You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1181 lines
36KB

  1. /*
  2. * G.723.1 compatible decoder
  3. * Copyright (c) 2006 Benjamin Larsson
  4. * Copyright (c) 2010 Mohamed Naufal Basheer
  5. *
  6. * This file is part of Libav.
  7. *
  8. * Libav is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * Libav is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with Libav; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * G.723.1 compatible decoder
  25. */
  26. #define BITSTREAM_READER_LE
  27. #include "libavutil/audioconvert.h"
  28. #include "libavutil/lzo.h"
  29. #include "libavutil/opt.h"
  30. #include "avcodec.h"
  31. #include "get_bits.h"
  32. #include "acelp_vectors.h"
  33. #include "celp_filters.h"
  34. #include "g723_1_data.h"
  35. /**
  36. * G723.1 frame types
  37. */
  38. enum FrameType {
  39. ACTIVE_FRAME, ///< Active speech
  40. SID_FRAME, ///< Silence Insertion Descriptor frame
  41. UNTRANSMITTED_FRAME
  42. };
  43. enum Rate {
  44. RATE_6300,
  45. RATE_5300
  46. };
  47. /**
  48. * G723.1 unpacked data subframe
  49. */
  50. typedef struct {
  51. int ad_cb_lag; ///< adaptive codebook lag
  52. int ad_cb_gain;
  53. int dirac_train;
  54. int pulse_sign;
  55. int grid_index;
  56. int amp_index;
  57. int pulse_pos;
  58. } G723_1_Subframe;
  59. /**
  60. * Pitch postfilter parameters
  61. */
  62. typedef struct {
  63. int index; ///< postfilter backward/forward lag
  64. int16_t opt_gain; ///< optimal gain
  65. int16_t sc_gain; ///< scaling gain
  66. } PPFParam;
  67. typedef struct g723_1_context {
  68. AVClass *class;
  69. AVFrame frame;
  70. G723_1_Subframe subframe[4];
  71. enum FrameType cur_frame_type;
  72. enum FrameType past_frame_type;
  73. enum Rate cur_rate;
  74. uint8_t lsp_index[LSP_BANDS];
  75. int pitch_lag[2];
  76. int erased_frames;
  77. int16_t prev_lsp[LPC_ORDER];
  78. int16_t prev_excitation[PITCH_MAX];
  79. int16_t excitation[PITCH_MAX + FRAME_LEN + 4];
  80. int16_t synth_mem[LPC_ORDER];
  81. int16_t fir_mem[LPC_ORDER];
  82. int iir_mem[LPC_ORDER];
  83. int random_seed;
  84. int interp_index;
  85. int interp_gain;
  86. int sid_gain;
  87. int cur_gain;
  88. int reflection_coef;
  89. int pf_gain;
  90. int postfilter;
  91. int16_t audio[FRAME_LEN + LPC_ORDER + PITCH_MAX];
  92. } G723_1_Context;
  93. static av_cold int g723_1_decode_init(AVCodecContext *avctx)
  94. {
  95. G723_1_Context *p = avctx->priv_data;
  96. avctx->channel_layout = AV_CH_LAYOUT_MONO;
  97. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  98. avctx->channels = 1;
  99. avctx->sample_rate = 8000;
  100. p->pf_gain = 1 << 12;
  101. avcodec_get_frame_defaults(&p->frame);
  102. avctx->coded_frame = &p->frame;
  103. memcpy(p->prev_lsp, dc_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
  104. return 0;
  105. }
  106. /**
  107. * Unpack the frame into parameters.
  108. *
  109. * @param p the context
  110. * @param buf pointer to the input buffer
  111. * @param buf_size size of the input buffer
  112. */
  113. static int unpack_bitstream(G723_1_Context *p, const uint8_t *buf,
  114. int buf_size)
  115. {
  116. GetBitContext gb;
  117. int ad_cb_len;
  118. int temp, info_bits, i;
  119. init_get_bits(&gb, buf, buf_size * 8);
  120. /* Extract frame type and rate info */
  121. info_bits = get_bits(&gb, 2);
  122. if (info_bits == 3) {
  123. p->cur_frame_type = UNTRANSMITTED_FRAME;
  124. return 0;
  125. }
  126. /* Extract 24 bit lsp indices, 8 bit for each band */
  127. p->lsp_index[2] = get_bits(&gb, 8);
  128. p->lsp_index[1] = get_bits(&gb, 8);
  129. p->lsp_index[0] = get_bits(&gb, 8);
  130. if (info_bits == 2) {
  131. p->cur_frame_type = SID_FRAME;
  132. p->subframe[0].amp_index = get_bits(&gb, 6);
  133. return 0;
  134. }
  135. /* Extract the info common to both rates */
  136. p->cur_rate = info_bits ? RATE_5300 : RATE_6300;
  137. p->cur_frame_type = ACTIVE_FRAME;
  138. p->pitch_lag[0] = get_bits(&gb, 7);
  139. if (p->pitch_lag[0] > 123) /* test if forbidden code */
  140. return -1;
  141. p->pitch_lag[0] += PITCH_MIN;
  142. p->subframe[1].ad_cb_lag = get_bits(&gb, 2);
  143. p->pitch_lag[1] = get_bits(&gb, 7);
  144. if (p->pitch_lag[1] > 123)
  145. return -1;
  146. p->pitch_lag[1] += PITCH_MIN;
  147. p->subframe[3].ad_cb_lag = get_bits(&gb, 2);
  148. p->subframe[0].ad_cb_lag = 1;
  149. p->subframe[2].ad_cb_lag = 1;
  150. for (i = 0; i < SUBFRAMES; i++) {
  151. /* Extract combined gain */
  152. temp = get_bits(&gb, 12);
  153. ad_cb_len = 170;
  154. p->subframe[i].dirac_train = 0;
  155. if (p->cur_rate == RATE_6300 && p->pitch_lag[i >> 1] < SUBFRAME_LEN - 2) {
  156. p->subframe[i].dirac_train = temp >> 11;
  157. temp &= 0x7FF;
  158. ad_cb_len = 85;
  159. }
  160. p->subframe[i].ad_cb_gain = FASTDIV(temp, GAIN_LEVELS);
  161. if (p->subframe[i].ad_cb_gain < ad_cb_len) {
  162. p->subframe[i].amp_index = temp - p->subframe[i].ad_cb_gain *
  163. GAIN_LEVELS;
  164. } else {
  165. return -1;
  166. }
  167. }
  168. p->subframe[0].grid_index = get_bits(&gb, 1);
  169. p->subframe[1].grid_index = get_bits(&gb, 1);
  170. p->subframe[2].grid_index = get_bits(&gb, 1);
  171. p->subframe[3].grid_index = get_bits(&gb, 1);
  172. if (p->cur_rate == RATE_6300) {
  173. skip_bits(&gb, 1); /* skip reserved bit */
  174. /* Compute pulse_pos index using the 13-bit combined position index */
  175. temp = get_bits(&gb, 13);
  176. p->subframe[0].pulse_pos = temp / 810;
  177. temp -= p->subframe[0].pulse_pos * 810;
  178. p->subframe[1].pulse_pos = FASTDIV(temp, 90);
  179. temp -= p->subframe[1].pulse_pos * 90;
  180. p->subframe[2].pulse_pos = FASTDIV(temp, 9);
  181. p->subframe[3].pulse_pos = temp - p->subframe[2].pulse_pos * 9;
  182. p->subframe[0].pulse_pos = (p->subframe[0].pulse_pos << 16) +
  183. get_bits(&gb, 16);
  184. p->subframe[1].pulse_pos = (p->subframe[1].pulse_pos << 14) +
  185. get_bits(&gb, 14);
  186. p->subframe[2].pulse_pos = (p->subframe[2].pulse_pos << 16) +
  187. get_bits(&gb, 16);
  188. p->subframe[3].pulse_pos = (p->subframe[3].pulse_pos << 14) +
  189. get_bits(&gb, 14);
  190. p->subframe[0].pulse_sign = get_bits(&gb, 6);
  191. p->subframe[1].pulse_sign = get_bits(&gb, 5);
  192. p->subframe[2].pulse_sign = get_bits(&gb, 6);
  193. p->subframe[3].pulse_sign = get_bits(&gb, 5);
  194. } else { /* 5300 bps */
  195. p->subframe[0].pulse_pos = get_bits(&gb, 12);
  196. p->subframe[1].pulse_pos = get_bits(&gb, 12);
  197. p->subframe[2].pulse_pos = get_bits(&gb, 12);
  198. p->subframe[3].pulse_pos = get_bits(&gb, 12);
  199. p->subframe[0].pulse_sign = get_bits(&gb, 4);
  200. p->subframe[1].pulse_sign = get_bits(&gb, 4);
  201. p->subframe[2].pulse_sign = get_bits(&gb, 4);
  202. p->subframe[3].pulse_sign = get_bits(&gb, 4);
  203. }
  204. return 0;
  205. }
  206. /**
  207. * Bitexact implementation of sqrt(val/2).
  208. */
  209. static int16_t square_root(int val)
  210. {
  211. int16_t res = 0;
  212. int16_t exp = 0x4000;
  213. int i;
  214. for (i = 0; i < 14; i ++) {
  215. int res_exp = res + exp;
  216. if (val >= res_exp * res_exp << 1)
  217. res += exp;
  218. exp >>= 1;
  219. }
  220. return res;
  221. }
  222. /**
  223. * Calculate the number of left-shifts required for normalizing the input.
  224. *
  225. * @param num input number
  226. * @param width width of the input, 16 bits(0) / 32 bits(1)
  227. */
  228. static int normalize_bits(int num, int width)
  229. {
  230. if (!num)
  231. return 0;
  232. if (num == -1)
  233. return width;
  234. if (num < 0)
  235. num = ~num;
  236. return width - av_log2(num) - 1;
  237. }
  238. /**
  239. * Scale vector contents based on the largest of their absolutes.
  240. */
  241. static int scale_vector(int16_t *dst, const int16_t *vector, int length)
  242. {
  243. int bits, max = 0;
  244. int i;
  245. for (i = 0; i < length; i++)
  246. max |= FFABS(vector[i]);
  247. max = FFMIN(max, 0x7FFF);
  248. bits = normalize_bits(max, 15);
  249. if (bits == 15)
  250. for (i = 0; i < length; i++)
  251. dst[i] = vector[i] * 0x7fff >> 3;
  252. else
  253. for (i = 0; i < length; i++)
  254. dst[i] = vector[i] << bits >> 3;
  255. return bits - 3;
  256. }
  257. /**
  258. * Perform inverse quantization of LSP frequencies.
  259. *
  260. * @param cur_lsp the current LSP vector
  261. * @param prev_lsp the previous LSP vector
  262. * @param lsp_index VQ indices
  263. * @param bad_frame bad frame flag
  264. */
  265. static void inverse_quant(int16_t *cur_lsp, int16_t *prev_lsp,
  266. uint8_t *lsp_index, int bad_frame)
  267. {
  268. int min_dist, pred;
  269. int i, j, temp, stable;
  270. /* Check for frame erasure */
  271. if (!bad_frame) {
  272. min_dist = 0x100;
  273. pred = 12288;
  274. } else {
  275. min_dist = 0x200;
  276. pred = 23552;
  277. lsp_index[0] = lsp_index[1] = lsp_index[2] = 0;
  278. }
  279. /* Get the VQ table entry corresponding to the transmitted index */
  280. cur_lsp[0] = lsp_band0[lsp_index[0]][0];
  281. cur_lsp[1] = lsp_band0[lsp_index[0]][1];
  282. cur_lsp[2] = lsp_band0[lsp_index[0]][2];
  283. cur_lsp[3] = lsp_band1[lsp_index[1]][0];
  284. cur_lsp[4] = lsp_band1[lsp_index[1]][1];
  285. cur_lsp[5] = lsp_band1[lsp_index[1]][2];
  286. cur_lsp[6] = lsp_band2[lsp_index[2]][0];
  287. cur_lsp[7] = lsp_band2[lsp_index[2]][1];
  288. cur_lsp[8] = lsp_band2[lsp_index[2]][2];
  289. cur_lsp[9] = lsp_band2[lsp_index[2]][3];
  290. /* Add predicted vector & DC component to the previously quantized vector */
  291. for (i = 0; i < LPC_ORDER; i++) {
  292. temp = ((prev_lsp[i] - dc_lsp[i]) * pred + (1 << 14)) >> 15;
  293. cur_lsp[i] += dc_lsp[i] + temp;
  294. }
  295. for (i = 0; i < LPC_ORDER; i++) {
  296. cur_lsp[0] = FFMAX(cur_lsp[0], 0x180);
  297. cur_lsp[LPC_ORDER - 1] = FFMIN(cur_lsp[LPC_ORDER - 1], 0x7e00);
  298. /* Stability check */
  299. for (j = 1; j < LPC_ORDER; j++) {
  300. temp = min_dist + cur_lsp[j - 1] - cur_lsp[j];
  301. if (temp > 0) {
  302. temp >>= 1;
  303. cur_lsp[j - 1] -= temp;
  304. cur_lsp[j] += temp;
  305. }
  306. }
  307. stable = 1;
  308. for (j = 1; j < LPC_ORDER; j++) {
  309. temp = cur_lsp[j - 1] + min_dist - cur_lsp[j] - 4;
  310. if (temp > 0) {
  311. stable = 0;
  312. break;
  313. }
  314. }
  315. if (stable)
  316. break;
  317. }
  318. if (!stable)
  319. memcpy(cur_lsp, prev_lsp, LPC_ORDER * sizeof(*cur_lsp));
  320. }
  321. /**
  322. * Bitexact implementation of 2ab scaled by 1/2^16.
  323. *
  324. * @param a 32 bit multiplicand
  325. * @param b 16 bit multiplier
  326. */
  327. #define MULL2(a, b) \
  328. ((((a) >> 16) * (b) << 1) + (((a) & 0xffff) * (b) >> 15))
  329. /**
  330. * Convert LSP frequencies to LPC coefficients.
  331. *
  332. * @param lpc buffer for LPC coefficients
  333. */
  334. static void lsp2lpc(int16_t *lpc)
  335. {
  336. int f1[LPC_ORDER / 2 + 1];
  337. int f2[LPC_ORDER / 2 + 1];
  338. int i, j;
  339. /* Calculate negative cosine */
  340. for (j = 0; j < LPC_ORDER; j++) {
  341. int index = lpc[j] >> 7;
  342. int offset = lpc[j] & 0x7f;
  343. int temp1 = cos_tab[index] << 16;
  344. int temp2 = (cos_tab[index + 1] - cos_tab[index]) *
  345. ((offset << 8) + 0x80) << 1;
  346. lpc[j] = -(av_sat_dadd32(1 << 15, temp1 + temp2) >> 16);
  347. }
  348. /*
  349. * Compute sum and difference polynomial coefficients
  350. * (bitexact alternative to lsp2poly() in lsp.c)
  351. */
  352. /* Initialize with values in Q28 */
  353. f1[0] = 1 << 28;
  354. f1[1] = (lpc[0] << 14) + (lpc[2] << 14);
  355. f1[2] = lpc[0] * lpc[2] + (2 << 28);
  356. f2[0] = 1 << 28;
  357. f2[1] = (lpc[1] << 14) + (lpc[3] << 14);
  358. f2[2] = lpc[1] * lpc[3] + (2 << 28);
  359. /*
  360. * Calculate and scale the coefficients by 1/2 in
  361. * each iteration for a final scaling factor of Q25
  362. */
  363. for (i = 2; i < LPC_ORDER / 2; i++) {
  364. f1[i + 1] = f1[i - 1] + MULL2(f1[i], lpc[2 * i]);
  365. f2[i + 1] = f2[i - 1] + MULL2(f2[i], lpc[2 * i + 1]);
  366. for (j = i; j >= 2; j--) {
  367. f1[j] = MULL2(f1[j - 1], lpc[2 * i]) +
  368. (f1[j] >> 1) + (f1[j - 2] >> 1);
  369. f2[j] = MULL2(f2[j - 1], lpc[2 * i + 1]) +
  370. (f2[j] >> 1) + (f2[j - 2] >> 1);
  371. }
  372. f1[0] >>= 1;
  373. f2[0] >>= 1;
  374. f1[1] = ((lpc[2 * i] << 16 >> i) + f1[1]) >> 1;
  375. f2[1] = ((lpc[2 * i + 1] << 16 >> i) + f2[1]) >> 1;
  376. }
  377. /* Convert polynomial coefficients to LPC coefficients */
  378. for (i = 0; i < LPC_ORDER / 2; i++) {
  379. int64_t ff1 = f1[i + 1] + f1[i];
  380. int64_t ff2 = f2[i + 1] - f2[i];
  381. lpc[i] = av_clipl_int32(((ff1 + ff2) << 3) + (1 << 15)) >> 16;
  382. lpc[LPC_ORDER - i - 1] = av_clipl_int32(((ff1 - ff2) << 3) +
  383. (1 << 15)) >> 16;
  384. }
  385. }
  386. /**
  387. * Quantize LSP frequencies by interpolation and convert them to
  388. * the corresponding LPC coefficients.
  389. *
  390. * @param lpc buffer for LPC coefficients
  391. * @param cur_lsp the current LSP vector
  392. * @param prev_lsp the previous LSP vector
  393. */
  394. static void lsp_interpolate(int16_t *lpc, int16_t *cur_lsp, int16_t *prev_lsp)
  395. {
  396. int i;
  397. int16_t *lpc_ptr = lpc;
  398. /* cur_lsp * 0.25 + prev_lsp * 0.75 */
  399. ff_acelp_weighted_vector_sum(lpc, cur_lsp, prev_lsp,
  400. 4096, 12288, 1 << 13, 14, LPC_ORDER);
  401. ff_acelp_weighted_vector_sum(lpc + LPC_ORDER, cur_lsp, prev_lsp,
  402. 8192, 8192, 1 << 13, 14, LPC_ORDER);
  403. ff_acelp_weighted_vector_sum(lpc + 2 * LPC_ORDER, cur_lsp, prev_lsp,
  404. 12288, 4096, 1 << 13, 14, LPC_ORDER);
  405. memcpy(lpc + 3 * LPC_ORDER, cur_lsp, LPC_ORDER * sizeof(*lpc));
  406. for (i = 0; i < SUBFRAMES; i++) {
  407. lsp2lpc(lpc_ptr);
  408. lpc_ptr += LPC_ORDER;
  409. }
  410. }
  411. /**
  412. * Generate a train of dirac functions with period as pitch lag.
  413. */
  414. static void gen_dirac_train(int16_t *buf, int pitch_lag)
  415. {
  416. int16_t vector[SUBFRAME_LEN];
  417. int i, j;
  418. memcpy(vector, buf, SUBFRAME_LEN * sizeof(*vector));
  419. for (i = pitch_lag; i < SUBFRAME_LEN; i += pitch_lag) {
  420. for (j = 0; j < SUBFRAME_LEN - i; j++)
  421. buf[i + j] += vector[j];
  422. }
  423. }
  424. /**
  425. * Generate fixed codebook excitation vector.
  426. *
  427. * @param vector decoded excitation vector
  428. * @param subfrm current subframe
  429. * @param cur_rate current bitrate
  430. * @param pitch_lag closed loop pitch lag
  431. * @param index current subframe index
  432. */
  433. static void gen_fcb_excitation(int16_t *vector, G723_1_Subframe *subfrm,
  434. enum Rate cur_rate, int pitch_lag, int index)
  435. {
  436. int temp, i, j;
  437. memset(vector, 0, SUBFRAME_LEN * sizeof(*vector));
  438. if (cur_rate == RATE_6300) {
  439. if (subfrm->pulse_pos >= max_pos[index])
  440. return;
  441. /* Decode amplitudes and positions */
  442. j = PULSE_MAX - pulses[index];
  443. temp = subfrm->pulse_pos;
  444. for (i = 0; i < SUBFRAME_LEN / GRID_SIZE; i++) {
  445. temp -= combinatorial_table[j][i];
  446. if (temp >= 0)
  447. continue;
  448. temp += combinatorial_table[j++][i];
  449. if (subfrm->pulse_sign & (1 << (PULSE_MAX - j))) {
  450. vector[subfrm->grid_index + GRID_SIZE * i] =
  451. -fixed_cb_gain[subfrm->amp_index];
  452. } else {
  453. vector[subfrm->grid_index + GRID_SIZE * i] =
  454. fixed_cb_gain[subfrm->amp_index];
  455. }
  456. if (j == PULSE_MAX)
  457. break;
  458. }
  459. if (subfrm->dirac_train == 1)
  460. gen_dirac_train(vector, pitch_lag);
  461. } else { /* 5300 bps */
  462. int cb_gain = fixed_cb_gain[subfrm->amp_index];
  463. int cb_shift = subfrm->grid_index;
  464. int cb_sign = subfrm->pulse_sign;
  465. int cb_pos = subfrm->pulse_pos;
  466. int offset, beta, lag;
  467. for (i = 0; i < 8; i += 2) {
  468. offset = ((cb_pos & 7) << 3) + cb_shift + i;
  469. vector[offset] = (cb_sign & 1) ? cb_gain : -cb_gain;
  470. cb_pos >>= 3;
  471. cb_sign >>= 1;
  472. }
  473. /* Enhance harmonic components */
  474. lag = pitch_contrib[subfrm->ad_cb_gain << 1] + pitch_lag +
  475. subfrm->ad_cb_lag - 1;
  476. beta = pitch_contrib[(subfrm->ad_cb_gain << 1) + 1];
  477. if (lag < SUBFRAME_LEN - 2) {
  478. for (i = lag; i < SUBFRAME_LEN; i++)
  479. vector[i] += beta * vector[i - lag] >> 15;
  480. }
  481. }
  482. }
  483. /**
  484. * Get delayed contribution from the previous excitation vector.
  485. */
  486. static void get_residual(int16_t *residual, int16_t *prev_excitation, int lag)
  487. {
  488. int offset = PITCH_MAX - PITCH_ORDER / 2 - lag;
  489. int i;
  490. residual[0] = prev_excitation[offset];
  491. residual[1] = prev_excitation[offset + 1];
  492. offset += 2;
  493. for (i = 2; i < SUBFRAME_LEN + PITCH_ORDER - 1; i++)
  494. residual[i] = prev_excitation[offset + (i - 2) % lag];
  495. }
  496. static int dot_product(const int16_t *a, const int16_t *b, int length)
  497. {
  498. int i, sum = 0;
  499. for (i = 0; i < length; i++) {
  500. int prod = a[i] * b[i];
  501. sum = av_sat_dadd32(sum, prod);
  502. }
  503. return sum;
  504. }
  505. /**
  506. * Generate adaptive codebook excitation.
  507. */
  508. static void gen_acb_excitation(int16_t *vector, int16_t *prev_excitation,
  509. int pitch_lag, G723_1_Subframe *subfrm,
  510. enum Rate cur_rate)
  511. {
  512. int16_t residual[SUBFRAME_LEN + PITCH_ORDER - 1];
  513. const int16_t *cb_ptr;
  514. int lag = pitch_lag + subfrm->ad_cb_lag - 1;
  515. int i;
  516. int sum;
  517. get_residual(residual, prev_excitation, lag);
  518. /* Select quantization table */
  519. if (cur_rate == RATE_6300 && pitch_lag < SUBFRAME_LEN - 2)
  520. cb_ptr = adaptive_cb_gain85;
  521. else
  522. cb_ptr = adaptive_cb_gain170;
  523. /* Calculate adaptive vector */
  524. cb_ptr += subfrm->ad_cb_gain * 20;
  525. for (i = 0; i < SUBFRAME_LEN; i++) {
  526. sum = dot_product(residual + i, cb_ptr, PITCH_ORDER);
  527. vector[i] = av_sat_dadd32(1 << 15, sum) >> 16;
  528. }
  529. }
  530. /**
  531. * Estimate maximum auto-correlation around pitch lag.
  532. *
  533. * @param buf buffer with offset applied
  534. * @param offset offset of the excitation vector
  535. * @param ccr_max pointer to the maximum auto-correlation
  536. * @param pitch_lag decoded pitch lag
  537. * @param length length of autocorrelation
  538. * @param dir forward lag(1) / backward lag(-1)
  539. */
  540. static int autocorr_max(const int16_t *buf, int offset, int *ccr_max,
  541. int pitch_lag, int length, int dir)
  542. {
  543. int limit, ccr, lag = 0;
  544. int i;
  545. pitch_lag = FFMIN(PITCH_MAX - 3, pitch_lag);
  546. if (dir > 0)
  547. limit = FFMIN(FRAME_LEN + PITCH_MAX - offset - length, pitch_lag + 3);
  548. else
  549. limit = pitch_lag + 3;
  550. for (i = pitch_lag - 3; i <= limit; i++) {
  551. ccr = dot_product(buf, buf + dir * i, length);
  552. if (ccr > *ccr_max) {
  553. *ccr_max = ccr;
  554. lag = i;
  555. }
  556. }
  557. return lag;
  558. }
  559. /**
  560. * Calculate pitch postfilter optimal and scaling gains.
  561. *
  562. * @param lag pitch postfilter forward/backward lag
  563. * @param ppf pitch postfilter parameters
  564. * @param cur_rate current bitrate
  565. * @param tgt_eng target energy
  566. * @param ccr cross-correlation
  567. * @param res_eng residual energy
  568. */
  569. static void comp_ppf_gains(int lag, PPFParam *ppf, enum Rate cur_rate,
  570. int tgt_eng, int ccr, int res_eng)
  571. {
  572. int pf_residual; /* square of postfiltered residual */
  573. int temp1, temp2;
  574. ppf->index = lag;
  575. temp1 = tgt_eng * res_eng >> 1;
  576. temp2 = ccr * ccr << 1;
  577. if (temp2 > temp1) {
  578. if (ccr >= res_eng) {
  579. ppf->opt_gain = ppf_gain_weight[cur_rate];
  580. } else {
  581. ppf->opt_gain = (ccr << 15) / res_eng *
  582. ppf_gain_weight[cur_rate] >> 15;
  583. }
  584. /* pf_res^2 = tgt_eng + 2*ccr*gain + res_eng*gain^2 */
  585. temp1 = (tgt_eng << 15) + (ccr * ppf->opt_gain << 1);
  586. temp2 = (ppf->opt_gain * ppf->opt_gain >> 15) * res_eng;
  587. pf_residual = av_sat_add32(temp1, temp2 + (1 << 15)) >> 16;
  588. if (tgt_eng >= pf_residual << 1) {
  589. temp1 = 0x7fff;
  590. } else {
  591. temp1 = (tgt_eng << 14) / pf_residual;
  592. }
  593. /* scaling_gain = sqrt(tgt_eng/pf_res^2) */
  594. ppf->sc_gain = square_root(temp1 << 16);
  595. } else {
  596. ppf->opt_gain = 0;
  597. ppf->sc_gain = 0x7fff;
  598. }
  599. ppf->opt_gain = av_clip_int16(ppf->opt_gain * ppf->sc_gain >> 15);
  600. }
  601. /**
  602. * Calculate pitch postfilter parameters.
  603. *
  604. * @param p the context
  605. * @param offset offset of the excitation vector
  606. * @param pitch_lag decoded pitch lag
  607. * @param ppf pitch postfilter parameters
  608. * @param cur_rate current bitrate
  609. */
  610. static void comp_ppf_coeff(G723_1_Context *p, int offset, int pitch_lag,
  611. PPFParam *ppf, enum Rate cur_rate)
  612. {
  613. int16_t scale;
  614. int i;
  615. int temp1, temp2;
  616. /*
  617. * 0 - target energy
  618. * 1 - forward cross-correlation
  619. * 2 - forward residual energy
  620. * 3 - backward cross-correlation
  621. * 4 - backward residual energy
  622. */
  623. int energy[5] = {0, 0, 0, 0, 0};
  624. int16_t *buf = p->audio + LPC_ORDER + offset;
  625. int fwd_lag = autocorr_max(buf, offset, &energy[1], pitch_lag,
  626. SUBFRAME_LEN, 1);
  627. int back_lag = autocorr_max(buf, offset, &energy[3], pitch_lag,
  628. SUBFRAME_LEN, -1);
  629. ppf->index = 0;
  630. ppf->opt_gain = 0;
  631. ppf->sc_gain = 0x7fff;
  632. /* Case 0, Section 3.6 */
  633. if (!back_lag && !fwd_lag)
  634. return;
  635. /* Compute target energy */
  636. energy[0] = dot_product(buf, buf, SUBFRAME_LEN);
  637. /* Compute forward residual energy */
  638. if (fwd_lag)
  639. energy[2] = dot_product(buf + fwd_lag, buf + fwd_lag, SUBFRAME_LEN);
  640. /* Compute backward residual energy */
  641. if (back_lag)
  642. energy[4] = dot_product(buf - back_lag, buf - back_lag, SUBFRAME_LEN);
  643. /* Normalize and shorten */
  644. temp1 = 0;
  645. for (i = 0; i < 5; i++)
  646. temp1 = FFMAX(energy[i], temp1);
  647. scale = normalize_bits(temp1, 31);
  648. for (i = 0; i < 5; i++)
  649. energy[i] = (energy[i] << scale) >> 16;
  650. if (fwd_lag && !back_lag) { /* Case 1 */
  651. comp_ppf_gains(fwd_lag, ppf, cur_rate, energy[0], energy[1],
  652. energy[2]);
  653. } else if (!fwd_lag) { /* Case 2 */
  654. comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
  655. energy[4]);
  656. } else { /* Case 3 */
  657. /*
  658. * Select the largest of energy[1]^2/energy[2]
  659. * and energy[3]^2/energy[4]
  660. */
  661. temp1 = energy[4] * ((energy[1] * energy[1] + (1 << 14)) >> 15);
  662. temp2 = energy[2] * ((energy[3] * energy[3] + (1 << 14)) >> 15);
  663. if (temp1 >= temp2) {
  664. comp_ppf_gains(fwd_lag, ppf, cur_rate, energy[0], energy[1],
  665. energy[2]);
  666. } else {
  667. comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
  668. energy[4]);
  669. }
  670. }
  671. }
  672. /**
  673. * Classify frames as voiced/unvoiced.
  674. *
  675. * @param p the context
  676. * @param pitch_lag decoded pitch_lag
  677. * @param exc_eng excitation energy estimation
  678. * @param scale scaling factor of exc_eng
  679. *
  680. * @return residual interpolation index if voiced, 0 otherwise
  681. */
  682. static int comp_interp_index(G723_1_Context *p, int pitch_lag,
  683. int *exc_eng, int *scale)
  684. {
  685. int offset = PITCH_MAX + 2 * SUBFRAME_LEN;
  686. int16_t *buf = p->audio + LPC_ORDER;
  687. int index, ccr, tgt_eng, best_eng, temp;
  688. *scale = scale_vector(buf, p->excitation, FRAME_LEN + PITCH_MAX);
  689. buf += offset;
  690. /* Compute maximum backward cross-correlation */
  691. ccr = 0;
  692. index = autocorr_max(buf, offset, &ccr, pitch_lag, SUBFRAME_LEN * 2, -1);
  693. ccr = av_sat_add32(ccr, 1 << 15) >> 16;
  694. /* Compute target energy */
  695. tgt_eng = dot_product(buf, buf, SUBFRAME_LEN * 2);
  696. *exc_eng = av_sat_add32(tgt_eng, 1 << 15) >> 16;
  697. if (ccr <= 0)
  698. return 0;
  699. /* Compute best energy */
  700. best_eng = dot_product(buf - index, buf - index, SUBFRAME_LEN * 2);
  701. best_eng = av_sat_add32(best_eng, 1 << 15) >> 16;
  702. temp = best_eng * *exc_eng >> 3;
  703. if (temp < ccr * ccr)
  704. return index;
  705. else
  706. return 0;
  707. }
  708. /**
  709. * Peform residual interpolation based on frame classification.
  710. *
  711. * @param buf decoded excitation vector
  712. * @param out output vector
  713. * @param lag decoded pitch lag
  714. * @param gain interpolated gain
  715. * @param rseed seed for random number generator
  716. */
  717. static void residual_interp(int16_t *buf, int16_t *out, int lag,
  718. int gain, int *rseed)
  719. {
  720. int i;
  721. if (lag) { /* Voiced */
  722. int16_t *vector_ptr = buf + PITCH_MAX;
  723. /* Attenuate */
  724. for (i = 0; i < lag; i++)
  725. out[i] = vector_ptr[i - lag] * 3 >> 2;
  726. av_memcpy_backptr((uint8_t*)(out + lag), lag * sizeof(*out),
  727. (FRAME_LEN - lag) * sizeof(*out));
  728. } else { /* Unvoiced */
  729. for (i = 0; i < FRAME_LEN; i++) {
  730. *rseed = *rseed * 521 + 259;
  731. out[i] = gain * *rseed >> 15;
  732. }
  733. memset(buf, 0, (FRAME_LEN + PITCH_MAX) * sizeof(*buf));
  734. }
  735. }
  736. /**
  737. * Perform IIR filtering.
  738. *
  739. * @param fir_coef FIR coefficients
  740. * @param iir_coef IIR coefficients
  741. * @param src source vector
  742. * @param dest destination vector
  743. */
  744. static inline void iir_filter(int16_t *fir_coef, int16_t *iir_coef,
  745. int16_t *src, int *dest)
  746. {
  747. int m, n;
  748. for (m = 0; m < SUBFRAME_LEN; m++) {
  749. int64_t filter = 0;
  750. for (n = 1; n <= LPC_ORDER; n++) {
  751. filter -= fir_coef[n - 1] * src[m - n] -
  752. iir_coef[n - 1] * (dest[m - n] >> 16);
  753. }
  754. dest[m] = av_clipl_int32((src[m] << 16) + (filter << 3) + (1 << 15));
  755. }
  756. }
  757. /**
  758. * Adjust gain of postfiltered signal.
  759. *
  760. * @param p the context
  761. * @param buf postfiltered output vector
  762. * @param energy input energy coefficient
  763. */
  764. static void gain_scale(G723_1_Context *p, int16_t * buf, int energy)
  765. {
  766. int num, denom, gain, bits1, bits2;
  767. int i;
  768. num = energy;
  769. denom = 0;
  770. for (i = 0; i < SUBFRAME_LEN; i++) {
  771. int temp = buf[i] >> 2;
  772. temp *= temp;
  773. denom = av_sat_dadd32(denom, temp);
  774. }
  775. if (num && denom) {
  776. bits1 = normalize_bits(num, 31);
  777. bits2 = normalize_bits(denom, 31);
  778. num = num << bits1 >> 1;
  779. denom <<= bits2;
  780. bits2 = 5 + bits1 - bits2;
  781. bits2 = FFMAX(0, bits2);
  782. gain = (num >> 1) / (denom >> 16);
  783. gain = square_root(gain << 16 >> bits2);
  784. } else {
  785. gain = 1 << 12;
  786. }
  787. for (i = 0; i < SUBFRAME_LEN; i++) {
  788. p->pf_gain = (15 * p->pf_gain + gain + (1 << 3)) >> 4;
  789. buf[i] = av_clip_int16((buf[i] * (p->pf_gain + (p->pf_gain >> 4)) +
  790. (1 << 10)) >> 11);
  791. }
  792. }
  793. /**
  794. * Perform formant filtering.
  795. *
  796. * @param p the context
  797. * @param lpc quantized lpc coefficients
  798. * @param buf input buffer
  799. * @param dst output buffer
  800. */
  801. static void formant_postfilter(G723_1_Context *p, int16_t *lpc,
  802. int16_t *buf, int16_t *dst)
  803. {
  804. int16_t filter_coef[2][LPC_ORDER];
  805. int filter_signal[LPC_ORDER + FRAME_LEN], *signal_ptr;
  806. int i, j, k;
  807. memcpy(buf, p->fir_mem, LPC_ORDER * sizeof(*buf));
  808. memcpy(filter_signal, p->iir_mem, LPC_ORDER * sizeof(*filter_signal));
  809. for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) {
  810. for (k = 0; k < LPC_ORDER; k++) {
  811. filter_coef[0][k] = (-lpc[k] * postfilter_tbl[0][k] +
  812. (1 << 14)) >> 15;
  813. filter_coef[1][k] = (-lpc[k] * postfilter_tbl[1][k] +
  814. (1 << 14)) >> 15;
  815. }
  816. iir_filter(filter_coef[0], filter_coef[1], buf + i,
  817. filter_signal + i);
  818. lpc += LPC_ORDER;
  819. }
  820. memcpy(p->fir_mem, buf + FRAME_LEN, LPC_ORDER * sizeof(*p->fir_mem));
  821. memcpy(p->iir_mem, filter_signal + FRAME_LEN,
  822. LPC_ORDER * sizeof(*p->iir_mem));
  823. buf += LPC_ORDER;
  824. signal_ptr = filter_signal + LPC_ORDER;
  825. for (i = 0; i < SUBFRAMES; i++) {
  826. int temp;
  827. int auto_corr[2];
  828. int scale, energy;
  829. /* Normalize */
  830. scale = scale_vector(dst, buf, SUBFRAME_LEN);
  831. /* Compute auto correlation coefficients */
  832. auto_corr[0] = dot_product(dst, dst + 1, SUBFRAME_LEN - 1);
  833. auto_corr[1] = dot_product(dst, dst, SUBFRAME_LEN);
  834. /* Compute reflection coefficient */
  835. temp = auto_corr[1] >> 16;
  836. if (temp) {
  837. temp = (auto_corr[0] >> 2) / temp;
  838. }
  839. p->reflection_coef = (3 * p->reflection_coef + temp + 2) >> 2;
  840. temp = -p->reflection_coef >> 1 & ~3;
  841. /* Compensation filter */
  842. for (j = 0; j < SUBFRAME_LEN; j++) {
  843. dst[j] = av_sat_dadd32(signal_ptr[j],
  844. (signal_ptr[j - 1] >> 16) * temp) >> 16;
  845. }
  846. /* Compute normalized signal energy */
  847. temp = 2 * scale + 4;
  848. if (temp < 0) {
  849. energy = av_clipl_int32((int64_t)auto_corr[1] << -temp);
  850. } else
  851. energy = auto_corr[1] >> temp;
  852. gain_scale(p, dst, energy);
  853. buf += SUBFRAME_LEN;
  854. signal_ptr += SUBFRAME_LEN;
  855. dst += SUBFRAME_LEN;
  856. }
  857. }
  858. static int g723_1_decode_frame(AVCodecContext *avctx, void *data,
  859. int *got_frame_ptr, AVPacket *avpkt)
  860. {
  861. G723_1_Context *p = avctx->priv_data;
  862. const uint8_t *buf = avpkt->data;
  863. int buf_size = avpkt->size;
  864. int dec_mode = buf[0] & 3;
  865. PPFParam ppf[SUBFRAMES];
  866. int16_t cur_lsp[LPC_ORDER];
  867. int16_t lpc[SUBFRAMES * LPC_ORDER];
  868. int16_t acb_vector[SUBFRAME_LEN];
  869. int16_t *out;
  870. int bad_frame = 0, i, j, ret;
  871. int16_t *audio = p->audio;
  872. if (buf_size < frame_size[dec_mode]) {
  873. if (buf_size)
  874. av_log(avctx, AV_LOG_WARNING,
  875. "Expected %d bytes, got %d - skipping packet\n",
  876. frame_size[dec_mode], buf_size);
  877. *got_frame_ptr = 0;
  878. return buf_size;
  879. }
  880. if (unpack_bitstream(p, buf, buf_size) < 0) {
  881. bad_frame = 1;
  882. if (p->past_frame_type == ACTIVE_FRAME)
  883. p->cur_frame_type = ACTIVE_FRAME;
  884. else
  885. p->cur_frame_type = UNTRANSMITTED_FRAME;
  886. }
  887. p->frame.nb_samples = FRAME_LEN;
  888. if ((ret = avctx->get_buffer(avctx, &p->frame)) < 0) {
  889. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  890. return ret;
  891. }
  892. out = (int16_t *)p->frame.data[0];
  893. if (p->cur_frame_type == ACTIVE_FRAME) {
  894. if (!bad_frame)
  895. p->erased_frames = 0;
  896. else if (p->erased_frames != 3)
  897. p->erased_frames++;
  898. inverse_quant(cur_lsp, p->prev_lsp, p->lsp_index, bad_frame);
  899. lsp_interpolate(lpc, cur_lsp, p->prev_lsp);
  900. /* Save the lsp_vector for the next frame */
  901. memcpy(p->prev_lsp, cur_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
  902. /* Generate the excitation for the frame */
  903. memcpy(p->excitation, p->prev_excitation,
  904. PITCH_MAX * sizeof(*p->excitation));
  905. if (!p->erased_frames) {
  906. int16_t *vector_ptr = p->excitation + PITCH_MAX;
  907. /* Update interpolation gain memory */
  908. p->interp_gain = fixed_cb_gain[(p->subframe[2].amp_index +
  909. p->subframe[3].amp_index) >> 1];
  910. for (i = 0; i < SUBFRAMES; i++) {
  911. gen_fcb_excitation(vector_ptr, &p->subframe[i], p->cur_rate,
  912. p->pitch_lag[i >> 1], i);
  913. gen_acb_excitation(acb_vector, &p->excitation[SUBFRAME_LEN * i],
  914. p->pitch_lag[i >> 1], &p->subframe[i],
  915. p->cur_rate);
  916. /* Get the total excitation */
  917. for (j = 0; j < SUBFRAME_LEN; j++) {
  918. int v = av_clip_int16(vector_ptr[j] << 1);
  919. vector_ptr[j] = av_clip_int16(v + acb_vector[j]);
  920. }
  921. vector_ptr += SUBFRAME_LEN;
  922. }
  923. vector_ptr = p->excitation + PITCH_MAX;
  924. p->interp_index = comp_interp_index(p, p->pitch_lag[1],
  925. &p->sid_gain, &p->cur_gain);
  926. /* Peform pitch postfiltering */
  927. if (p->postfilter) {
  928. i = PITCH_MAX;
  929. for (j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
  930. comp_ppf_coeff(p, i, p->pitch_lag[j >> 1],
  931. ppf + j, p->cur_rate);
  932. for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
  933. ff_acelp_weighted_vector_sum(p->audio + LPC_ORDER + i,
  934. vector_ptr + i,
  935. vector_ptr + i + ppf[j].index,
  936. ppf[j].sc_gain,
  937. ppf[j].opt_gain,
  938. 1 << 14, 15, SUBFRAME_LEN);
  939. } else {
  940. audio = vector_ptr - LPC_ORDER;
  941. }
  942. /* Save the excitation for the next frame */
  943. memcpy(p->prev_excitation, p->excitation + FRAME_LEN,
  944. PITCH_MAX * sizeof(*p->excitation));
  945. } else {
  946. p->interp_gain = (p->interp_gain * 3 + 2) >> 2;
  947. if (p->erased_frames == 3) {
  948. /* Mute output */
  949. memset(p->excitation, 0,
  950. (FRAME_LEN + PITCH_MAX) * sizeof(*p->excitation));
  951. memset(p->prev_excitation, 0,
  952. PITCH_MAX * sizeof(*p->excitation));
  953. memset(p->frame.data[0], 0,
  954. (FRAME_LEN + LPC_ORDER) * sizeof(int16_t));
  955. } else {
  956. int16_t *buf = p->audio + LPC_ORDER;
  957. /* Regenerate frame */
  958. residual_interp(p->excitation, buf, p->interp_index,
  959. p->interp_gain, &p->random_seed);
  960. /* Save the excitation for the next frame */
  961. memcpy(p->prev_excitation, buf + (FRAME_LEN - PITCH_MAX),
  962. PITCH_MAX * sizeof(*p->excitation));
  963. }
  964. }
  965. } else {
  966. memset(out, 0, FRAME_LEN * 2);
  967. av_log(avctx, AV_LOG_WARNING,
  968. "G.723.1: Comfort noise generation not supported yet\n");
  969. *got_frame_ptr = 1;
  970. *(AVFrame *)data = p->frame;
  971. return frame_size[dec_mode];
  972. }
  973. p->past_frame_type = p->cur_frame_type;
  974. memcpy(p->audio, p->synth_mem, LPC_ORDER * sizeof(*p->audio));
  975. for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
  976. ff_celp_lp_synthesis_filter(p->audio + i, &lpc[j * LPC_ORDER],
  977. audio + i, SUBFRAME_LEN, LPC_ORDER,
  978. 0, 1, 1 << 12);
  979. memcpy(p->synth_mem, p->audio + FRAME_LEN, LPC_ORDER * sizeof(*p->audio));
  980. if (p->postfilter) {
  981. formant_postfilter(p, lpc, p->audio, out);
  982. } else { // if output is not postfiltered it should be scaled by 2
  983. for (i = 0; i < FRAME_LEN; i++)
  984. out[i] = av_clip_int16(p->audio[LPC_ORDER + i] << 1);
  985. }
  986. *got_frame_ptr = 1;
  987. *(AVFrame *)data = p->frame;
  988. return frame_size[dec_mode];
  989. }
  990. #define OFFSET(x) offsetof(G723_1_Context, x)
  991. #define AD AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_DECODING_PARAM
  992. static const AVOption options[] = {
  993. { "postfilter", "postfilter on/off", OFFSET(postfilter), AV_OPT_TYPE_INT,
  994. { 1 }, 0, 1, AD },
  995. { NULL }
  996. };
  997. static const AVClass g723_1dec_class = {
  998. .class_name = "G.723.1 decoder",
  999. .item_name = av_default_item_name,
  1000. .option = options,
  1001. .version = LIBAVUTIL_VERSION_INT,
  1002. };
  1003. AVCodec ff_g723_1_decoder = {
  1004. .name = "g723_1",
  1005. .type = AVMEDIA_TYPE_AUDIO,
  1006. .id = AV_CODEC_ID_G723_1,
  1007. .priv_data_size = sizeof(G723_1_Context),
  1008. .init = g723_1_decode_init,
  1009. .decode = g723_1_decode_frame,
  1010. .long_name = NULL_IF_CONFIG_SMALL("G.723.1"),
  1011. .capabilities = CODEC_CAP_SUBFRAMES,
  1012. .priv_class = &g723_1dec_class,
  1013. };