You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1005 lines
31KB

  1. /*
  2. * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
  3. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * H.264 / AVC / MPEG-4 part10 codec.
  24. * @author Michael Niedermayer <michaelni@gmx.at>
  25. */
  26. #ifndef AVCODEC_H264_H
  27. #define AVCODEC_H264_H
  28. #include "libavutil/buffer.h"
  29. #include "libavutil/intreadwrite.h"
  30. #include "libavutil/thread.h"
  31. #include "cabac.h"
  32. #include "error_resilience.h"
  33. #include "get_bits.h"
  34. #include "h264_parse.h"
  35. #include "h264_sei.h"
  36. #include "h2645_parse.h"
  37. #include "h264chroma.h"
  38. #include "h264dsp.h"
  39. #include "h264pred.h"
  40. #include "h264qpel.h"
  41. #include "internal.h"
  42. #include "mpegutils.h"
  43. #include "parser.h"
  44. #include "qpeldsp.h"
  45. #include "rectangle.h"
  46. #include "videodsp.h"
  47. #define H264_MAX_PICTURE_COUNT 36
  48. #define MAX_SPS_COUNT 32
  49. #define MAX_PPS_COUNT 256
  50. #define MAX_MMCO_COUNT 66
  51. #define MAX_DELAYED_PIC_COUNT 16
  52. /* Compiling in interlaced support reduces the speed
  53. * of progressive decoding by about 2%. */
  54. #define ALLOW_INTERLACE
  55. #define FMO 0
  56. /**
  57. * The maximum number of slices supported by the decoder.
  58. * must be a power of 2
  59. */
  60. #define MAX_SLICES 32
  61. #ifdef ALLOW_INTERLACE
  62. #define MB_MBAFF(h) (h)->mb_mbaff
  63. #define MB_FIELD(sl) (sl)->mb_field_decoding_flag
  64. #define FRAME_MBAFF(h) (h)->mb_aff_frame
  65. #define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
  66. #define LEFT_MBS 2
  67. #define LTOP 0
  68. #define LBOT 1
  69. #define LEFT(i) (i)
  70. #else
  71. #define MB_MBAFF(h) 0
  72. #define MB_FIELD(sl) 0
  73. #define FRAME_MBAFF(h) 0
  74. #define FIELD_PICTURE(h) 0
  75. #undef IS_INTERLACED
  76. #define IS_INTERLACED(mb_type) 0
  77. #define LEFT_MBS 1
  78. #define LTOP 0
  79. #define LBOT 0
  80. #define LEFT(i) 0
  81. #endif
  82. #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
  83. #ifndef CABAC
  84. #define CABAC(h) (h)->ps.pps->cabac
  85. #endif
  86. #define CHROMA(h) ((h)->ps.sps->chroma_format_idc)
  87. #define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2)
  88. #define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3)
  89. #define EXTENDED_SAR 255
  90. #define MB_TYPE_REF0 MB_TYPE_ACPRED // dirty but it fits in 16 bit
  91. #define MB_TYPE_8x8DCT 0x01000000
  92. #define IS_REF0(a) ((a) & MB_TYPE_REF0)
  93. #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
  94. #define QP_MAX_NUM (51 + 6*6) // The maximum supported qp
  95. /* NAL unit types */
  96. enum {
  97. NAL_SLICE = 1,
  98. NAL_DPA = 2,
  99. NAL_DPB = 3,
  100. NAL_DPC = 4,
  101. NAL_IDR_SLICE = 5,
  102. NAL_SEI = 6,
  103. NAL_SPS = 7,
  104. NAL_PPS = 8,
  105. NAL_AUD = 9,
  106. NAL_END_SEQUENCE = 10,
  107. NAL_END_STREAM = 11,
  108. NAL_FILLER_DATA = 12,
  109. NAL_SPS_EXT = 13,
  110. NAL_AUXILIARY_SLICE = 19,
  111. NAL_FF_IGNORE = 0xff0f001,
  112. };
  113. /**
  114. * Sequence parameter set
  115. */
  116. typedef struct SPS {
  117. unsigned int sps_id;
  118. int profile_idc;
  119. int level_idc;
  120. int chroma_format_idc;
  121. int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
  122. int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
  123. int poc_type; ///< pic_order_cnt_type
  124. int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
  125. int delta_pic_order_always_zero_flag;
  126. int offset_for_non_ref_pic;
  127. int offset_for_top_to_bottom_field;
  128. int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
  129. int ref_frame_count; ///< num_ref_frames
  130. int gaps_in_frame_num_allowed_flag;
  131. int mb_width; ///< pic_width_in_mbs_minus1 + 1
  132. int mb_height; ///< pic_height_in_map_units_minus1 + 1
  133. int frame_mbs_only_flag;
  134. int mb_aff; ///< mb_adaptive_frame_field_flag
  135. int direct_8x8_inference_flag;
  136. int crop; ///< frame_cropping_flag
  137. /* those 4 are already in luma samples */
  138. unsigned int crop_left; ///< frame_cropping_rect_left_offset
  139. unsigned int crop_right; ///< frame_cropping_rect_right_offset
  140. unsigned int crop_top; ///< frame_cropping_rect_top_offset
  141. unsigned int crop_bottom; ///< frame_cropping_rect_bottom_offset
  142. int vui_parameters_present_flag;
  143. AVRational sar;
  144. int video_signal_type_present_flag;
  145. int full_range;
  146. int colour_description_present_flag;
  147. enum AVColorPrimaries color_primaries;
  148. enum AVColorTransferCharacteristic color_trc;
  149. enum AVColorSpace colorspace;
  150. int timing_info_present_flag;
  151. uint32_t num_units_in_tick;
  152. uint32_t time_scale;
  153. int fixed_frame_rate_flag;
  154. short offset_for_ref_frame[256]; // FIXME dyn aloc?
  155. int bitstream_restriction_flag;
  156. int num_reorder_frames;
  157. int scaling_matrix_present;
  158. uint8_t scaling_matrix4[6][16];
  159. uint8_t scaling_matrix8[6][64];
  160. int nal_hrd_parameters_present_flag;
  161. int vcl_hrd_parameters_present_flag;
  162. int pic_struct_present_flag;
  163. int time_offset_length;
  164. int cpb_cnt; ///< See H.264 E.1.2
  165. int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 + 1
  166. int cpb_removal_delay_length; ///< cpb_removal_delay_length_minus1 + 1
  167. int dpb_output_delay_length; ///< dpb_output_delay_length_minus1 + 1
  168. int bit_depth_luma; ///< bit_depth_luma_minus8 + 8
  169. int bit_depth_chroma; ///< bit_depth_chroma_minus8 + 8
  170. int residual_color_transform_flag; ///< residual_colour_transform_flag
  171. int constraint_set_flags; ///< constraint_set[0-3]_flag
  172. uint8_t data[4096];
  173. size_t data_size;
  174. } SPS;
  175. /**
  176. * Picture parameter set
  177. */
  178. typedef struct PPS {
  179. unsigned int sps_id;
  180. int cabac; ///< entropy_coding_mode_flag
  181. int pic_order_present; ///< pic_order_present_flag
  182. int slice_group_count; ///< num_slice_groups_minus1 + 1
  183. int mb_slice_group_map_type;
  184. unsigned int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
  185. int weighted_pred; ///< weighted_pred_flag
  186. int weighted_bipred_idc;
  187. int init_qp; ///< pic_init_qp_minus26 + 26
  188. int init_qs; ///< pic_init_qs_minus26 + 26
  189. int chroma_qp_index_offset[2];
  190. int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
  191. int constrained_intra_pred; ///< constrained_intra_pred_flag
  192. int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
  193. int transform_8x8_mode; ///< transform_8x8_mode_flag
  194. uint8_t scaling_matrix4[6][16];
  195. uint8_t scaling_matrix8[6][64];
  196. uint8_t chroma_qp_table[2][QP_MAX_NUM+1]; ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
  197. int chroma_qp_diff;
  198. uint8_t data[4096];
  199. size_t data_size;
  200. uint32_t dequant4_buffer[6][QP_MAX_NUM + 1][16];
  201. uint32_t dequant8_buffer[6][QP_MAX_NUM + 1][64];
  202. uint32_t(*dequant4_coeff[6])[16];
  203. uint32_t(*dequant8_coeff[6])[64];
  204. } PPS;
  205. typedef struct H264ParamSets {
  206. AVBufferRef *sps_list[MAX_SPS_COUNT];
  207. AVBufferRef *pps_list[MAX_PPS_COUNT];
  208. AVBufferRef *pps_ref;
  209. AVBufferRef *sps_ref;
  210. /* currently active parameters sets */
  211. const PPS *pps;
  212. // FIXME this should properly be const
  213. SPS *sps;
  214. } H264ParamSets;
  215. /**
  216. * Memory management control operation opcode.
  217. */
  218. typedef enum MMCOOpcode {
  219. MMCO_END = 0,
  220. MMCO_SHORT2UNUSED,
  221. MMCO_LONG2UNUSED,
  222. MMCO_SHORT2LONG,
  223. MMCO_SET_MAX_LONG,
  224. MMCO_RESET,
  225. MMCO_LONG,
  226. } MMCOOpcode;
  227. /**
  228. * Memory management control operation.
  229. */
  230. typedef struct MMCO {
  231. MMCOOpcode opcode;
  232. int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
  233. int long_arg; ///< index, pic_num, or num long refs depending on opcode
  234. } MMCO;
  235. typedef struct H264Picture {
  236. AVFrame *f;
  237. ThreadFrame tf;
  238. AVBufferRef *qscale_table_buf;
  239. int8_t *qscale_table;
  240. AVBufferRef *motion_val_buf[2];
  241. int16_t (*motion_val[2])[2];
  242. AVBufferRef *mb_type_buf;
  243. uint32_t *mb_type;
  244. AVBufferRef *hwaccel_priv_buf;
  245. void *hwaccel_picture_private; ///< hardware accelerator private data
  246. AVBufferRef *ref_index_buf[2];
  247. int8_t *ref_index[2];
  248. int field_poc[2]; ///< top/bottom POC
  249. int poc; ///< frame POC
  250. int frame_num; ///< frame_num (raw frame_num from slice header)
  251. int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must
  252. not mix pictures before and after MMCO_RESET. */
  253. int pic_id; /**< pic_num (short -> no wrap version of pic_num,
  254. pic_num & max_pic_num; long -> long_pic_num) */
  255. int long_ref; ///< 1->long term reference 0->short term reference
  256. int ref_poc[2][2][32]; ///< POCs of the frames/fields used as reference (FIXME need per slice)
  257. int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
  258. int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF
  259. int field_picture; ///< whether or not picture was encoded in separate fields
  260. int reference;
  261. int recovered; ///< picture at IDR or recovery point + recovery count
  262. int invalid_gap;
  263. int sei_recovery_frame_cnt;
  264. int crop;
  265. int crop_left;
  266. int crop_top;
  267. } H264Picture;
  268. typedef struct H264Ref {
  269. uint8_t *data[3];
  270. int linesize[3];
  271. int reference;
  272. int poc;
  273. int pic_id;
  274. H264Picture *parent;
  275. } H264Ref;
  276. typedef struct H264SliceContext {
  277. struct H264Context *h264;
  278. GetBitContext gb;
  279. ERContext er;
  280. int slice_num;
  281. int slice_type;
  282. int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
  283. int slice_type_fixed;
  284. int qscale;
  285. int chroma_qp[2]; // QPc
  286. int qp_thresh; ///< QP threshold to skip loopfilter
  287. int last_qscale_diff;
  288. // deblock
  289. int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
  290. int slice_alpha_c0_offset;
  291. int slice_beta_offset;
  292. H264PredWeightTable pwt;
  293. int prev_mb_skipped;
  294. int next_mb_skipped;
  295. int chroma_pred_mode;
  296. int intra16x16_pred_mode;
  297. int8_t intra4x4_pred_mode_cache[5 * 8];
  298. int8_t(*intra4x4_pred_mode);
  299. int topleft_mb_xy;
  300. int top_mb_xy;
  301. int topright_mb_xy;
  302. int left_mb_xy[LEFT_MBS];
  303. int topleft_type;
  304. int top_type;
  305. int topright_type;
  306. int left_type[LEFT_MBS];
  307. const uint8_t *left_block;
  308. int topleft_partition;
  309. unsigned int topleft_samples_available;
  310. unsigned int top_samples_available;
  311. unsigned int topright_samples_available;
  312. unsigned int left_samples_available;
  313. ptrdiff_t linesize, uvlinesize;
  314. ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
  315. ptrdiff_t mb_uvlinesize;
  316. int mb_x, mb_y;
  317. int mb_xy;
  318. int resync_mb_x;
  319. int resync_mb_y;
  320. // index of the first MB of the next slice
  321. int next_slice_idx;
  322. int mb_skip_run;
  323. int is_complex;
  324. int mb_field_decoding_flag;
  325. int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
  326. int redundant_pic_count;
  327. /**
  328. * number of neighbors (top and/or left) that used 8x8 dct
  329. */
  330. int neighbor_transform_size;
  331. int direct_spatial_mv_pred;
  332. int col_parity;
  333. int col_fieldoff;
  334. int cbp;
  335. int top_cbp;
  336. int left_cbp;
  337. int dist_scale_factor[32];
  338. int dist_scale_factor_field[2][32];
  339. int map_col_to_list0[2][16 + 32];
  340. int map_col_to_list0_field[2][2][16 + 32];
  341. /**
  342. * num_ref_idx_l0/1_active_minus1 + 1
  343. */
  344. unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
  345. unsigned int list_count;
  346. H264Ref ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
  347. * Reordered version of default_ref_list
  348. * according to picture reordering in slice header */
  349. const uint8_t *intra_pcm_ptr;
  350. int16_t *dc_val_base;
  351. uint8_t *bipred_scratchpad;
  352. uint8_t *edge_emu_buffer;
  353. uint8_t (*top_borders[2])[(16 * 3) * 2];
  354. int bipred_scratchpad_allocated;
  355. int edge_emu_buffer_allocated;
  356. int top_borders_allocated[2];
  357. /**
  358. * non zero coeff count cache.
  359. * is 64 if not available.
  360. */
  361. DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
  362. /**
  363. * Motion vector cache.
  364. */
  365. DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
  366. DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
  367. DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
  368. uint8_t direct_cache[5 * 8];
  369. DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
  370. ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
  371. DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
  372. DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
  373. ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
  374. ///< check that i is not too large or ensure that there is some unused stuff after mb
  375. int16_t mb_padding[256 * 2];
  376. uint8_t (*mvd_table[2])[2];
  377. /**
  378. * Cabac
  379. */
  380. CABACContext cabac;
  381. uint8_t cabac_state[1024];
  382. int cabac_init_idc;
  383. } H264SliceContext;
  384. /**
  385. * H264Context
  386. */
  387. typedef struct H264Context {
  388. const AVClass *class;
  389. AVCodecContext *avctx;
  390. VideoDSPContext vdsp;
  391. H264DSPContext h264dsp;
  392. H264ChromaContext h264chroma;
  393. H264QpelContext h264qpel;
  394. GetBitContext gb;
  395. H264Picture DPB[H264_MAX_PICTURE_COUNT];
  396. H264Picture *cur_pic_ptr;
  397. H264Picture cur_pic;
  398. H264Picture last_pic_for_ec;
  399. H264SliceContext *slice_ctx;
  400. int nb_slice_ctx;
  401. H2645Packet pkt;
  402. int pixel_shift; ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
  403. /* coded dimensions -- 16 * mb w/h */
  404. int width, height;
  405. int chroma_x_shift, chroma_y_shift;
  406. /**
  407. * Backup frame properties: needed, because they can be different
  408. * between returned frame and last decoded frame.
  409. **/
  410. int backup_width;
  411. int backup_height;
  412. enum AVPixelFormat backup_pix_fmt;
  413. int droppable;
  414. int coded_picture_number;
  415. int context_initialized;
  416. int flags;
  417. int workaround_bugs;
  418. /* Set when slice threading is used and at least one slice uses deblocking
  419. * mode 1 (i.e. across slice boundaries). Then we disable the loop filter
  420. * during normal MB decoding and execute it serially at the end.
  421. */
  422. int postpone_filter;
  423. int8_t(*intra4x4_pred_mode);
  424. H264PredContext hpc;
  425. uint8_t (*non_zero_count)[48];
  426. #define LIST_NOT_USED -1 // FIXME rename?
  427. #define PART_NOT_AVAILABLE -2
  428. /**
  429. * block_offset[ 0..23] for frame macroblocks
  430. * block_offset[24..47] for field macroblocks
  431. */
  432. int block_offset[2 * (16 * 3)];
  433. uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
  434. uint32_t *mb2br_xy;
  435. int b_stride; // FIXME use s->b4_stride
  436. unsigned current_sps_id; ///< id of the current SPS
  437. int au_pps_id; ///< pps_id of current access unit
  438. uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
  439. // interlacing specific flags
  440. int mb_aff_frame;
  441. int picture_structure;
  442. int first_field;
  443. uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
  444. /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
  445. uint16_t *cbp_table;
  446. /* chroma_pred_mode for i4x4 or i16x16, else 0 */
  447. uint8_t *chroma_pred_mode_table;
  448. uint8_t (*mvd_table[2])[2];
  449. uint8_t *direct_table;
  450. uint8_t zigzag_scan[16];
  451. uint8_t zigzag_scan8x8[64];
  452. uint8_t zigzag_scan8x8_cavlc[64];
  453. uint8_t field_scan[16];
  454. uint8_t field_scan8x8[64];
  455. uint8_t field_scan8x8_cavlc[64];
  456. uint8_t zigzag_scan_q0[16];
  457. uint8_t zigzag_scan8x8_q0[64];
  458. uint8_t zigzag_scan8x8_cavlc_q0[64];
  459. uint8_t field_scan_q0[16];
  460. uint8_t field_scan8x8_q0[64];
  461. uint8_t field_scan8x8_cavlc_q0[64];
  462. int mb_y;
  463. int mb_height, mb_width;
  464. int mb_stride;
  465. int mb_num;
  466. // =============================================================
  467. // Things below are not used in the MB or more inner code
  468. int nal_ref_idc;
  469. int nal_unit_type;
  470. /**
  471. * Used to parse AVC variant of H.264
  472. */
  473. int is_avc; ///< this flag is != 0 if codec is avc1
  474. int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
  475. int bit_depth_luma; ///< luma bit depth from sps to detect changes
  476. int chroma_format_idc; ///< chroma format from sps to detect changes
  477. H264ParamSets ps;
  478. uint16_t *slice_table_base;
  479. H264POCContext poc;
  480. /**
  481. * frame_num for frames or 2 * frame_num + 1 for field pics.
  482. */
  483. int curr_pic_num;
  484. /**
  485. * max_frame_num or 2 * max_frame_num for field pics.
  486. */
  487. int max_pic_num;
  488. H264Ref default_ref[2];
  489. H264Picture *short_ref[32];
  490. H264Picture *long_ref[32];
  491. H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
  492. int last_pocs[MAX_DELAYED_PIC_COUNT];
  493. H264Picture *next_output_pic;
  494. int next_outputed_poc;
  495. /**
  496. * memory management control operations buffer.
  497. */
  498. MMCO mmco[MAX_MMCO_COUNT];
  499. int mmco_index;
  500. int mmco_reset;
  501. int long_ref_count; ///< number of actual long term references
  502. int short_ref_count; ///< number of actual short term references
  503. /**
  504. * @name Members for slice based multithreading
  505. * @{
  506. */
  507. /**
  508. * current slice number, used to initialize slice_num of each thread/context
  509. */
  510. int current_slice;
  511. /**
  512. * Max number of threads / contexts.
  513. * This is equal to AVCodecContext.thread_count unless
  514. * multithreaded decoding is impossible, in which case it is
  515. * reduced to 1.
  516. */
  517. int max_contexts;
  518. /**
  519. * 1 if the single thread fallback warning has already been
  520. * displayed, 0 otherwise.
  521. */
  522. int single_decode_warning;
  523. /** @} */
  524. /**
  525. * Complement sei_pic_struct
  526. * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
  527. * However, soft telecined frames may have these values.
  528. * This is used in an attempt to flag soft telecine progressive.
  529. */
  530. int prev_interlaced_frame;
  531. /**
  532. * Are the SEI recovery points looking valid.
  533. */
  534. int valid_recovery_point;
  535. /**
  536. * recovery_frame is the frame_num at which the next frame should
  537. * be fully constructed.
  538. *
  539. * Set to -1 when not expecting a recovery point.
  540. */
  541. int recovery_frame;
  542. /**
  543. * We have seen an IDR, so all the following frames in coded order are correctly
  544. * decodable.
  545. */
  546. #define FRAME_RECOVERED_IDR (1 << 0)
  547. /**
  548. * Sufficient number of frames have been decoded since a SEI recovery point,
  549. * so all the following frames in presentation order are correct.
  550. */
  551. #define FRAME_RECOVERED_SEI (1 << 1)
  552. int frame_recovered; ///< Initial frame has been completely recovered
  553. int has_recovery_point;
  554. int missing_fields;
  555. /* for frame threading, this is set to 1
  556. * after finish_setup() has been called, so we cannot modify
  557. * some context properties (which are supposed to stay constant between
  558. * slices) anymore */
  559. int setup_finished;
  560. int cur_chroma_format_idc;
  561. int cur_bit_depth_luma;
  562. int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
  563. int enable_er;
  564. H264SEIContext sei;
  565. AVBufferPool *qscale_table_pool;
  566. AVBufferPool *mb_type_pool;
  567. AVBufferPool *motion_val_pool;
  568. AVBufferPool *ref_index_pool;
  569. int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
  570. } H264Context;
  571. extern const uint16_t ff_h264_mb_sizes[4];
  572. /**
  573. * Uninit H264 param sets structure.
  574. */
  575. void ff_h264_ps_uninit(H264ParamSets *ps);
  576. /**
  577. * Decode SPS
  578. */
  579. int ff_h264_decode_seq_parameter_set(GetBitContext *gb, AVCodecContext *avctx,
  580. H264ParamSets *ps, int ignore_truncation);
  581. /**
  582. * Decode PPS
  583. */
  584. int ff_h264_decode_picture_parameter_set(GetBitContext *gb, AVCodecContext *avctx,
  585. H264ParamSets *ps, int bit_length);
  586. /**
  587. * Reconstruct bitstream slice_type.
  588. */
  589. int ff_h264_get_slice_type(const H264SliceContext *sl);
  590. /**
  591. * Allocate tables.
  592. * needs width/height
  593. */
  594. int ff_h264_alloc_tables(H264Context *h);
  595. int ff_h264_decode_ref_pic_list_reordering(H264Context *h, H264SliceContext *sl);
  596. void ff_h264_fill_mbaff_ref_list(H264SliceContext *sl);
  597. void ff_h264_remove_all_refs(H264Context *h);
  598. /**
  599. * Execute the reference picture marking (memory management control operations).
  600. */
  601. int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
  602. int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb,
  603. int first_slice);
  604. int ff_generate_sliding_window_mmcos(H264Context *h, int first_slice);
  605. void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
  606. int ff_h264_decode_init(AVCodecContext *avctx);
  607. void ff_h264_decode_init_vlc(void);
  608. /**
  609. * Decode a macroblock
  610. * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
  611. */
  612. int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
  613. /**
  614. * Decode a CABAC coded macroblock
  615. * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
  616. */
  617. int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
  618. void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
  619. void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
  620. void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
  621. void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
  622. int *mb_type);
  623. void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
  624. uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
  625. unsigned int linesize, unsigned int uvlinesize);
  626. void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
  627. uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
  628. unsigned int linesize, unsigned int uvlinesize);
  629. /*
  630. * o-o o-o
  631. * / / /
  632. * o-o o-o
  633. * ,---'
  634. * o-o o-o
  635. * / / /
  636. * o-o o-o
  637. */
  638. /* Scan8 organization:
  639. * 0 1 2 3 4 5 6 7
  640. * 0 DY y y y y y
  641. * 1 y Y Y Y Y
  642. * 2 y Y Y Y Y
  643. * 3 y Y Y Y Y
  644. * 4 y Y Y Y Y
  645. * 5 DU u u u u u
  646. * 6 u U U U U
  647. * 7 u U U U U
  648. * 8 u U U U U
  649. * 9 u U U U U
  650. * 10 DV v v v v v
  651. * 11 v V V V V
  652. * 12 v V V V V
  653. * 13 v V V V V
  654. * 14 v V V V V
  655. * DY/DU/DV are for luma/chroma DC.
  656. */
  657. #define LUMA_DC_BLOCK_INDEX 48
  658. #define CHROMA_DC_BLOCK_INDEX 49
  659. // This table must be here because scan8[constant] must be known at compiletime
  660. static const uint8_t scan8[16 * 3 + 3] = {
  661. 4 + 1 * 8, 5 + 1 * 8, 4 + 2 * 8, 5 + 2 * 8,
  662. 6 + 1 * 8, 7 + 1 * 8, 6 + 2 * 8, 7 + 2 * 8,
  663. 4 + 3 * 8, 5 + 3 * 8, 4 + 4 * 8, 5 + 4 * 8,
  664. 6 + 3 * 8, 7 + 3 * 8, 6 + 4 * 8, 7 + 4 * 8,
  665. 4 + 6 * 8, 5 + 6 * 8, 4 + 7 * 8, 5 + 7 * 8,
  666. 6 + 6 * 8, 7 + 6 * 8, 6 + 7 * 8, 7 + 7 * 8,
  667. 4 + 8 * 8, 5 + 8 * 8, 4 + 9 * 8, 5 + 9 * 8,
  668. 6 + 8 * 8, 7 + 8 * 8, 6 + 9 * 8, 7 + 9 * 8,
  669. 4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
  670. 6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
  671. 4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
  672. 6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
  673. 0 + 0 * 8, 0 + 5 * 8, 0 + 10 * 8
  674. };
  675. static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
  676. {
  677. #if HAVE_BIGENDIAN
  678. return (b & 0xFFFF) + (a << 16);
  679. #else
  680. return (a & 0xFFFF) + (b << 16);
  681. #endif
  682. }
  683. static av_always_inline uint16_t pack8to16(unsigned a, unsigned b)
  684. {
  685. #if HAVE_BIGENDIAN
  686. return (b & 0xFF) + (a << 8);
  687. #else
  688. return (a & 0xFF) + (b << 8);
  689. #endif
  690. }
  691. /**
  692. * Get the chroma qp.
  693. */
  694. static av_always_inline int get_chroma_qp(const H264Context *h, int t, int qscale)
  695. {
  696. return h->ps.pps->chroma_qp_table[t][qscale];
  697. }
  698. /**
  699. * Get the predicted intra4x4 prediction mode.
  700. */
  701. static av_always_inline int pred_intra_mode(const H264Context *h,
  702. H264SliceContext *sl, int n)
  703. {
  704. const int index8 = scan8[n];
  705. const int left = sl->intra4x4_pred_mode_cache[index8 - 1];
  706. const int top = sl->intra4x4_pred_mode_cache[index8 - 8];
  707. const int min = FFMIN(left, top);
  708. ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);
  709. if (min < 0)
  710. return DC_PRED;
  711. else
  712. return min;
  713. }
  714. static av_always_inline void write_back_intra_pred_mode(const H264Context *h,
  715. H264SliceContext *sl)
  716. {
  717. int8_t *i4x4 = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
  718. int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
  719. AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
  720. i4x4[4] = i4x4_cache[7 + 8 * 3];
  721. i4x4[5] = i4x4_cache[7 + 8 * 2];
  722. i4x4[6] = i4x4_cache[7 + 8 * 1];
  723. }
  724. static av_always_inline void write_back_non_zero_count(const H264Context *h,
  725. H264SliceContext *sl)
  726. {
  727. const int mb_xy = sl->mb_xy;
  728. uint8_t *nnz = h->non_zero_count[mb_xy];
  729. uint8_t *nnz_cache = sl->non_zero_count_cache;
  730. AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
  731. AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
  732. AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
  733. AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
  734. AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
  735. AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
  736. AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
  737. AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
  738. if (!h->chroma_y_shift) {
  739. AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
  740. AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
  741. AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
  742. AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
  743. }
  744. }
  745. static av_always_inline void write_back_motion_list(const H264Context *h,
  746. H264SliceContext *sl,
  747. int b_stride,
  748. int b_xy, int b8_xy,
  749. int mb_type, int list)
  750. {
  751. int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
  752. int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
  753. AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
  754. AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
  755. AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
  756. AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
  757. if (CABAC(h)) {
  758. uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
  759. : h->mb2br_xy[sl->mb_xy]];
  760. uint8_t(*mvd_src)[2] = &sl->mvd_cache[list][scan8[0]];
  761. if (IS_SKIP(mb_type)) {
  762. AV_ZERO128(mvd_dst);
  763. } else {
  764. AV_COPY64(mvd_dst, mvd_src + 8 * 3);
  765. AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
  766. AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
  767. AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
  768. }
  769. }
  770. {
  771. int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
  772. int8_t *ref_cache = sl->ref_cache[list];
  773. ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
  774. ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
  775. ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
  776. ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
  777. }
  778. }
  779. static av_always_inline void write_back_motion(const H264Context *h,
  780. H264SliceContext *sl,
  781. int mb_type)
  782. {
  783. const int b_stride = h->b_stride;
  784. const int b_xy = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
  785. const int b8_xy = 4 * sl->mb_xy;
  786. if (USES_LIST(mb_type, 0)) {
  787. write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
  788. } else {
  789. fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
  790. 2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
  791. }
  792. if (USES_LIST(mb_type, 1))
  793. write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
  794. if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
  795. if (IS_8X8(mb_type)) {
  796. uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
  797. direct_table[1] = sl->sub_mb_type[1] >> 1;
  798. direct_table[2] = sl->sub_mb_type[2] >> 1;
  799. direct_table[3] = sl->sub_mb_type[3] >> 1;
  800. }
  801. }
  802. }
  803. static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl)
  804. {
  805. if (h->ps.sps->direct_8x8_inference_flag)
  806. return !(AV_RN64A(sl->sub_mb_type) &
  807. ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
  808. 0x0001000100010001ULL));
  809. else
  810. return !(AV_RN64A(sl->sub_mb_type) &
  811. ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
  812. 0x0001000100010001ULL));
  813. }
  814. static inline int find_start_code(const uint8_t *buf, int buf_size,
  815. int buf_index, int next_avc)
  816. {
  817. uint32_t state = -1;
  818. buf_index = avpriv_find_start_code(buf + buf_index, buf + next_avc + 1, &state) - buf - 1;
  819. return FFMIN(buf_index, buf_size);
  820. }
  821. int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
  822. int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
  823. void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
  824. int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
  825. void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
  826. int ff_h264_decode_slice_header(H264Context *h, H264SliceContext *sl);
  827. #define SLICE_SINGLETHREAD 1
  828. #define SLICE_SKIPED 2
  829. int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count);
  830. int ff_h264_update_thread_context(AVCodecContext *dst,
  831. const AVCodecContext *src);
  832. void ff_h264_flush_change(H264Context *h);
  833. void ff_h264_free_tables(H264Context *h);
  834. void ff_h264_set_erpic(ERPicture *dst, H264Picture *src);
  835. #endif /* AVCODEC_H264_H */