstFormat)) &&
  1604. alphaless_fmt(srcFormat) == dstFormat
  1605. ) {
  1606. c->swscale = ff_sws_alphablendaway;
  1607. if (flags & SWS_PRINT_INFO)
  1608. av_log(c, AV_LOG_INFO,
  1609. "using alpha blendaway %s -> %s special converter\n",
  1610. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1611. return 0;
  1612. }
  1613. /* unscaled special cases */
  1614. if (unscaled && !usesHFilter && !usesVFilter &&
  1615. (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
  1616. ff_get_unscaled_swscale(c);
  1617. if (c->swscale) {
  1618. if (flags & SWS_PRINT_INFO)
  1619. av_log(c, AV_LOG_INFO,
  1620. "using unscaled %s -> %s special converter\n",
  1621. av_get_pix_fmt_name(srcFormat), av_get_pix_fmt_name(dstFormat));
  1622. return 0;
  1623. }
  1624. }
  1625. c->swscale = ff_getSwsFunc(c);
  1626. return ff_init_filters(c);
  1627. fail: // FIXME replace things by appropriate error codes
  1628. if (ret == RETCODE_USE_CASCADE) {
  1629. int tmpW = sqrt(srcW * (int64_t)dstW);
  1630. int tmpH = sqrt(srcH * (int64_t)dstH);
  1631. enum AVPixelFormat tmpFormat = AV_PIX_FMT_YUV420P;
  1632. if (isALPHA(srcFormat))
  1633. tmpFormat = AV_PIX_FMT_YUVA420P;
  1634. if (srcW*(int64_t)srcH <= 4LL*dstW*dstH)
  1635. return AVERROR(EINVAL);
  1636. ret = av_image_alloc(c->cascaded_tmp, c->cascaded_tmpStride,
  1637. tmpW, tmpH, tmpFormat, 64);
  1638. if (ret < 0)
  1639. return ret;
  1640. c->cascaded_context[0] = sws_getContext(srcW, srcH, srcFormat,
  1641. tmpW, tmpH, tmpFormat,
  1642. flags, srcFilter, NULL, c->param);
  1643. if (!c->cascaded_context[0])
  1644. return -1;
  1645. c->cascaded_context[1] = sws_getContext(tmpW, tmpH, tmpFormat,
  1646. dstW, dstH, dstFormat,
  1647. flags, NULL, dstFilter, c->param);
  1648. if (!c->cascaded_context[1])
  1649. return -1;
  1650. return 0;
  1651. }
  1652. return -1;
  1653. }
  1654. SwsContext *sws_alloc_set_opts(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1655. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1656. int flags, const double *param)
  1657. {
  1658. SwsContext *c;
  1659. if (!(c = sws_alloc_context()))
  1660. return NULL;
  1661. c->flags = flags;
  1662. c->srcW = srcW;
  1663. c->srcH = srcH;
  1664. c->dstW = dstW;
  1665. c->dstH = dstH;
  1666. c->srcFormat = srcFormat;
  1667. c->dstFormat = dstFormat;
  1668. if (param) {
  1669. c->param[0] = param[0];
  1670. c->param[1] = param[1];
  1671. }
  1672. return c;
  1673. }
  1674. SwsContext *sws_getContext(int srcW, int srcH, enum AVPixelFormat srcFormat,
  1675. int dstW, int dstH, enum AVPixelFormat dstFormat,
  1676. int flags, SwsFilter *srcFilter,
  1677. SwsFilter *dstFilter, const double *param)
  1678. {
  1679. SwsContext *c;
  1680. c = sws_alloc_set_opts(srcW, srcH, srcFormat,
  1681. dstW, dstH, dstFormat,
  1682. flags, param);
  1683. if (!c)
  1684. return NULL;
  1685. if (sws_init_context(c, srcFilter, dstFilter) < 0) {
  1686. sws_freeContext(c);
  1687. return NULL;
  1688. }
  1689. return c;
  1690. }
  1691. static int isnan_vec(SwsVector *a)
  1692. {
  1693. int i;
  1694. for (i=0; i<a->length; i++)
  1695. if (isnan(a->coeff[i]))
  1696. return 1;
  1697. return 0;
  1698. }
  1699. static void makenan_vec(SwsVector *a)
  1700. {
  1701. int i;
  1702. for (i=0; i<a->length; i++)
  1703. a->coeff[i] = NAN;
  1704. }
  1705. SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
  1706. float lumaSharpen, float chromaSharpen,
  1707. float chromaHShift, float chromaVShift,
  1708. int verbose)
  1709. {
  1710. SwsFilter *filter = av_malloc(sizeof(SwsFilter));
  1711. if (!filter)
  1712. return NULL;
  1713. if (lumaGBlur != 0.0) {
  1714. filter->lumH = sws_getGaussianVec(lumaGBlur, 3.0);
  1715. filter->lumV = sws_getGaussianVec(lumaGBlur, 3.0);
  1716. } else {
  1717. filter->lumH = sws_getIdentityVec();
  1718. filter->lumV = sws_getIdentityVec();
  1719. }
  1720. if (chromaGBlur != 0.0) {
  1721. filter->chrH = sws_getGaussianVec(chromaGBlur, 3.0);
  1722. filter->chrV = sws_getGaussianVec(chromaGBlur, 3.0);
  1723. } else {
  1724. filter->chrH = sws_getIdentityVec();
  1725. filter->chrV = sws_getIdentityVec();
  1726. }
  1727. if (!filter->lumH || !filter->lumV || !filter->chrH || !filter->chrV)
  1728. goto fail;
  1729. if (chromaSharpen != 0.0) {
  1730. SwsVector *id = sws_getIdentityVec();
  1731. if (!id)
  1732. goto fail;
  1733. sws_scaleVec(filter->chrH, -chromaSharpen);
  1734. sws_scaleVec(filter->chrV, -chromaSharpen);
  1735. sws_addVec(filter->chrH, id);
  1736. sws_addVec(filter->chrV, id);
  1737. sws_freeVec(id);
  1738. }
  1739. if (lumaSharpen != 0.0) {
  1740. SwsVector *id = sws_getIdentityVec();
  1741. if (!id)
  1742. goto fail;
  1743. sws_scaleVec(filter->lumH, -lumaSharpen);
  1744. sws_scaleVec(filter->lumV, -lumaSharpen);
  1745. sws_addVec(filter->lumH, id);
  1746. sws_addVec(filter->lumV, id);
  1747. sws_freeVec(id);
  1748. }
  1749. if (chromaHShift != 0.0)
  1750. sws_shiftVec(filter->chrH, (int)(chromaHShift + 0.5));
  1751. if (chromaVShift != 0.0)
  1752. sws_shiftVec(filter->chrV, (int)(chromaVShift + 0.5));
  1753. sws_normalizeVec(filter->chrH, 1.0);
  1754. sws_normalizeVec(filter->chrV, 1.0);
  1755. sws_normalizeVec(filter->lumH, 1.0);
  1756. sws_normalizeVec(filter->lumV, 1.0);
  1757. if (isnan_vec(filter->chrH) ||
  1758. isnan_vec(filter->chrV) ||
  1759. isnan_vec(filter->lumH) ||
  1760. isnan_vec(filter->lumV))
  1761. goto fail;
  1762. if (verbose)
  1763. sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
  1764. if (verbose)
  1765. sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
  1766. return filter;
  1767. fail:
  1768. sws_freeVec(filter->lumH);
  1769. sws_freeVec(filter->lumV);
  1770. sws_freeVec(filter->chrH);
  1771. sws_freeVec(filter->chrV);
  1772. av_freep(&filter);
  1773. return NULL;
  1774. }
  1775. SwsVector *sws_allocVec(int length)
  1776. {
  1777. SwsVector *vec;
  1778. if(length <= 0 || length > INT_MAX/ sizeof(double))
  1779. return NULL;
  1780. vec = av_malloc(sizeof(SwsVector));
  1781. if (!vec)
  1782. return NULL;
  1783. vec->length = length;
  1784. vec->coeff = av_malloc(sizeof(double) * length);
  1785. if (!vec->coeff)
  1786. av_freep(&vec);
  1787. return vec;
  1788. }
  1789. SwsVector *sws_getGaussianVec(double variance, double quality)
  1790. {
  1791. const int length = (int)(variance * quality + 0.5) | 1;
  1792. int i;
  1793. double middle = (length - 1) * 0.5;
  1794. SwsVector *vec;
  1795. if(variance < 0 || quality < 0)
  1796. return NULL;
  1797. vec = sws_allocVec(length);
  1798. if (!vec)
  1799. return NULL;
  1800. for (i = 0; i < length; i++) {
  1801. double dist = i - middle;
  1802. vec->coeff[i] = exp(-dist * dist / (2 * variance * variance)) /
  1803. sqrt(2 * variance * M_PI);
  1804. }
  1805. sws_normalizeVec(vec, 1.0);
  1806. return vec;
  1807. }
  1808. SwsVector *sws_getConstVec(double c, int length)
  1809. {
  1810. int i;
  1811. SwsVector *vec = sws_allocVec(length);
  1812. if (!vec)
  1813. return NULL;
  1814. for (i = 0; i < length; i++)
  1815. vec->coeff[i] = c;
  1816. return vec;
  1817. }
  1818. SwsVector *sws_getIdentityVec(void)
  1819. {
  1820. return sws_getConstVec(1.0, 1);
  1821. }
  1822. static double sws_dcVec(SwsVector *a)
  1823. {
  1824. int i;
  1825. double sum = 0;
  1826. for (i = 0; i < a->length; i++)
  1827. sum += a->coeff[i];
  1828. return sum;
  1829. }
  1830. void sws_scaleVec(SwsVector *a, double scalar)
  1831. {
  1832. int i;
  1833. for (i = 0; i < a->length; i++)
  1834. a->coeff[i] *= scalar;
  1835. }
  1836. void sws_normalizeVec(SwsVector *a, double height)
  1837. {
  1838. sws_scaleVec(a, height / sws_dcVec(a));
  1839. }
  1840. static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
  1841. {
  1842. int length = a->length + b->length - 1;
  1843. int i, j;
  1844. SwsVector *vec = sws_getConstVec(0.0, length);
  1845. if (!vec)
  1846. return NULL;
  1847. for (i = 0; i < a->length; i++) {
  1848. for (j = 0; j < b->length; j++) {
  1849. vec->coeff[i + j] += a->coeff[i] * b->coeff[j];
  1850. }
  1851. }
  1852. return vec;
  1853. }
  1854. static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
  1855. {
  1856. int length = FFMAX(a->length, b->length);
  1857. int i;
  1858. SwsVector *vec = sws_getConstVec(0.0, length);
  1859. if (!vec)
  1860. return NULL;
  1861. for (i = 0; i < a->length; i++)
  1862. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1863. for (i = 0; i < b->length; i++)
  1864. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] += b->coeff[i];
  1865. return vec;
  1866. }
  1867. static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
  1868. {
  1869. int length = FFMAX(a->length, b->length);
  1870. int i;
  1871. SwsVector *vec = sws_getConstVec(0.0, length);
  1872. if (!vec)
  1873. return NULL;
  1874. for (i = 0; i < a->length; i++)
  1875. vec->coeff[i + (length - 1) / 2 - (a->length - 1) / 2] += a->coeff[i];
  1876. for (i = 0; i < b->length; i++)
  1877. vec->coeff[i + (length - 1) / 2 - (b->length - 1) / 2] -= b->coeff[i];
  1878. return vec;
  1879. }
  1880. /* shift left / or right if "shift" is negative */
  1881. static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
  1882. {
  1883. int length = a->length + FFABS(shift) * 2;
  1884. int i;
  1885. SwsVector *vec = sws_getConstVec(0.0, length);
  1886. if (!vec)
  1887. return NULL;
  1888. for (i = 0; i < a->length; i++) {
  1889. vec->coeff[i + (length - 1) / 2 -
  1890. (a->length - 1) / 2 - shift] = a->coeff[i];
  1891. }
  1892. return vec;
  1893. }
  1894. void sws_shiftVec(SwsVector *a, int shift)
  1895. {
  1896. SwsVector *shifted = sws_getShiftedVec(a, shift);
  1897. if (!shifted) {
  1898. makenan_vec(a);
  1899. return;
  1900. }
  1901. av_free(a->coeff);
  1902. a->coeff = shifted->coeff;
  1903. a->length = shifted->length;
  1904. av_free(shifted);
  1905. }
  1906. void sws_addVec(SwsVector *a, SwsVector *b)
  1907. {
  1908. SwsVector *sum = sws_sumVec(a, b);
  1909. if (!sum) {
  1910. makenan_vec(a);
  1911. return;
  1912. }
  1913. av_free(a->coeff);
  1914. a->coeff = sum->coeff;
  1915. a->length = sum->length;
  1916. av_free(sum);
  1917. }
  1918. void sws_subVec(SwsVector *a, SwsVector *b)
  1919. {
  1920. SwsVector *diff = sws_diffVec(a, b);
  1921. if (!diff) {
  1922. makenan_vec(a);
  1923. return;
  1924. }
  1925. av_free(a->coeff);
  1926. a->coeff = diff->coeff;
  1927. a->length = diff->length;
  1928. av_free(diff);
  1929. }
  1930. void sws_convVec(SwsVector *a, SwsVector *b)
  1931. {
  1932. SwsVector *conv = sws_getConvVec(a, b);
  1933. if (!conv) {
  1934. makenan_vec(a);
  1935. return;
  1936. }
  1937. av_free(a->coeff);
  1938. a->coeff = conv->coeff;
  1939. a->length = conv->length;
  1940. av_free(conv);
  1941. }
  1942. SwsVector *sws_cloneVec(SwsVector *a)
  1943. {
  1944. SwsVector *vec = sws_allocVec(a->length);
  1945. if (!vec)
  1946. return NULL;
  1947. memcpy(vec->coeff, a->coeff, a->length * sizeof(*a->coeff));
  1948. return vec;
  1949. }
  1950. void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
  1951. {
  1952. int i;
  1953. double max = 0;
  1954. double min = 0;
  1955. double range;
  1956. for (i = 0; i < a->length; i++)
  1957. if (a->coeff[i] > max)
  1958. max = a->coeff[i];
  1959. for (i = 0; i < a->length; i++)
  1960. if (a->coeff[i] < min)
  1961. min = a->coeff[i];
  1962. range = max - min;
  1963. for (i = 0; i < a->length; i++) {
  1964. int x = (int)((a->coeff[i] - min) * 60.0 / range + 0.5);
  1965. av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
  1966. for (; x > 0; x--)
  1967. av_log(log_ctx, log_level, " ");
  1968. av_log(log_ctx, log_level, "|\n");
  1969. }
  1970. }
  1971. void sws_freeVec(SwsVector *a)
  1972. {
  1973. if (!a)
  1974. return;
  1975. av_freep(&a->coeff);
  1976. a->length = 0;
  1977. av_free(a);
  1978. }
  1979. void sws_freeFilter(SwsFilter *filter)
  1980. {
  1981. if (!filter)
  1982. return;
  1983. sws_freeVec(filter->lumH);
  1984. sws_freeVec(filter->lumV);
  1985. sws_freeVec(filter->chrH);
  1986. sws_freeVec(filter->chrV);
  1987. av_free(filter);
  1988. }
  1989. void sws_freeContext(SwsContext *c)
  1990. {
  1991. int i;
  1992. if (!c)
  1993. return;
  1994. if (c->lumPixBuf) {
  1995. for (i = 0; i < c->vLumBufSize; i++)
  1996. av_freep(&c->lumPixBuf[i]);
  1997. av_freep(&c->lumPixBuf);
  1998. }
  1999. if (c->chrUPixBuf) {
  2000. for (i = 0; i < c->vChrBufSize; i++)
  2001. av_freep(&c->chrUPixBuf[i]);
  2002. av_freep(&c->chrUPixBuf);
  2003. av_freep(&c->chrVPixBuf);
  2004. }
  2005. if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
  2006. for (i = 0; i < c->vLumBufSize; i++)
  2007. av_freep(&c->alpPixBuf[i]);
  2008. av_freep(&c->alpPixBuf);
  2009. }
  2010. for (i = 0; i < 4; i++)
  2011. av_freep(&c->dither_error[i]);
  2012. av_freep(&c->vLumFilter);
  2013. av_freep(&c->vChrFilter);
  2014. av_freep(&c->hLumFilter);
  2015. av_freep(&c->hChrFilter);
  2016. #if HAVE_ALTIVEC
  2017. av_freep(&c->vYCoeffsBank);
  2018. av_freep(&c->vCCoeffsBank);
  2019. #endif
  2020. av_freep(&c->vLumFilterPos);
  2021. av_freep(&c->vChrFilterPos);
  2022. av_freep(&c->hLumFilterPos);
  2023. av_freep(&c->hChrFilterPos);
  2024. #if HAVE_MMX_INLINE
  2025. #if USE_MMAP
  2026. if (c->lumMmxextFilterCode)
  2027. munmap(c->lumMmxextFilterCode, c->lumMmxextFilterCodeSize);
  2028. if (c->chrMmxextFilterCode)
  2029. munmap(c->chrMmxextFilterCode, c->chrMmxextFilterCodeSize);
  2030. #elif HAVE_VIRTUALALLOC
  2031. if (c->lumMmxextFilterCode)
  2032. VirtualFree(c->lumMmxextFilterCode, 0, MEM_RELEASE);
  2033. if (c->chrMmxextFilterCode)
  2034. VirtualFree(c->chrMmxextFilterCode, 0, MEM_RELEASE);
  2035. #else
  2036. av_free(c->lumMmxextFilterCode);
  2037. av_free(c->chrMmxextFilterCode);
  2038. #endif
  2039. c->lumMmxextFilterCode = NULL;
  2040. c->chrMmxextFilterCode = NULL;
  2041. #endif /* HAVE_MMX_INLINE */
  2042. av_freep(&c->yuvTable);
  2043. av_freep(&c->formatConvBuffer);
  2044. sws_freeContext(c->cascaded_context[0]);
  2045. sws_freeContext(c->cascaded_context[1]);
  2046. sws_freeContext(c->cascaded_context[2]);
  2047. memset(c->cascaded_context, 0, sizeof(c->cascaded_context));
  2048. av_freep(&c->cascaded_tmp[0]);
  2049. av_freep(&c->cascaded1_tmp[0]);
  2050. av_freep(&c->gamma);
  2051. av_freep(&c->inv_gamma);
  2052. ff_free_filters(c);
  2053. av_free(c);
  2054. }
  2055. struct SwsContext *sws_getCachedContext(struct SwsContext *context, int srcW,
  2056. int srcH, enum AVPixelFormat srcFormat,
  2057. int dstW, int dstH,
  2058. enum AVPixelFormat dstFormat, int flags,
  2059. SwsFilter *srcFilter,
  2060. SwsFilter *dstFilter,
  2061. const double *param)
  2062. {
  2063. static const double default_param[2] = { SWS_PARAM_DEFAULT,
  2064. SWS_PARAM_DEFAULT };
  2065. int64_t src_h_chr_pos = -513, dst_h_chr_pos = -513,
  2066. src_v_chr_pos = -513, dst_v_chr_pos = -513;
  2067. if (!param)
  2068. param = default_param;
  2069. if (context &&
  2070. (context->srcW != srcW ||
  2071. context->srcH != srcH ||
  2072. context->srcFormat != srcFormat ||
  2073. context->dstW != dstW ||
  2074. context->dstH != dstH ||
  2075. context->dstFormat != dstFormat ||
  2076. context->flags != flags ||
  2077. context->param[0] != param[0] ||
  2078. context->param[1] != param[1])) {
  2079. av_opt_get_int(context, "src_h_chr_pos", 0, &src_h_chr_pos);
  2080. av_opt_get_int(context, "src_v_chr_pos", 0, &src_v_chr_pos);
  2081. av_opt_get_int(context, "dst_h_chr_pos", 0, &dst_h_chr_pos);
  2082. av_opt_get_int(context, "dst_v_chr_pos", 0, &dst_v_chr_pos);
  2083. sws_freeContext(context);
  2084. context = NULL;
  2085. }
  2086. if (!context) {
  2087. if (!(context = sws_alloc_context()))
  2088. return NULL;
  2089. context->srcW = srcW;
  2090. context->srcH = srcH;
  2091. context->srcFormat = srcFormat;
  2092. context->dstW = dstW;
  2093. context->dstH = dstH;
  2094. context->dstFormat = dstFormat;
  2095. context->flags = flags;
  2096. context->param[0] = param[0];
  2097. context->param[1] = param[1];
  2098. av_opt_set_int(context, "src_h_chr_pos", src_h_chr_pos, 0);
  2099. av_opt_set_int(context, "src_v_chr_pos", src_v_chr_pos, 0);
  2100. av_opt_set_int(context, "dst_h_chr_pos", dst_h_chr_pos, 0);
  2101. av_opt_set_int(context, "dst_v_chr_pos", dst_v_chr_pos, 0);
  2102. if (sws_init_context(context, srcFilter, dstFilter) < 0) {
  2103. sws_freeContext(context);
  2104. return NULL;
  2105. }
  2106. }
  2107. return context;
  2108. }