You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

755 lines
25KB

  1. /*
  2. * Rate control for video encoders
  3. *
  4. * Copyright (c) 2002 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  19. */
  20. #include <math.h>
  21. #include "common.h"
  22. #include "avcodec.h"
  23. #include "dsputil.h"
  24. #include "mpegvideo.h"
  25. #undef NDEBUG // allways check asserts, the speed effect is far too small to disable them
  26. #include <assert.h>
  27. #ifndef M_PI
  28. #define M_PI 3.14159265358979323846
  29. #endif
  30. #ifndef M_E
  31. #define M_E 2.718281828
  32. #endif
  33. static int init_pass2(MpegEncContext *s);
  34. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num);
  35. void ff_write_pass1_stats(MpegEncContext *s){
  36. sprintf(s->avctx->stats_out, "in:%d out:%d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d;\n",
  37. s->picture_number, s->input_picture_number - s->max_b_frames, s->pict_type,
  38. s->qscale, s->i_tex_bits, s->p_tex_bits, s->mv_bits, s->misc_bits,
  39. s->f_code, s->b_code, s->mc_mb_var_sum, s->mb_var_sum, s->i_count);
  40. }
  41. int ff_rate_control_init(MpegEncContext *s)
  42. {
  43. RateControlContext *rcc= &s->rc_context;
  44. int i;
  45. emms_c();
  46. for(i=0; i<5; i++){
  47. rcc->pred[i].coeff= 7.0;
  48. rcc->pred[i].count= 1.0;
  49. rcc->pred[i].decay= 0.4;
  50. rcc->i_cplx_sum [i]=
  51. rcc->p_cplx_sum [i]=
  52. rcc->mv_bits_sum[i]=
  53. rcc->qscale_sum [i]=
  54. rcc->frame_count[i]= 1; // 1 is better cuz of 1/0 and such
  55. rcc->last_qscale_for[i]=5;
  56. }
  57. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  58. rcc->next_non_b_qscale=10;
  59. rcc->next_p_qscale=10;
  60. if(s->flags&CODEC_FLAG_PASS2){
  61. int i;
  62. char *p;
  63. /* find number of pics */
  64. p= s->avctx->stats_in;
  65. for(i=-1; p; i++){
  66. p= strchr(p+1, ';');
  67. }
  68. i+= s->max_b_frames;
  69. rcc->entry = (RateControlEntry*)av_mallocz(i*sizeof(RateControlEntry));
  70. rcc->num_entries= i;
  71. /* init all to skiped p frames (with b frames we might have a not encoded frame at the end FIXME) */
  72. for(i=0; i<rcc->num_entries; i++){
  73. RateControlEntry *rce= &rcc->entry[i];
  74. rce->pict_type= rce->new_pict_type=P_TYPE;
  75. rce->qscale= rce->new_qscale=2;
  76. rce->misc_bits= s->mb_num + 10;
  77. rce->mb_var_sum= s->mb_num*100;
  78. }
  79. /* read stats */
  80. p= s->avctx->stats_in;
  81. for(i=0; i<rcc->num_entries - s->max_b_frames; i++){
  82. RateControlEntry *rce;
  83. int picture_number;
  84. int e;
  85. char *next;
  86. next= strchr(p, ';');
  87. if(next){
  88. (*next)=0; //sscanf in unbelieavle slow on looong strings //FIXME copy / dont write
  89. next++;
  90. }
  91. e= sscanf(p, " in:%d ", &picture_number);
  92. assert(picture_number >= 0);
  93. assert(picture_number < rcc->num_entries);
  94. rce= &rcc->entry[picture_number];
  95. e+=sscanf(p, " in:%*d out:%*d type:%d q:%d itex:%d ptex:%d mv:%d misc:%d fcode:%d bcode:%d mc-var:%d var:%d icount:%d",
  96. &rce->pict_type, &rce->qscale, &rce->i_tex_bits, &rce->p_tex_bits, &rce->mv_bits, &rce->misc_bits,
  97. &rce->f_code, &rce->b_code, &rce->mc_mb_var_sum, &rce->mb_var_sum, &rce->i_count);
  98. if(e!=12){
  99. fprintf(stderr, "statistics are damaged at line %d, parser out=%d\n", i, e);
  100. return -1;
  101. }
  102. p= next;
  103. }
  104. if(init_pass2(s) < 0) return -1;
  105. }
  106. if(!(s->flags&CODEC_FLAG_PASS2)){
  107. rcc->short_term_qsum=0.001;
  108. rcc->short_term_qcount=0.001;
  109. rcc->pass1_bits =0.001;
  110. rcc->pass1_wanted_bits=0.001;
  111. /* init stuff with the user specified complexity */
  112. if(s->avctx->rc_initial_cplx){
  113. for(i=0; i<60*30; i++){
  114. double bits= s->avctx->rc_initial_cplx * (i/10000.0 + 1.0)*s->mb_num;
  115. RateControlEntry rce;
  116. double q;
  117. if (i%((s->gop_size+3)/4)==0) rce.pict_type= I_TYPE;
  118. else if(i%(s->max_b_frames+1)) rce.pict_type= B_TYPE;
  119. else rce.pict_type= P_TYPE;
  120. rce.new_pict_type= rce.pict_type;
  121. rce.mc_mb_var_sum= bits*s->mb_num/100000;
  122. rce.mb_var_sum = s->mb_num;
  123. rce.qscale = 2;
  124. rce.f_code = 2;
  125. rce.b_code = 1;
  126. rce.misc_bits= 1;
  127. if(s->pict_type== I_TYPE){
  128. rce.i_count = s->mb_num;
  129. rce.i_tex_bits= bits;
  130. rce.p_tex_bits= 0;
  131. rce.mv_bits= 0;
  132. }else{
  133. rce.i_count = 0; //FIXME we do know this approx
  134. rce.i_tex_bits= 0;
  135. rce.p_tex_bits= bits*0.9;
  136. rce.mv_bits= bits*0.1;
  137. }
  138. rcc->i_cplx_sum [rce.pict_type] += rce.i_tex_bits*rce.qscale;
  139. rcc->p_cplx_sum [rce.pict_type] += rce.p_tex_bits*rce.qscale;
  140. rcc->mv_bits_sum[rce.pict_type] += rce.mv_bits;
  141. rcc->frame_count[rce.pict_type] ++;
  142. bits= rce.i_tex_bits + rce.p_tex_bits;
  143. q= get_qscale(s, &rce, rcc->pass1_wanted_bits/rcc->pass1_bits, i);
  144. rcc->pass1_wanted_bits+= s->bit_rate/(s->frame_rate / (double)FRAME_RATE_BASE);
  145. }
  146. }
  147. }
  148. return 0;
  149. }
  150. void ff_rate_control_uninit(MpegEncContext *s)
  151. {
  152. RateControlContext *rcc= &s->rc_context;
  153. emms_c();
  154. av_freep(&rcc->entry);
  155. }
  156. static inline double qp2bits(RateControlEntry *rce, double qp){
  157. if(qp<=0.0){
  158. fprintf(stderr, "qp<=0.0\n");
  159. }
  160. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ qp;
  161. }
  162. static inline double bits2qp(RateControlEntry *rce, double bits){
  163. if(bits<0.9){
  164. fprintf(stderr, "bits<0.9\n");
  165. }
  166. return rce->qscale * (double)(rce->i_tex_bits + rce->p_tex_bits+1)/ bits;
  167. }
  168. static void update_rc_buffer(MpegEncContext *s, int frame_size){
  169. RateControlContext *rcc= &s->rc_context;
  170. const double fps= (double)s->frame_rate / FRAME_RATE_BASE;
  171. const double buffer_size= s->avctx->rc_buffer_size;
  172. const double min_rate= s->avctx->rc_min_rate/fps;
  173. const double max_rate= s->avctx->rc_max_rate/fps;
  174. if(buffer_size){
  175. rcc->buffer_index-= frame_size;
  176. if(rcc->buffer_index < buffer_size/2 /*FIXME /2 */ || min_rate==0){
  177. rcc->buffer_index+= max_rate;
  178. if(rcc->buffer_index >= buffer_size)
  179. rcc->buffer_index= buffer_size-1;
  180. }else{
  181. rcc->buffer_index+= min_rate;
  182. }
  183. if(rcc->buffer_index < 0)
  184. fprintf(stderr, "rc buffer underflow\n");
  185. if(rcc->buffer_index >= s->avctx->rc_buffer_size)
  186. fprintf(stderr, "rc buffer overflow\n");
  187. }
  188. }
  189. /**
  190. * modifies the bitrate curve from pass1 for one frame
  191. */
  192. static double get_qscale(MpegEncContext *s, RateControlEntry *rce, double rate_factor, int frame_num){
  193. RateControlContext *rcc= &s->rc_context;
  194. double q, bits;
  195. const int pict_type= rce->new_pict_type;
  196. const double mb_num= s->mb_num;
  197. int i;
  198. const double last_q= rcc->last_qscale_for[pict_type];
  199. double const_values[]={
  200. M_PI,
  201. M_E,
  202. rce->i_tex_bits*rce->qscale,
  203. rce->p_tex_bits*rce->qscale,
  204. (rce->i_tex_bits + rce->p_tex_bits)*(double)rce->qscale,
  205. rce->mv_bits/mb_num,
  206. rce->pict_type == B_TYPE ? (rce->f_code + rce->b_code)*0.5 : rce->f_code,
  207. rce->i_count/mb_num,
  208. rce->mc_mb_var_sum/mb_num,
  209. rce->mb_var_sum/mb_num,
  210. rce->pict_type == I_TYPE,
  211. rce->pict_type == P_TYPE,
  212. rce->pict_type == B_TYPE,
  213. rcc->qscale_sum[pict_type] / (double)rcc->frame_count[pict_type],
  214. s->qcompress,
  215. /* rcc->last_qscale_for[I_TYPE],
  216. rcc->last_qscale_for[P_TYPE],
  217. rcc->last_qscale_for[B_TYPE],
  218. rcc->next_non_b_qscale,*/
  219. rcc->i_cplx_sum[I_TYPE] / (double)rcc->frame_count[I_TYPE],
  220. rcc->i_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  221. rcc->p_cplx_sum[P_TYPE] / (double)rcc->frame_count[P_TYPE],
  222. rcc->p_cplx_sum[B_TYPE] / (double)rcc->frame_count[B_TYPE],
  223. (rcc->i_cplx_sum[pict_type] + rcc->p_cplx_sum[pict_type]) / (double)rcc->frame_count[pict_type],
  224. 0
  225. };
  226. char *const_names[]={
  227. "PI",
  228. "E",
  229. "iTex",
  230. "pTex",
  231. "tex",
  232. "mv",
  233. "fCode",
  234. "iCount",
  235. "mcVar",
  236. "var",
  237. "isI",
  238. "isP",
  239. "isB",
  240. "avgQP",
  241. "qComp",
  242. /* "lastIQP",
  243. "lastPQP",
  244. "lastBQP",
  245. "nextNonBQP",*/
  246. "avgIITex",
  247. "avgPITex",
  248. "avgPPTex",
  249. "avgBPTex",
  250. "avgTex",
  251. NULL
  252. };
  253. static double (*func1[])(void *, double)={
  254. bits2qp,
  255. qp2bits,
  256. NULL
  257. };
  258. char *func1_names[]={
  259. "bits2qp",
  260. "qp2bits",
  261. NULL
  262. };
  263. bits= ff_eval(s->avctx->rc_eq, const_values, const_names, func1, func1_names, NULL, NULL, rce);
  264. rcc->pass1_bits+= bits;
  265. bits*=rate_factor;
  266. if(bits<0.0) bits=0.0;
  267. bits+= 1.0; //avoid 1/0 issues
  268. /* user override */
  269. for(i=0; i<s->avctx->rc_override_count; i++){
  270. RcOverride *rco= s->avctx->rc_override;
  271. if(rco[i].start_frame > frame_num) continue;
  272. if(rco[i].end_frame < frame_num) continue;
  273. if(rco[i].qscale)
  274. bits= qp2bits(rce, rco[i].qscale); //FIXME move at end to really force it?
  275. else
  276. bits*= rco[i].quality_factor;
  277. }
  278. q= bits2qp(rce, bits);
  279. /* I/B difference */
  280. if (pict_type==I_TYPE && s->avctx->i_quant_factor<0.0)
  281. q= -q*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  282. else if(pict_type==B_TYPE && s->avctx->b_quant_factor<0.0)
  283. q= -q*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  284. /* last qscale / qdiff stuff */
  285. if (q > last_q + s->max_qdiff) q= last_q + s->max_qdiff;
  286. else if(q < last_q - s->max_qdiff) q= last_q - s->max_qdiff;
  287. rcc->last_qscale_for[pict_type]= q; //Note we cant do that after blurring
  288. return q;
  289. }
  290. /**
  291. * gets the qmin & qmax for pict_type
  292. */
  293. static void get_qminmax(int *qmin_ret, int *qmax_ret, MpegEncContext *s, int pict_type){
  294. int qmin= s->qmin;
  295. int qmax= s->qmax;
  296. if(pict_type==B_TYPE){
  297. qmin= (int)(qmin*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  298. qmax= (int)(qmax*ABS(s->avctx->b_quant_factor)+s->avctx->b_quant_offset + 0.5);
  299. }else if(pict_type==I_TYPE){
  300. qmin= (int)(qmin*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  301. qmax= (int)(qmax*ABS(s->avctx->i_quant_factor)+s->avctx->i_quant_offset + 0.5);
  302. }
  303. if(qmin<1) qmin=1;
  304. if(qmin==1 && s->qmin>1) qmin=2; //avoid qmin=1 unless the user wants qmin=1
  305. if(qmin<3 && s->max_qcoeff<=128 && pict_type==I_TYPE) qmin=3; //reduce cliping problems
  306. if(qmax>31) qmax=31;
  307. if(qmax<=qmin) qmax= qmin= (qmax+qmin+1)>>1;
  308. *qmin_ret= qmin;
  309. *qmax_ret= qmax;
  310. }
  311. static double modify_qscale(MpegEncContext *s, RateControlEntry *rce, double q, int frame_num){
  312. RateControlContext *rcc= &s->rc_context;
  313. int qmin, qmax;
  314. double bits;
  315. const int pict_type= rce->new_pict_type;
  316. const double buffer_size= s->avctx->rc_buffer_size;
  317. const double min_rate= s->avctx->rc_min_rate;
  318. const double max_rate= s->avctx->rc_max_rate;
  319. get_qminmax(&qmin, &qmax, s, pict_type);
  320. /* modulation */
  321. if(s->avctx->rc_qmod_freq && frame_num%s->avctx->rc_qmod_freq==0 && pict_type==P_TYPE)
  322. q*= s->avctx->rc_qmod_amp;
  323. bits= qp2bits(rce, q);
  324. /* buffer overflow/underflow protection */
  325. if(buffer_size){
  326. double expected_size= rcc->buffer_index - bits;
  327. if(min_rate){
  328. double d= 2*(buffer_size - (expected_size + min_rate))/buffer_size;
  329. if(d>1.0) d=1.0;
  330. q/= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  331. }
  332. if(max_rate){
  333. double d= 2*expected_size/buffer_size;
  334. if(d>1.0) d=1.0;
  335. q*= pow(d, 1.0/s->avctx->rc_buffer_aggressivity);
  336. }
  337. }
  338. if(s->avctx->rc_qsquish==0.0 || qmin==qmax){
  339. if (q<qmin) q=qmin;
  340. else if(q>qmax) q=qmax;
  341. }else{
  342. double min2= log(qmin);
  343. double max2= log(qmax);
  344. q= log(q);
  345. q= (q - min2)/(max2-min2) - 0.5;
  346. q*= -4.0;
  347. q= 1.0/(1.0 + exp(q));
  348. q= q*(max2-min2) + min2;
  349. q= exp(q);
  350. }
  351. return q;
  352. }
  353. //----------------------------------
  354. // 1 Pass Code
  355. static double predict_size(Predictor *p, double q, double var)
  356. {
  357. return p->coeff*var / (q*p->count);
  358. }
  359. static double predict_qp(Predictor *p, double size, double var)
  360. {
  361. //printf("coeff:%f, count:%f, var:%f, size:%f//\n", p->coeff, p->count, var, size);
  362. return p->coeff*var / (size*p->count);
  363. }
  364. static void update_predictor(Predictor *p, double q, double var, double size)
  365. {
  366. double new_coeff= size*q / (var + 1);
  367. if(var<10) return;
  368. p->count*= p->decay;
  369. p->coeff*= p->decay;
  370. p->count++;
  371. p->coeff+= new_coeff;
  372. }
  373. int ff_rate_estimate_qscale(MpegEncContext *s)
  374. {
  375. float q;
  376. int qscale, qmin, qmax;
  377. float br_compensation;
  378. double diff;
  379. double short_term_q;
  380. double fps;
  381. int picture_number= s->picture_number;
  382. int64_t wanted_bits;
  383. RateControlContext *rcc= &s->rc_context;
  384. RateControlEntry local_rce, *rce;
  385. double bits;
  386. double rate_factor;
  387. int var;
  388. const int pict_type= s->pict_type;
  389. emms_c();
  390. get_qminmax(&qmin, &qmax, s, pict_type);
  391. fps= (double)s->frame_rate / FRAME_RATE_BASE;
  392. //printf("input_picture_number:%d picture_number:%d\n", s->input_picture_number, s->picture_number);
  393. /* update predictors */
  394. if(picture_number>2){
  395. const int last_var= s->last_pict_type == I_TYPE ? rcc->last_mb_var_sum : rcc->last_mc_mb_var_sum;
  396. update_predictor(&rcc->pred[s->last_pict_type], rcc->last_qscale, sqrt(last_var), s->frame_bits);
  397. }
  398. if(s->flags&CODEC_FLAG_PASS2){
  399. assert(picture_number>=0);
  400. assert(picture_number<rcc->num_entries);
  401. rce= &rcc->entry[picture_number];
  402. wanted_bits= rce->expected_bits;
  403. }else{
  404. rce= &local_rce;
  405. wanted_bits= (uint64_t)(s->bit_rate*(double)picture_number/fps);
  406. }
  407. diff= s->total_bits - wanted_bits;
  408. br_compensation= (s->bit_rate_tolerance - diff)/s->bit_rate_tolerance;
  409. if(br_compensation<=0.0) br_compensation=0.001;
  410. var= pict_type == I_TYPE ? s->mb_var_sum : s->mc_mb_var_sum;
  411. if(s->flags&CODEC_FLAG_PASS2){
  412. if(pict_type!=I_TYPE)
  413. assert(pict_type == rce->new_pict_type);
  414. q= rce->new_qscale / br_compensation;
  415. //printf("%f %f %f last:%d var:%d type:%d//\n", q, rce->new_qscale, br_compensation, s->frame_bits, var, pict_type);
  416. }else{
  417. rce->pict_type=
  418. rce->new_pict_type= pict_type;
  419. rce->mc_mb_var_sum= s->mc_mb_var_sum;
  420. rce->mb_var_sum = s-> mb_var_sum;
  421. rce->qscale = 2;
  422. rce->f_code = s->f_code;
  423. rce->b_code = s->b_code;
  424. rce->misc_bits= 1;
  425. if(picture_number>0)
  426. update_rc_buffer(s, s->frame_bits);
  427. bits= predict_size(&rcc->pred[pict_type], rce->qscale, sqrt(var));
  428. if(pict_type== I_TYPE){
  429. rce->i_count = s->mb_num;
  430. rce->i_tex_bits= bits;
  431. rce->p_tex_bits= 0;
  432. rce->mv_bits= 0;
  433. }else{
  434. rce->i_count = 0; //FIXME we do know this approx
  435. rce->i_tex_bits= 0;
  436. rce->p_tex_bits= bits*0.9;
  437. rce->mv_bits= bits*0.1;
  438. }
  439. rcc->i_cplx_sum [pict_type] += rce->i_tex_bits*rce->qscale;
  440. rcc->p_cplx_sum [pict_type] += rce->p_tex_bits*rce->qscale;
  441. rcc->mv_bits_sum[pict_type] += rce->mv_bits;
  442. rcc->frame_count[pict_type] ++;
  443. bits= rce->i_tex_bits + rce->p_tex_bits;
  444. rate_factor= rcc->pass1_wanted_bits/rcc->pass1_bits * br_compensation;
  445. q= get_qscale(s, rce, rate_factor, picture_number);
  446. assert(q>0.0);
  447. //printf("%f ", q);
  448. if (pict_type==I_TYPE && s->avctx->i_quant_factor>0.0)
  449. q= rcc->next_p_qscale*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  450. else if(pict_type==B_TYPE && s->avctx->b_quant_factor>0.0)
  451. q= rcc->next_non_b_qscale*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  452. //printf("%f ", q);
  453. assert(q>0.0);
  454. if(pict_type==P_TYPE || s->intra_only){ //FIXME type dependant blur like in 2-pass
  455. rcc->short_term_qsum*=s->qblur;
  456. rcc->short_term_qcount*=s->qblur;
  457. rcc->short_term_qsum+= q;
  458. rcc->short_term_qcount++;
  459. //printf("%f ", q);
  460. q= short_term_q= rcc->short_term_qsum/rcc->short_term_qcount;
  461. //printf("%f ", q);
  462. }
  463. q= modify_qscale(s, rce, q, picture_number);
  464. rcc->pass1_wanted_bits+= s->bit_rate/fps;
  465. assert(q>0.0);
  466. if(pict_type != B_TYPE) rcc->next_non_b_qscale= q;
  467. if(pict_type == P_TYPE) rcc->next_p_qscale= q;
  468. }
  469. //printf("qmin:%d, qmax:%d, q:%f\n", qmin, qmax, q);
  470. if (q<qmin) q=qmin;
  471. else if(q>qmax) q=qmax;
  472. // printf("%f %d %d %d\n", q, picture_number, (int)wanted_bits, (int)s->total_bits);
  473. //printf("%f %f %f\n", q, br_compensation, short_term_q);
  474. qscale= (int)(q + 0.5);
  475. //printf("%d ", qscale);
  476. //printf("q:%d diff:%d comp:%f rate_q:%d st_q:%f fvar:%d last_size:%d\n", qscale, (int)diff, br_compensation,
  477. // rate_q, short_term_q, s->mc_mb_var, s->frame_bits);
  478. //printf("%d %d\n", s->bit_rate, (int)fps);
  479. rcc->last_qscale= qscale;
  480. rcc->last_mc_mb_var_sum= s->mc_mb_var_sum;
  481. rcc->last_mb_var_sum= s->mb_var_sum;
  482. return qscale;
  483. }
  484. //----------------------------------------------
  485. // 2-Pass code
  486. static int init_pass2(MpegEncContext *s)
  487. {
  488. RateControlContext *rcc= &s->rc_context;
  489. int i;
  490. double fps= (double)s->frame_rate / FRAME_RATE_BASE;
  491. double complexity[5]={0,0,0,0,0}; // aproximate bits at quant=1
  492. double avg_quantizer[5];
  493. uint64_t const_bits[5]={0,0,0,0,0}; // quantizer idependant bits
  494. uint64_t available_bits[5];
  495. uint64_t all_const_bits;
  496. uint64_t all_available_bits= (uint64_t)(s->bit_rate*(double)rcc->num_entries/fps);
  497. double rate_factor=0;
  498. double step;
  499. int last_i_frame=-10000000;
  500. const int filter_size= (int)(s->qblur*4) | 1;
  501. double expected_bits;
  502. double *qscale, *blured_qscale;
  503. /* find complexity & const_bits & decide the pict_types */
  504. for(i=0; i<rcc->num_entries; i++){
  505. RateControlEntry *rce= &rcc->entry[i];
  506. if(s->b_frame_strategy==0 || s->max_b_frames==0){
  507. rce->new_pict_type= rce->pict_type;
  508. }else{
  509. int j;
  510. int next_non_b_type=P_TYPE;
  511. switch(rce->pict_type){
  512. case I_TYPE:
  513. if(i-last_i_frame>s->gop_size/2){ //FIXME this is not optimal
  514. rce->new_pict_type= I_TYPE;
  515. last_i_frame= i;
  516. }else{
  517. rce->new_pict_type= P_TYPE; // will be caught by the scene detection anyway
  518. }
  519. break;
  520. case P_TYPE:
  521. rce->new_pict_type= P_TYPE;
  522. break;
  523. case B_TYPE:
  524. for(j=i+1; j<i+s->max_b_frames+2 && j<rcc->num_entries; j++){
  525. if(rcc->entry[j].pict_type != B_TYPE){
  526. next_non_b_type= rcc->entry[j].pict_type;
  527. break;
  528. }
  529. }
  530. if(next_non_b_type==I_TYPE)
  531. rce->new_pict_type= P_TYPE;
  532. else
  533. rce->new_pict_type= B_TYPE;
  534. break;
  535. }
  536. }
  537. rcc->i_cplx_sum [rce->pict_type] += rce->i_tex_bits*rce->qscale;
  538. rcc->p_cplx_sum [rce->pict_type] += rce->p_tex_bits*rce->qscale;
  539. rcc->mv_bits_sum[rce->pict_type] += rce->mv_bits;
  540. rcc->frame_count[rce->pict_type] ++;
  541. complexity[rce->new_pict_type]+= (rce->i_tex_bits+ rce->p_tex_bits)*(double)rce->qscale;
  542. const_bits[rce->new_pict_type]+= rce->mv_bits + rce->misc_bits;
  543. }
  544. all_const_bits= const_bits[I_TYPE] + const_bits[P_TYPE] + const_bits[B_TYPE];
  545. if(all_available_bits < all_const_bits){
  546. fprintf(stderr, "requested bitrate is to low\n");
  547. return -1;
  548. }
  549. /* find average quantizers */
  550. avg_quantizer[P_TYPE]=0;
  551. for(step=256*256; step>0.0000001; step*=0.5){
  552. double expected_bits=0;
  553. avg_quantizer[P_TYPE]+= step;
  554. avg_quantizer[I_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->i_quant_factor) + s->avctx->i_quant_offset;
  555. avg_quantizer[B_TYPE]= avg_quantizer[P_TYPE]*ABS(s->avctx->b_quant_factor) + s->avctx->b_quant_offset;
  556. expected_bits=
  557. + all_const_bits
  558. + complexity[I_TYPE]/avg_quantizer[I_TYPE]
  559. + complexity[P_TYPE]/avg_quantizer[P_TYPE]
  560. + complexity[B_TYPE]/avg_quantizer[B_TYPE];
  561. if(expected_bits < all_available_bits) avg_quantizer[P_TYPE]-= step;
  562. //printf("%f %lld %f\n", expected_bits, all_available_bits, avg_quantizer[P_TYPE]);
  563. }
  564. //printf("qp_i:%f, qp_p:%f, qp_b:%f\n", avg_quantizer[I_TYPE],avg_quantizer[P_TYPE],avg_quantizer[B_TYPE]);
  565. for(i=0; i<5; i++){
  566. available_bits[i]= const_bits[i] + complexity[i]/avg_quantizer[i];
  567. }
  568. //printf("%lld %lld %lld %lld\n", available_bits[I_TYPE], available_bits[P_TYPE], available_bits[B_TYPE], all_available_bits);
  569. qscale= malloc(sizeof(double)*rcc->num_entries);
  570. blured_qscale= malloc(sizeof(double)*rcc->num_entries);
  571. for(step=256*256; step>0.0000001; step*=0.5){
  572. expected_bits=0;
  573. rate_factor+= step;
  574. rcc->buffer_index= s->avctx->rc_buffer_size/2;
  575. /* find qscale */
  576. for(i=0; i<rcc->num_entries; i++){
  577. qscale[i]= get_qscale(s, &rcc->entry[i], rate_factor, i);
  578. }
  579. assert(filter_size%2==1);
  580. /* fixed I/B QP relative to P mode */
  581. rcc->next_non_b_qscale= 10;
  582. rcc->next_p_qscale= 10;
  583. for(i=rcc->num_entries-1; i>=0; i--){
  584. RateControlEntry *rce= &rcc->entry[i];
  585. const int pict_type= rce->new_pict_type;
  586. if (pict_type==I_TYPE && s->avctx->i_quant_factor>0.0)
  587. qscale[i]= rcc->next_p_qscale*s->avctx->i_quant_factor + s->avctx->i_quant_offset;
  588. else if(pict_type==B_TYPE && s->avctx->b_quant_factor>0.0)
  589. qscale[i]= rcc->next_non_b_qscale*s->avctx->b_quant_factor + s->avctx->b_quant_offset;
  590. if(pict_type!=B_TYPE)
  591. rcc->next_non_b_qscale= qscale[i];
  592. if(pict_type==P_TYPE)
  593. rcc->next_p_qscale= qscale[i];
  594. }
  595. /* smooth curve */
  596. for(i=0; i<rcc->num_entries; i++){
  597. RateControlEntry *rce= &rcc->entry[i];
  598. const int pict_type= rce->new_pict_type;
  599. int j;
  600. double q=0.0, sum=0.0;
  601. for(j=0; j<filter_size; j++){
  602. int index= i+j-filter_size/2;
  603. double d= index-i;
  604. double coeff= s->qblur==0 ? 1.0 : exp(-d*d/(s->qblur * s->qblur));
  605. if(index < 0 || index >= rcc->num_entries) continue;
  606. if(pict_type != rcc->entry[index].new_pict_type) continue;
  607. q+= qscale[index] * coeff;
  608. sum+= coeff;
  609. }
  610. blured_qscale[i]= q/sum;
  611. }
  612. /* find expected bits */
  613. for(i=0; i<rcc->num_entries; i++){
  614. RateControlEntry *rce= &rcc->entry[i];
  615. double bits;
  616. rce->new_qscale= modify_qscale(s, rce, blured_qscale[i], i);
  617. bits= qp2bits(rce, rce->new_qscale) + rce->mv_bits + rce->misc_bits;
  618. //printf("%d %f\n", rce->new_bits, blured_qscale[i]);
  619. update_rc_buffer(s, bits);
  620. rce->expected_bits= expected_bits;
  621. expected_bits += bits;
  622. }
  623. // printf("%f %d %f\n", expected_bits, (int)all_available_bits, rate_factor);
  624. if(expected_bits > all_available_bits) rate_factor-= step;
  625. }
  626. free(qscale);
  627. free(blured_qscale);
  628. if(abs(expected_bits/all_available_bits - 1.0) > 0.01 ){
  629. fprintf(stderr, "Error: 2pass curve failed to converge\n");
  630. return -1;
  631. }
  632. return 0;
  633. }