You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

967 lines
31KB

  1. /*
  2. * WMA compatible decoder
  3. * Copyright (c) 2002 The FFmpeg Project
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * WMA compatible decoder.
  24. * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
  25. * WMA v1 is identified by audio format 0x160 in Microsoft media files
  26. * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
  27. *
  28. * To use this decoder, a calling application must supply the extra data
  29. * bytes provided with the WMA data. These are the extra, codec-specific
  30. * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
  31. * to the decoder using the extradata[_size] fields in AVCodecContext. There
  32. * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
  33. */
  34. #include "avcodec.h"
  35. #include "wma.h"
  36. #undef NDEBUG
  37. #include <assert.h>
  38. #define EXPVLCBITS 8
  39. #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
  40. #define HGAINVLCBITS 9
  41. #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
  42. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
  43. #ifdef TRACE
  44. static void dump_shorts(WMACodecContext *s, const char *name, const short *tab, int n)
  45. {
  46. int i;
  47. tprintf(s->avctx, "%s[%d]:\n", name, n);
  48. for(i=0;i<n;i++) {
  49. if ((i & 7) == 0)
  50. tprintf(s->avctx, "%4d: ", i);
  51. tprintf(s->avctx, " %5d.0", tab[i]);
  52. if ((i & 7) == 7)
  53. tprintf(s->avctx, "\n");
  54. }
  55. }
  56. static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
  57. {
  58. int i;
  59. tprintf(s->avctx, "%s[%d]:\n", name, n);
  60. for(i=0;i<n;i++) {
  61. if ((i & 7) == 0)
  62. tprintf(s->avctx, "%4d: ", i);
  63. tprintf(s->avctx, " %8.*f", prec, tab[i]);
  64. if ((i & 7) == 7)
  65. tprintf(s->avctx, "\n");
  66. }
  67. if ((i & 7) != 0)
  68. tprintf(s->avctx, "\n");
  69. }
  70. #endif
  71. static int wma_decode_init(AVCodecContext * avctx)
  72. {
  73. WMACodecContext *s = avctx->priv_data;
  74. int i, flags2;
  75. uint8_t *extradata;
  76. s->avctx = avctx;
  77. /* extract flag infos */
  78. flags2 = 0;
  79. extradata = avctx->extradata;
  80. if (avctx->codec->id == CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
  81. flags2 = AV_RL16(extradata+2);
  82. } else if (avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
  83. flags2 = AV_RL16(extradata+4);
  84. }
  85. // for(i=0; i<avctx->extradata_size; i++)
  86. // av_log(NULL, AV_LOG_ERROR, "%02X ", extradata[i]);
  87. s->use_exp_vlc = flags2 & 0x0001;
  88. s->use_bit_reservoir = flags2 & 0x0002;
  89. s->use_variable_block_len = flags2 & 0x0004;
  90. if(avctx->codec->id == CODEC_ID_WMAV2 && avctx->extradata_size >= 8){
  91. if(!AV_RL16(extradata+6) && s->use_variable_block_len){
  92. av_log(avctx, AV_LOG_WARNING, "Disabling use_variable_block_len, if this fails contact the ffmpeg developers and send us the file\n");
  93. s->use_variable_block_len= 0; // this fixes issue1503
  94. }
  95. }
  96. if(ff_wma_init(avctx, flags2)<0)
  97. return -1;
  98. /* init MDCT */
  99. for(i = 0; i < s->nb_block_sizes; i++)
  100. ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0);
  101. if (s->use_noise_coding) {
  102. init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
  103. ff_wma_hgain_huffbits, 1, 1,
  104. ff_wma_hgain_huffcodes, 2, 2, 0);
  105. }
  106. if (s->use_exp_vlc) {
  107. init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), //FIXME move out of context
  108. ff_aac_scalefactor_bits, 1, 1,
  109. ff_aac_scalefactor_code, 4, 4, 0);
  110. } else {
  111. wma_lsp_to_curve_init(s, s->frame_len);
  112. }
  113. avctx->sample_fmt = AV_SAMPLE_FMT_S16;
  114. return 0;
  115. }
  116. /**
  117. * compute x^-0.25 with an exponent and mantissa table. We use linear
  118. * interpolation to reduce the mantissa table size at a small speed
  119. * expense (linear interpolation approximately doubles the number of
  120. * bits of precision).
  121. */
  122. static inline float pow_m1_4(WMACodecContext *s, float x)
  123. {
  124. union {
  125. float f;
  126. unsigned int v;
  127. } u, t;
  128. unsigned int e, m;
  129. float a, b;
  130. u.f = x;
  131. e = u.v >> 23;
  132. m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
  133. /* build interpolation scale: 1 <= t < 2. */
  134. t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
  135. a = s->lsp_pow_m_table1[m];
  136. b = s->lsp_pow_m_table2[m];
  137. return s->lsp_pow_e_table[e] * (a + b * t.f);
  138. }
  139. static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
  140. {
  141. float wdel, a, b;
  142. int i, e, m;
  143. wdel = M_PI / frame_len;
  144. for(i=0;i<frame_len;i++)
  145. s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
  146. /* tables for x^-0.25 computation */
  147. for(i=0;i<256;i++) {
  148. e = i - 126;
  149. s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
  150. }
  151. /* NOTE: these two tables are needed to avoid two operations in
  152. pow_m1_4 */
  153. b = 1.0;
  154. for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
  155. m = (1 << LSP_POW_BITS) + i;
  156. a = (float)m * (0.5 / (1 << LSP_POW_BITS));
  157. a = pow(a, -0.25);
  158. s->lsp_pow_m_table1[i] = 2 * a - b;
  159. s->lsp_pow_m_table2[i] = b - a;
  160. b = a;
  161. }
  162. #if 0
  163. for(i=1;i<20;i++) {
  164. float v, r1, r2;
  165. v = 5.0 / i;
  166. r1 = pow_m1_4(s, v);
  167. r2 = pow(v,-0.25);
  168. printf("%f^-0.25=%f e=%f\n", v, r1, r2 - r1);
  169. }
  170. #endif
  171. }
  172. /**
  173. * NOTE: We use the same code as Vorbis here
  174. * @todo optimize it further with SSE/3Dnow
  175. */
  176. static void wma_lsp_to_curve(WMACodecContext *s,
  177. float *out, float *val_max_ptr,
  178. int n, float *lsp)
  179. {
  180. int i, j;
  181. float p, q, w, v, val_max;
  182. val_max = 0;
  183. for(i=0;i<n;i++) {
  184. p = 0.5f;
  185. q = 0.5f;
  186. w = s->lsp_cos_table[i];
  187. for(j=1;j<NB_LSP_COEFS;j+=2){
  188. q *= w - lsp[j - 1];
  189. p *= w - lsp[j];
  190. }
  191. p *= p * (2.0f - w);
  192. q *= q * (2.0f + w);
  193. v = p + q;
  194. v = pow_m1_4(s, v);
  195. if (v > val_max)
  196. val_max = v;
  197. out[i] = v;
  198. }
  199. *val_max_ptr = val_max;
  200. }
  201. /**
  202. * decode exponents coded with LSP coefficients (same idea as Vorbis)
  203. */
  204. static void decode_exp_lsp(WMACodecContext *s, int ch)
  205. {
  206. float lsp_coefs[NB_LSP_COEFS];
  207. int val, i;
  208. for(i = 0; i < NB_LSP_COEFS; i++) {
  209. if (i == 0 || i >= 8)
  210. val = get_bits(&s->gb, 3);
  211. else
  212. val = get_bits(&s->gb, 4);
  213. lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
  214. }
  215. wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
  216. s->block_len, lsp_coefs);
  217. }
  218. /** pow(10, i / 16.0) for i in -60..95 */
  219. static const float pow_tab[] = {
  220. 1.7782794100389e-04, 2.0535250264571e-04,
  221. 2.3713737056617e-04, 2.7384196342644e-04,
  222. 3.1622776601684e-04, 3.6517412725484e-04,
  223. 4.2169650342858e-04, 4.8696752516586e-04,
  224. 5.6234132519035e-04, 6.4938163157621e-04,
  225. 7.4989420933246e-04, 8.6596432336006e-04,
  226. 1.0000000000000e-03, 1.1547819846895e-03,
  227. 1.3335214321633e-03, 1.5399265260595e-03,
  228. 1.7782794100389e-03, 2.0535250264571e-03,
  229. 2.3713737056617e-03, 2.7384196342644e-03,
  230. 3.1622776601684e-03, 3.6517412725484e-03,
  231. 4.2169650342858e-03, 4.8696752516586e-03,
  232. 5.6234132519035e-03, 6.4938163157621e-03,
  233. 7.4989420933246e-03, 8.6596432336006e-03,
  234. 1.0000000000000e-02, 1.1547819846895e-02,
  235. 1.3335214321633e-02, 1.5399265260595e-02,
  236. 1.7782794100389e-02, 2.0535250264571e-02,
  237. 2.3713737056617e-02, 2.7384196342644e-02,
  238. 3.1622776601684e-02, 3.6517412725484e-02,
  239. 4.2169650342858e-02, 4.8696752516586e-02,
  240. 5.6234132519035e-02, 6.4938163157621e-02,
  241. 7.4989420933246e-02, 8.6596432336007e-02,
  242. 1.0000000000000e-01, 1.1547819846895e-01,
  243. 1.3335214321633e-01, 1.5399265260595e-01,
  244. 1.7782794100389e-01, 2.0535250264571e-01,
  245. 2.3713737056617e-01, 2.7384196342644e-01,
  246. 3.1622776601684e-01, 3.6517412725484e-01,
  247. 4.2169650342858e-01, 4.8696752516586e-01,
  248. 5.6234132519035e-01, 6.4938163157621e-01,
  249. 7.4989420933246e-01, 8.6596432336007e-01,
  250. 1.0000000000000e+00, 1.1547819846895e+00,
  251. 1.3335214321633e+00, 1.5399265260595e+00,
  252. 1.7782794100389e+00, 2.0535250264571e+00,
  253. 2.3713737056617e+00, 2.7384196342644e+00,
  254. 3.1622776601684e+00, 3.6517412725484e+00,
  255. 4.2169650342858e+00, 4.8696752516586e+00,
  256. 5.6234132519035e+00, 6.4938163157621e+00,
  257. 7.4989420933246e+00, 8.6596432336007e+00,
  258. 1.0000000000000e+01, 1.1547819846895e+01,
  259. 1.3335214321633e+01, 1.5399265260595e+01,
  260. 1.7782794100389e+01, 2.0535250264571e+01,
  261. 2.3713737056617e+01, 2.7384196342644e+01,
  262. 3.1622776601684e+01, 3.6517412725484e+01,
  263. 4.2169650342858e+01, 4.8696752516586e+01,
  264. 5.6234132519035e+01, 6.4938163157621e+01,
  265. 7.4989420933246e+01, 8.6596432336007e+01,
  266. 1.0000000000000e+02, 1.1547819846895e+02,
  267. 1.3335214321633e+02, 1.5399265260595e+02,
  268. 1.7782794100389e+02, 2.0535250264571e+02,
  269. 2.3713737056617e+02, 2.7384196342644e+02,
  270. 3.1622776601684e+02, 3.6517412725484e+02,
  271. 4.2169650342858e+02, 4.8696752516586e+02,
  272. 5.6234132519035e+02, 6.4938163157621e+02,
  273. 7.4989420933246e+02, 8.6596432336007e+02,
  274. 1.0000000000000e+03, 1.1547819846895e+03,
  275. 1.3335214321633e+03, 1.5399265260595e+03,
  276. 1.7782794100389e+03, 2.0535250264571e+03,
  277. 2.3713737056617e+03, 2.7384196342644e+03,
  278. 3.1622776601684e+03, 3.6517412725484e+03,
  279. 4.2169650342858e+03, 4.8696752516586e+03,
  280. 5.6234132519035e+03, 6.4938163157621e+03,
  281. 7.4989420933246e+03, 8.6596432336007e+03,
  282. 1.0000000000000e+04, 1.1547819846895e+04,
  283. 1.3335214321633e+04, 1.5399265260595e+04,
  284. 1.7782794100389e+04, 2.0535250264571e+04,
  285. 2.3713737056617e+04, 2.7384196342644e+04,
  286. 3.1622776601684e+04, 3.6517412725484e+04,
  287. 4.2169650342858e+04, 4.8696752516586e+04,
  288. 5.6234132519035e+04, 6.4938163157621e+04,
  289. 7.4989420933246e+04, 8.6596432336007e+04,
  290. 1.0000000000000e+05, 1.1547819846895e+05,
  291. 1.3335214321633e+05, 1.5399265260595e+05,
  292. 1.7782794100389e+05, 2.0535250264571e+05,
  293. 2.3713737056617e+05, 2.7384196342644e+05,
  294. 3.1622776601684e+05, 3.6517412725484e+05,
  295. 4.2169650342858e+05, 4.8696752516586e+05,
  296. 5.6234132519035e+05, 6.4938163157621e+05,
  297. 7.4989420933246e+05, 8.6596432336007e+05,
  298. };
  299. /**
  300. * decode exponents coded with VLC codes
  301. */
  302. static int decode_exp_vlc(WMACodecContext *s, int ch)
  303. {
  304. int last_exp, n, code;
  305. const uint16_t *ptr;
  306. float v, max_scale;
  307. uint32_t *q, *q_end, iv;
  308. const float *ptab = pow_tab + 60;
  309. const uint32_t *iptab = (const uint32_t*)ptab;
  310. ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
  311. q = (uint32_t *)s->exponents[ch];
  312. q_end = q + s->block_len;
  313. max_scale = 0;
  314. if (s->version == 1) {
  315. last_exp = get_bits(&s->gb, 5) + 10;
  316. v = ptab[last_exp];
  317. iv = iptab[last_exp];
  318. max_scale = v;
  319. n = *ptr++;
  320. switch (n & 3) do {
  321. case 0: *q++ = iv;
  322. case 3: *q++ = iv;
  323. case 2: *q++ = iv;
  324. case 1: *q++ = iv;
  325. } while ((n -= 4) > 0);
  326. }else
  327. last_exp = 36;
  328. while (q < q_end) {
  329. code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
  330. if (code < 0){
  331. av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
  332. return -1;
  333. }
  334. /* NOTE: this offset is the same as MPEG4 AAC ! */
  335. last_exp += code - 60;
  336. if ((unsigned)last_exp + 60 > FF_ARRAY_ELEMS(pow_tab)) {
  337. av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
  338. last_exp);
  339. return -1;
  340. }
  341. v = ptab[last_exp];
  342. iv = iptab[last_exp];
  343. if (v > max_scale)
  344. max_scale = v;
  345. n = *ptr++;
  346. switch (n & 3) do {
  347. case 0: *q++ = iv;
  348. case 3: *q++ = iv;
  349. case 2: *q++ = iv;
  350. case 1: *q++ = iv;
  351. } while ((n -= 4) > 0);
  352. }
  353. s->max_exponent[ch] = max_scale;
  354. return 0;
  355. }
  356. /**
  357. * Apply MDCT window and add into output.
  358. *
  359. * We ensure that when the windows overlap their squared sum
  360. * is always 1 (MDCT reconstruction rule).
  361. */
  362. static void wma_window(WMACodecContext *s, float *out)
  363. {
  364. float *in = s->output;
  365. int block_len, bsize, n;
  366. /* left part */
  367. if (s->block_len_bits <= s->prev_block_len_bits) {
  368. block_len = s->block_len;
  369. bsize = s->frame_len_bits - s->block_len_bits;
  370. s->dsp.vector_fmul_add(out, in, s->windows[bsize],
  371. out, block_len);
  372. } else {
  373. block_len = 1 << s->prev_block_len_bits;
  374. n = (s->block_len - block_len) / 2;
  375. bsize = s->frame_len_bits - s->prev_block_len_bits;
  376. s->dsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
  377. out+n, block_len);
  378. memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
  379. }
  380. out += s->block_len;
  381. in += s->block_len;
  382. /* right part */
  383. if (s->block_len_bits <= s->next_block_len_bits) {
  384. block_len = s->block_len;
  385. bsize = s->frame_len_bits - s->block_len_bits;
  386. s->dsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
  387. } else {
  388. block_len = 1 << s->next_block_len_bits;
  389. n = (s->block_len - block_len) / 2;
  390. bsize = s->frame_len_bits - s->next_block_len_bits;
  391. memcpy(out, in, n*sizeof(float));
  392. s->dsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
  393. memset(out+n+block_len, 0, n*sizeof(float));
  394. }
  395. }
  396. /**
  397. * @return 0 if OK. 1 if last block of frame. return -1 if
  398. * unrecorrable error.
  399. */
  400. static int wma_decode_block(WMACodecContext *s)
  401. {
  402. int n, v, a, ch, bsize;
  403. int coef_nb_bits, total_gain;
  404. int nb_coefs[MAX_CHANNELS];
  405. float mdct_norm;
  406. FFTContext *mdct;
  407. #ifdef TRACE
  408. tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
  409. #endif
  410. /* compute current block length */
  411. if (s->use_variable_block_len) {
  412. n = av_log2(s->nb_block_sizes - 1) + 1;
  413. if (s->reset_block_lengths) {
  414. s->reset_block_lengths = 0;
  415. v = get_bits(&s->gb, n);
  416. if (v >= s->nb_block_sizes){
  417. av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
  418. return -1;
  419. }
  420. s->prev_block_len_bits = s->frame_len_bits - v;
  421. v = get_bits(&s->gb, n);
  422. if (v >= s->nb_block_sizes){
  423. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
  424. return -1;
  425. }
  426. s->block_len_bits = s->frame_len_bits - v;
  427. } else {
  428. /* update block lengths */
  429. s->prev_block_len_bits = s->block_len_bits;
  430. s->block_len_bits = s->next_block_len_bits;
  431. }
  432. v = get_bits(&s->gb, n);
  433. if (v >= s->nb_block_sizes){
  434. av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
  435. return -1;
  436. }
  437. s->next_block_len_bits = s->frame_len_bits - v;
  438. } else {
  439. /* fixed block len */
  440. s->next_block_len_bits = s->frame_len_bits;
  441. s->prev_block_len_bits = s->frame_len_bits;
  442. s->block_len_bits = s->frame_len_bits;
  443. }
  444. if (s->frame_len_bits - s->block_len_bits >= s->nb_block_sizes){
  445. av_log(s->avctx, AV_LOG_ERROR, "block_len_bits not initialized to a valid value\n");
  446. return -1;
  447. }
  448. /* now check if the block length is coherent with the frame length */
  449. s->block_len = 1 << s->block_len_bits;
  450. if ((s->block_pos + s->block_len) > s->frame_len){
  451. av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
  452. return -1;
  453. }
  454. if (s->nb_channels == 2) {
  455. s->ms_stereo = get_bits1(&s->gb);
  456. }
  457. v = 0;
  458. for(ch = 0; ch < s->nb_channels; ch++) {
  459. a = get_bits1(&s->gb);
  460. s->channel_coded[ch] = a;
  461. v |= a;
  462. }
  463. bsize = s->frame_len_bits - s->block_len_bits;
  464. /* if no channel coded, no need to go further */
  465. /* XXX: fix potential framing problems */
  466. if (!v)
  467. goto next;
  468. /* read total gain and extract corresponding number of bits for
  469. coef escape coding */
  470. total_gain = 1;
  471. for(;;) {
  472. a = get_bits(&s->gb, 7);
  473. total_gain += a;
  474. if (a != 127)
  475. break;
  476. }
  477. coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
  478. /* compute number of coefficients */
  479. n = s->coefs_end[bsize] - s->coefs_start;
  480. for(ch = 0; ch < s->nb_channels; ch++)
  481. nb_coefs[ch] = n;
  482. /* complex coding */
  483. if (s->use_noise_coding) {
  484. for(ch = 0; ch < s->nb_channels; ch++) {
  485. if (s->channel_coded[ch]) {
  486. int i, n, a;
  487. n = s->exponent_high_sizes[bsize];
  488. for(i=0;i<n;i++) {
  489. a = get_bits1(&s->gb);
  490. s->high_band_coded[ch][i] = a;
  491. /* if noise coding, the coefficients are not transmitted */
  492. if (a)
  493. nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
  494. }
  495. }
  496. }
  497. for(ch = 0; ch < s->nb_channels; ch++) {
  498. if (s->channel_coded[ch]) {
  499. int i, n, val, code;
  500. n = s->exponent_high_sizes[bsize];
  501. val = (int)0x80000000;
  502. for(i=0;i<n;i++) {
  503. if (s->high_band_coded[ch][i]) {
  504. if (val == (int)0x80000000) {
  505. val = get_bits(&s->gb, 7) - 19;
  506. } else {
  507. code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
  508. if (code < 0){
  509. av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
  510. return -1;
  511. }
  512. val += code - 18;
  513. }
  514. s->high_band_values[ch][i] = val;
  515. }
  516. }
  517. }
  518. }
  519. }
  520. /* exponents can be reused in short blocks. */
  521. if ((s->block_len_bits == s->frame_len_bits) ||
  522. get_bits1(&s->gb)) {
  523. for(ch = 0; ch < s->nb_channels; ch++) {
  524. if (s->channel_coded[ch]) {
  525. if (s->use_exp_vlc) {
  526. if (decode_exp_vlc(s, ch) < 0)
  527. return -1;
  528. } else {
  529. decode_exp_lsp(s, ch);
  530. }
  531. s->exponents_bsize[ch] = bsize;
  532. }
  533. }
  534. }
  535. /* parse spectral coefficients : just RLE encoding */
  536. for(ch = 0; ch < s->nb_channels; ch++) {
  537. if (s->channel_coded[ch]) {
  538. int tindex;
  539. WMACoef* ptr = &s->coefs1[ch][0];
  540. /* special VLC tables are used for ms stereo because
  541. there is potentially less energy there */
  542. tindex = (ch == 1 && s->ms_stereo);
  543. memset(ptr, 0, s->block_len * sizeof(WMACoef));
  544. ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
  545. s->level_table[tindex], s->run_table[tindex],
  546. 0, ptr, 0, nb_coefs[ch],
  547. s->block_len, s->frame_len_bits, coef_nb_bits);
  548. }
  549. if (s->version == 1 && s->nb_channels >= 2) {
  550. align_get_bits(&s->gb);
  551. }
  552. }
  553. /* normalize */
  554. {
  555. int n4 = s->block_len / 2;
  556. mdct_norm = 1.0 / (float)n4;
  557. if (s->version == 1) {
  558. mdct_norm *= sqrt(n4);
  559. }
  560. }
  561. /* finally compute the MDCT coefficients */
  562. for(ch = 0; ch < s->nb_channels; ch++) {
  563. if (s->channel_coded[ch]) {
  564. WMACoef *coefs1;
  565. float *coefs, *exponents, mult, mult1, noise;
  566. int i, j, n, n1, last_high_band, esize;
  567. float exp_power[HIGH_BAND_MAX_SIZE];
  568. coefs1 = s->coefs1[ch];
  569. exponents = s->exponents[ch];
  570. esize = s->exponents_bsize[ch];
  571. mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
  572. mult *= mdct_norm;
  573. coefs = s->coefs[ch];
  574. if (s->use_noise_coding) {
  575. mult1 = mult;
  576. /* very low freqs : noise */
  577. for(i = 0;i < s->coefs_start; i++) {
  578. *coefs++ = s->noise_table[s->noise_index] *
  579. exponents[i<<bsize>>esize] * mult1;
  580. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  581. }
  582. n1 = s->exponent_high_sizes[bsize];
  583. /* compute power of high bands */
  584. exponents = s->exponents[ch] +
  585. (s->high_band_start[bsize]<<bsize>>esize);
  586. last_high_band = 0; /* avoid warning */
  587. for(j=0;j<n1;j++) {
  588. n = s->exponent_high_bands[s->frame_len_bits -
  589. s->block_len_bits][j];
  590. if (s->high_band_coded[ch][j]) {
  591. float e2, v;
  592. e2 = 0;
  593. for(i = 0;i < n; i++) {
  594. v = exponents[i<<bsize>>esize];
  595. e2 += v * v;
  596. }
  597. exp_power[j] = e2 / n;
  598. last_high_band = j;
  599. tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
  600. }
  601. exponents += n<<bsize>>esize;
  602. }
  603. /* main freqs and high freqs */
  604. exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
  605. for(j=-1;j<n1;j++) {
  606. if (j < 0) {
  607. n = s->high_band_start[bsize] -
  608. s->coefs_start;
  609. } else {
  610. n = s->exponent_high_bands[s->frame_len_bits -
  611. s->block_len_bits][j];
  612. }
  613. if (j >= 0 && s->high_band_coded[ch][j]) {
  614. /* use noise with specified power */
  615. mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
  616. /* XXX: use a table */
  617. mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
  618. mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
  619. mult1 *= mdct_norm;
  620. for(i = 0;i < n; i++) {
  621. noise = s->noise_table[s->noise_index];
  622. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  623. *coefs++ = noise *
  624. exponents[i<<bsize>>esize] * mult1;
  625. }
  626. exponents += n<<bsize>>esize;
  627. } else {
  628. /* coded values + small noise */
  629. for(i = 0;i < n; i++) {
  630. noise = s->noise_table[s->noise_index];
  631. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  632. *coefs++ = ((*coefs1++) + noise) *
  633. exponents[i<<bsize>>esize] * mult;
  634. }
  635. exponents += n<<bsize>>esize;
  636. }
  637. }
  638. /* very high freqs : noise */
  639. n = s->block_len - s->coefs_end[bsize];
  640. mult1 = mult * exponents[((-1<<bsize))>>esize];
  641. for(i = 0; i < n; i++) {
  642. *coefs++ = s->noise_table[s->noise_index] * mult1;
  643. s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
  644. }
  645. } else {
  646. /* XXX: optimize more */
  647. for(i = 0;i < s->coefs_start; i++)
  648. *coefs++ = 0.0;
  649. n = nb_coefs[ch];
  650. for(i = 0;i < n; i++) {
  651. *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
  652. }
  653. n = s->block_len - s->coefs_end[bsize];
  654. for(i = 0;i < n; i++)
  655. *coefs++ = 0.0;
  656. }
  657. }
  658. }
  659. #ifdef TRACE
  660. for(ch = 0; ch < s->nb_channels; ch++) {
  661. if (s->channel_coded[ch]) {
  662. dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
  663. dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
  664. }
  665. }
  666. #endif
  667. if (s->ms_stereo && s->channel_coded[1]) {
  668. /* nominal case for ms stereo: we do it before mdct */
  669. /* no need to optimize this case because it should almost
  670. never happen */
  671. if (!s->channel_coded[0]) {
  672. tprintf(s->avctx, "rare ms-stereo case happened\n");
  673. memset(s->coefs[0], 0, sizeof(float) * s->block_len);
  674. s->channel_coded[0] = 1;
  675. }
  676. s->dsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
  677. }
  678. next:
  679. mdct = &s->mdct_ctx[bsize];
  680. for(ch = 0; ch < s->nb_channels; ch++) {
  681. int n4, index;
  682. n4 = s->block_len / 2;
  683. if(s->channel_coded[ch]){
  684. mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
  685. }else if(!(s->ms_stereo && ch==1))
  686. memset(s->output, 0, sizeof(s->output));
  687. /* multiply by the window and add in the frame */
  688. index = (s->frame_len / 2) + s->block_pos - n4;
  689. wma_window(s, &s->frame_out[ch][index]);
  690. }
  691. /* update block number */
  692. s->block_num++;
  693. s->block_pos += s->block_len;
  694. if (s->block_pos >= s->frame_len)
  695. return 1;
  696. else
  697. return 0;
  698. }
  699. /* decode a frame of frame_len samples */
  700. static int wma_decode_frame(WMACodecContext *s, int16_t *samples)
  701. {
  702. int ret, n, ch, incr;
  703. const float *output[MAX_CHANNELS];
  704. #ifdef TRACE
  705. tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
  706. #endif
  707. /* read each block */
  708. s->block_num = 0;
  709. s->block_pos = 0;
  710. for(;;) {
  711. ret = wma_decode_block(s);
  712. if (ret < 0)
  713. return -1;
  714. if (ret)
  715. break;
  716. }
  717. /* convert frame to integer */
  718. n = s->frame_len;
  719. incr = s->nb_channels;
  720. for (ch = 0; ch < MAX_CHANNELS; ch++)
  721. output[ch] = s->frame_out[ch];
  722. s->fmt_conv.float_to_int16_interleave(samples, output, n, incr);
  723. for (ch = 0; ch < incr; ch++) {
  724. /* prepare for next block */
  725. memmove(&s->frame_out[ch][0], &s->frame_out[ch][n], n * sizeof(float));
  726. }
  727. #ifdef TRACE
  728. dump_shorts(s, "samples", samples, n * s->nb_channels);
  729. #endif
  730. return 0;
  731. }
  732. static int wma_decode_superframe(AVCodecContext *avctx,
  733. void *data, int *data_size,
  734. AVPacket *avpkt)
  735. {
  736. const uint8_t *buf = avpkt->data;
  737. int buf_size = avpkt->size;
  738. WMACodecContext *s = avctx->priv_data;
  739. int nb_frames, bit_offset, i, pos, len;
  740. uint8_t *q;
  741. int16_t *samples;
  742. tprintf(avctx, "***decode_superframe:\n");
  743. if(buf_size==0){
  744. s->last_superframe_len = 0;
  745. return 0;
  746. }
  747. if (buf_size < s->block_align)
  748. return 0;
  749. buf_size = s->block_align;
  750. samples = data;
  751. init_get_bits(&s->gb, buf, buf_size*8);
  752. if (s->use_bit_reservoir) {
  753. /* read super frame header */
  754. skip_bits(&s->gb, 4); /* super frame index */
  755. nb_frames = get_bits(&s->gb, 4) - 1;
  756. if((nb_frames+1) * s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
  757. av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
  758. goto fail;
  759. }
  760. bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
  761. if (s->last_superframe_len > 0) {
  762. // printf("skip=%d\n", s->last_bitoffset);
  763. /* add bit_offset bits to last frame */
  764. if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
  765. MAX_CODED_SUPERFRAME_SIZE)
  766. goto fail;
  767. q = s->last_superframe + s->last_superframe_len;
  768. len = bit_offset;
  769. while (len > 7) {
  770. *q++ = (get_bits)(&s->gb, 8);
  771. len -= 8;
  772. }
  773. if (len > 0) {
  774. *q++ = (get_bits)(&s->gb, len) << (8 - len);
  775. }
  776. /* XXX: bit_offset bits into last frame */
  777. init_get_bits(&s->gb, s->last_superframe, MAX_CODED_SUPERFRAME_SIZE*8);
  778. /* skip unused bits */
  779. if (s->last_bitoffset > 0)
  780. skip_bits(&s->gb, s->last_bitoffset);
  781. /* this frame is stored in the last superframe and in the
  782. current one */
  783. if (wma_decode_frame(s, samples) < 0)
  784. goto fail;
  785. samples += s->nb_channels * s->frame_len;
  786. }
  787. /* read each frame starting from bit_offset */
  788. pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
  789. init_get_bits(&s->gb, buf + (pos >> 3), (MAX_CODED_SUPERFRAME_SIZE - (pos >> 3))*8);
  790. len = pos & 7;
  791. if (len > 0)
  792. skip_bits(&s->gb, len);
  793. s->reset_block_lengths = 1;
  794. for(i=0;i<nb_frames;i++) {
  795. if (wma_decode_frame(s, samples) < 0)
  796. goto fail;
  797. samples += s->nb_channels * s->frame_len;
  798. }
  799. /* we copy the end of the frame in the last frame buffer */
  800. pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
  801. s->last_bitoffset = pos & 7;
  802. pos >>= 3;
  803. len = buf_size - pos;
  804. if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
  805. av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
  806. goto fail;
  807. }
  808. s->last_superframe_len = len;
  809. memcpy(s->last_superframe, buf + pos, len);
  810. } else {
  811. if(s->nb_channels * s->frame_len * sizeof(int16_t) > *data_size){
  812. av_log(s->avctx, AV_LOG_ERROR, "Insufficient output space\n");
  813. goto fail;
  814. }
  815. /* single frame decode */
  816. if (wma_decode_frame(s, samples) < 0)
  817. goto fail;
  818. samples += s->nb_channels * s->frame_len;
  819. }
  820. //av_log(NULL, AV_LOG_ERROR, "%d %d %d %d outbytes:%d eaten:%d\n", s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len, (int8_t *)samples - (int8_t *)data, s->block_align);
  821. *data_size = (int8_t *)samples - (int8_t *)data;
  822. return s->block_align;
  823. fail:
  824. /* when error, we reset the bit reservoir */
  825. s->last_superframe_len = 0;
  826. return -1;
  827. }
  828. static av_cold void flush(AVCodecContext *avctx)
  829. {
  830. WMACodecContext *s = avctx->priv_data;
  831. s->last_bitoffset=
  832. s->last_superframe_len= 0;
  833. }
  834. AVCodec ff_wmav1_decoder =
  835. {
  836. "wmav1",
  837. AVMEDIA_TYPE_AUDIO,
  838. CODEC_ID_WMAV1,
  839. sizeof(WMACodecContext),
  840. wma_decode_init,
  841. NULL,
  842. ff_wma_end,
  843. wma_decode_superframe,
  844. .flush=flush,
  845. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
  846. };
  847. AVCodec ff_wmav2_decoder =
  848. {
  849. "wmav2",
  850. AVMEDIA_TYPE_AUDIO,
  851. CODEC_ID_WMAV2,
  852. sizeof(WMACodecContext),
  853. wma_decode_init,
  854. NULL,
  855. ff_wma_end,
  856. wma_decode_superframe,
  857. .flush=flush,
  858. .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
  859. };