You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2583 lines
77KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file libavcodec/mpegaudiodec.c
  23. * MPEG Audio decoder.
  24. */
  25. #include "avcodec.h"
  26. #include "get_bits.h"
  27. #include "dsputil.h"
  28. /*
  29. * TODO:
  30. * - in low precision mode, use more 16 bit multiplies in synth filter
  31. * - test lsf / mpeg25 extensively.
  32. */
  33. #include "mpegaudio.h"
  34. #include "mpegaudiodecheader.h"
  35. #include "mathops.h"
  36. /* WARNING: only correct for posititive numbers */
  37. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  38. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  39. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  40. /****************/
  41. #define HEADER_SIZE 4
  42. /* layer 3 "granule" */
  43. typedef struct GranuleDef {
  44. uint8_t scfsi;
  45. int part2_3_length;
  46. int big_values;
  47. int global_gain;
  48. int scalefac_compress;
  49. uint8_t block_type;
  50. uint8_t switch_point;
  51. int table_select[3];
  52. int subblock_gain[3];
  53. uint8_t scalefac_scale;
  54. uint8_t count1table_select;
  55. int region_size[3]; /* number of huffman codes in each region */
  56. int preflag;
  57. int short_start, long_end; /* long/short band indexes */
  58. uint8_t scale_factors[40];
  59. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  60. } GranuleDef;
  61. #include "mpegaudiodata.h"
  62. #include "mpegaudiodectab.h"
  63. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  64. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  65. /* vlc structure for decoding layer 3 huffman tables */
  66. static VLC huff_vlc[16];
  67. static VLC_TYPE huff_vlc_tables[
  68. 0+128+128+128+130+128+154+166+
  69. 142+204+190+170+542+460+662+414
  70. ][2];
  71. static const int huff_vlc_tables_sizes[16] = {
  72. 0, 128, 128, 128, 130, 128, 154, 166,
  73. 142, 204, 190, 170, 542, 460, 662, 414
  74. };
  75. static VLC huff_quad_vlc[2];
  76. static VLC_TYPE huff_quad_vlc_tables[128+16][2];
  77. static const int huff_quad_vlc_tables_sizes[2] = {
  78. 128, 16
  79. };
  80. /* computed from band_size_long */
  81. static uint16_t band_index_long[9][23];
  82. #include "mpegaudio_tablegen.h"
  83. /* intensity stereo coef table */
  84. static int32_t is_table[2][16];
  85. static int32_t is_table_lsf[2][2][16];
  86. static int32_t csa_table[8][4];
  87. static float csa_table_float[8][4];
  88. static int32_t mdct_win[8][36];
  89. /* lower 2 bits: modulo 3, higher bits: shift */
  90. static uint16_t scale_factor_modshift[64];
  91. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  92. static int32_t scale_factor_mult[15][3];
  93. /* mult table for layer 2 group quantization */
  94. #define SCALE_GEN(v) \
  95. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  96. static const int32_t scale_factor_mult2[3][3] = {
  97. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  98. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  99. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  100. };
  101. DECLARE_ALIGNED_16(MPA_INT, ff_mpa_synth_window[512]);
  102. /**
  103. * Convert region offsets to region sizes and truncate
  104. * size to big_values.
  105. */
  106. void ff_region_offset2size(GranuleDef *g){
  107. int i, k, j=0;
  108. g->region_size[2] = (576 / 2);
  109. for(i=0;i<3;i++) {
  110. k = FFMIN(g->region_size[i], g->big_values);
  111. g->region_size[i] = k - j;
  112. j = k;
  113. }
  114. }
  115. void ff_init_short_region(MPADecodeContext *s, GranuleDef *g){
  116. if (g->block_type == 2)
  117. g->region_size[0] = (36 / 2);
  118. else {
  119. if (s->sample_rate_index <= 2)
  120. g->region_size[0] = (36 / 2);
  121. else if (s->sample_rate_index != 8)
  122. g->region_size[0] = (54 / 2);
  123. else
  124. g->region_size[0] = (108 / 2);
  125. }
  126. g->region_size[1] = (576 / 2);
  127. }
  128. void ff_init_long_region(MPADecodeContext *s, GranuleDef *g, int ra1, int ra2){
  129. int l;
  130. g->region_size[0] =
  131. band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
  132. /* should not overflow */
  133. l = FFMIN(ra1 + ra2 + 2, 22);
  134. g->region_size[1] =
  135. band_index_long[s->sample_rate_index][l] >> 1;
  136. }
  137. void ff_compute_band_indexes(MPADecodeContext *s, GranuleDef *g){
  138. if (g->block_type == 2) {
  139. if (g->switch_point) {
  140. /* if switched mode, we handle the 36 first samples as
  141. long blocks. For 8000Hz, we handle the 48 first
  142. exponents as long blocks (XXX: check this!) */
  143. if (s->sample_rate_index <= 2)
  144. g->long_end = 8;
  145. else if (s->sample_rate_index != 8)
  146. g->long_end = 6;
  147. else
  148. g->long_end = 4; /* 8000 Hz */
  149. g->short_start = 2 + (s->sample_rate_index != 8);
  150. } else {
  151. g->long_end = 0;
  152. g->short_start = 0;
  153. }
  154. } else {
  155. g->short_start = 13;
  156. g->long_end = 22;
  157. }
  158. }
  159. /* layer 1 unscaling */
  160. /* n = number of bits of the mantissa minus 1 */
  161. static inline int l1_unscale(int n, int mant, int scale_factor)
  162. {
  163. int shift, mod;
  164. int64_t val;
  165. shift = scale_factor_modshift[scale_factor];
  166. mod = shift & 3;
  167. shift >>= 2;
  168. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  169. shift += n;
  170. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  171. return (int)((val + (1LL << (shift - 1))) >> shift);
  172. }
  173. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  174. {
  175. int shift, mod, val;
  176. shift = scale_factor_modshift[scale_factor];
  177. mod = shift & 3;
  178. shift >>= 2;
  179. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  180. /* NOTE: at this point, 0 <= shift <= 21 */
  181. if (shift > 0)
  182. val = (val + (1 << (shift - 1))) >> shift;
  183. return val;
  184. }
  185. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  186. static inline int l3_unscale(int value, int exponent)
  187. {
  188. unsigned int m;
  189. int e;
  190. e = table_4_3_exp [4*value + (exponent&3)];
  191. m = table_4_3_value[4*value + (exponent&3)];
  192. e -= (exponent >> 2);
  193. assert(e>=1);
  194. if (e > 31)
  195. return 0;
  196. m = (m + (1 << (e-1))) >> e;
  197. return m;
  198. }
  199. /* all integer n^(4/3) computation code */
  200. #define DEV_ORDER 13
  201. #define POW_FRAC_BITS 24
  202. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  203. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  204. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  205. static int dev_4_3_coefs[DEV_ORDER];
  206. #if 0 /* unused */
  207. static int pow_mult3[3] = {
  208. POW_FIX(1.0),
  209. POW_FIX(1.25992104989487316476),
  210. POW_FIX(1.58740105196819947474),
  211. };
  212. #endif
  213. static av_cold void int_pow_init(void)
  214. {
  215. int i, a;
  216. a = POW_FIX(1.0);
  217. for(i=0;i<DEV_ORDER;i++) {
  218. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  219. dev_4_3_coefs[i] = a;
  220. }
  221. }
  222. #if 0 /* unused, remove? */
  223. /* return the mantissa and the binary exponent */
  224. static int int_pow(int i, int *exp_ptr)
  225. {
  226. int e, er, eq, j;
  227. int a, a1;
  228. /* renormalize */
  229. a = i;
  230. e = POW_FRAC_BITS;
  231. while (a < (1 << (POW_FRAC_BITS - 1))) {
  232. a = a << 1;
  233. e--;
  234. }
  235. a -= (1 << POW_FRAC_BITS);
  236. a1 = 0;
  237. for(j = DEV_ORDER - 1; j >= 0; j--)
  238. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  239. a = (1 << POW_FRAC_BITS) + a1;
  240. /* exponent compute (exact) */
  241. e = e * 4;
  242. er = e % 3;
  243. eq = e / 3;
  244. a = POW_MULL(a, pow_mult3[er]);
  245. while (a >= 2 * POW_FRAC_ONE) {
  246. a = a >> 1;
  247. eq++;
  248. }
  249. /* convert to float */
  250. while (a < POW_FRAC_ONE) {
  251. a = a << 1;
  252. eq--;
  253. }
  254. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  255. #if POW_FRAC_BITS > FRAC_BITS
  256. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  257. /* correct overflow */
  258. if (a >= 2 * (1 << FRAC_BITS)) {
  259. a = a >> 1;
  260. eq++;
  261. }
  262. #endif
  263. *exp_ptr = eq;
  264. return a;
  265. }
  266. #endif
  267. static av_cold int decode_init(AVCodecContext * avctx)
  268. {
  269. MPADecodeContext *s = avctx->priv_data;
  270. static int init=0;
  271. int i, j, k;
  272. s->avctx = avctx;
  273. avctx->sample_fmt= OUT_FMT;
  274. s->error_recognition= avctx->error_recognition;
  275. if(avctx->antialias_algo != FF_AA_FLOAT)
  276. s->compute_antialias= compute_antialias_integer;
  277. else
  278. s->compute_antialias= compute_antialias_float;
  279. if (!init && !avctx->parse_only) {
  280. int offset;
  281. /* scale factors table for layer 1/2 */
  282. for(i=0;i<64;i++) {
  283. int shift, mod;
  284. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  285. shift = (i / 3);
  286. mod = i % 3;
  287. scale_factor_modshift[i] = mod | (shift << 2);
  288. }
  289. /* scale factor multiply for layer 1 */
  290. for(i=0;i<15;i++) {
  291. int n, norm;
  292. n = i + 2;
  293. norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  294. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm, FRAC_BITS);
  295. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm, FRAC_BITS);
  296. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm, FRAC_BITS);
  297. dprintf(avctx, "%d: norm=%x s=%x %x %x\n",
  298. i, norm,
  299. scale_factor_mult[i][0],
  300. scale_factor_mult[i][1],
  301. scale_factor_mult[i][2]);
  302. }
  303. ff_mpa_synth_init(ff_mpa_synth_window);
  304. /* huffman decode tables */
  305. offset = 0;
  306. for(i=1;i<16;i++) {
  307. const HuffTable *h = &mpa_huff_tables[i];
  308. int xsize, x, y;
  309. uint8_t tmp_bits [512];
  310. uint16_t tmp_codes[512];
  311. memset(tmp_bits , 0, sizeof(tmp_bits ));
  312. memset(tmp_codes, 0, sizeof(tmp_codes));
  313. xsize = h->xsize;
  314. j = 0;
  315. for(x=0;x<xsize;x++) {
  316. for(y=0;y<xsize;y++){
  317. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  318. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  319. }
  320. }
  321. /* XXX: fail test */
  322. huff_vlc[i].table = huff_vlc_tables+offset;
  323. huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
  324. init_vlc(&huff_vlc[i], 7, 512,
  325. tmp_bits, 1, 1, tmp_codes, 2, 2,
  326. INIT_VLC_USE_NEW_STATIC);
  327. offset += huff_vlc_tables_sizes[i];
  328. }
  329. assert(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
  330. offset = 0;
  331. for(i=0;i<2;i++) {
  332. huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
  333. huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
  334. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  335. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
  336. INIT_VLC_USE_NEW_STATIC);
  337. offset += huff_quad_vlc_tables_sizes[i];
  338. }
  339. assert(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
  340. for(i=0;i<9;i++) {
  341. k = 0;
  342. for(j=0;j<22;j++) {
  343. band_index_long[i][j] = k;
  344. k += band_size_long[i][j];
  345. }
  346. band_index_long[i][22] = k;
  347. }
  348. /* compute n ^ (4/3) and store it in mantissa/exp format */
  349. int_pow_init();
  350. mpegaudio_tableinit();
  351. for(i=0;i<7;i++) {
  352. float f;
  353. int v;
  354. if (i != 6) {
  355. f = tan((double)i * M_PI / 12.0);
  356. v = FIXR(f / (1.0 + f));
  357. } else {
  358. v = FIXR(1.0);
  359. }
  360. is_table[0][i] = v;
  361. is_table[1][6 - i] = v;
  362. }
  363. /* invalid values */
  364. for(i=7;i<16;i++)
  365. is_table[0][i] = is_table[1][i] = 0.0;
  366. for(i=0;i<16;i++) {
  367. double f;
  368. int e, k;
  369. for(j=0;j<2;j++) {
  370. e = -(j + 1) * ((i + 1) >> 1);
  371. f = pow(2.0, e / 4.0);
  372. k = i & 1;
  373. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  374. is_table_lsf[j][k][i] = FIXR(1.0);
  375. dprintf(avctx, "is_table_lsf %d %d: %x %x\n",
  376. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  377. }
  378. }
  379. for(i=0;i<8;i++) {
  380. float ci, cs, ca;
  381. ci = ci_table[i];
  382. cs = 1.0 / sqrt(1.0 + ci * ci);
  383. ca = cs * ci;
  384. csa_table[i][0] = FIXHR(cs/4);
  385. csa_table[i][1] = FIXHR(ca/4);
  386. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  387. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  388. csa_table_float[i][0] = cs;
  389. csa_table_float[i][1] = ca;
  390. csa_table_float[i][2] = ca + cs;
  391. csa_table_float[i][3] = ca - cs;
  392. }
  393. /* compute mdct windows */
  394. for(i=0;i<36;i++) {
  395. for(j=0; j<4; j++){
  396. double d;
  397. if(j==2 && i%3 != 1)
  398. continue;
  399. d= sin(M_PI * (i + 0.5) / 36.0);
  400. if(j==1){
  401. if (i>=30) d= 0;
  402. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  403. else if(i>=18) d= 1;
  404. }else if(j==3){
  405. if (i< 6) d= 0;
  406. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  407. else if(i< 18) d= 1;
  408. }
  409. //merge last stage of imdct into the window coefficients
  410. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  411. if(j==2)
  412. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  413. else
  414. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  415. }
  416. }
  417. /* NOTE: we do frequency inversion adter the MDCT by changing
  418. the sign of the right window coefs */
  419. for(j=0;j<4;j++) {
  420. for(i=0;i<36;i+=2) {
  421. mdct_win[j + 4][i] = mdct_win[j][i];
  422. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  423. }
  424. }
  425. init = 1;
  426. }
  427. if (avctx->codec_id == CODEC_ID_MP3ADU)
  428. s->adu_mode = 1;
  429. return 0;
  430. }
  431. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  432. /* cos(i*pi/64) */
  433. #define COS0_0 FIXHR(0.50060299823519630134/2)
  434. #define COS0_1 FIXHR(0.50547095989754365998/2)
  435. #define COS0_2 FIXHR(0.51544730992262454697/2)
  436. #define COS0_3 FIXHR(0.53104259108978417447/2)
  437. #define COS0_4 FIXHR(0.55310389603444452782/2)
  438. #define COS0_5 FIXHR(0.58293496820613387367/2)
  439. #define COS0_6 FIXHR(0.62250412303566481615/2)
  440. #define COS0_7 FIXHR(0.67480834145500574602/2)
  441. #define COS0_8 FIXHR(0.74453627100229844977/2)
  442. #define COS0_9 FIXHR(0.83934964541552703873/2)
  443. #define COS0_10 FIXHR(0.97256823786196069369/2)
  444. #define COS0_11 FIXHR(1.16943993343288495515/4)
  445. #define COS0_12 FIXHR(1.48416461631416627724/4)
  446. #define COS0_13 FIXHR(2.05778100995341155085/8)
  447. #define COS0_14 FIXHR(3.40760841846871878570/8)
  448. #define COS0_15 FIXHR(10.19000812354805681150/32)
  449. #define COS1_0 FIXHR(0.50241928618815570551/2)
  450. #define COS1_1 FIXHR(0.52249861493968888062/2)
  451. #define COS1_2 FIXHR(0.56694403481635770368/2)
  452. #define COS1_3 FIXHR(0.64682178335999012954/2)
  453. #define COS1_4 FIXHR(0.78815462345125022473/2)
  454. #define COS1_5 FIXHR(1.06067768599034747134/4)
  455. #define COS1_6 FIXHR(1.72244709823833392782/4)
  456. #define COS1_7 FIXHR(5.10114861868916385802/16)
  457. #define COS2_0 FIXHR(0.50979557910415916894/2)
  458. #define COS2_1 FIXHR(0.60134488693504528054/2)
  459. #define COS2_2 FIXHR(0.89997622313641570463/2)
  460. #define COS2_3 FIXHR(2.56291544774150617881/8)
  461. #define COS3_0 FIXHR(0.54119610014619698439/2)
  462. #define COS3_1 FIXHR(1.30656296487637652785/4)
  463. #define COS4_0 FIXHR(0.70710678118654752439/2)
  464. /* butterfly operator */
  465. #define BF(a, b, c, s)\
  466. {\
  467. tmp0 = tab[a] + tab[b];\
  468. tmp1 = tab[a] - tab[b];\
  469. tab[a] = tmp0;\
  470. tab[b] = MULH(tmp1<<(s), c);\
  471. }
  472. #define BF1(a, b, c, d)\
  473. {\
  474. BF(a, b, COS4_0, 1);\
  475. BF(c, d,-COS4_0, 1);\
  476. tab[c] += tab[d];\
  477. }
  478. #define BF2(a, b, c, d)\
  479. {\
  480. BF(a, b, COS4_0, 1);\
  481. BF(c, d,-COS4_0, 1);\
  482. tab[c] += tab[d];\
  483. tab[a] += tab[c];\
  484. tab[c] += tab[b];\
  485. tab[b] += tab[d];\
  486. }
  487. #define ADD(a, b) tab[a] += tab[b]
  488. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  489. static void dct32(int32_t *out, int32_t *tab)
  490. {
  491. int tmp0, tmp1;
  492. /* pass 1 */
  493. BF( 0, 31, COS0_0 , 1);
  494. BF(15, 16, COS0_15, 5);
  495. /* pass 2 */
  496. BF( 0, 15, COS1_0 , 1);
  497. BF(16, 31,-COS1_0 , 1);
  498. /* pass 1 */
  499. BF( 7, 24, COS0_7 , 1);
  500. BF( 8, 23, COS0_8 , 1);
  501. /* pass 2 */
  502. BF( 7, 8, COS1_7 , 4);
  503. BF(23, 24,-COS1_7 , 4);
  504. /* pass 3 */
  505. BF( 0, 7, COS2_0 , 1);
  506. BF( 8, 15,-COS2_0 , 1);
  507. BF(16, 23, COS2_0 , 1);
  508. BF(24, 31,-COS2_0 , 1);
  509. /* pass 1 */
  510. BF( 3, 28, COS0_3 , 1);
  511. BF(12, 19, COS0_12, 2);
  512. /* pass 2 */
  513. BF( 3, 12, COS1_3 , 1);
  514. BF(19, 28,-COS1_3 , 1);
  515. /* pass 1 */
  516. BF( 4, 27, COS0_4 , 1);
  517. BF(11, 20, COS0_11, 2);
  518. /* pass 2 */
  519. BF( 4, 11, COS1_4 , 1);
  520. BF(20, 27,-COS1_4 , 1);
  521. /* pass 3 */
  522. BF( 3, 4, COS2_3 , 3);
  523. BF(11, 12,-COS2_3 , 3);
  524. BF(19, 20, COS2_3 , 3);
  525. BF(27, 28,-COS2_3 , 3);
  526. /* pass 4 */
  527. BF( 0, 3, COS3_0 , 1);
  528. BF( 4, 7,-COS3_0 , 1);
  529. BF( 8, 11, COS3_0 , 1);
  530. BF(12, 15,-COS3_0 , 1);
  531. BF(16, 19, COS3_0 , 1);
  532. BF(20, 23,-COS3_0 , 1);
  533. BF(24, 27, COS3_0 , 1);
  534. BF(28, 31,-COS3_0 , 1);
  535. /* pass 1 */
  536. BF( 1, 30, COS0_1 , 1);
  537. BF(14, 17, COS0_14, 3);
  538. /* pass 2 */
  539. BF( 1, 14, COS1_1 , 1);
  540. BF(17, 30,-COS1_1 , 1);
  541. /* pass 1 */
  542. BF( 6, 25, COS0_6 , 1);
  543. BF( 9, 22, COS0_9 , 1);
  544. /* pass 2 */
  545. BF( 6, 9, COS1_6 , 2);
  546. BF(22, 25,-COS1_6 , 2);
  547. /* pass 3 */
  548. BF( 1, 6, COS2_1 , 1);
  549. BF( 9, 14,-COS2_1 , 1);
  550. BF(17, 22, COS2_1 , 1);
  551. BF(25, 30,-COS2_1 , 1);
  552. /* pass 1 */
  553. BF( 2, 29, COS0_2 , 1);
  554. BF(13, 18, COS0_13, 3);
  555. /* pass 2 */
  556. BF( 2, 13, COS1_2 , 1);
  557. BF(18, 29,-COS1_2 , 1);
  558. /* pass 1 */
  559. BF( 5, 26, COS0_5 , 1);
  560. BF(10, 21, COS0_10, 1);
  561. /* pass 2 */
  562. BF( 5, 10, COS1_5 , 2);
  563. BF(21, 26,-COS1_5 , 2);
  564. /* pass 3 */
  565. BF( 2, 5, COS2_2 , 1);
  566. BF(10, 13,-COS2_2 , 1);
  567. BF(18, 21, COS2_2 , 1);
  568. BF(26, 29,-COS2_2 , 1);
  569. /* pass 4 */
  570. BF( 1, 2, COS3_1 , 2);
  571. BF( 5, 6,-COS3_1 , 2);
  572. BF( 9, 10, COS3_1 , 2);
  573. BF(13, 14,-COS3_1 , 2);
  574. BF(17, 18, COS3_1 , 2);
  575. BF(21, 22,-COS3_1 , 2);
  576. BF(25, 26, COS3_1 , 2);
  577. BF(29, 30,-COS3_1 , 2);
  578. /* pass 5 */
  579. BF1( 0, 1, 2, 3);
  580. BF2( 4, 5, 6, 7);
  581. BF1( 8, 9, 10, 11);
  582. BF2(12, 13, 14, 15);
  583. BF1(16, 17, 18, 19);
  584. BF2(20, 21, 22, 23);
  585. BF1(24, 25, 26, 27);
  586. BF2(28, 29, 30, 31);
  587. /* pass 6 */
  588. ADD( 8, 12);
  589. ADD(12, 10);
  590. ADD(10, 14);
  591. ADD(14, 9);
  592. ADD( 9, 13);
  593. ADD(13, 11);
  594. ADD(11, 15);
  595. out[ 0] = tab[0];
  596. out[16] = tab[1];
  597. out[ 8] = tab[2];
  598. out[24] = tab[3];
  599. out[ 4] = tab[4];
  600. out[20] = tab[5];
  601. out[12] = tab[6];
  602. out[28] = tab[7];
  603. out[ 2] = tab[8];
  604. out[18] = tab[9];
  605. out[10] = tab[10];
  606. out[26] = tab[11];
  607. out[ 6] = tab[12];
  608. out[22] = tab[13];
  609. out[14] = tab[14];
  610. out[30] = tab[15];
  611. ADD(24, 28);
  612. ADD(28, 26);
  613. ADD(26, 30);
  614. ADD(30, 25);
  615. ADD(25, 29);
  616. ADD(29, 27);
  617. ADD(27, 31);
  618. out[ 1] = tab[16] + tab[24];
  619. out[17] = tab[17] + tab[25];
  620. out[ 9] = tab[18] + tab[26];
  621. out[25] = tab[19] + tab[27];
  622. out[ 5] = tab[20] + tab[28];
  623. out[21] = tab[21] + tab[29];
  624. out[13] = tab[22] + tab[30];
  625. out[29] = tab[23] + tab[31];
  626. out[ 3] = tab[24] + tab[20];
  627. out[19] = tab[25] + tab[21];
  628. out[11] = tab[26] + tab[22];
  629. out[27] = tab[27] + tab[23];
  630. out[ 7] = tab[28] + tab[18];
  631. out[23] = tab[29] + tab[19];
  632. out[15] = tab[30] + tab[17];
  633. out[31] = tab[31];
  634. }
  635. #if FRAC_BITS <= 15
  636. static inline int round_sample(int *sum)
  637. {
  638. int sum1;
  639. sum1 = (*sum) >> OUT_SHIFT;
  640. *sum &= (1<<OUT_SHIFT)-1;
  641. return av_clip(sum1, OUT_MIN, OUT_MAX);
  642. }
  643. /* signed 16x16 -> 32 multiply add accumulate */
  644. #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
  645. /* signed 16x16 -> 32 multiply */
  646. #define MULS(ra, rb) MUL16(ra, rb)
  647. #define MLSS(rt, ra, rb) MLS16(rt, ra, rb)
  648. #else
  649. static inline int round_sample(int64_t *sum)
  650. {
  651. int sum1;
  652. sum1 = (int)((*sum) >> OUT_SHIFT);
  653. *sum &= (1<<OUT_SHIFT)-1;
  654. return av_clip(sum1, OUT_MIN, OUT_MAX);
  655. }
  656. # define MULS(ra, rb) MUL64(ra, rb)
  657. # define MACS(rt, ra, rb) MAC64(rt, ra, rb)
  658. # define MLSS(rt, ra, rb) MLS64(rt, ra, rb)
  659. #endif
  660. #define SUM8(op, sum, w, p) \
  661. { \
  662. op(sum, (w)[0 * 64], (p)[0 * 64]); \
  663. op(sum, (w)[1 * 64], (p)[1 * 64]); \
  664. op(sum, (w)[2 * 64], (p)[2 * 64]); \
  665. op(sum, (w)[3 * 64], (p)[3 * 64]); \
  666. op(sum, (w)[4 * 64], (p)[4 * 64]); \
  667. op(sum, (w)[5 * 64], (p)[5 * 64]); \
  668. op(sum, (w)[6 * 64], (p)[6 * 64]); \
  669. op(sum, (w)[7 * 64], (p)[7 * 64]); \
  670. }
  671. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  672. { \
  673. int tmp;\
  674. tmp = p[0 * 64];\
  675. op1(sum1, (w1)[0 * 64], tmp);\
  676. op2(sum2, (w2)[0 * 64], tmp);\
  677. tmp = p[1 * 64];\
  678. op1(sum1, (w1)[1 * 64], tmp);\
  679. op2(sum2, (w2)[1 * 64], tmp);\
  680. tmp = p[2 * 64];\
  681. op1(sum1, (w1)[2 * 64], tmp);\
  682. op2(sum2, (w2)[2 * 64], tmp);\
  683. tmp = p[3 * 64];\
  684. op1(sum1, (w1)[3 * 64], tmp);\
  685. op2(sum2, (w2)[3 * 64], tmp);\
  686. tmp = p[4 * 64];\
  687. op1(sum1, (w1)[4 * 64], tmp);\
  688. op2(sum2, (w2)[4 * 64], tmp);\
  689. tmp = p[5 * 64];\
  690. op1(sum1, (w1)[5 * 64], tmp);\
  691. op2(sum2, (w2)[5 * 64], tmp);\
  692. tmp = p[6 * 64];\
  693. op1(sum1, (w1)[6 * 64], tmp);\
  694. op2(sum2, (w2)[6 * 64], tmp);\
  695. tmp = p[7 * 64];\
  696. op1(sum1, (w1)[7 * 64], tmp);\
  697. op2(sum2, (w2)[7 * 64], tmp);\
  698. }
  699. void av_cold ff_mpa_synth_init(MPA_INT *window)
  700. {
  701. int i;
  702. /* max = 18760, max sum over all 16 coefs : 44736 */
  703. for(i=0;i<257;i++) {
  704. int v;
  705. v = ff_mpa_enwindow[i];
  706. #if WFRAC_BITS < 16
  707. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  708. #endif
  709. window[i] = v;
  710. if ((i & 63) != 0)
  711. v = -v;
  712. if (i != 0)
  713. window[512 - i] = v;
  714. }
  715. }
  716. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  717. 32 samples. */
  718. /* XXX: optimize by avoiding ring buffer usage */
  719. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  720. MPA_INT *window, int *dither_state,
  721. OUT_INT *samples, int incr,
  722. int32_t sb_samples[SBLIMIT])
  723. {
  724. register MPA_INT *synth_buf;
  725. register const MPA_INT *w, *w2, *p;
  726. int j, offset;
  727. OUT_INT *samples2;
  728. #if FRAC_BITS <= 15
  729. int32_t tmp[32];
  730. int sum, sum2;
  731. #else
  732. int64_t sum, sum2;
  733. #endif
  734. offset = *synth_buf_offset;
  735. synth_buf = synth_buf_ptr + offset;
  736. #if FRAC_BITS <= 15
  737. dct32(tmp, sb_samples);
  738. for(j=0;j<32;j++) {
  739. /* NOTE: can cause a loss in precision if very high amplitude
  740. sound */
  741. synth_buf[j] = av_clip_int16(tmp[j]);
  742. }
  743. #else
  744. dct32(synth_buf, sb_samples);
  745. #endif
  746. /* copy to avoid wrap */
  747. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  748. samples2 = samples + 31 * incr;
  749. w = window;
  750. w2 = window + 31;
  751. sum = *dither_state;
  752. p = synth_buf + 16;
  753. SUM8(MACS, sum, w, p);
  754. p = synth_buf + 48;
  755. SUM8(MLSS, sum, w + 32, p);
  756. *samples = round_sample(&sum);
  757. samples += incr;
  758. w++;
  759. /* we calculate two samples at the same time to avoid one memory
  760. access per two sample */
  761. for(j=1;j<16;j++) {
  762. sum2 = 0;
  763. p = synth_buf + 16 + j;
  764. SUM8P2(sum, MACS, sum2, MLSS, w, w2, p);
  765. p = synth_buf + 48 - j;
  766. SUM8P2(sum, MLSS, sum2, MLSS, w + 32, w2 + 32, p);
  767. *samples = round_sample(&sum);
  768. samples += incr;
  769. sum += sum2;
  770. *samples2 = round_sample(&sum);
  771. samples2 -= incr;
  772. w++;
  773. w2--;
  774. }
  775. p = synth_buf + 32;
  776. SUM8(MLSS, sum, w + 32, p);
  777. *samples = round_sample(&sum);
  778. *dither_state= sum;
  779. offset = (offset - 32) & 511;
  780. *synth_buf_offset = offset;
  781. }
  782. #define C3 FIXHR(0.86602540378443864676/2)
  783. /* 0.5 / cos(pi*(2*i+1)/36) */
  784. static const int icos36[9] = {
  785. FIXR(0.50190991877167369479),
  786. FIXR(0.51763809020504152469), //0
  787. FIXR(0.55168895948124587824),
  788. FIXR(0.61038729438072803416),
  789. FIXR(0.70710678118654752439), //1
  790. FIXR(0.87172339781054900991),
  791. FIXR(1.18310079157624925896),
  792. FIXR(1.93185165257813657349), //2
  793. FIXR(5.73685662283492756461),
  794. };
  795. /* 0.5 / cos(pi*(2*i+1)/36) */
  796. static const int icos36h[9] = {
  797. FIXHR(0.50190991877167369479/2),
  798. FIXHR(0.51763809020504152469/2), //0
  799. FIXHR(0.55168895948124587824/2),
  800. FIXHR(0.61038729438072803416/2),
  801. FIXHR(0.70710678118654752439/2), //1
  802. FIXHR(0.87172339781054900991/2),
  803. FIXHR(1.18310079157624925896/4),
  804. FIXHR(1.93185165257813657349/4), //2
  805. // FIXHR(5.73685662283492756461),
  806. };
  807. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  808. cases. */
  809. static void imdct12(int *out, int *in)
  810. {
  811. int in0, in1, in2, in3, in4, in5, t1, t2;
  812. in0= in[0*3];
  813. in1= in[1*3] + in[0*3];
  814. in2= in[2*3] + in[1*3];
  815. in3= in[3*3] + in[2*3];
  816. in4= in[4*3] + in[3*3];
  817. in5= in[5*3] + in[4*3];
  818. in5 += in3;
  819. in3 += in1;
  820. in2= MULH(2*in2, C3);
  821. in3= MULH(4*in3, C3);
  822. t1 = in0 - in4;
  823. t2 = MULH(2*(in1 - in5), icos36h[4]);
  824. out[ 7]=
  825. out[10]= t1 + t2;
  826. out[ 1]=
  827. out[ 4]= t1 - t2;
  828. in0 += in4>>1;
  829. in4 = in0 + in2;
  830. in5 += 2*in1;
  831. in1 = MULH(in5 + in3, icos36h[1]);
  832. out[ 8]=
  833. out[ 9]= in4 + in1;
  834. out[ 2]=
  835. out[ 3]= in4 - in1;
  836. in0 -= in2;
  837. in5 = MULH(2*(in5 - in3), icos36h[7]);
  838. out[ 0]=
  839. out[ 5]= in0 - in5;
  840. out[ 6]=
  841. out[11]= in0 + in5;
  842. }
  843. /* cos(pi*i/18) */
  844. #define C1 FIXHR(0.98480775301220805936/2)
  845. #define C2 FIXHR(0.93969262078590838405/2)
  846. #define C3 FIXHR(0.86602540378443864676/2)
  847. #define C4 FIXHR(0.76604444311897803520/2)
  848. #define C5 FIXHR(0.64278760968653932632/2)
  849. #define C6 FIXHR(0.5/2)
  850. #define C7 FIXHR(0.34202014332566873304/2)
  851. #define C8 FIXHR(0.17364817766693034885/2)
  852. /* using Lee like decomposition followed by hand coded 9 points DCT */
  853. static void imdct36(int *out, int *buf, int *in, int *win)
  854. {
  855. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  856. int tmp[18], *tmp1, *in1;
  857. for(i=17;i>=1;i--)
  858. in[i] += in[i-1];
  859. for(i=17;i>=3;i-=2)
  860. in[i] += in[i-2];
  861. for(j=0;j<2;j++) {
  862. tmp1 = tmp + j;
  863. in1 = in + j;
  864. #if 0
  865. //more accurate but slower
  866. int64_t t0, t1, t2, t3;
  867. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  868. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  869. t1 = in1[2*0] - in1[2*6];
  870. tmp1[ 6] = t1 - (t2>>1);
  871. tmp1[16] = t1 + t2;
  872. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  873. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  874. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  875. tmp1[10] = (t3 - t0 - t2) >> 32;
  876. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  877. tmp1[14] = (t3 + t2 - t1) >> 32;
  878. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  879. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  880. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  881. t0 = MUL64(2*in1[2*3], C3);
  882. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  883. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  884. tmp1[12] = (t2 + t1 - t0) >> 32;
  885. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  886. #else
  887. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  888. t3 = in1[2*0] + (in1[2*6]>>1);
  889. t1 = in1[2*0] - in1[2*6];
  890. tmp1[ 6] = t1 - (t2>>1);
  891. tmp1[16] = t1 + t2;
  892. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  893. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  894. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  895. tmp1[10] = t3 - t0 - t2;
  896. tmp1[ 2] = t3 + t0 + t1;
  897. tmp1[14] = t3 + t2 - t1;
  898. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  899. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  900. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  901. t0 = MULH(2*in1[2*3], C3);
  902. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  903. tmp1[ 0] = t2 + t3 + t0;
  904. tmp1[12] = t2 + t1 - t0;
  905. tmp1[ 8] = t3 - t1 - t0;
  906. #endif
  907. }
  908. i = 0;
  909. for(j=0;j<4;j++) {
  910. t0 = tmp[i];
  911. t1 = tmp[i + 2];
  912. s0 = t1 + t0;
  913. s2 = t1 - t0;
  914. t2 = tmp[i + 1];
  915. t3 = tmp[i + 3];
  916. s1 = MULH(2*(t3 + t2), icos36h[j]);
  917. s3 = MULL(t3 - t2, icos36[8 - j], FRAC_BITS);
  918. t0 = s0 + s1;
  919. t1 = s0 - s1;
  920. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  921. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  922. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  923. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  924. t0 = s2 + s3;
  925. t1 = s2 - s3;
  926. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  927. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  928. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  929. buf[ + j] = MULH(t0, win[18 + j]);
  930. i += 4;
  931. }
  932. s0 = tmp[16];
  933. s1 = MULH(2*tmp[17], icos36h[4]);
  934. t0 = s0 + s1;
  935. t1 = s0 - s1;
  936. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  937. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  938. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  939. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  940. }
  941. /* return the number of decoded frames */
  942. static int mp_decode_layer1(MPADecodeContext *s)
  943. {
  944. int bound, i, v, n, ch, j, mant;
  945. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  946. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  947. if (s->mode == MPA_JSTEREO)
  948. bound = (s->mode_ext + 1) * 4;
  949. else
  950. bound = SBLIMIT;
  951. /* allocation bits */
  952. for(i=0;i<bound;i++) {
  953. for(ch=0;ch<s->nb_channels;ch++) {
  954. allocation[ch][i] = get_bits(&s->gb, 4);
  955. }
  956. }
  957. for(i=bound;i<SBLIMIT;i++) {
  958. allocation[0][i] = get_bits(&s->gb, 4);
  959. }
  960. /* scale factors */
  961. for(i=0;i<bound;i++) {
  962. for(ch=0;ch<s->nb_channels;ch++) {
  963. if (allocation[ch][i])
  964. scale_factors[ch][i] = get_bits(&s->gb, 6);
  965. }
  966. }
  967. for(i=bound;i<SBLIMIT;i++) {
  968. if (allocation[0][i]) {
  969. scale_factors[0][i] = get_bits(&s->gb, 6);
  970. scale_factors[1][i] = get_bits(&s->gb, 6);
  971. }
  972. }
  973. /* compute samples */
  974. for(j=0;j<12;j++) {
  975. for(i=0;i<bound;i++) {
  976. for(ch=0;ch<s->nb_channels;ch++) {
  977. n = allocation[ch][i];
  978. if (n) {
  979. mant = get_bits(&s->gb, n + 1);
  980. v = l1_unscale(n, mant, scale_factors[ch][i]);
  981. } else {
  982. v = 0;
  983. }
  984. s->sb_samples[ch][j][i] = v;
  985. }
  986. }
  987. for(i=bound;i<SBLIMIT;i++) {
  988. n = allocation[0][i];
  989. if (n) {
  990. mant = get_bits(&s->gb, n + 1);
  991. v = l1_unscale(n, mant, scale_factors[0][i]);
  992. s->sb_samples[0][j][i] = v;
  993. v = l1_unscale(n, mant, scale_factors[1][i]);
  994. s->sb_samples[1][j][i] = v;
  995. } else {
  996. s->sb_samples[0][j][i] = 0;
  997. s->sb_samples[1][j][i] = 0;
  998. }
  999. }
  1000. }
  1001. return 12;
  1002. }
  1003. static int mp_decode_layer2(MPADecodeContext *s)
  1004. {
  1005. int sblimit; /* number of used subbands */
  1006. const unsigned char *alloc_table;
  1007. int table, bit_alloc_bits, i, j, ch, bound, v;
  1008. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1009. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1010. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1011. int scale, qindex, bits, steps, k, l, m, b;
  1012. /* select decoding table */
  1013. table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1014. s->sample_rate, s->lsf);
  1015. sblimit = ff_mpa_sblimit_table[table];
  1016. alloc_table = ff_mpa_alloc_tables[table];
  1017. if (s->mode == MPA_JSTEREO)
  1018. bound = (s->mode_ext + 1) * 4;
  1019. else
  1020. bound = sblimit;
  1021. dprintf(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
  1022. /* sanity check */
  1023. if( bound > sblimit ) bound = sblimit;
  1024. /* parse bit allocation */
  1025. j = 0;
  1026. for(i=0;i<bound;i++) {
  1027. bit_alloc_bits = alloc_table[j];
  1028. for(ch=0;ch<s->nb_channels;ch++) {
  1029. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1030. }
  1031. j += 1 << bit_alloc_bits;
  1032. }
  1033. for(i=bound;i<sblimit;i++) {
  1034. bit_alloc_bits = alloc_table[j];
  1035. v = get_bits(&s->gb, bit_alloc_bits);
  1036. bit_alloc[0][i] = v;
  1037. bit_alloc[1][i] = v;
  1038. j += 1 << bit_alloc_bits;
  1039. }
  1040. /* scale codes */
  1041. for(i=0;i<sblimit;i++) {
  1042. for(ch=0;ch<s->nb_channels;ch++) {
  1043. if (bit_alloc[ch][i])
  1044. scale_code[ch][i] = get_bits(&s->gb, 2);
  1045. }
  1046. }
  1047. /* scale factors */
  1048. for(i=0;i<sblimit;i++) {
  1049. for(ch=0;ch<s->nb_channels;ch++) {
  1050. if (bit_alloc[ch][i]) {
  1051. sf = scale_factors[ch][i];
  1052. switch(scale_code[ch][i]) {
  1053. default:
  1054. case 0:
  1055. sf[0] = get_bits(&s->gb, 6);
  1056. sf[1] = get_bits(&s->gb, 6);
  1057. sf[2] = get_bits(&s->gb, 6);
  1058. break;
  1059. case 2:
  1060. sf[0] = get_bits(&s->gb, 6);
  1061. sf[1] = sf[0];
  1062. sf[2] = sf[0];
  1063. break;
  1064. case 1:
  1065. sf[0] = get_bits(&s->gb, 6);
  1066. sf[2] = get_bits(&s->gb, 6);
  1067. sf[1] = sf[0];
  1068. break;
  1069. case 3:
  1070. sf[0] = get_bits(&s->gb, 6);
  1071. sf[2] = get_bits(&s->gb, 6);
  1072. sf[1] = sf[2];
  1073. break;
  1074. }
  1075. }
  1076. }
  1077. }
  1078. /* samples */
  1079. for(k=0;k<3;k++) {
  1080. for(l=0;l<12;l+=3) {
  1081. j = 0;
  1082. for(i=0;i<bound;i++) {
  1083. bit_alloc_bits = alloc_table[j];
  1084. for(ch=0;ch<s->nb_channels;ch++) {
  1085. b = bit_alloc[ch][i];
  1086. if (b) {
  1087. scale = scale_factors[ch][i][k];
  1088. qindex = alloc_table[j+b];
  1089. bits = ff_mpa_quant_bits[qindex];
  1090. if (bits < 0) {
  1091. /* 3 values at the same time */
  1092. v = get_bits(&s->gb, -bits);
  1093. steps = ff_mpa_quant_steps[qindex];
  1094. s->sb_samples[ch][k * 12 + l + 0][i] =
  1095. l2_unscale_group(steps, v % steps, scale);
  1096. v = v / steps;
  1097. s->sb_samples[ch][k * 12 + l + 1][i] =
  1098. l2_unscale_group(steps, v % steps, scale);
  1099. v = v / steps;
  1100. s->sb_samples[ch][k * 12 + l + 2][i] =
  1101. l2_unscale_group(steps, v, scale);
  1102. } else {
  1103. for(m=0;m<3;m++) {
  1104. v = get_bits(&s->gb, bits);
  1105. v = l1_unscale(bits - 1, v, scale);
  1106. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1107. }
  1108. }
  1109. } else {
  1110. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1111. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1112. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1113. }
  1114. }
  1115. /* next subband in alloc table */
  1116. j += 1 << bit_alloc_bits;
  1117. }
  1118. /* XXX: find a way to avoid this duplication of code */
  1119. for(i=bound;i<sblimit;i++) {
  1120. bit_alloc_bits = alloc_table[j];
  1121. b = bit_alloc[0][i];
  1122. if (b) {
  1123. int mant, scale0, scale1;
  1124. scale0 = scale_factors[0][i][k];
  1125. scale1 = scale_factors[1][i][k];
  1126. qindex = alloc_table[j+b];
  1127. bits = ff_mpa_quant_bits[qindex];
  1128. if (bits < 0) {
  1129. /* 3 values at the same time */
  1130. v = get_bits(&s->gb, -bits);
  1131. steps = ff_mpa_quant_steps[qindex];
  1132. mant = v % steps;
  1133. v = v / steps;
  1134. s->sb_samples[0][k * 12 + l + 0][i] =
  1135. l2_unscale_group(steps, mant, scale0);
  1136. s->sb_samples[1][k * 12 + l + 0][i] =
  1137. l2_unscale_group(steps, mant, scale1);
  1138. mant = v % steps;
  1139. v = v / steps;
  1140. s->sb_samples[0][k * 12 + l + 1][i] =
  1141. l2_unscale_group(steps, mant, scale0);
  1142. s->sb_samples[1][k * 12 + l + 1][i] =
  1143. l2_unscale_group(steps, mant, scale1);
  1144. s->sb_samples[0][k * 12 + l + 2][i] =
  1145. l2_unscale_group(steps, v, scale0);
  1146. s->sb_samples[1][k * 12 + l + 2][i] =
  1147. l2_unscale_group(steps, v, scale1);
  1148. } else {
  1149. for(m=0;m<3;m++) {
  1150. mant = get_bits(&s->gb, bits);
  1151. s->sb_samples[0][k * 12 + l + m][i] =
  1152. l1_unscale(bits - 1, mant, scale0);
  1153. s->sb_samples[1][k * 12 + l + m][i] =
  1154. l1_unscale(bits - 1, mant, scale1);
  1155. }
  1156. }
  1157. } else {
  1158. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1159. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1160. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1161. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1162. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1163. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1164. }
  1165. /* next subband in alloc table */
  1166. j += 1 << bit_alloc_bits;
  1167. }
  1168. /* fill remaining samples to zero */
  1169. for(i=sblimit;i<SBLIMIT;i++) {
  1170. for(ch=0;ch<s->nb_channels;ch++) {
  1171. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1172. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1173. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1174. }
  1175. }
  1176. }
  1177. }
  1178. return 3 * 12;
  1179. }
  1180. static inline void lsf_sf_expand(int *slen,
  1181. int sf, int n1, int n2, int n3)
  1182. {
  1183. if (n3) {
  1184. slen[3] = sf % n3;
  1185. sf /= n3;
  1186. } else {
  1187. slen[3] = 0;
  1188. }
  1189. if (n2) {
  1190. slen[2] = sf % n2;
  1191. sf /= n2;
  1192. } else {
  1193. slen[2] = 0;
  1194. }
  1195. slen[1] = sf % n1;
  1196. sf /= n1;
  1197. slen[0] = sf;
  1198. }
  1199. static void exponents_from_scale_factors(MPADecodeContext *s,
  1200. GranuleDef *g,
  1201. int16_t *exponents)
  1202. {
  1203. const uint8_t *bstab, *pretab;
  1204. int len, i, j, k, l, v0, shift, gain, gains[3];
  1205. int16_t *exp_ptr;
  1206. exp_ptr = exponents;
  1207. gain = g->global_gain - 210;
  1208. shift = g->scalefac_scale + 1;
  1209. bstab = band_size_long[s->sample_rate_index];
  1210. pretab = mpa_pretab[g->preflag];
  1211. for(i=0;i<g->long_end;i++) {
  1212. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1213. len = bstab[i];
  1214. for(j=len;j>0;j--)
  1215. *exp_ptr++ = v0;
  1216. }
  1217. if (g->short_start < 13) {
  1218. bstab = band_size_short[s->sample_rate_index];
  1219. gains[0] = gain - (g->subblock_gain[0] << 3);
  1220. gains[1] = gain - (g->subblock_gain[1] << 3);
  1221. gains[2] = gain - (g->subblock_gain[2] << 3);
  1222. k = g->long_end;
  1223. for(i=g->short_start;i<13;i++) {
  1224. len = bstab[i];
  1225. for(l=0;l<3;l++) {
  1226. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1227. for(j=len;j>0;j--)
  1228. *exp_ptr++ = v0;
  1229. }
  1230. }
  1231. }
  1232. }
  1233. /* handle n = 0 too */
  1234. static inline int get_bitsz(GetBitContext *s, int n)
  1235. {
  1236. if (n == 0)
  1237. return 0;
  1238. else
  1239. return get_bits(s, n);
  1240. }
  1241. static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos, int *end_pos2){
  1242. if(s->in_gb.buffer && *pos >= s->gb.size_in_bits){
  1243. s->gb= s->in_gb;
  1244. s->in_gb.buffer=NULL;
  1245. assert((get_bits_count(&s->gb) & 7) == 0);
  1246. skip_bits_long(&s->gb, *pos - *end_pos);
  1247. *end_pos2=
  1248. *end_pos= *end_pos2 + get_bits_count(&s->gb) - *pos;
  1249. *pos= get_bits_count(&s->gb);
  1250. }
  1251. }
  1252. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1253. int16_t *exponents, int end_pos2)
  1254. {
  1255. int s_index;
  1256. int i;
  1257. int last_pos, bits_left;
  1258. VLC *vlc;
  1259. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1260. /* low frequencies (called big values) */
  1261. s_index = 0;
  1262. for(i=0;i<3;i++) {
  1263. int j, k, l, linbits;
  1264. j = g->region_size[i];
  1265. if (j == 0)
  1266. continue;
  1267. /* select vlc table */
  1268. k = g->table_select[i];
  1269. l = mpa_huff_data[k][0];
  1270. linbits = mpa_huff_data[k][1];
  1271. vlc = &huff_vlc[l];
  1272. if(!l){
  1273. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1274. s_index += 2*j;
  1275. continue;
  1276. }
  1277. /* read huffcode and compute each couple */
  1278. for(;j>0;j--) {
  1279. int exponent, x, y, v;
  1280. int pos= get_bits_count(&s->gb);
  1281. if (pos >= end_pos){
  1282. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1283. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1284. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1285. if(pos >= end_pos)
  1286. break;
  1287. }
  1288. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1289. if(!y){
  1290. g->sb_hybrid[s_index ] =
  1291. g->sb_hybrid[s_index+1] = 0;
  1292. s_index += 2;
  1293. continue;
  1294. }
  1295. exponent= exponents[s_index];
  1296. dprintf(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
  1297. i, g->region_size[i] - j, x, y, exponent);
  1298. if(y&16){
  1299. x = y >> 5;
  1300. y = y & 0x0f;
  1301. if (x < 15){
  1302. v = expval_table[ exponent ][ x ];
  1303. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1304. }else{
  1305. x += get_bitsz(&s->gb, linbits);
  1306. v = l3_unscale(x, exponent);
  1307. }
  1308. if (get_bits1(&s->gb))
  1309. v = -v;
  1310. g->sb_hybrid[s_index] = v;
  1311. if (y < 15){
  1312. v = expval_table[ exponent ][ y ];
  1313. }else{
  1314. y += get_bitsz(&s->gb, linbits);
  1315. v = l3_unscale(y, exponent);
  1316. }
  1317. if (get_bits1(&s->gb))
  1318. v = -v;
  1319. g->sb_hybrid[s_index+1] = v;
  1320. }else{
  1321. x = y >> 5;
  1322. y = y & 0x0f;
  1323. x += y;
  1324. if (x < 15){
  1325. v = expval_table[ exponent ][ x ];
  1326. }else{
  1327. x += get_bitsz(&s->gb, linbits);
  1328. v = l3_unscale(x, exponent);
  1329. }
  1330. if (get_bits1(&s->gb))
  1331. v = -v;
  1332. g->sb_hybrid[s_index+!!y] = v;
  1333. g->sb_hybrid[s_index+ !y] = 0;
  1334. }
  1335. s_index+=2;
  1336. }
  1337. }
  1338. /* high frequencies */
  1339. vlc = &huff_quad_vlc[g->count1table_select];
  1340. last_pos=0;
  1341. while (s_index <= 572) {
  1342. int pos, code;
  1343. pos = get_bits_count(&s->gb);
  1344. if (pos >= end_pos) {
  1345. if (pos > end_pos2 && last_pos){
  1346. /* some encoders generate an incorrect size for this
  1347. part. We must go back into the data */
  1348. s_index -= 4;
  1349. skip_bits_long(&s->gb, last_pos - pos);
  1350. av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1351. if(s->error_recognition >= FF_ER_COMPLIANT)
  1352. s_index=0;
  1353. break;
  1354. }
  1355. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1356. switch_buffer(s, &pos, &end_pos, &end_pos2);
  1357. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1358. if(pos >= end_pos)
  1359. break;
  1360. }
  1361. last_pos= pos;
  1362. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1363. dprintf(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
  1364. g->sb_hybrid[s_index+0]=
  1365. g->sb_hybrid[s_index+1]=
  1366. g->sb_hybrid[s_index+2]=
  1367. g->sb_hybrid[s_index+3]= 0;
  1368. while(code){
  1369. static const int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1370. int v;
  1371. int pos= s_index+idxtab[code];
  1372. code ^= 8>>idxtab[code];
  1373. v = exp_table[ exponents[pos] ];
  1374. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1375. if(get_bits1(&s->gb))
  1376. v = -v;
  1377. g->sb_hybrid[pos] = v;
  1378. }
  1379. s_index+=4;
  1380. }
  1381. /* skip extension bits */
  1382. bits_left = end_pos2 - get_bits_count(&s->gb);
  1383. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1384. if (bits_left < 0 && s->error_recognition >= FF_ER_COMPLIANT) {
  1385. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1386. s_index=0;
  1387. }else if(bits_left > 0 && s->error_recognition >= FF_ER_AGGRESSIVE){
  1388. av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
  1389. s_index=0;
  1390. }
  1391. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1392. skip_bits_long(&s->gb, bits_left);
  1393. i= get_bits_count(&s->gb);
  1394. switch_buffer(s, &i, &end_pos, &end_pos2);
  1395. return 0;
  1396. }
  1397. /* Reorder short blocks from bitstream order to interleaved order. It
  1398. would be faster to do it in parsing, but the code would be far more
  1399. complicated */
  1400. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1401. {
  1402. int i, j, len;
  1403. int32_t *ptr, *dst, *ptr1;
  1404. int32_t tmp[576];
  1405. if (g->block_type != 2)
  1406. return;
  1407. if (g->switch_point) {
  1408. if (s->sample_rate_index != 8) {
  1409. ptr = g->sb_hybrid + 36;
  1410. } else {
  1411. ptr = g->sb_hybrid + 48;
  1412. }
  1413. } else {
  1414. ptr = g->sb_hybrid;
  1415. }
  1416. for(i=g->short_start;i<13;i++) {
  1417. len = band_size_short[s->sample_rate_index][i];
  1418. ptr1 = ptr;
  1419. dst = tmp;
  1420. for(j=len;j>0;j--) {
  1421. *dst++ = ptr[0*len];
  1422. *dst++ = ptr[1*len];
  1423. *dst++ = ptr[2*len];
  1424. ptr++;
  1425. }
  1426. ptr+=2*len;
  1427. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1428. }
  1429. }
  1430. #define ISQRT2 FIXR(0.70710678118654752440)
  1431. static void compute_stereo(MPADecodeContext *s,
  1432. GranuleDef *g0, GranuleDef *g1)
  1433. {
  1434. int i, j, k, l;
  1435. int32_t v1, v2;
  1436. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1437. int32_t (*is_tab)[16];
  1438. int32_t *tab0, *tab1;
  1439. int non_zero_found_short[3];
  1440. /* intensity stereo */
  1441. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1442. if (!s->lsf) {
  1443. is_tab = is_table;
  1444. sf_max = 7;
  1445. } else {
  1446. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1447. sf_max = 16;
  1448. }
  1449. tab0 = g0->sb_hybrid + 576;
  1450. tab1 = g1->sb_hybrid + 576;
  1451. non_zero_found_short[0] = 0;
  1452. non_zero_found_short[1] = 0;
  1453. non_zero_found_short[2] = 0;
  1454. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1455. for(i = 12;i >= g1->short_start;i--) {
  1456. /* for last band, use previous scale factor */
  1457. if (i != 11)
  1458. k -= 3;
  1459. len = band_size_short[s->sample_rate_index][i];
  1460. for(l=2;l>=0;l--) {
  1461. tab0 -= len;
  1462. tab1 -= len;
  1463. if (!non_zero_found_short[l]) {
  1464. /* test if non zero band. if so, stop doing i-stereo */
  1465. for(j=0;j<len;j++) {
  1466. if (tab1[j] != 0) {
  1467. non_zero_found_short[l] = 1;
  1468. goto found1;
  1469. }
  1470. }
  1471. sf = g1->scale_factors[k + l];
  1472. if (sf >= sf_max)
  1473. goto found1;
  1474. v1 = is_tab[0][sf];
  1475. v2 = is_tab[1][sf];
  1476. for(j=0;j<len;j++) {
  1477. tmp0 = tab0[j];
  1478. tab0[j] = MULL(tmp0, v1, FRAC_BITS);
  1479. tab1[j] = MULL(tmp0, v2, FRAC_BITS);
  1480. }
  1481. } else {
  1482. found1:
  1483. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1484. /* lower part of the spectrum : do ms stereo
  1485. if enabled */
  1486. for(j=0;j<len;j++) {
  1487. tmp0 = tab0[j];
  1488. tmp1 = tab1[j];
  1489. tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1490. tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1491. }
  1492. }
  1493. }
  1494. }
  1495. }
  1496. non_zero_found = non_zero_found_short[0] |
  1497. non_zero_found_short[1] |
  1498. non_zero_found_short[2];
  1499. for(i = g1->long_end - 1;i >= 0;i--) {
  1500. len = band_size_long[s->sample_rate_index][i];
  1501. tab0 -= len;
  1502. tab1 -= len;
  1503. /* test if non zero band. if so, stop doing i-stereo */
  1504. if (!non_zero_found) {
  1505. for(j=0;j<len;j++) {
  1506. if (tab1[j] != 0) {
  1507. non_zero_found = 1;
  1508. goto found2;
  1509. }
  1510. }
  1511. /* for last band, use previous scale factor */
  1512. k = (i == 21) ? 20 : i;
  1513. sf = g1->scale_factors[k];
  1514. if (sf >= sf_max)
  1515. goto found2;
  1516. v1 = is_tab[0][sf];
  1517. v2 = is_tab[1][sf];
  1518. for(j=0;j<len;j++) {
  1519. tmp0 = tab0[j];
  1520. tab0[j] = MULL(tmp0, v1, FRAC_BITS);
  1521. tab1[j] = MULL(tmp0, v2, FRAC_BITS);
  1522. }
  1523. } else {
  1524. found2:
  1525. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1526. /* lower part of the spectrum : do ms stereo
  1527. if enabled */
  1528. for(j=0;j<len;j++) {
  1529. tmp0 = tab0[j];
  1530. tmp1 = tab1[j];
  1531. tab0[j] = MULL(tmp0 + tmp1, ISQRT2, FRAC_BITS);
  1532. tab1[j] = MULL(tmp0 - tmp1, ISQRT2, FRAC_BITS);
  1533. }
  1534. }
  1535. }
  1536. }
  1537. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1538. /* ms stereo ONLY */
  1539. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1540. global gain */
  1541. tab0 = g0->sb_hybrid;
  1542. tab1 = g1->sb_hybrid;
  1543. for(i=0;i<576;i++) {
  1544. tmp0 = tab0[i];
  1545. tmp1 = tab1[i];
  1546. tab0[i] = tmp0 + tmp1;
  1547. tab1[i] = tmp0 - tmp1;
  1548. }
  1549. }
  1550. }
  1551. static void compute_antialias_integer(MPADecodeContext *s,
  1552. GranuleDef *g)
  1553. {
  1554. int32_t *ptr, *csa;
  1555. int n, i;
  1556. /* we antialias only "long" bands */
  1557. if (g->block_type == 2) {
  1558. if (!g->switch_point)
  1559. return;
  1560. /* XXX: check this for 8000Hz case */
  1561. n = 1;
  1562. } else {
  1563. n = SBLIMIT - 1;
  1564. }
  1565. ptr = g->sb_hybrid + 18;
  1566. for(i = n;i > 0;i--) {
  1567. int tmp0, tmp1, tmp2;
  1568. csa = &csa_table[0][0];
  1569. #define INT_AA(j) \
  1570. tmp0 = ptr[-1-j];\
  1571. tmp1 = ptr[ j];\
  1572. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1573. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1574. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1575. INT_AA(0)
  1576. INT_AA(1)
  1577. INT_AA(2)
  1578. INT_AA(3)
  1579. INT_AA(4)
  1580. INT_AA(5)
  1581. INT_AA(6)
  1582. INT_AA(7)
  1583. ptr += 18;
  1584. }
  1585. }
  1586. static void compute_antialias_float(MPADecodeContext *s,
  1587. GranuleDef *g)
  1588. {
  1589. int32_t *ptr;
  1590. int n, i;
  1591. /* we antialias only "long" bands */
  1592. if (g->block_type == 2) {
  1593. if (!g->switch_point)
  1594. return;
  1595. /* XXX: check this for 8000Hz case */
  1596. n = 1;
  1597. } else {
  1598. n = SBLIMIT - 1;
  1599. }
  1600. ptr = g->sb_hybrid + 18;
  1601. for(i = n;i > 0;i--) {
  1602. float tmp0, tmp1;
  1603. float *csa = &csa_table_float[0][0];
  1604. #define FLOAT_AA(j)\
  1605. tmp0= ptr[-1-j];\
  1606. tmp1= ptr[ j];\
  1607. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1608. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1609. FLOAT_AA(0)
  1610. FLOAT_AA(1)
  1611. FLOAT_AA(2)
  1612. FLOAT_AA(3)
  1613. FLOAT_AA(4)
  1614. FLOAT_AA(5)
  1615. FLOAT_AA(6)
  1616. FLOAT_AA(7)
  1617. ptr += 18;
  1618. }
  1619. }
  1620. static void compute_imdct(MPADecodeContext *s,
  1621. GranuleDef *g,
  1622. int32_t *sb_samples,
  1623. int32_t *mdct_buf)
  1624. {
  1625. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1626. int32_t out2[12];
  1627. int i, j, mdct_long_end, v, sblimit;
  1628. /* find last non zero block */
  1629. ptr = g->sb_hybrid + 576;
  1630. ptr1 = g->sb_hybrid + 2 * 18;
  1631. while (ptr >= ptr1) {
  1632. ptr -= 6;
  1633. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1634. if (v != 0)
  1635. break;
  1636. }
  1637. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1638. if (g->block_type == 2) {
  1639. /* XXX: check for 8000 Hz */
  1640. if (g->switch_point)
  1641. mdct_long_end = 2;
  1642. else
  1643. mdct_long_end = 0;
  1644. } else {
  1645. mdct_long_end = sblimit;
  1646. }
  1647. buf = mdct_buf;
  1648. ptr = g->sb_hybrid;
  1649. for(j=0;j<mdct_long_end;j++) {
  1650. /* apply window & overlap with previous buffer */
  1651. out_ptr = sb_samples + j;
  1652. /* select window */
  1653. if (g->switch_point && j < 2)
  1654. win1 = mdct_win[0];
  1655. else
  1656. win1 = mdct_win[g->block_type];
  1657. /* select frequency inversion */
  1658. win = win1 + ((4 * 36) & -(j & 1));
  1659. imdct36(out_ptr, buf, ptr, win);
  1660. out_ptr += 18*SBLIMIT;
  1661. ptr += 18;
  1662. buf += 18;
  1663. }
  1664. for(j=mdct_long_end;j<sblimit;j++) {
  1665. /* select frequency inversion */
  1666. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1667. out_ptr = sb_samples + j;
  1668. for(i=0; i<6; i++){
  1669. *out_ptr = buf[i];
  1670. out_ptr += SBLIMIT;
  1671. }
  1672. imdct12(out2, ptr + 0);
  1673. for(i=0;i<6;i++) {
  1674. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1675. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1676. out_ptr += SBLIMIT;
  1677. }
  1678. imdct12(out2, ptr + 1);
  1679. for(i=0;i<6;i++) {
  1680. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1681. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1682. out_ptr += SBLIMIT;
  1683. }
  1684. imdct12(out2, ptr + 2);
  1685. for(i=0;i<6;i++) {
  1686. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1687. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1688. buf[i + 6*2] = 0;
  1689. }
  1690. ptr += 18;
  1691. buf += 18;
  1692. }
  1693. /* zero bands */
  1694. for(j=sblimit;j<SBLIMIT;j++) {
  1695. /* overlap */
  1696. out_ptr = sb_samples + j;
  1697. for(i=0;i<18;i++) {
  1698. *out_ptr = buf[i];
  1699. buf[i] = 0;
  1700. out_ptr += SBLIMIT;
  1701. }
  1702. buf += 18;
  1703. }
  1704. }
  1705. /* main layer3 decoding function */
  1706. static int mp_decode_layer3(MPADecodeContext *s)
  1707. {
  1708. int nb_granules, main_data_begin, private_bits;
  1709. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1710. GranuleDef granules[2][2], *g;
  1711. int16_t exponents[576];
  1712. /* read side info */
  1713. if (s->lsf) {
  1714. main_data_begin = get_bits(&s->gb, 8);
  1715. private_bits = get_bits(&s->gb, s->nb_channels);
  1716. nb_granules = 1;
  1717. } else {
  1718. main_data_begin = get_bits(&s->gb, 9);
  1719. if (s->nb_channels == 2)
  1720. private_bits = get_bits(&s->gb, 3);
  1721. else
  1722. private_bits = get_bits(&s->gb, 5);
  1723. nb_granules = 2;
  1724. for(ch=0;ch<s->nb_channels;ch++) {
  1725. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1726. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1727. }
  1728. }
  1729. for(gr=0;gr<nb_granules;gr++) {
  1730. for(ch=0;ch<s->nb_channels;ch++) {
  1731. dprintf(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
  1732. g = &granules[ch][gr];
  1733. g->part2_3_length = get_bits(&s->gb, 12);
  1734. g->big_values = get_bits(&s->gb, 9);
  1735. if(g->big_values > 288){
  1736. av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
  1737. return -1;
  1738. }
  1739. g->global_gain = get_bits(&s->gb, 8);
  1740. /* if MS stereo only is selected, we precompute the
  1741. 1/sqrt(2) renormalization factor */
  1742. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1743. MODE_EXT_MS_STEREO)
  1744. g->global_gain -= 2;
  1745. if (s->lsf)
  1746. g->scalefac_compress = get_bits(&s->gb, 9);
  1747. else
  1748. g->scalefac_compress = get_bits(&s->gb, 4);
  1749. blocksplit_flag = get_bits1(&s->gb);
  1750. if (blocksplit_flag) {
  1751. g->block_type = get_bits(&s->gb, 2);
  1752. if (g->block_type == 0){
  1753. av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
  1754. return -1;
  1755. }
  1756. g->switch_point = get_bits1(&s->gb);
  1757. for(i=0;i<2;i++)
  1758. g->table_select[i] = get_bits(&s->gb, 5);
  1759. for(i=0;i<3;i++)
  1760. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1761. ff_init_short_region(s, g);
  1762. } else {
  1763. int region_address1, region_address2;
  1764. g->block_type = 0;
  1765. g->switch_point = 0;
  1766. for(i=0;i<3;i++)
  1767. g->table_select[i] = get_bits(&s->gb, 5);
  1768. /* compute huffman coded region sizes */
  1769. region_address1 = get_bits(&s->gb, 4);
  1770. region_address2 = get_bits(&s->gb, 3);
  1771. dprintf(s->avctx, "region1=%d region2=%d\n",
  1772. region_address1, region_address2);
  1773. ff_init_long_region(s, g, region_address1, region_address2);
  1774. }
  1775. ff_region_offset2size(g);
  1776. ff_compute_band_indexes(s, g);
  1777. g->preflag = 0;
  1778. if (!s->lsf)
  1779. g->preflag = get_bits1(&s->gb);
  1780. g->scalefac_scale = get_bits1(&s->gb);
  1781. g->count1table_select = get_bits1(&s->gb);
  1782. dprintf(s->avctx, "block_type=%d switch_point=%d\n",
  1783. g->block_type, g->switch_point);
  1784. }
  1785. }
  1786. if (!s->adu_mode) {
  1787. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  1788. assert((get_bits_count(&s->gb) & 7) == 0);
  1789. /* now we get bits from the main_data_begin offset */
  1790. dprintf(s->avctx, "seekback: %d\n", main_data_begin);
  1791. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  1792. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  1793. s->in_gb= s->gb;
  1794. init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
  1795. skip_bits_long(&s->gb, 8*(s->last_buf_size - main_data_begin));
  1796. }
  1797. for(gr=0;gr<nb_granules;gr++) {
  1798. for(ch=0;ch<s->nb_channels;ch++) {
  1799. g = &granules[ch][gr];
  1800. if(get_bits_count(&s->gb)<0){
  1801. av_log(s->avctx, AV_LOG_DEBUG, "mdb:%d, lastbuf:%d skipping granule %d\n",
  1802. main_data_begin, s->last_buf_size, gr);
  1803. skip_bits_long(&s->gb, g->part2_3_length);
  1804. memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
  1805. if(get_bits_count(&s->gb) >= s->gb.size_in_bits && s->in_gb.buffer){
  1806. skip_bits_long(&s->in_gb, get_bits_count(&s->gb) - s->gb.size_in_bits);
  1807. s->gb= s->in_gb;
  1808. s->in_gb.buffer=NULL;
  1809. }
  1810. continue;
  1811. }
  1812. bits_pos = get_bits_count(&s->gb);
  1813. if (!s->lsf) {
  1814. uint8_t *sc;
  1815. int slen, slen1, slen2;
  1816. /* MPEG1 scale factors */
  1817. slen1 = slen_table[0][g->scalefac_compress];
  1818. slen2 = slen_table[1][g->scalefac_compress];
  1819. dprintf(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
  1820. if (g->block_type == 2) {
  1821. n = g->switch_point ? 17 : 18;
  1822. j = 0;
  1823. if(slen1){
  1824. for(i=0;i<n;i++)
  1825. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  1826. }else{
  1827. for(i=0;i<n;i++)
  1828. g->scale_factors[j++] = 0;
  1829. }
  1830. if(slen2){
  1831. for(i=0;i<18;i++)
  1832. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  1833. for(i=0;i<3;i++)
  1834. g->scale_factors[j++] = 0;
  1835. }else{
  1836. for(i=0;i<21;i++)
  1837. g->scale_factors[j++] = 0;
  1838. }
  1839. } else {
  1840. sc = granules[ch][0].scale_factors;
  1841. j = 0;
  1842. for(k=0;k<4;k++) {
  1843. n = (k == 0 ? 6 : 5);
  1844. if ((g->scfsi & (0x8 >> k)) == 0) {
  1845. slen = (k < 2) ? slen1 : slen2;
  1846. if(slen){
  1847. for(i=0;i<n;i++)
  1848. g->scale_factors[j++] = get_bits(&s->gb, slen);
  1849. }else{
  1850. for(i=0;i<n;i++)
  1851. g->scale_factors[j++] = 0;
  1852. }
  1853. } else {
  1854. /* simply copy from last granule */
  1855. for(i=0;i<n;i++) {
  1856. g->scale_factors[j] = sc[j];
  1857. j++;
  1858. }
  1859. }
  1860. }
  1861. g->scale_factors[j++] = 0;
  1862. }
  1863. } else {
  1864. int tindex, tindex2, slen[4], sl, sf;
  1865. /* LSF scale factors */
  1866. if (g->block_type == 2) {
  1867. tindex = g->switch_point ? 2 : 1;
  1868. } else {
  1869. tindex = 0;
  1870. }
  1871. sf = g->scalefac_compress;
  1872. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  1873. /* intensity stereo case */
  1874. sf >>= 1;
  1875. if (sf < 180) {
  1876. lsf_sf_expand(slen, sf, 6, 6, 0);
  1877. tindex2 = 3;
  1878. } else if (sf < 244) {
  1879. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  1880. tindex2 = 4;
  1881. } else {
  1882. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  1883. tindex2 = 5;
  1884. }
  1885. } else {
  1886. /* normal case */
  1887. if (sf < 400) {
  1888. lsf_sf_expand(slen, sf, 5, 4, 4);
  1889. tindex2 = 0;
  1890. } else if (sf < 500) {
  1891. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  1892. tindex2 = 1;
  1893. } else {
  1894. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  1895. tindex2 = 2;
  1896. g->preflag = 1;
  1897. }
  1898. }
  1899. j = 0;
  1900. for(k=0;k<4;k++) {
  1901. n = lsf_nsf_table[tindex2][tindex][k];
  1902. sl = slen[k];
  1903. if(sl){
  1904. for(i=0;i<n;i++)
  1905. g->scale_factors[j++] = get_bits(&s->gb, sl);
  1906. }else{
  1907. for(i=0;i<n;i++)
  1908. g->scale_factors[j++] = 0;
  1909. }
  1910. }
  1911. /* XXX: should compute exact size */
  1912. for(;j<40;j++)
  1913. g->scale_factors[j] = 0;
  1914. }
  1915. exponents_from_scale_factors(s, g, exponents);
  1916. /* read Huffman coded residue */
  1917. huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
  1918. } /* ch */
  1919. if (s->nb_channels == 2)
  1920. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  1921. for(ch=0;ch<s->nb_channels;ch++) {
  1922. g = &granules[ch][gr];
  1923. reorder_block(s, g);
  1924. s->compute_antialias(s, g);
  1925. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  1926. }
  1927. } /* gr */
  1928. if(get_bits_count(&s->gb)<0)
  1929. skip_bits_long(&s->gb, -get_bits_count(&s->gb));
  1930. return nb_granules * 18;
  1931. }
  1932. static int mp_decode_frame(MPADecodeContext *s,
  1933. OUT_INT *samples, const uint8_t *buf, int buf_size)
  1934. {
  1935. int i, nb_frames, ch;
  1936. OUT_INT *samples_ptr;
  1937. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  1938. /* skip error protection field */
  1939. if (s->error_protection)
  1940. skip_bits(&s->gb, 16);
  1941. dprintf(s->avctx, "frame %d:\n", s->frame_count);
  1942. switch(s->layer) {
  1943. case 1:
  1944. s->avctx->frame_size = 384;
  1945. nb_frames = mp_decode_layer1(s);
  1946. break;
  1947. case 2:
  1948. s->avctx->frame_size = 1152;
  1949. nb_frames = mp_decode_layer2(s);
  1950. break;
  1951. case 3:
  1952. s->avctx->frame_size = s->lsf ? 576 : 1152;
  1953. default:
  1954. nb_frames = mp_decode_layer3(s);
  1955. s->last_buf_size=0;
  1956. if(s->in_gb.buffer){
  1957. align_get_bits(&s->gb);
  1958. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  1959. if(i >= 0 && i <= BACKSTEP_SIZE){
  1960. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  1961. s->last_buf_size=i;
  1962. }else
  1963. av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  1964. s->gb= s->in_gb;
  1965. s->in_gb.buffer= NULL;
  1966. }
  1967. align_get_bits(&s->gb);
  1968. assert((get_bits_count(&s->gb) & 7) == 0);
  1969. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  1970. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  1971. if(i<0)
  1972. av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  1973. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  1974. }
  1975. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  1976. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  1977. s->last_buf_size += i;
  1978. break;
  1979. }
  1980. /* apply the synthesis filter */
  1981. for(ch=0;ch<s->nb_channels;ch++) {
  1982. samples_ptr = samples + ch;
  1983. for(i=0;i<nb_frames;i++) {
  1984. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  1985. ff_mpa_synth_window, &s->dither_state,
  1986. samples_ptr, s->nb_channels,
  1987. s->sb_samples[ch][i]);
  1988. samples_ptr += 32 * s->nb_channels;
  1989. }
  1990. }
  1991. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  1992. }
  1993. static int decode_frame(AVCodecContext * avctx,
  1994. void *data, int *data_size,
  1995. AVPacket *avpkt)
  1996. {
  1997. const uint8_t *buf = avpkt->data;
  1998. int buf_size = avpkt->size;
  1999. MPADecodeContext *s = avctx->priv_data;
  2000. uint32_t header;
  2001. int out_size;
  2002. OUT_INT *out_samples = data;
  2003. if(buf_size < HEADER_SIZE)
  2004. return -1;
  2005. header = AV_RB32(buf);
  2006. if(ff_mpa_check_header(header) < 0){
  2007. av_log(avctx, AV_LOG_ERROR, "Header missing\n");
  2008. return -1;
  2009. }
  2010. if (ff_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
  2011. /* free format: prepare to compute frame size */
  2012. s->frame_size = -1;
  2013. return -1;
  2014. }
  2015. /* update codec info */
  2016. avctx->channels = s->nb_channels;
  2017. avctx->bit_rate = s->bit_rate;
  2018. avctx->sub_id = s->layer;
  2019. if(*data_size < 1152*avctx->channels*sizeof(OUT_INT))
  2020. return -1;
  2021. *data_size = 0;
  2022. if(s->frame_size<=0 || s->frame_size > buf_size){
  2023. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2024. return -1;
  2025. }else if(s->frame_size < buf_size){
  2026. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2027. buf_size= s->frame_size;
  2028. }
  2029. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2030. if(out_size>=0){
  2031. *data_size = out_size;
  2032. avctx->sample_rate = s->sample_rate;
  2033. //FIXME maybe move the other codec info stuff from above here too
  2034. }else
  2035. av_log(avctx, AV_LOG_DEBUG, "Error while decoding MPEG audio frame.\n"); //FIXME return -1 / but also return the number of bytes consumed
  2036. s->frame_size = 0;
  2037. return buf_size;
  2038. }
  2039. static void flush(AVCodecContext *avctx){
  2040. MPADecodeContext *s = avctx->priv_data;
  2041. memset(s->synth_buf, 0, sizeof(s->synth_buf));
  2042. s->last_buf_size= 0;
  2043. }
  2044. #if CONFIG_MP3ADU_DECODER
  2045. static int decode_frame_adu(AVCodecContext * avctx,
  2046. void *data, int *data_size,
  2047. AVPacket *avpkt)
  2048. {
  2049. const uint8_t *buf = avpkt->data;
  2050. int buf_size = avpkt->size;
  2051. MPADecodeContext *s = avctx->priv_data;
  2052. uint32_t header;
  2053. int len, out_size;
  2054. OUT_INT *out_samples = data;
  2055. len = buf_size;
  2056. // Discard too short frames
  2057. if (buf_size < HEADER_SIZE) {
  2058. *data_size = 0;
  2059. return buf_size;
  2060. }
  2061. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2062. len = MPA_MAX_CODED_FRAME_SIZE;
  2063. // Get header and restore sync word
  2064. header = AV_RB32(buf) | 0xffe00000;
  2065. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2066. *data_size = 0;
  2067. return buf_size;
  2068. }
  2069. ff_mpegaudio_decode_header((MPADecodeHeader *)s, header);
  2070. /* update codec info */
  2071. avctx->sample_rate = s->sample_rate;
  2072. avctx->channels = s->nb_channels;
  2073. avctx->bit_rate = s->bit_rate;
  2074. avctx->sub_id = s->layer;
  2075. s->frame_size = len;
  2076. if (avctx->parse_only) {
  2077. out_size = buf_size;
  2078. } else {
  2079. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2080. }
  2081. *data_size = out_size;
  2082. return buf_size;
  2083. }
  2084. #endif /* CONFIG_MP3ADU_DECODER */
  2085. #if CONFIG_MP3ON4_DECODER
  2086. /**
  2087. * Context for MP3On4 decoder
  2088. */
  2089. typedef struct MP3On4DecodeContext {
  2090. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  2091. int syncword; ///< syncword patch
  2092. const uint8_t *coff; ///< channels offsets in output buffer
  2093. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  2094. } MP3On4DecodeContext;
  2095. #include "mpeg4audio.h"
  2096. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2097. static const uint8_t mp3Frames[8] = {0,1,1,2,3,3,4,5}; /* number of mp3 decoder instances */
  2098. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2099. static const uint8_t chan_offset[8][5] = {
  2100. {0},
  2101. {0}, // C
  2102. {0}, // FLR
  2103. {2,0}, // C FLR
  2104. {2,0,3}, // C FLR BS
  2105. {4,0,2}, // C FLR BLRS
  2106. {4,0,2,5}, // C FLR BLRS LFE
  2107. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2108. };
  2109. static int decode_init_mp3on4(AVCodecContext * avctx)
  2110. {
  2111. MP3On4DecodeContext *s = avctx->priv_data;
  2112. MPEG4AudioConfig cfg;
  2113. int i;
  2114. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2115. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2116. return -1;
  2117. }
  2118. ff_mpeg4audio_get_config(&cfg, avctx->extradata, avctx->extradata_size);
  2119. if (!cfg.chan_config || cfg.chan_config > 7) {
  2120. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2121. return -1;
  2122. }
  2123. s->frames = mp3Frames[cfg.chan_config];
  2124. s->coff = chan_offset[cfg.chan_config];
  2125. avctx->channels = ff_mpeg4audio_channels[cfg.chan_config];
  2126. if (cfg.sample_rate < 16000)
  2127. s->syncword = 0xffe00000;
  2128. else
  2129. s->syncword = 0xfff00000;
  2130. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2131. * We replace avctx->priv_data with the context of the first decoder so that
  2132. * decode_init() does not have to be changed.
  2133. * Other decoders will be initialized here copying data from the first context
  2134. */
  2135. // Allocate zeroed memory for the first decoder context
  2136. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2137. // Put decoder context in place to make init_decode() happy
  2138. avctx->priv_data = s->mp3decctx[0];
  2139. decode_init(avctx);
  2140. // Restore mp3on4 context pointer
  2141. avctx->priv_data = s;
  2142. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2143. /* Create a separate codec/context for each frame (first is already ok).
  2144. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2145. */
  2146. for (i = 1; i < s->frames; i++) {
  2147. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2148. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2149. s->mp3decctx[i]->adu_mode = 1;
  2150. s->mp3decctx[i]->avctx = avctx;
  2151. }
  2152. return 0;
  2153. }
  2154. static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
  2155. {
  2156. MP3On4DecodeContext *s = avctx->priv_data;
  2157. int i;
  2158. for (i = 0; i < s->frames; i++)
  2159. if (s->mp3decctx[i])
  2160. av_free(s->mp3decctx[i]);
  2161. return 0;
  2162. }
  2163. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2164. void *data, int *data_size,
  2165. AVPacket *avpkt)
  2166. {
  2167. const uint8_t *buf = avpkt->data;
  2168. int buf_size = avpkt->size;
  2169. MP3On4DecodeContext *s = avctx->priv_data;
  2170. MPADecodeContext *m;
  2171. int fsize, len = buf_size, out_size = 0;
  2172. uint32_t header;
  2173. OUT_INT *out_samples = data;
  2174. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2175. OUT_INT *outptr, *bp;
  2176. int fr, j, n;
  2177. if(*data_size < MPA_FRAME_SIZE * MPA_MAX_CHANNELS * s->frames * sizeof(OUT_INT))
  2178. return -1;
  2179. *data_size = 0;
  2180. // Discard too short frames
  2181. if (buf_size < HEADER_SIZE)
  2182. return -1;
  2183. // If only one decoder interleave is not needed
  2184. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2185. avctx->bit_rate = 0;
  2186. for (fr = 0; fr < s->frames; fr++) {
  2187. fsize = AV_RB16(buf) >> 4;
  2188. fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
  2189. m = s->mp3decctx[fr];
  2190. assert (m != NULL);
  2191. header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
  2192. if (ff_mpa_check_header(header) < 0) // Bad header, discard block
  2193. break;
  2194. ff_mpegaudio_decode_header((MPADecodeHeader *)m, header);
  2195. out_size += mp_decode_frame(m, outptr, buf, fsize);
  2196. buf += fsize;
  2197. len -= fsize;
  2198. if(s->frames > 1) {
  2199. n = m->avctx->frame_size*m->nb_channels;
  2200. /* interleave output data */
  2201. bp = out_samples + s->coff[fr];
  2202. if(m->nb_channels == 1) {
  2203. for(j = 0; j < n; j++) {
  2204. *bp = decoded_buf[j];
  2205. bp += avctx->channels;
  2206. }
  2207. } else {
  2208. for(j = 0; j < n; j++) {
  2209. bp[0] = decoded_buf[j++];
  2210. bp[1] = decoded_buf[j];
  2211. bp += avctx->channels;
  2212. }
  2213. }
  2214. }
  2215. avctx->bit_rate += m->bit_rate;
  2216. }
  2217. /* update codec info */
  2218. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2219. *data_size = out_size;
  2220. return buf_size;
  2221. }
  2222. #endif /* CONFIG_MP3ON4_DECODER */
  2223. #if CONFIG_MP1_DECODER
  2224. AVCodec mp1_decoder =
  2225. {
  2226. "mp1",
  2227. CODEC_TYPE_AUDIO,
  2228. CODEC_ID_MP1,
  2229. sizeof(MPADecodeContext),
  2230. decode_init,
  2231. NULL,
  2232. NULL,
  2233. decode_frame,
  2234. CODEC_CAP_PARSE_ONLY,
  2235. .flush= flush,
  2236. .long_name= NULL_IF_CONFIG_SMALL("MP1 (MPEG audio layer 1)"),
  2237. };
  2238. #endif
  2239. #if CONFIG_MP2_DECODER
  2240. AVCodec mp2_decoder =
  2241. {
  2242. "mp2",
  2243. CODEC_TYPE_AUDIO,
  2244. CODEC_ID_MP2,
  2245. sizeof(MPADecodeContext),
  2246. decode_init,
  2247. NULL,
  2248. NULL,
  2249. decode_frame,
  2250. CODEC_CAP_PARSE_ONLY,
  2251. .flush= flush,
  2252. .long_name= NULL_IF_CONFIG_SMALL("MP2 (MPEG audio layer 2)"),
  2253. };
  2254. #endif
  2255. #if CONFIG_MP3_DECODER
  2256. AVCodec mp3_decoder =
  2257. {
  2258. "mp3",
  2259. CODEC_TYPE_AUDIO,
  2260. CODEC_ID_MP3,
  2261. sizeof(MPADecodeContext),
  2262. decode_init,
  2263. NULL,
  2264. NULL,
  2265. decode_frame,
  2266. CODEC_CAP_PARSE_ONLY,
  2267. .flush= flush,
  2268. .long_name= NULL_IF_CONFIG_SMALL("MP3 (MPEG audio layer 3)"),
  2269. };
  2270. #endif
  2271. #if CONFIG_MP3ADU_DECODER
  2272. AVCodec mp3adu_decoder =
  2273. {
  2274. "mp3adu",
  2275. CODEC_TYPE_AUDIO,
  2276. CODEC_ID_MP3ADU,
  2277. sizeof(MPADecodeContext),
  2278. decode_init,
  2279. NULL,
  2280. NULL,
  2281. decode_frame_adu,
  2282. CODEC_CAP_PARSE_ONLY,
  2283. .flush= flush,
  2284. .long_name= NULL_IF_CONFIG_SMALL("ADU (Application Data Unit) MP3 (MPEG audio layer 3)"),
  2285. };
  2286. #endif
  2287. #if CONFIG_MP3ON4_DECODER
  2288. AVCodec mp3on4_decoder =
  2289. {
  2290. "mp3on4",
  2291. CODEC_TYPE_AUDIO,
  2292. CODEC_ID_MP3ON4,
  2293. sizeof(MP3On4DecodeContext),
  2294. decode_init_mp3on4,
  2295. NULL,
  2296. decode_close_mp3on4,
  2297. decode_frame_mp3on4,
  2298. .flush= flush,
  2299. .long_name= NULL_IF_CONFIG_SMALL("MP3onMP4"),
  2300. };
  2301. #endif