You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1697 lines
59KB

  1. /**
  2. * VP8 compatible video decoder
  3. *
  4. * Copyright (C) 2010 David Conrad
  5. * Copyright (C) 2010 Ronald S. Bultje
  6. * Copyright (C) 2010 Jason Garrett-Glaser
  7. *
  8. * This file is part of FFmpeg.
  9. *
  10. * FFmpeg is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU Lesser General Public
  12. * License as published by the Free Software Foundation; either
  13. * version 2.1 of the License, or (at your option) any later version.
  14. *
  15. * FFmpeg is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * Lesser General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU Lesser General Public
  21. * License along with FFmpeg; if not, write to the Free Software
  22. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  23. */
  24. #include "avcodec.h"
  25. #include "vp56.h"
  26. #include "vp8data.h"
  27. #include "vp8dsp.h"
  28. #include "h264pred.h"
  29. #include "rectangle.h"
  30. typedef struct {
  31. uint8_t filter_level;
  32. uint8_t inner_limit;
  33. uint8_t inner_filter;
  34. } VP8FilterStrength;
  35. typedef struct {
  36. uint8_t skip;
  37. // todo: make it possible to check for at least (i4x4 or split_mv)
  38. // in one op. are others needed?
  39. uint8_t mode;
  40. uint8_t ref_frame;
  41. uint8_t partitioning;
  42. VP56mv mv;
  43. VP56mv bmv[16];
  44. } VP8Macroblock;
  45. typedef struct {
  46. AVCodecContext *avctx;
  47. DSPContext dsp;
  48. VP8DSPContext vp8dsp;
  49. H264PredContext hpc;
  50. vp8_mc_func put_pixels_tab[3][3][3];
  51. AVFrame frames[4];
  52. AVFrame *framep[4];
  53. uint8_t *edge_emu_buffer;
  54. VP56RangeCoder c; ///< header context, includes mb modes and motion vectors
  55. int profile;
  56. int mb_width; /* number of horizontal MB */
  57. int mb_height; /* number of vertical MB */
  58. int linesize;
  59. int uvlinesize;
  60. int keyframe;
  61. int invisible;
  62. int update_last; ///< update VP56_FRAME_PREVIOUS with the current one
  63. int update_golden; ///< VP56_FRAME_NONE if not updated, or which frame to copy if so
  64. int update_altref;
  65. int deblock_filter;
  66. /**
  67. * If this flag is not set, all the probability updates
  68. * are discarded after this frame is decoded.
  69. */
  70. int update_probabilities;
  71. /**
  72. * All coefficients are contained in separate arith coding contexts.
  73. * There can be 1, 2, 4, or 8 of these after the header context.
  74. */
  75. int num_coeff_partitions;
  76. VP56RangeCoder coeff_partition[8];
  77. VP8Macroblock *macroblocks;
  78. VP8Macroblock *macroblocks_base;
  79. VP8FilterStrength *filter_strength;
  80. int mb_stride;
  81. uint8_t *intra4x4_pred_mode_top;
  82. uint8_t intra4x4_pred_mode_left[4];
  83. uint8_t *segmentation_map;
  84. int b4_stride;
  85. /**
  86. * Cache of the top row needed for intra prediction
  87. * 16 for luma, 8 for each chroma plane
  88. */
  89. uint8_t (*top_border)[16+8+8];
  90. /**
  91. * For coeff decode, we need to know whether the above block had non-zero
  92. * coefficients. This means for each macroblock, we need data for 4 luma
  93. * blocks, 2 u blocks, 2 v blocks, and the luma dc block, for a total of 9
  94. * per macroblock. We keep the last row in top_nnz.
  95. */
  96. uint8_t (*top_nnz)[9];
  97. DECLARE_ALIGNED(8, uint8_t, left_nnz)[9];
  98. /**
  99. * This is the index plus one of the last non-zero coeff
  100. * for each of the blocks in the current macroblock.
  101. * So, 0 -> no coeffs
  102. * 1 -> dc-only (special transform)
  103. * 2+-> full transform
  104. */
  105. DECLARE_ALIGNED(16, uint8_t, non_zero_count_cache)[6][4];
  106. DECLARE_ALIGNED(16, DCTELEM, block)[6][4][16];
  107. DECLARE_ALIGNED(16, DCTELEM, block_dc)[16];
  108. uint8_t intra4x4_pred_mode_mb[16];
  109. int chroma_pred_mode; ///< 8x8c pred mode of the current macroblock
  110. int segment; ///< segment of the current macroblock
  111. int mbskip_enabled;
  112. int sign_bias[4]; ///< one state [0, 1] per ref frame type
  113. int ref_count[3];
  114. /**
  115. * Base parameters for segmentation, i.e. per-macroblock parameters.
  116. * These must be kept unchanged even if segmentation is not used for
  117. * a frame, since the values persist between interframes.
  118. */
  119. struct {
  120. int enabled;
  121. int absolute_vals;
  122. int update_map;
  123. int8_t base_quant[4];
  124. int8_t filter_level[4]; ///< base loop filter level
  125. } segmentation;
  126. /**
  127. * Macroblocks can have one of 4 different quants in a frame when
  128. * segmentation is enabled.
  129. * If segmentation is disabled, only the first segment's values are used.
  130. */
  131. struct {
  132. // [0] - DC qmul [1] - AC qmul
  133. int16_t luma_qmul[2];
  134. int16_t luma_dc_qmul[2]; ///< luma dc-only block quant
  135. int16_t chroma_qmul[2];
  136. } qmat[4];
  137. struct {
  138. int simple;
  139. int level;
  140. int sharpness;
  141. } filter;
  142. struct {
  143. int enabled; ///< whether each mb can have a different strength based on mode/ref
  144. /**
  145. * filter strength adjustment for the following macroblock modes:
  146. * [0] - i4x4
  147. * [1] - zero mv
  148. * [2] - inter modes except for zero or split mv
  149. * [3] - split mv
  150. * i16x16 modes never have any adjustment
  151. */
  152. int8_t mode[4];
  153. /**
  154. * filter strength adjustment for macroblocks that reference:
  155. * [0] - intra / VP56_FRAME_CURRENT
  156. * [1] - VP56_FRAME_PREVIOUS
  157. * [2] - VP56_FRAME_GOLDEN
  158. * [3] - altref / VP56_FRAME_GOLDEN2
  159. */
  160. int8_t ref[4];
  161. } lf_delta;
  162. /**
  163. * These are all of the updatable probabilities for binary decisions.
  164. * They are only implictly reset on keyframes, making it quite likely
  165. * for an interframe to desync if a prior frame's header was corrupt
  166. * or missing outright!
  167. */
  168. struct {
  169. uint8_t segmentid[3];
  170. uint8_t mbskip;
  171. uint8_t intra;
  172. uint8_t last;
  173. uint8_t golden;
  174. uint8_t pred16x16[4];
  175. uint8_t pred8x8c[3];
  176. /* Padded to allow overreads */
  177. uint8_t token[4][17][3][NUM_DCT_TOKENS-1];
  178. uint8_t mvc[2][19];
  179. } prob[2];
  180. } VP8Context;
  181. static void vp8_decode_flush(AVCodecContext *avctx)
  182. {
  183. VP8Context *s = avctx->priv_data;
  184. int i;
  185. for (i = 0; i < 4; i++)
  186. if (s->frames[i].data[0])
  187. avctx->release_buffer(avctx, &s->frames[i]);
  188. memset(s->framep, 0, sizeof(s->framep));
  189. av_freep(&s->macroblocks_base);
  190. av_freep(&s->filter_strength);
  191. av_freep(&s->intra4x4_pred_mode_top);
  192. av_freep(&s->top_nnz);
  193. av_freep(&s->edge_emu_buffer);
  194. av_freep(&s->top_border);
  195. av_freep(&s->segmentation_map);
  196. s->macroblocks = NULL;
  197. }
  198. static int update_dimensions(VP8Context *s, int width, int height)
  199. {
  200. if (avcodec_check_dimensions(s->avctx, width, height))
  201. return AVERROR_INVALIDDATA;
  202. vp8_decode_flush(s->avctx);
  203. avcodec_set_dimensions(s->avctx, width, height);
  204. s->mb_width = (s->avctx->coded_width +15) / 16;
  205. s->mb_height = (s->avctx->coded_height+15) / 16;
  206. // we allocate a border around the top/left of intra4x4 modes
  207. // this is 4 blocks for intra4x4 to keep 4-byte alignment for fill_rectangle
  208. s->mb_stride = s->mb_width+1;
  209. s->b4_stride = 4*s->mb_stride;
  210. s->macroblocks_base = av_mallocz((s->mb_stride+s->mb_height*2+2)*sizeof(*s->macroblocks));
  211. s->filter_strength = av_mallocz(s->mb_stride*sizeof(*s->filter_strength));
  212. s->intra4x4_pred_mode_top = av_mallocz(s->b4_stride*4);
  213. s->top_nnz = av_mallocz(s->mb_width*sizeof(*s->top_nnz));
  214. s->top_border = av_mallocz((s->mb_width+1)*sizeof(*s->top_border));
  215. s->segmentation_map = av_mallocz(s->mb_stride*s->mb_height);
  216. if (!s->macroblocks_base || !s->filter_strength || !s->intra4x4_pred_mode_top ||
  217. !s->top_nnz || !s->top_border || !s->segmentation_map)
  218. return AVERROR(ENOMEM);
  219. s->macroblocks = s->macroblocks_base + 1;
  220. return 0;
  221. }
  222. static void parse_segment_info(VP8Context *s)
  223. {
  224. VP56RangeCoder *c = &s->c;
  225. int i;
  226. s->segmentation.update_map = vp8_rac_get(c);
  227. if (vp8_rac_get(c)) { // update segment feature data
  228. s->segmentation.absolute_vals = vp8_rac_get(c);
  229. for (i = 0; i < 4; i++)
  230. s->segmentation.base_quant[i] = vp8_rac_get_sint(c, 7);
  231. for (i = 0; i < 4; i++)
  232. s->segmentation.filter_level[i] = vp8_rac_get_sint(c, 6);
  233. }
  234. if (s->segmentation.update_map)
  235. for (i = 0; i < 3; i++)
  236. s->prob->segmentid[i] = vp8_rac_get(c) ? vp8_rac_get_uint(c, 8) : 255;
  237. }
  238. static void update_lf_deltas(VP8Context *s)
  239. {
  240. VP56RangeCoder *c = &s->c;
  241. int i;
  242. for (i = 0; i < 4; i++)
  243. s->lf_delta.ref[i] = vp8_rac_get_sint(c, 6);
  244. for (i = 0; i < 4; i++)
  245. s->lf_delta.mode[i] = vp8_rac_get_sint(c, 6);
  246. }
  247. static int setup_partitions(VP8Context *s, const uint8_t *buf, int buf_size)
  248. {
  249. const uint8_t *sizes = buf;
  250. int i;
  251. s->num_coeff_partitions = 1 << vp8_rac_get_uint(&s->c, 2);
  252. buf += 3*(s->num_coeff_partitions-1);
  253. buf_size -= 3*(s->num_coeff_partitions-1);
  254. if (buf_size < 0)
  255. return -1;
  256. for (i = 0; i < s->num_coeff_partitions-1; i++) {
  257. int size = AV_RL24(sizes + 3*i);
  258. if (buf_size - size < 0)
  259. return -1;
  260. vp56_init_range_decoder(&s->coeff_partition[i], buf, size);
  261. buf += size;
  262. buf_size -= size;
  263. }
  264. vp56_init_range_decoder(&s->coeff_partition[i], buf, buf_size);
  265. return 0;
  266. }
  267. static void get_quants(VP8Context *s)
  268. {
  269. VP56RangeCoder *c = &s->c;
  270. int i, base_qi;
  271. int yac_qi = vp8_rac_get_uint(c, 7);
  272. int ydc_delta = vp8_rac_get_sint(c, 4);
  273. int y2dc_delta = vp8_rac_get_sint(c, 4);
  274. int y2ac_delta = vp8_rac_get_sint(c, 4);
  275. int uvdc_delta = vp8_rac_get_sint(c, 4);
  276. int uvac_delta = vp8_rac_get_sint(c, 4);
  277. for (i = 0; i < 4; i++) {
  278. if (s->segmentation.enabled) {
  279. base_qi = s->segmentation.base_quant[i];
  280. if (!s->segmentation.absolute_vals)
  281. base_qi += yac_qi;
  282. } else
  283. base_qi = yac_qi;
  284. s->qmat[i].luma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + ydc_delta , 0, 127)];
  285. s->qmat[i].luma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi , 0, 127)];
  286. s->qmat[i].luma_dc_qmul[0] = 2 * vp8_dc_qlookup[av_clip(base_qi + y2dc_delta, 0, 127)];
  287. s->qmat[i].luma_dc_qmul[1] = 155 * vp8_ac_qlookup[av_clip(base_qi + y2ac_delta, 0, 127)] / 100;
  288. s->qmat[i].chroma_qmul[0] = vp8_dc_qlookup[av_clip(base_qi + uvdc_delta, 0, 127)];
  289. s->qmat[i].chroma_qmul[1] = vp8_ac_qlookup[av_clip(base_qi + uvac_delta, 0, 127)];
  290. s->qmat[i].luma_dc_qmul[1] = FFMAX(s->qmat[i].luma_dc_qmul[1], 8);
  291. s->qmat[i].chroma_qmul[0] = FFMIN(s->qmat[i].chroma_qmul[0], 132);
  292. }
  293. }
  294. /**
  295. * Determine which buffers golden and altref should be updated with after this frame.
  296. * The spec isn't clear here, so I'm going by my understanding of what libvpx does
  297. *
  298. * Intra frames update all 3 references
  299. * Inter frames update VP56_FRAME_PREVIOUS if the update_last flag is set
  300. * If the update (golden|altref) flag is set, it's updated with the current frame
  301. * if update_last is set, and VP56_FRAME_PREVIOUS otherwise.
  302. * If the flag is not set, the number read means:
  303. * 0: no update
  304. * 1: VP56_FRAME_PREVIOUS
  305. * 2: update golden with altref, or update altref with golden
  306. */
  307. static VP56Frame ref_to_update(VP8Context *s, int update, VP56Frame ref)
  308. {
  309. VP56RangeCoder *c = &s->c;
  310. if (update)
  311. return VP56_FRAME_CURRENT;
  312. switch (vp8_rac_get_uint(c, 2)) {
  313. case 1:
  314. return VP56_FRAME_PREVIOUS;
  315. case 2:
  316. return (ref == VP56_FRAME_GOLDEN) ? VP56_FRAME_GOLDEN2 : VP56_FRAME_GOLDEN;
  317. }
  318. return VP56_FRAME_NONE;
  319. }
  320. static void update_refs(VP8Context *s)
  321. {
  322. VP56RangeCoder *c = &s->c;
  323. int update_golden = vp8_rac_get(c);
  324. int update_altref = vp8_rac_get(c);
  325. s->update_golden = ref_to_update(s, update_golden, VP56_FRAME_GOLDEN);
  326. s->update_altref = ref_to_update(s, update_altref, VP56_FRAME_GOLDEN2);
  327. }
  328. static int decode_frame_header(VP8Context *s, const uint8_t *buf, int buf_size)
  329. {
  330. VP56RangeCoder *c = &s->c;
  331. int header_size, hscale, vscale, i, j, k, l, m, ret;
  332. int width = s->avctx->width;
  333. int height = s->avctx->height;
  334. s->keyframe = !(buf[0] & 1);
  335. s->profile = (buf[0]>>1) & 7;
  336. s->invisible = !(buf[0] & 0x10);
  337. header_size = AV_RL24(buf) >> 5;
  338. buf += 3;
  339. buf_size -= 3;
  340. if (s->profile > 3)
  341. av_log(s->avctx, AV_LOG_WARNING, "Unknown profile %d\n", s->profile);
  342. if (!s->profile)
  343. memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_epel_pixels_tab, sizeof(s->put_pixels_tab));
  344. else // profile 1-3 use bilinear, 4+ aren't defined so whatever
  345. memcpy(s->put_pixels_tab, s->vp8dsp.put_vp8_bilinear_pixels_tab, sizeof(s->put_pixels_tab));
  346. if (header_size > buf_size - 7*s->keyframe) {
  347. av_log(s->avctx, AV_LOG_ERROR, "Header size larger than data provided\n");
  348. return AVERROR_INVALIDDATA;
  349. }
  350. if (s->keyframe) {
  351. if (AV_RL24(buf) != 0x2a019d) {
  352. av_log(s->avctx, AV_LOG_ERROR, "Invalid start code 0x%x\n", AV_RL24(buf));
  353. return AVERROR_INVALIDDATA;
  354. }
  355. width = AV_RL16(buf+3) & 0x3fff;
  356. height = AV_RL16(buf+5) & 0x3fff;
  357. hscale = buf[4] >> 6;
  358. vscale = buf[6] >> 6;
  359. buf += 7;
  360. buf_size -= 7;
  361. if (hscale || vscale)
  362. av_log_missing_feature(s->avctx, "Upscaling", 1);
  363. s->update_golden = s->update_altref = VP56_FRAME_CURRENT;
  364. for (i = 0; i < 4; i++)
  365. for (j = 0; j < 16; j++)
  366. memcpy(s->prob->token[i][j], vp8_token_default_probs[i][vp8_coeff_band[j]],
  367. sizeof(s->prob->token[i][j]));
  368. memcpy(s->prob->pred16x16, vp8_pred16x16_prob_inter, sizeof(s->prob->pred16x16));
  369. memcpy(s->prob->pred8x8c , vp8_pred8x8c_prob_inter , sizeof(s->prob->pred8x8c));
  370. memcpy(s->prob->mvc , vp8_mv_default_prob , sizeof(s->prob->mvc));
  371. memset(&s->segmentation, 0, sizeof(s->segmentation));
  372. }
  373. if (!s->macroblocks_base || /* first frame */
  374. width != s->avctx->width || height != s->avctx->height) {
  375. if ((ret = update_dimensions(s, width, height) < 0))
  376. return ret;
  377. }
  378. vp56_init_range_decoder(c, buf, header_size);
  379. buf += header_size;
  380. buf_size -= header_size;
  381. if (s->keyframe) {
  382. if (vp8_rac_get(c))
  383. av_log(s->avctx, AV_LOG_WARNING, "Unspecified colorspace\n");
  384. vp8_rac_get(c); // whether we can skip clamping in dsp functions
  385. }
  386. if ((s->segmentation.enabled = vp8_rac_get(c)))
  387. parse_segment_info(s);
  388. else
  389. s->segmentation.update_map = 0; // FIXME: move this to some init function?
  390. s->filter.simple = vp8_rac_get(c);
  391. s->filter.level = vp8_rac_get_uint(c, 6);
  392. s->filter.sharpness = vp8_rac_get_uint(c, 3);
  393. if ((s->lf_delta.enabled = vp8_rac_get(c)))
  394. if (vp8_rac_get(c))
  395. update_lf_deltas(s);
  396. if (setup_partitions(s, buf, buf_size)) {
  397. av_log(s->avctx, AV_LOG_ERROR, "Invalid partitions\n");
  398. return AVERROR_INVALIDDATA;
  399. }
  400. get_quants(s);
  401. if (!s->keyframe) {
  402. update_refs(s);
  403. s->sign_bias[VP56_FRAME_GOLDEN] = vp8_rac_get(c);
  404. s->sign_bias[VP56_FRAME_GOLDEN2 /* altref */] = vp8_rac_get(c);
  405. }
  406. // if we aren't saving this frame's probabilities for future frames,
  407. // make a copy of the current probabilities
  408. if (!(s->update_probabilities = vp8_rac_get(c)))
  409. s->prob[1] = s->prob[0];
  410. s->update_last = s->keyframe || vp8_rac_get(c);
  411. for (i = 0; i < 4; i++)
  412. for (j = 0; j < 8; j++)
  413. for (k = 0; k < 3; k++)
  414. for (l = 0; l < NUM_DCT_TOKENS-1; l++)
  415. if (vp56_rac_get_prob_branchy(c, vp8_token_update_probs[i][j][k][l])) {
  416. int prob = vp8_rac_get_uint(c, 8);
  417. for (m = 0; vp8_coeff_band_indexes[j][m] >= 0; m++)
  418. s->prob->token[i][vp8_coeff_band_indexes[j][m]][k][l] = prob;
  419. }
  420. if ((s->mbskip_enabled = vp8_rac_get(c)))
  421. s->prob->mbskip = vp8_rac_get_uint(c, 8);
  422. if (!s->keyframe) {
  423. s->prob->intra = vp8_rac_get_uint(c, 8);
  424. s->prob->last = vp8_rac_get_uint(c, 8);
  425. s->prob->golden = vp8_rac_get_uint(c, 8);
  426. if (vp8_rac_get(c))
  427. for (i = 0; i < 4; i++)
  428. s->prob->pred16x16[i] = vp8_rac_get_uint(c, 8);
  429. if (vp8_rac_get(c))
  430. for (i = 0; i < 3; i++)
  431. s->prob->pred8x8c[i] = vp8_rac_get_uint(c, 8);
  432. // 17.2 MV probability update
  433. for (i = 0; i < 2; i++)
  434. for (j = 0; j < 19; j++)
  435. if (vp56_rac_get_prob_branchy(c, vp8_mv_update_prob[i][j]))
  436. s->prob->mvc[i][j] = vp8_rac_get_nn(c);
  437. }
  438. return 0;
  439. }
  440. static av_always_inline
  441. void clamp_mv(VP8Context *s, VP56mv *dst, const VP56mv *src, int mb_x, int mb_y)
  442. {
  443. #define MARGIN (16 << 2)
  444. dst->x = av_clip(src->x, -((mb_x << 6) + MARGIN),
  445. ((s->mb_width - 1 - mb_x) << 6) + MARGIN);
  446. dst->y = av_clip(src->y, -((mb_y << 6) + MARGIN),
  447. ((s->mb_height - 1 - mb_y) << 6) + MARGIN);
  448. }
  449. static av_always_inline
  450. void find_near_mvs(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y,
  451. VP56mv near[2], VP56mv *best, uint8_t cnt[4])
  452. {
  453. VP8Macroblock *mb_edge[3] = { mb + 2 /* top */,
  454. mb - 1 /* left */,
  455. mb + 1 /* top-left */ };
  456. enum { EDGE_TOP, EDGE_LEFT, EDGE_TOPLEFT };
  457. VP56mv near_mv[4] = {{ 0 }};
  458. enum { CNT_ZERO, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV };
  459. int idx = CNT_ZERO;
  460. int best_idx = CNT_ZERO;
  461. int cur_sign_bias = s->sign_bias[mb->ref_frame];
  462. int *sign_bias = s->sign_bias;
  463. /* Process MB on top, left and top-left */
  464. #define MV_EDGE_CHECK(n)\
  465. {\
  466. VP8Macroblock *edge = mb_edge[n];\
  467. int edge_ref = edge->ref_frame;\
  468. if (edge_ref != VP56_FRAME_CURRENT) {\
  469. uint32_t mv = AV_RN32A(&edge->mv);\
  470. if (mv) {\
  471. if (cur_sign_bias != sign_bias[edge_ref]) {\
  472. /* SWAR negate of the values in mv. */\
  473. mv = ~mv;\
  474. mv = ((mv&0x7fff7fff) + 0x00010001) ^ (mv&0x80008000);\
  475. }\
  476. if (!n || mv != AV_RN32A(&near_mv[idx]))\
  477. AV_WN32A(&near_mv[++idx], mv);\
  478. cnt[idx] += 1 + (n != 2);\
  479. } else\
  480. cnt[CNT_ZERO] += 1 + (n != 2);\
  481. }\
  482. }
  483. MV_EDGE_CHECK(0)
  484. MV_EDGE_CHECK(1)
  485. MV_EDGE_CHECK(2)
  486. /* If we have three distinct MVs, merge first and last if they're the same */
  487. if (cnt[CNT_SPLITMV] && AV_RN32A(&near_mv[1+EDGE_TOP]) == AV_RN32A(&near_mv[1+EDGE_TOPLEFT]))
  488. cnt[CNT_NEAREST] += 1;
  489. cnt[CNT_SPLITMV] = ((mb_edge[EDGE_LEFT]->mode == VP8_MVMODE_SPLIT) +
  490. (mb_edge[EDGE_TOP]->mode == VP8_MVMODE_SPLIT)) * 2 +
  491. (mb_edge[EDGE_TOPLEFT]->mode == VP8_MVMODE_SPLIT);
  492. /* Swap near and nearest if necessary */
  493. if (cnt[CNT_NEAR] > cnt[CNT_NEAREST]) {
  494. FFSWAP(uint8_t, cnt[CNT_NEAREST], cnt[CNT_NEAR]);
  495. FFSWAP( VP56mv, near_mv[CNT_NEAREST], near_mv[CNT_NEAR]);
  496. }
  497. /* Choose the best mv out of 0,0 and the nearest mv */
  498. if (cnt[CNT_NEAREST] >= cnt[CNT_ZERO])
  499. best_idx = CNT_NEAREST;
  500. mb->mv = near_mv[best_idx];
  501. near[0] = near_mv[CNT_NEAREST];
  502. near[1] = near_mv[CNT_NEAR];
  503. }
  504. /**
  505. * Motion vector coding, 17.1.
  506. */
  507. static int read_mv_component(VP56RangeCoder *c, const uint8_t *p)
  508. {
  509. int bit, x = 0;
  510. if (vp56_rac_get_prob_branchy(c, p[0])) {
  511. int i;
  512. for (i = 0; i < 3; i++)
  513. x += vp56_rac_get_prob(c, p[9 + i]) << i;
  514. for (i = 9; i > 3; i--)
  515. x += vp56_rac_get_prob(c, p[9 + i]) << i;
  516. if (!(x & 0xFFF0) || vp56_rac_get_prob(c, p[12]))
  517. x += 8;
  518. } else {
  519. // small_mvtree
  520. const uint8_t *ps = p+2;
  521. bit = vp56_rac_get_prob(c, *ps);
  522. ps += 1 + 3*bit;
  523. x += 4*bit;
  524. bit = vp56_rac_get_prob(c, *ps);
  525. ps += 1 + bit;
  526. x += 2*bit;
  527. x += vp56_rac_get_prob(c, *ps);
  528. }
  529. return (x && vp56_rac_get_prob(c, p[1])) ? -x : x;
  530. }
  531. static av_always_inline
  532. const uint8_t *get_submv_prob(uint32_t left, uint32_t top)
  533. {
  534. if (left == top)
  535. return vp8_submv_prob[4-!!left];
  536. if (!top)
  537. return vp8_submv_prob[2];
  538. return vp8_submv_prob[1-!!left];
  539. }
  540. /**
  541. * Split motion vector prediction, 16.4.
  542. * @returns the number of motion vectors parsed (2, 4 or 16)
  543. */
  544. static av_always_inline
  545. int decode_splitmvs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb)
  546. {
  547. int part_idx;
  548. int n, num;
  549. VP8Macroblock *top_mb = &mb[2];
  550. VP8Macroblock *left_mb = &mb[-1];
  551. const uint8_t *mbsplits_left = vp8_mbsplits[left_mb->partitioning],
  552. *mbsplits_top = vp8_mbsplits[top_mb->partitioning],
  553. *mbsplits_cur, *firstidx;
  554. VP56mv *top_mv = top_mb->bmv;
  555. VP56mv *left_mv = left_mb->bmv;
  556. VP56mv *cur_mv = mb->bmv;
  557. if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[0])) {
  558. if (vp56_rac_get_prob_branchy(c, vp8_mbsplit_prob[1])) {
  559. part_idx = VP8_SPLITMVMODE_16x8 + vp56_rac_get_prob(c, vp8_mbsplit_prob[2]);
  560. } else {
  561. part_idx = VP8_SPLITMVMODE_8x8;
  562. }
  563. } else {
  564. part_idx = VP8_SPLITMVMODE_4x4;
  565. }
  566. num = vp8_mbsplit_count[part_idx];
  567. mbsplits_cur = vp8_mbsplits[part_idx],
  568. firstidx = vp8_mbfirstidx[part_idx];
  569. mb->partitioning = part_idx;
  570. for (n = 0; n < num; n++) {
  571. int k = firstidx[n];
  572. uint32_t left, above;
  573. const uint8_t *submv_prob;
  574. if (!(k & 3))
  575. left = AV_RN32A(&left_mv[mbsplits_left[k + 3]]);
  576. else
  577. left = AV_RN32A(&cur_mv[mbsplits_cur[k - 1]]);
  578. if (k <= 3)
  579. above = AV_RN32A(&top_mv[mbsplits_top[k + 12]]);
  580. else
  581. above = AV_RN32A(&cur_mv[mbsplits_cur[k - 4]]);
  582. submv_prob = get_submv_prob(left, above);
  583. if (vp56_rac_get_prob_branchy(c, submv_prob[0])) {
  584. if (vp56_rac_get_prob_branchy(c, submv_prob[1])) {
  585. if (vp56_rac_get_prob_branchy(c, submv_prob[2])) {
  586. mb->bmv[n].y = mb->mv.y + read_mv_component(c, s->prob->mvc[0]);
  587. mb->bmv[n].x = mb->mv.x + read_mv_component(c, s->prob->mvc[1]);
  588. } else {
  589. AV_ZERO32(&mb->bmv[n]);
  590. }
  591. } else {
  592. AV_WN32A(&mb->bmv[n], above);
  593. }
  594. } else {
  595. AV_WN32A(&mb->bmv[n], left);
  596. }
  597. }
  598. return num;
  599. }
  600. static av_always_inline
  601. void decode_intra4x4_modes(VP8Context *s, VP56RangeCoder *c,
  602. int mb_x, int keyframe)
  603. {
  604. uint8_t *intra4x4 = s->intra4x4_pred_mode_mb;
  605. if (keyframe) {
  606. int x, y;
  607. uint8_t* const top = s->intra4x4_pred_mode_top + 4 * mb_x;
  608. uint8_t* const left = s->intra4x4_pred_mode_left;
  609. for (y = 0; y < 4; y++) {
  610. for (x = 0; x < 4; x++) {
  611. const uint8_t *ctx;
  612. ctx = vp8_pred4x4_prob_intra[top[x]][left[y]];
  613. *intra4x4 = vp8_rac_get_tree(c, vp8_pred4x4_tree, ctx);
  614. left[y] = top[x] = *intra4x4;
  615. intra4x4++;
  616. }
  617. }
  618. } else {
  619. int i;
  620. for (i = 0; i < 16; i++)
  621. intra4x4[i] = vp8_rac_get_tree(c, vp8_pred4x4_tree, vp8_pred4x4_prob_inter);
  622. }
  623. }
  624. static av_always_inline
  625. void decode_mb_mode(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, uint8_t *segment)
  626. {
  627. VP56RangeCoder *c = &s->c;
  628. if (s->segmentation.update_map)
  629. *segment = vp8_rac_get_tree(c, vp8_segmentid_tree, s->prob->segmentid);
  630. s->segment = *segment;
  631. mb->skip = s->mbskip_enabled ? vp56_rac_get_prob(c, s->prob->mbskip) : 0;
  632. if (s->keyframe) {
  633. mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_intra, vp8_pred16x16_prob_intra);
  634. if (mb->mode == MODE_I4x4) {
  635. decode_intra4x4_modes(s, c, mb_x, 1);
  636. } else {
  637. const uint32_t modes = vp8_pred4x4_mode[mb->mode] * 0x01010101u;
  638. AV_WN32A(s->intra4x4_pred_mode_top + 4 * mb_x, modes);
  639. AV_WN32A(s->intra4x4_pred_mode_left, modes);
  640. }
  641. s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, vp8_pred8x8c_prob_intra);
  642. mb->ref_frame = VP56_FRAME_CURRENT;
  643. } else if (vp56_rac_get_prob_branchy(c, s->prob->intra)) {
  644. VP56mv near[2], best;
  645. uint8_t cnt[4] = { 0 };
  646. // inter MB, 16.2
  647. if (vp56_rac_get_prob_branchy(c, s->prob->last))
  648. mb->ref_frame = vp56_rac_get_prob(c, s->prob->golden) ?
  649. VP56_FRAME_GOLDEN2 /* altref */ : VP56_FRAME_GOLDEN;
  650. else
  651. mb->ref_frame = VP56_FRAME_PREVIOUS;
  652. s->ref_count[mb->ref_frame-1]++;
  653. // motion vectors, 16.3
  654. find_near_mvs(s, mb, mb_x, mb_y, near, &best, cnt);
  655. if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[0]][0])) {
  656. if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[1]][1])) {
  657. if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[2]][2])) {
  658. if (vp56_rac_get_prob_branchy(c, vp8_mode_contexts[cnt[3]][3])) {
  659. mb->mode = VP8_MVMODE_SPLIT;
  660. clamp_mv(s, &mb->mv, &mb->mv, mb_x, mb_y);
  661. mb->mv = mb->bmv[decode_splitmvs(s, c, mb) - 1];
  662. } else {
  663. mb->mode = VP8_MVMODE_NEW;
  664. clamp_mv(s, &mb->mv, &mb->mv, mb_x, mb_y);
  665. mb->mv.y += + read_mv_component(c, s->prob->mvc[0]);
  666. mb->mv.x += + read_mv_component(c, s->prob->mvc[1]);
  667. }
  668. } else {
  669. mb->mode = VP8_MVMODE_NEAR;
  670. clamp_mv(s, &mb->mv, &near[1], mb_x, mb_y);
  671. }
  672. } else {
  673. mb->mode = VP8_MVMODE_NEAREST;
  674. clamp_mv(s, &mb->mv, &near[0], mb_x, mb_y);
  675. }
  676. } else {
  677. mb->mode = VP8_MVMODE_ZERO;
  678. AV_ZERO32(&mb->mv);
  679. }
  680. if (mb->mode != VP8_MVMODE_SPLIT) {
  681. mb->partitioning = VP8_SPLITMVMODE_NONE;
  682. mb->bmv[0] = mb->mv;
  683. }
  684. } else {
  685. // intra MB, 16.1
  686. mb->mode = vp8_rac_get_tree(c, vp8_pred16x16_tree_inter, s->prob->pred16x16);
  687. if (mb->mode == MODE_I4x4)
  688. decode_intra4x4_modes(s, c, mb_x, 0);
  689. s->chroma_pred_mode = vp8_rac_get_tree(c, vp8_pred8x8c_tree, s->prob->pred8x8c);
  690. mb->ref_frame = VP56_FRAME_CURRENT;
  691. mb->partitioning = VP8_SPLITMVMODE_NONE;
  692. AV_ZERO32(&mb->bmv[0]);
  693. }
  694. }
  695. /**
  696. * @param c arithmetic bitstream reader context
  697. * @param block destination for block coefficients
  698. * @param probs probabilities to use when reading trees from the bitstream
  699. * @param i initial coeff index, 0 unless a separate DC block is coded
  700. * @param zero_nhood the initial prediction context for number of surrounding
  701. * all-zero blocks (only left/top, so 0-2)
  702. * @param qmul array holding the dc/ac dequant factor at position 0/1
  703. * @return 0 if no coeffs were decoded
  704. * otherwise, the index of the last coeff decoded plus one
  705. */
  706. static int decode_block_coeffs_internal(VP56RangeCoder *c, DCTELEM block[16],
  707. uint8_t probs[8][3][NUM_DCT_TOKENS-1],
  708. int i, uint8_t *token_prob, int16_t qmul[2])
  709. {
  710. goto skip_eob;
  711. do {
  712. int coeff;
  713. if (!vp56_rac_get_prob_branchy(c, token_prob[0])) // DCT_EOB
  714. return i;
  715. skip_eob:
  716. if (!vp56_rac_get_prob_branchy(c, token_prob[1])) { // DCT_0
  717. if (++i == 16)
  718. return i; // invalid input; blocks should end with EOB
  719. token_prob = probs[i][0];
  720. goto skip_eob;
  721. }
  722. if (!vp56_rac_get_prob_branchy(c, token_prob[2])) { // DCT_1
  723. coeff = 1;
  724. token_prob = probs[i+1][1];
  725. } else {
  726. if (!vp56_rac_get_prob_branchy(c, token_prob[3])) { // DCT 2,3,4
  727. coeff = vp56_rac_get_prob_branchy(c, token_prob[4]);
  728. if (coeff)
  729. coeff += vp56_rac_get_prob(c, token_prob[5]);
  730. coeff += 2;
  731. } else {
  732. // DCT_CAT*
  733. if (!vp56_rac_get_prob_branchy(c, token_prob[6])) {
  734. if (!vp56_rac_get_prob_branchy(c, token_prob[7])) { // DCT_CAT1
  735. coeff = 5 + vp56_rac_get_prob(c, vp8_dct_cat1_prob[0]);
  736. } else { // DCT_CAT2
  737. coeff = 7;
  738. coeff += vp56_rac_get_prob(c, vp8_dct_cat2_prob[0]) << 1;
  739. coeff += vp56_rac_get_prob(c, vp8_dct_cat2_prob[1]);
  740. }
  741. } else { // DCT_CAT3 and up
  742. int a = vp56_rac_get_prob(c, token_prob[8]);
  743. int b = vp56_rac_get_prob(c, token_prob[9+a]);
  744. int cat = (a<<1) + b;
  745. coeff = 3 + (8<<cat);
  746. coeff += vp8_rac_get_coeff(c, vp8_dct_cat_prob[cat]);
  747. }
  748. }
  749. token_prob = probs[i+1][2];
  750. }
  751. block[zigzag_scan[i]] = (vp8_rac_get(c) ? -coeff : coeff) * qmul[!!i];
  752. } while (++i < 16);
  753. return i;
  754. }
  755. static av_always_inline
  756. int decode_block_coeffs(VP56RangeCoder *c, DCTELEM block[16],
  757. uint8_t probs[8][3][NUM_DCT_TOKENS-1],
  758. int i, int zero_nhood, int16_t qmul[2])
  759. {
  760. uint8_t *token_prob = probs[i][zero_nhood];
  761. if (!vp56_rac_get_prob_branchy(c, token_prob[0])) // DCT_EOB
  762. return 0;
  763. return decode_block_coeffs_internal(c, block, probs, i, token_prob, qmul);
  764. }
  765. static av_always_inline
  766. void decode_mb_coeffs(VP8Context *s, VP56RangeCoder *c, VP8Macroblock *mb,
  767. uint8_t t_nnz[9], uint8_t l_nnz[9])
  768. {
  769. int i, x, y, luma_start = 0, luma_ctx = 3;
  770. int nnz_pred, nnz, nnz_total = 0;
  771. int segment = s->segment;
  772. int block_dc = 0;
  773. if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
  774. nnz_pred = t_nnz[8] + l_nnz[8];
  775. // decode DC values and do hadamard
  776. nnz = decode_block_coeffs(c, s->block_dc, s->prob->token[1], 0, nnz_pred,
  777. s->qmat[segment].luma_dc_qmul);
  778. l_nnz[8] = t_nnz[8] = !!nnz;
  779. if (nnz) {
  780. nnz_total += nnz;
  781. block_dc = 1;
  782. if (nnz == 1)
  783. s->vp8dsp.vp8_luma_dc_wht_dc(s->block, s->block_dc);
  784. else
  785. s->vp8dsp.vp8_luma_dc_wht(s->block, s->block_dc);
  786. }
  787. luma_start = 1;
  788. luma_ctx = 0;
  789. }
  790. // luma blocks
  791. for (y = 0; y < 4; y++)
  792. for (x = 0; x < 4; x++) {
  793. nnz_pred = l_nnz[y] + t_nnz[x];
  794. nnz = decode_block_coeffs(c, s->block[y][x], s->prob->token[luma_ctx], luma_start,
  795. nnz_pred, s->qmat[segment].luma_qmul);
  796. // nnz+block_dc may be one more than the actual last index, but we don't care
  797. s->non_zero_count_cache[y][x] = nnz + block_dc;
  798. t_nnz[x] = l_nnz[y] = !!nnz;
  799. nnz_total += nnz;
  800. }
  801. // chroma blocks
  802. // TODO: what to do about dimensions? 2nd dim for luma is x,
  803. // but for chroma it's (y<<1)|x
  804. for (i = 4; i < 6; i++)
  805. for (y = 0; y < 2; y++)
  806. for (x = 0; x < 2; x++) {
  807. nnz_pred = l_nnz[i+2*y] + t_nnz[i+2*x];
  808. nnz = decode_block_coeffs(c, s->block[i][(y<<1)+x], s->prob->token[2], 0,
  809. nnz_pred, s->qmat[segment].chroma_qmul);
  810. s->non_zero_count_cache[i][(y<<1)+x] = nnz;
  811. t_nnz[i+2*x] = l_nnz[i+2*y] = !!nnz;
  812. nnz_total += nnz;
  813. }
  814. // if there were no coded coeffs despite the macroblock not being marked skip,
  815. // we MUST not do the inner loop filter and should not do IDCT
  816. // Since skip isn't used for bitstream prediction, just manually set it.
  817. if (!nnz_total)
  818. mb->skip = 1;
  819. }
  820. static av_always_inline
  821. void backup_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
  822. int linesize, int uvlinesize, int simple)
  823. {
  824. AV_COPY128(top_border, src_y + 15*linesize);
  825. if (!simple) {
  826. AV_COPY64(top_border+16, src_cb + 7*uvlinesize);
  827. AV_COPY64(top_border+24, src_cr + 7*uvlinesize);
  828. }
  829. }
  830. static av_always_inline
  831. void xchg_mb_border(uint8_t *top_border, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr,
  832. int linesize, int uvlinesize, int mb_x, int mb_y, int mb_width,
  833. int simple, int xchg)
  834. {
  835. uint8_t *top_border_m1 = top_border-32; // for TL prediction
  836. src_y -= linesize;
  837. src_cb -= uvlinesize;
  838. src_cr -= uvlinesize;
  839. #define XCHG(a,b,xchg) do { \
  840. if (xchg) AV_SWAP64(b,a); \
  841. else AV_COPY64(b,a); \
  842. } while (0)
  843. XCHG(top_border_m1+8, src_y-8, xchg);
  844. XCHG(top_border, src_y, xchg);
  845. XCHG(top_border+8, src_y+8, 1);
  846. if (mb_x < mb_width-1)
  847. XCHG(top_border+32, src_y+16, 1);
  848. // only copy chroma for normal loop filter
  849. // or to initialize the top row to 127
  850. if (!simple || !mb_y) {
  851. XCHG(top_border_m1+16, src_cb-8, xchg);
  852. XCHG(top_border_m1+24, src_cr-8, xchg);
  853. XCHG(top_border+16, src_cb, 1);
  854. XCHG(top_border+24, src_cr, 1);
  855. }
  856. }
  857. static av_always_inline
  858. int check_intra_pred_mode(int mode, int mb_x, int mb_y)
  859. {
  860. if (mode == DC_PRED8x8) {
  861. if (!mb_x) {
  862. mode = mb_y ? TOP_DC_PRED8x8 : DC_128_PRED8x8;
  863. } else if (!mb_y) {
  864. mode = LEFT_DC_PRED8x8;
  865. }
  866. }
  867. return mode;
  868. }
  869. static av_always_inline
  870. void intra_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb,
  871. int mb_x, int mb_y)
  872. {
  873. int x, y, mode, nnz, tr;
  874. // for the first row, we need to run xchg_mb_border to init the top edge to 127
  875. // otherwise, skip it if we aren't going to deblock
  876. if (s->deblock_filter || !mb_y)
  877. xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
  878. s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
  879. s->filter.simple, 1);
  880. if (mb->mode < MODE_I4x4) {
  881. mode = check_intra_pred_mode(mb->mode, mb_x, mb_y);
  882. s->hpc.pred16x16[mode](dst[0], s->linesize);
  883. } else {
  884. uint8_t *ptr = dst[0];
  885. uint8_t *intra4x4 = s->intra4x4_pred_mode_mb;
  886. // all blocks on the right edge of the macroblock use bottom edge
  887. // the top macroblock for their topright edge
  888. uint8_t *tr_right = ptr - s->linesize + 16;
  889. // if we're on the right edge of the frame, said edge is extended
  890. // from the top macroblock
  891. if (mb_x == s->mb_width-1) {
  892. tr = tr_right[-1]*0x01010101;
  893. tr_right = (uint8_t *)&tr;
  894. }
  895. if (mb->skip)
  896. AV_ZERO128(s->non_zero_count_cache);
  897. for (y = 0; y < 4; y++) {
  898. uint8_t *topright = ptr + 4 - s->linesize;
  899. for (x = 0; x < 4; x++) {
  900. if (x == 3)
  901. topright = tr_right;
  902. s->hpc.pred4x4[intra4x4[x]](ptr+4*x, topright, s->linesize);
  903. nnz = s->non_zero_count_cache[y][x];
  904. if (nnz) {
  905. if (nnz == 1)
  906. s->vp8dsp.vp8_idct_dc_add(ptr+4*x, s->block[y][x], s->linesize);
  907. else
  908. s->vp8dsp.vp8_idct_add(ptr+4*x, s->block[y][x], s->linesize);
  909. }
  910. topright += 4;
  911. }
  912. ptr += 4*s->linesize;
  913. intra4x4 += 4;
  914. }
  915. }
  916. mode = check_intra_pred_mode(s->chroma_pred_mode, mb_x, mb_y);
  917. s->hpc.pred8x8[mode](dst[1], s->uvlinesize);
  918. s->hpc.pred8x8[mode](dst[2], s->uvlinesize);
  919. if (s->deblock_filter || !mb_y)
  920. xchg_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2],
  921. s->linesize, s->uvlinesize, mb_x, mb_y, s->mb_width,
  922. s->filter.simple, 0);
  923. }
  924. /**
  925. * Generic MC function.
  926. *
  927. * @param s VP8 decoding context
  928. * @param luma 1 for luma (Y) planes, 0 for chroma (Cb/Cr) planes
  929. * @param dst target buffer for block data at block position
  930. * @param src reference picture buffer at origin (0, 0)
  931. * @param mv motion vector (relative to block position) to get pixel data from
  932. * @param x_off horizontal position of block from origin (0, 0)
  933. * @param y_off vertical position of block from origin (0, 0)
  934. * @param block_w width of block (16, 8 or 4)
  935. * @param block_h height of block (always same as block_w)
  936. * @param width width of src/dst plane data
  937. * @param height height of src/dst plane data
  938. * @param linesize size of a single line of plane data, including padding
  939. * @param mc_func motion compensation function pointers (bilinear or sixtap MC)
  940. */
  941. static av_always_inline
  942. void vp8_mc(VP8Context *s, int luma,
  943. uint8_t *dst, uint8_t *src, const VP56mv *mv,
  944. int x_off, int y_off, int block_w, int block_h,
  945. int width, int height, int linesize,
  946. vp8_mc_func mc_func[3][3])
  947. {
  948. if (AV_RN32A(mv)) {
  949. static const uint8_t idx[8] = { 0, 1, 2, 1, 2, 1, 2, 1 };
  950. int mx = (mv->x << luma)&7, mx_idx = idx[mx];
  951. int my = (mv->y << luma)&7, my_idx = idx[my];
  952. x_off += mv->x >> (3 - luma);
  953. y_off += mv->y >> (3 - luma);
  954. // edge emulation
  955. src += y_off * linesize + x_off;
  956. if (x_off < 2 || x_off >= width - block_w - 3 ||
  957. y_off < 2 || y_off >= height - block_h - 3) {
  958. ff_emulated_edge_mc(s->edge_emu_buffer, src - 2 * linesize - 2, linesize,
  959. block_w + 5, block_h + 5,
  960. x_off - 2, y_off - 2, width, height);
  961. src = s->edge_emu_buffer + 2 + linesize * 2;
  962. }
  963. mc_func[my_idx][mx_idx](dst, linesize, src, linesize, block_h, mx, my);
  964. } else
  965. mc_func[0][0](dst, linesize, src + y_off * linesize + x_off, linesize, block_h, 0, 0);
  966. }
  967. static av_always_inline
  968. void vp8_mc_part(VP8Context *s, uint8_t *dst[3],
  969. AVFrame *ref_frame, int x_off, int y_off,
  970. int bx_off, int by_off,
  971. int block_w, int block_h,
  972. int width, int height, VP56mv *mv)
  973. {
  974. VP56mv uvmv = *mv;
  975. /* Y */
  976. vp8_mc(s, 1, dst[0] + by_off * s->linesize + bx_off,
  977. ref_frame->data[0], mv, x_off + bx_off, y_off + by_off,
  978. block_w, block_h, width, height, s->linesize,
  979. s->put_pixels_tab[block_w == 8]);
  980. /* U/V */
  981. if (s->profile == 3) {
  982. uvmv.x &= ~7;
  983. uvmv.y &= ~7;
  984. }
  985. x_off >>= 1; y_off >>= 1;
  986. bx_off >>= 1; by_off >>= 1;
  987. width >>= 1; height >>= 1;
  988. block_w >>= 1; block_h >>= 1;
  989. vp8_mc(s, 0, dst[1] + by_off * s->uvlinesize + bx_off,
  990. ref_frame->data[1], &uvmv, x_off + bx_off, y_off + by_off,
  991. block_w, block_h, width, height, s->uvlinesize,
  992. s->put_pixels_tab[1 + (block_w == 4)]);
  993. vp8_mc(s, 0, dst[2] + by_off * s->uvlinesize + bx_off,
  994. ref_frame->data[2], &uvmv, x_off + bx_off, y_off + by_off,
  995. block_w, block_h, width, height, s->uvlinesize,
  996. s->put_pixels_tab[1 + (block_w == 4)]);
  997. }
  998. /* Fetch pixels for estimated mv 4 macroblocks ahead.
  999. * Optimized for 64-byte cache lines. Inspired by ffh264 prefetch_motion. */
  1000. static av_always_inline void prefetch_motion(VP8Context *s, VP8Macroblock *mb, int mb_x, int mb_y, int mb_xy, int ref)
  1001. {
  1002. /* Don't prefetch refs that haven't been used very often this frame. */
  1003. if (s->ref_count[ref-1] > (mb_xy >> 5)) {
  1004. int x_off = mb_x << 4, y_off = mb_y << 4;
  1005. int mx = mb->mv.x + x_off + 8;
  1006. int my = mb->mv.y + y_off;
  1007. uint8_t **src= s->framep[ref]->data;
  1008. int off= mx + (my + (mb_x&3)*4)*s->linesize + 64;
  1009. s->dsp.prefetch(src[0]+off, s->linesize, 4);
  1010. off= (mx>>1) + ((my>>1) + (mb_x&7))*s->uvlinesize + 64;
  1011. s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
  1012. }
  1013. }
  1014. /**
  1015. * Apply motion vectors to prediction buffer, chapter 18.
  1016. */
  1017. static av_always_inline
  1018. void inter_predict(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb,
  1019. int mb_x, int mb_y)
  1020. {
  1021. int x_off = mb_x << 4, y_off = mb_y << 4;
  1022. int width = 16*s->mb_width, height = 16*s->mb_height;
  1023. AVFrame *ref = s->framep[mb->ref_frame];
  1024. VP56mv *bmv = mb->bmv;
  1025. if (mb->mode < VP8_MVMODE_SPLIT) {
  1026. vp8_mc_part(s, dst, ref, x_off, y_off,
  1027. 0, 0, 16, 16, width, height, &mb->mv);
  1028. } else switch (mb->partitioning) {
  1029. case VP8_SPLITMVMODE_4x4: {
  1030. int x, y;
  1031. VP56mv uvmv;
  1032. /* Y */
  1033. for (y = 0; y < 4; y++) {
  1034. for (x = 0; x < 4; x++) {
  1035. vp8_mc(s, 1, dst[0] + 4*y*s->linesize + x*4,
  1036. ref->data[0], &bmv[4*y + x],
  1037. 4*x + x_off, 4*y + y_off, 4, 4,
  1038. width, height, s->linesize,
  1039. s->put_pixels_tab[2]);
  1040. }
  1041. }
  1042. /* U/V */
  1043. x_off >>= 1; y_off >>= 1; width >>= 1; height >>= 1;
  1044. for (y = 0; y < 2; y++) {
  1045. for (x = 0; x < 2; x++) {
  1046. uvmv.x = mb->bmv[ 2*y * 4 + 2*x ].x +
  1047. mb->bmv[ 2*y * 4 + 2*x+1].x +
  1048. mb->bmv[(2*y+1) * 4 + 2*x ].x +
  1049. mb->bmv[(2*y+1) * 4 + 2*x+1].x;
  1050. uvmv.y = mb->bmv[ 2*y * 4 + 2*x ].y +
  1051. mb->bmv[ 2*y * 4 + 2*x+1].y +
  1052. mb->bmv[(2*y+1) * 4 + 2*x ].y +
  1053. mb->bmv[(2*y+1) * 4 + 2*x+1].y;
  1054. uvmv.x = (uvmv.x + 2 + (uvmv.x >> (INT_BIT-1))) >> 2;
  1055. uvmv.y = (uvmv.y + 2 + (uvmv.y >> (INT_BIT-1))) >> 2;
  1056. if (s->profile == 3) {
  1057. uvmv.x &= ~7;
  1058. uvmv.y &= ~7;
  1059. }
  1060. vp8_mc(s, 0, dst[1] + 4*y*s->uvlinesize + x*4,
  1061. ref->data[1], &uvmv,
  1062. 4*x + x_off, 4*y + y_off, 4, 4,
  1063. width, height, s->uvlinesize,
  1064. s->put_pixels_tab[2]);
  1065. vp8_mc(s, 0, dst[2] + 4*y*s->uvlinesize + x*4,
  1066. ref->data[2], &uvmv,
  1067. 4*x + x_off, 4*y + y_off, 4, 4,
  1068. width, height, s->uvlinesize,
  1069. s->put_pixels_tab[2]);
  1070. }
  1071. }
  1072. break;
  1073. }
  1074. case VP8_SPLITMVMODE_16x8:
  1075. vp8_mc_part(s, dst, ref, x_off, y_off,
  1076. 0, 0, 16, 8, width, height, &bmv[0]);
  1077. vp8_mc_part(s, dst, ref, x_off, y_off,
  1078. 0, 8, 16, 8, width, height, &bmv[1]);
  1079. break;
  1080. case VP8_SPLITMVMODE_8x16:
  1081. vp8_mc_part(s, dst, ref, x_off, y_off,
  1082. 0, 0, 8, 16, width, height, &bmv[0]);
  1083. vp8_mc_part(s, dst, ref, x_off, y_off,
  1084. 8, 0, 8, 16, width, height, &bmv[1]);
  1085. break;
  1086. case VP8_SPLITMVMODE_8x8:
  1087. vp8_mc_part(s, dst, ref, x_off, y_off,
  1088. 0, 0, 8, 8, width, height, &bmv[0]);
  1089. vp8_mc_part(s, dst, ref, x_off, y_off,
  1090. 8, 0, 8, 8, width, height, &bmv[1]);
  1091. vp8_mc_part(s, dst, ref, x_off, y_off,
  1092. 0, 8, 8, 8, width, height, &bmv[2]);
  1093. vp8_mc_part(s, dst, ref, x_off, y_off,
  1094. 8, 8, 8, 8, width, height, &bmv[3]);
  1095. break;
  1096. }
  1097. }
  1098. static av_always_inline void idct_mb(VP8Context *s, uint8_t *dst[3], VP8Macroblock *mb)
  1099. {
  1100. int x, y, ch;
  1101. if (mb->mode != MODE_I4x4) {
  1102. uint8_t *y_dst = dst[0];
  1103. for (y = 0; y < 4; y++) {
  1104. uint32_t nnz4 = AV_RN32A(s->non_zero_count_cache[y]);
  1105. if (nnz4) {
  1106. if (nnz4&~0x01010101) {
  1107. for (x = 0; x < 4; x++) {
  1108. int nnz = s->non_zero_count_cache[y][x];
  1109. if (nnz) {
  1110. if (nnz == 1)
  1111. s->vp8dsp.vp8_idct_dc_add(y_dst+4*x, s->block[y][x], s->linesize);
  1112. else
  1113. s->vp8dsp.vp8_idct_add(y_dst+4*x, s->block[y][x], s->linesize);
  1114. }
  1115. }
  1116. } else {
  1117. s->vp8dsp.vp8_idct_dc_add4y(y_dst, s->block[y], s->linesize);
  1118. }
  1119. }
  1120. y_dst += 4*s->linesize;
  1121. }
  1122. }
  1123. for (ch = 0; ch < 2; ch++) {
  1124. uint32_t nnz4 = AV_RN32A(s->non_zero_count_cache[4+ch]);
  1125. if (nnz4) {
  1126. uint8_t *ch_dst = dst[1+ch];
  1127. if (nnz4&~0x01010101) {
  1128. for (y = 0; y < 2; y++) {
  1129. for (x = 0; x < 2; x++) {
  1130. int nnz = s->non_zero_count_cache[4+ch][(y<<1)+x];
  1131. if (nnz) {
  1132. if (nnz == 1)
  1133. s->vp8dsp.vp8_idct_dc_add(ch_dst+4*x, s->block[4+ch][(y<<1)+x], s->uvlinesize);
  1134. else
  1135. s->vp8dsp.vp8_idct_add(ch_dst+4*x, s->block[4+ch][(y<<1)+x], s->uvlinesize);
  1136. }
  1137. }
  1138. ch_dst += 4*s->uvlinesize;
  1139. }
  1140. } else {
  1141. s->vp8dsp.vp8_idct_dc_add4uv(ch_dst, s->block[4+ch], s->uvlinesize);
  1142. }
  1143. }
  1144. }
  1145. }
  1146. static av_always_inline void filter_level_for_mb(VP8Context *s, VP8Macroblock *mb, VP8FilterStrength *f )
  1147. {
  1148. int interior_limit, filter_level;
  1149. if (s->segmentation.enabled) {
  1150. filter_level = s->segmentation.filter_level[s->segment];
  1151. if (!s->segmentation.absolute_vals)
  1152. filter_level += s->filter.level;
  1153. } else
  1154. filter_level = s->filter.level;
  1155. if (s->lf_delta.enabled) {
  1156. filter_level += s->lf_delta.ref[mb->ref_frame];
  1157. if (mb->ref_frame == VP56_FRAME_CURRENT) {
  1158. if (mb->mode == MODE_I4x4)
  1159. filter_level += s->lf_delta.mode[0];
  1160. } else {
  1161. if (mb->mode == VP8_MVMODE_ZERO)
  1162. filter_level += s->lf_delta.mode[1];
  1163. else if (mb->mode == VP8_MVMODE_SPLIT)
  1164. filter_level += s->lf_delta.mode[3];
  1165. else
  1166. filter_level += s->lf_delta.mode[2];
  1167. }
  1168. }
  1169. filter_level = av_clip(filter_level, 0, 63);
  1170. interior_limit = filter_level;
  1171. if (s->filter.sharpness) {
  1172. interior_limit >>= s->filter.sharpness > 4 ? 2 : 1;
  1173. interior_limit = FFMIN(interior_limit, 9 - s->filter.sharpness);
  1174. }
  1175. interior_limit = FFMAX(interior_limit, 1);
  1176. f->filter_level = filter_level;
  1177. f->inner_limit = interior_limit;
  1178. f->inner_filter = !mb->skip || mb->mode == MODE_I4x4 || mb->mode == VP8_MVMODE_SPLIT;
  1179. }
  1180. static av_always_inline void filter_mb(VP8Context *s, uint8_t *dst[3], VP8FilterStrength *f, int mb_x, int mb_y)
  1181. {
  1182. int mbedge_lim, bedge_lim, hev_thresh;
  1183. int filter_level = f->filter_level;
  1184. int inner_limit = f->inner_limit;
  1185. int inner_filter = f->inner_filter;
  1186. int linesize = s->linesize;
  1187. int uvlinesize = s->uvlinesize;
  1188. if (!filter_level)
  1189. return;
  1190. mbedge_lim = 2*(filter_level+2) + inner_limit;
  1191. bedge_lim = 2* filter_level + inner_limit;
  1192. hev_thresh = filter_level >= 15;
  1193. if (s->keyframe) {
  1194. if (filter_level >= 40)
  1195. hev_thresh = 2;
  1196. } else {
  1197. if (filter_level >= 40)
  1198. hev_thresh = 3;
  1199. else if (filter_level >= 20)
  1200. hev_thresh = 2;
  1201. }
  1202. if (mb_x) {
  1203. s->vp8dsp.vp8_h_loop_filter16y(dst[0], linesize,
  1204. mbedge_lim, inner_limit, hev_thresh);
  1205. s->vp8dsp.vp8_h_loop_filter8uv(dst[1], dst[2], uvlinesize,
  1206. mbedge_lim, inner_limit, hev_thresh);
  1207. }
  1208. if (inner_filter) {
  1209. s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 4, linesize, bedge_lim,
  1210. inner_limit, hev_thresh);
  1211. s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+ 8, linesize, bedge_lim,
  1212. inner_limit, hev_thresh);
  1213. s->vp8dsp.vp8_h_loop_filter16y_inner(dst[0]+12, linesize, bedge_lim,
  1214. inner_limit, hev_thresh);
  1215. s->vp8dsp.vp8_h_loop_filter8uv_inner(dst[1] + 4, dst[2] + 4,
  1216. uvlinesize, bedge_lim,
  1217. inner_limit, hev_thresh);
  1218. }
  1219. if (mb_y) {
  1220. s->vp8dsp.vp8_v_loop_filter16y(dst[0], linesize,
  1221. mbedge_lim, inner_limit, hev_thresh);
  1222. s->vp8dsp.vp8_v_loop_filter8uv(dst[1], dst[2], uvlinesize,
  1223. mbedge_lim, inner_limit, hev_thresh);
  1224. }
  1225. if (inner_filter) {
  1226. s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 4*linesize,
  1227. linesize, bedge_lim,
  1228. inner_limit, hev_thresh);
  1229. s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+ 8*linesize,
  1230. linesize, bedge_lim,
  1231. inner_limit, hev_thresh);
  1232. s->vp8dsp.vp8_v_loop_filter16y_inner(dst[0]+12*linesize,
  1233. linesize, bedge_lim,
  1234. inner_limit, hev_thresh);
  1235. s->vp8dsp.vp8_v_loop_filter8uv_inner(dst[1] + 4 * uvlinesize,
  1236. dst[2] + 4 * uvlinesize,
  1237. uvlinesize, bedge_lim,
  1238. inner_limit, hev_thresh);
  1239. }
  1240. }
  1241. static av_always_inline void filter_mb_simple(VP8Context *s, uint8_t *dst, VP8FilterStrength *f, int mb_x, int mb_y)
  1242. {
  1243. int mbedge_lim, bedge_lim;
  1244. int filter_level = f->filter_level;
  1245. int inner_limit = f->inner_limit;
  1246. int inner_filter = f->inner_filter;
  1247. int linesize = s->linesize;
  1248. if (!filter_level)
  1249. return;
  1250. mbedge_lim = 2*(filter_level+2) + inner_limit;
  1251. bedge_lim = 2* filter_level + inner_limit;
  1252. if (mb_x)
  1253. s->vp8dsp.vp8_h_loop_filter_simple(dst, linesize, mbedge_lim);
  1254. if (inner_filter) {
  1255. s->vp8dsp.vp8_h_loop_filter_simple(dst+ 4, linesize, bedge_lim);
  1256. s->vp8dsp.vp8_h_loop_filter_simple(dst+ 8, linesize, bedge_lim);
  1257. s->vp8dsp.vp8_h_loop_filter_simple(dst+12, linesize, bedge_lim);
  1258. }
  1259. if (mb_y)
  1260. s->vp8dsp.vp8_v_loop_filter_simple(dst, linesize, mbedge_lim);
  1261. if (inner_filter) {
  1262. s->vp8dsp.vp8_v_loop_filter_simple(dst+ 4*linesize, linesize, bedge_lim);
  1263. s->vp8dsp.vp8_v_loop_filter_simple(dst+ 8*linesize, linesize, bedge_lim);
  1264. s->vp8dsp.vp8_v_loop_filter_simple(dst+12*linesize, linesize, bedge_lim);
  1265. }
  1266. }
  1267. static void filter_mb_row(VP8Context *s, int mb_y)
  1268. {
  1269. VP8FilterStrength *f = s->filter_strength;
  1270. uint8_t *dst[3] = {
  1271. s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize,
  1272. s->framep[VP56_FRAME_CURRENT]->data[1] + 8*mb_y*s->uvlinesize,
  1273. s->framep[VP56_FRAME_CURRENT]->data[2] + 8*mb_y*s->uvlinesize
  1274. };
  1275. int mb_x;
  1276. for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
  1277. backup_mb_border(s->top_border[mb_x+1], dst[0], dst[1], dst[2], s->linesize, s->uvlinesize, 0);
  1278. filter_mb(s, dst, f++, mb_x, mb_y);
  1279. dst[0] += 16;
  1280. dst[1] += 8;
  1281. dst[2] += 8;
  1282. }
  1283. }
  1284. static void filter_mb_row_simple(VP8Context *s, int mb_y)
  1285. {
  1286. VP8FilterStrength *f = s->filter_strength;
  1287. uint8_t *dst = s->framep[VP56_FRAME_CURRENT]->data[0] + 16*mb_y*s->linesize;
  1288. int mb_x;
  1289. for (mb_x = 0; mb_x < s->mb_width; mb_x++) {
  1290. backup_mb_border(s->top_border[mb_x+1], dst, NULL, NULL, s->linesize, 0, 1);
  1291. filter_mb_simple(s, dst, f++, mb_x, mb_y);
  1292. dst += 16;
  1293. }
  1294. }
  1295. static int vp8_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
  1296. AVPacket *avpkt)
  1297. {
  1298. VP8Context *s = avctx->priv_data;
  1299. int ret, mb_x, mb_y, i, y, referenced;
  1300. enum AVDiscard skip_thresh;
  1301. AVFrame *av_uninit(curframe);
  1302. if ((ret = decode_frame_header(s, avpkt->data, avpkt->size)) < 0)
  1303. return ret;
  1304. referenced = s->update_last || s->update_golden == VP56_FRAME_CURRENT
  1305. || s->update_altref == VP56_FRAME_CURRENT;
  1306. skip_thresh = !referenced ? AVDISCARD_NONREF :
  1307. !s->keyframe ? AVDISCARD_NONKEY : AVDISCARD_ALL;
  1308. if (avctx->skip_frame >= skip_thresh) {
  1309. s->invisible = 1;
  1310. goto skip_decode;
  1311. }
  1312. s->deblock_filter = s->filter.level && avctx->skip_loop_filter < skip_thresh;
  1313. for (i = 0; i < 4; i++)
  1314. if (&s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
  1315. &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
  1316. &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2]) {
  1317. curframe = s->framep[VP56_FRAME_CURRENT] = &s->frames[i];
  1318. break;
  1319. }
  1320. if (curframe->data[0])
  1321. avctx->release_buffer(avctx, curframe);
  1322. curframe->key_frame = s->keyframe;
  1323. curframe->pict_type = s->keyframe ? FF_I_TYPE : FF_P_TYPE;
  1324. curframe->reference = referenced ? 3 : 0;
  1325. if ((ret = avctx->get_buffer(avctx, curframe))) {
  1326. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed!\n");
  1327. return ret;
  1328. }
  1329. // Given that arithmetic probabilities are updated every frame, it's quite likely
  1330. // that the values we have on a random interframe are complete junk if we didn't
  1331. // start decode on a keyframe. So just don't display anything rather than junk.
  1332. if (!s->keyframe && (!s->framep[VP56_FRAME_PREVIOUS] ||
  1333. !s->framep[VP56_FRAME_GOLDEN] ||
  1334. !s->framep[VP56_FRAME_GOLDEN2])) {
  1335. av_log(avctx, AV_LOG_WARNING, "Discarding interframe without a prior keyframe!\n");
  1336. return AVERROR_INVALIDDATA;
  1337. }
  1338. s->linesize = curframe->linesize[0];
  1339. s->uvlinesize = curframe->linesize[1];
  1340. if (!s->edge_emu_buffer)
  1341. s->edge_emu_buffer = av_malloc(21*s->linesize);
  1342. memset(s->top_nnz, 0, s->mb_width*sizeof(*s->top_nnz));
  1343. /* Zero macroblock structures for top/left prediction from outside the frame. */
  1344. memset(s->macroblocks, 0, (s->mb_width + s->mb_height*2)*sizeof(*s->macroblocks));
  1345. // top edge of 127 for intra prediction
  1346. memset(s->top_border, 127, (s->mb_width+1)*sizeof(*s->top_border));
  1347. memset(s->ref_count, 0, sizeof(s->ref_count));
  1348. if (s->keyframe)
  1349. memset(s->intra4x4_pred_mode_top, DC_PRED, s->b4_stride*4);
  1350. for (mb_y = 0; mb_y < s->mb_height; mb_y++) {
  1351. VP56RangeCoder *c = &s->coeff_partition[mb_y & (s->num_coeff_partitions-1)];
  1352. VP8Macroblock *mb = s->macroblocks + (s->mb_height - mb_y - 1)*2;
  1353. uint8_t *segment_map = s->segmentation_map + mb_y*s->mb_stride;
  1354. int mb_xy = mb_y * s->mb_stride;
  1355. uint8_t *dst[3] = {
  1356. curframe->data[0] + 16*mb_y*s->linesize,
  1357. curframe->data[1] + 8*mb_y*s->uvlinesize,
  1358. curframe->data[2] + 8*mb_y*s->uvlinesize
  1359. };
  1360. memset(s->left_nnz, 0, sizeof(s->left_nnz));
  1361. AV_WN32A(s->intra4x4_pred_mode_left, DC_PRED*0x01010101);
  1362. // left edge of 129 for intra prediction
  1363. if (!(avctx->flags & CODEC_FLAG_EMU_EDGE))
  1364. for (i = 0; i < 3; i++)
  1365. for (y = 0; y < 16>>!!i; y++)
  1366. dst[i][y*curframe->linesize[i]-1] = 129;
  1367. if (mb_y)
  1368. memset(s->top_border, 129, sizeof(*s->top_border));
  1369. for (mb_x = 0; mb_x < s->mb_width; mb_x++, mb_xy++, mb++) {
  1370. uint8_t *segment_mb = segment_map+mb_x;
  1371. /* Prefetch the current frame, 4 MBs ahead */
  1372. s->dsp.prefetch(dst[0] + (mb_x&3)*4*s->linesize + 64, s->linesize, 4);
  1373. s->dsp.prefetch(dst[1] + (mb_x&7)*s->uvlinesize + 64, dst[2] - dst[1], 2);
  1374. decode_mb_mode(s, mb, mb_x, mb_y, segment_mb);
  1375. prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_PREVIOUS);
  1376. if (!mb->skip)
  1377. decode_mb_coeffs(s, c, mb, s->top_nnz[mb_x], s->left_nnz);
  1378. if (mb->mode <= MODE_I4x4)
  1379. intra_predict(s, dst, mb, mb_x, mb_y);
  1380. else
  1381. inter_predict(s, dst, mb, mb_x, mb_y);
  1382. prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN);
  1383. if (!mb->skip) {
  1384. idct_mb(s, dst, mb);
  1385. } else {
  1386. AV_ZERO64(s->left_nnz);
  1387. AV_WN64(s->top_nnz[mb_x], 0); // array of 9, so unaligned
  1388. // Reset DC block predictors if they would exist if the mb had coefficients
  1389. if (mb->mode != MODE_I4x4 && mb->mode != VP8_MVMODE_SPLIT) {
  1390. s->left_nnz[8] = 0;
  1391. s->top_nnz[mb_x][8] = 0;
  1392. }
  1393. }
  1394. if (s->deblock_filter)
  1395. filter_level_for_mb(s, mb, &s->filter_strength[mb_x]);
  1396. prefetch_motion(s, mb, mb_x, mb_y, mb_xy, VP56_FRAME_GOLDEN2);
  1397. dst[0] += 16;
  1398. dst[1] += 8;
  1399. dst[2] += 8;
  1400. }
  1401. if (s->deblock_filter) {
  1402. if (s->filter.simple)
  1403. filter_mb_row_simple(s, mb_y);
  1404. else
  1405. filter_mb_row(s, mb_y);
  1406. }
  1407. }
  1408. skip_decode:
  1409. // if future frames don't use the updated probabilities,
  1410. // reset them to the values we saved
  1411. if (!s->update_probabilities)
  1412. s->prob[0] = s->prob[1];
  1413. // check if golden and altref are swapped
  1414. if (s->update_altref == VP56_FRAME_GOLDEN &&
  1415. s->update_golden == VP56_FRAME_GOLDEN2)
  1416. FFSWAP(AVFrame *, s->framep[VP56_FRAME_GOLDEN], s->framep[VP56_FRAME_GOLDEN2]);
  1417. else {
  1418. if (s->update_altref != VP56_FRAME_NONE)
  1419. s->framep[VP56_FRAME_GOLDEN2] = s->framep[s->update_altref];
  1420. if (s->update_golden != VP56_FRAME_NONE)
  1421. s->framep[VP56_FRAME_GOLDEN] = s->framep[s->update_golden];
  1422. }
  1423. if (s->update_last) // move cur->prev
  1424. s->framep[VP56_FRAME_PREVIOUS] = s->framep[VP56_FRAME_CURRENT];
  1425. // release no longer referenced frames
  1426. for (i = 0; i < 4; i++)
  1427. if (s->frames[i].data[0] &&
  1428. &s->frames[i] != s->framep[VP56_FRAME_CURRENT] &&
  1429. &s->frames[i] != s->framep[VP56_FRAME_PREVIOUS] &&
  1430. &s->frames[i] != s->framep[VP56_FRAME_GOLDEN] &&
  1431. &s->frames[i] != s->framep[VP56_FRAME_GOLDEN2])
  1432. avctx->release_buffer(avctx, &s->frames[i]);
  1433. if (!s->invisible) {
  1434. *(AVFrame*)data = *s->framep[VP56_FRAME_CURRENT];
  1435. *data_size = sizeof(AVFrame);
  1436. }
  1437. return avpkt->size;
  1438. }
  1439. static av_cold int vp8_decode_init(AVCodecContext *avctx)
  1440. {
  1441. VP8Context *s = avctx->priv_data;
  1442. s->avctx = avctx;
  1443. avctx->pix_fmt = PIX_FMT_YUV420P;
  1444. dsputil_init(&s->dsp, avctx);
  1445. ff_h264_pred_init(&s->hpc, CODEC_ID_VP8);
  1446. ff_vp8dsp_init(&s->vp8dsp);
  1447. // intra pred needs edge emulation among other things
  1448. if (avctx->flags&CODEC_FLAG_EMU_EDGE) {
  1449. av_log(avctx, AV_LOG_ERROR, "Edge emulation not supported\n");
  1450. return AVERROR_PATCHWELCOME;
  1451. }
  1452. return 0;
  1453. }
  1454. static av_cold int vp8_decode_free(AVCodecContext *avctx)
  1455. {
  1456. vp8_decode_flush(avctx);
  1457. return 0;
  1458. }
  1459. AVCodec vp8_decoder = {
  1460. "vp8",
  1461. AVMEDIA_TYPE_VIDEO,
  1462. CODEC_ID_VP8,
  1463. sizeof(VP8Context),
  1464. vp8_decode_init,
  1465. NULL,
  1466. vp8_decode_free,
  1467. vp8_decode_frame,
  1468. CODEC_CAP_DR1,
  1469. .flush = vp8_decode_flush,
  1470. .long_name = NULL_IF_CONFIG_SMALL("On2 VP8"),
  1471. };