You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

4316 lines
144KB

  1. /*
  2. * VC-1 and WMV3 decoder
  3. * Copyright (c) 2006 Konstantin Shishkov
  4. * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. */
  21. /**
  22. * @file vc1.c
  23. * VC-1 and WMV3 decoder
  24. *
  25. */
  26. #include "common.h"
  27. #include "dsputil.h"
  28. #include "avcodec.h"
  29. #include "mpegvideo.h"
  30. #include "vc1data.h"
  31. #include "vc1acdata.h"
  32. #undef NDEBUG
  33. #include <assert.h>
  34. extern const uint32_t ff_table0_dc_lum[120][2], ff_table1_dc_lum[120][2];
  35. extern const uint32_t ff_table0_dc_chroma[120][2], ff_table1_dc_chroma[120][2];
  36. extern VLC ff_msmp4_dc_luma_vlc[2], ff_msmp4_dc_chroma_vlc[2];
  37. #define MB_INTRA_VLC_BITS 9
  38. extern VLC ff_msmp4_mb_i_vlc;
  39. extern const uint16_t ff_msmp4_mb_i_table[64][2];
  40. #define DC_VLC_BITS 9
  41. #define AC_VLC_BITS 9
  42. static const uint16_t table_mb_intra[64][2];
  43. /** Available Profiles */
  44. //@{
  45. enum Profile {
  46. PROFILE_SIMPLE,
  47. PROFILE_MAIN,
  48. PROFILE_COMPLEX, ///< TODO: WMV9 specific
  49. PROFILE_ADVANCED
  50. };
  51. //@}
  52. /** Sequence quantizer mode */
  53. //@{
  54. enum QuantMode {
  55. QUANT_FRAME_IMPLICIT, ///< Implicitly specified at frame level
  56. QUANT_FRAME_EXPLICIT, ///< Explicitly specified at frame level
  57. QUANT_NON_UNIFORM, ///< Non-uniform quant used for all frames
  58. QUANT_UNIFORM ///< Uniform quant used for all frames
  59. };
  60. //@}
  61. /** Where quant can be changed */
  62. //@{
  63. enum DQProfile {
  64. DQPROFILE_FOUR_EDGES,
  65. DQPROFILE_DOUBLE_EDGES,
  66. DQPROFILE_SINGLE_EDGE,
  67. DQPROFILE_ALL_MBS
  68. };
  69. //@}
  70. /** @name Where quant can be changed
  71. */
  72. //@{
  73. enum DQSingleEdge {
  74. DQSINGLE_BEDGE_LEFT,
  75. DQSINGLE_BEDGE_TOP,
  76. DQSINGLE_BEDGE_RIGHT,
  77. DQSINGLE_BEDGE_BOTTOM
  78. };
  79. //@}
  80. /** Which pair of edges is quantized with ALTPQUANT */
  81. //@{
  82. enum DQDoubleEdge {
  83. DQDOUBLE_BEDGE_TOPLEFT,
  84. DQDOUBLE_BEDGE_TOPRIGHT,
  85. DQDOUBLE_BEDGE_BOTTOMRIGHT,
  86. DQDOUBLE_BEDGE_BOTTOMLEFT
  87. };
  88. //@}
  89. /** MV modes for P frames */
  90. //@{
  91. enum MVModes {
  92. MV_PMODE_1MV_HPEL_BILIN,
  93. MV_PMODE_1MV,
  94. MV_PMODE_1MV_HPEL,
  95. MV_PMODE_MIXED_MV,
  96. MV_PMODE_INTENSITY_COMP
  97. };
  98. //@}
  99. /** @name MV types for B frames */
  100. //@{
  101. enum BMVTypes {
  102. BMV_TYPE_BACKWARD,
  103. BMV_TYPE_FORWARD,
  104. BMV_TYPE_INTERPOLATED
  105. };
  106. //@}
  107. /** @name Block types for P/B frames */
  108. //@{
  109. enum TransformTypes {
  110. TT_8X8,
  111. TT_8X4_BOTTOM,
  112. TT_8X4_TOP,
  113. TT_8X4, //Both halves
  114. TT_4X8_RIGHT,
  115. TT_4X8_LEFT,
  116. TT_4X8, //Both halves
  117. TT_4X4
  118. };
  119. //@}
  120. /** Table for conversion between TTBLK and TTMB */
  121. static const int ttblk_to_tt[3][8] = {
  122. { TT_8X4, TT_4X8, TT_8X8, TT_4X4, TT_8X4_TOP, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT },
  123. { TT_8X8, TT_4X8_RIGHT, TT_4X8_LEFT, TT_4X4, TT_8X4, TT_4X8, TT_8X4_BOTTOM, TT_8X4_TOP },
  124. { TT_8X8, TT_4X8, TT_4X4, TT_8X4_BOTTOM, TT_4X8_RIGHT, TT_4X8_LEFT, TT_8X4, TT_8X4_TOP }
  125. };
  126. static const int ttfrm_to_tt[4] = { TT_8X8, TT_8X4, TT_4X8, TT_4X4 };
  127. /** MV P mode - the 5th element is only used for mode 1 */
  128. static const uint8_t mv_pmode_table[2][5] = {
  129. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_MIXED_MV },
  130. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_INTENSITY_COMP, MV_PMODE_1MV_HPEL_BILIN }
  131. };
  132. static const uint8_t mv_pmode_table2[2][4] = {
  133. { MV_PMODE_1MV_HPEL_BILIN, MV_PMODE_1MV, MV_PMODE_1MV_HPEL, MV_PMODE_MIXED_MV },
  134. { MV_PMODE_1MV, MV_PMODE_MIXED_MV, MV_PMODE_1MV_HPEL, MV_PMODE_1MV_HPEL_BILIN }
  135. };
  136. /** One more frame type */
  137. #define BI_TYPE 7
  138. static const int fps_nr[5] = { 24, 25, 30, 50, 60 },
  139. fps_dr[2] = { 1000, 1001 };
  140. static const uint8_t pquant_table[3][32] = {
  141. { /* Implicit quantizer */
  142. 0, 1, 2, 3, 4, 5, 6, 7, 8, 6, 7, 8, 9, 10, 11, 12,
  143. 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 29, 31
  144. },
  145. { /* Explicit quantizer, pquantizer uniform */
  146. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
  147. 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
  148. },
  149. { /* Explicit quantizer, pquantizer non-uniform */
  150. 0, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
  151. 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 31
  152. }
  153. };
  154. /** @name VC-1 VLC tables and defines
  155. * @todo TODO move this into the context
  156. */
  157. //@{
  158. #define VC1_BFRACTION_VLC_BITS 7
  159. static VLC vc1_bfraction_vlc;
  160. #define VC1_IMODE_VLC_BITS 4
  161. static VLC vc1_imode_vlc;
  162. #define VC1_NORM2_VLC_BITS 3
  163. static VLC vc1_norm2_vlc;
  164. #define VC1_NORM6_VLC_BITS 9
  165. static VLC vc1_norm6_vlc;
  166. /* Could be optimized, one table only needs 8 bits */
  167. #define VC1_TTMB_VLC_BITS 9 //12
  168. static VLC vc1_ttmb_vlc[3];
  169. #define VC1_MV_DIFF_VLC_BITS 9 //15
  170. static VLC vc1_mv_diff_vlc[4];
  171. #define VC1_CBPCY_P_VLC_BITS 9 //14
  172. static VLC vc1_cbpcy_p_vlc[4];
  173. #define VC1_4MV_BLOCK_PATTERN_VLC_BITS 6
  174. static VLC vc1_4mv_block_pattern_vlc[4];
  175. #define VC1_TTBLK_VLC_BITS 5
  176. static VLC vc1_ttblk_vlc[3];
  177. #define VC1_SUBBLKPAT_VLC_BITS 6
  178. static VLC vc1_subblkpat_vlc[3];
  179. static VLC vc1_ac_coeff_table[8];
  180. //@}
  181. enum CodingSet {
  182. CS_HIGH_MOT_INTRA = 0,
  183. CS_HIGH_MOT_INTER,
  184. CS_LOW_MOT_INTRA,
  185. CS_LOW_MOT_INTER,
  186. CS_MID_RATE_INTRA,
  187. CS_MID_RATE_INTER,
  188. CS_HIGH_RATE_INTRA,
  189. CS_HIGH_RATE_INTER
  190. };
  191. /** @name Overlap conditions for Advanced Profile */
  192. //@{
  193. enum COTypes {
  194. CONDOVER_NONE = 0,
  195. CONDOVER_ALL,
  196. CONDOVER_SELECT
  197. };
  198. //@}
  199. /** The VC1 Context
  200. * @fixme Change size wherever another size is more efficient
  201. * Many members are only used for Advanced Profile
  202. */
  203. typedef struct VC1Context{
  204. MpegEncContext s;
  205. int bits;
  206. /** Simple/Main Profile sequence header */
  207. //@{
  208. int res_sm; ///< reserved, 2b
  209. int res_x8; ///< reserved
  210. int multires; ///< frame-level RESPIC syntax element present
  211. int res_fasttx; ///< reserved, always 1
  212. int res_transtab; ///< reserved, always 0
  213. int rangered; ///< RANGEREDFRM (range reduction) syntax element present
  214. ///< at frame level
  215. int res_rtm_flag; ///< reserved, set to 1
  216. int reserved; ///< reserved
  217. //@}
  218. /** Advanced Profile */
  219. //@{
  220. int level; ///< 3bits, for Advanced/Simple Profile, provided by TS layer
  221. int chromaformat; ///< 2bits, 2=4:2:0, only defined
  222. int postprocflag; ///< Per-frame processing suggestion flag present
  223. int broadcast; ///< TFF/RFF present
  224. int interlace; ///< Progressive/interlaced (RPTFTM syntax element)
  225. int tfcntrflag; ///< TFCNTR present
  226. int panscanflag; ///< NUMPANSCANWIN, TOPLEFT{X,Y}, BOTRIGHT{X,Y} present
  227. int extended_dmv; ///< Additional extended dmv range at P/B frame-level
  228. int color_prim; ///< 8bits, chroma coordinates of the color primaries
  229. int transfer_char; ///< 8bits, Opto-electronic transfer characteristics
  230. int matrix_coef; ///< 8bits, Color primaries->YCbCr transform matrix
  231. int hrd_param_flag; ///< Presence of Hypothetical Reference
  232. ///< Decoder parameters
  233. int psf; ///< Progressive Segmented Frame
  234. //@}
  235. /** Sequence header data for all Profiles
  236. * TODO: choose between ints, uint8_ts and monobit flags
  237. */
  238. //@{
  239. int profile; ///< 2bits, Profile
  240. int frmrtq_postproc; ///< 3bits,
  241. int bitrtq_postproc; ///< 5bits, quantized framerate-based postprocessing strength
  242. int fastuvmc; ///< Rounding of qpel vector to hpel ? (not in Simple)
  243. int extended_mv; ///< Ext MV in P/B (not in Simple)
  244. int dquant; ///< How qscale varies with MBs, 2bits (not in Simple)
  245. int vstransform; ///< variable-size [48]x[48] transform type + info
  246. int overlap; ///< overlapped transforms in use
  247. int quantizer_mode; ///< 2bits, quantizer mode used for sequence, see QUANT_*
  248. int finterpflag; ///< INTERPFRM present
  249. //@}
  250. /** Frame decoding info for all profiles */
  251. //@{
  252. uint8_t mv_mode; ///< MV coding monde
  253. uint8_t mv_mode2; ///< Secondary MV coding mode (B frames)
  254. int k_x; ///< Number of bits for MVs (depends on MV range)
  255. int k_y; ///< Number of bits for MVs (depends on MV range)
  256. int range_x, range_y; ///< MV range
  257. uint8_t pq, altpq; ///< Current/alternate frame quantizer scale
  258. /** pquant parameters */
  259. //@{
  260. uint8_t dquantfrm;
  261. uint8_t dqprofile;
  262. uint8_t dqsbedge;
  263. uint8_t dqbilevel;
  264. //@}
  265. /** AC coding set indexes
  266. * @see 8.1.1.10, p(1)10
  267. */
  268. //@{
  269. int c_ac_table_index; ///< Chroma index from ACFRM element
  270. int y_ac_table_index; ///< Luma index from AC2FRM element
  271. //@}
  272. int ttfrm; ///< Transform type info present at frame level
  273. uint8_t ttmbf; ///< Transform type flag
  274. uint8_t ttblk4x4; ///< Value of ttblk which indicates a 4x4 transform
  275. int codingset; ///< index of current table set from 11.8 to use for luma block decoding
  276. int codingset2; ///< index of current table set from 11.8 to use for chroma block decoding
  277. int pqindex; ///< raw pqindex used in coding set selection
  278. int a_avail, c_avail;
  279. uint8_t *mb_type_base, *mb_type[3];
  280. /** Luma compensation parameters */
  281. //@{
  282. uint8_t lumscale;
  283. uint8_t lumshift;
  284. //@}
  285. int16_t bfraction; ///< Relative position % anchors=> how to scale MVs
  286. uint8_t halfpq; ///< Uniform quant over image and qp+.5
  287. uint8_t respic; ///< Frame-level flag for resized images
  288. int buffer_fullness; ///< HRD info
  289. /** Ranges:
  290. * -# 0 -> [-64n 63.f] x [-32, 31.f]
  291. * -# 1 -> [-128, 127.f] x [-64, 63.f]
  292. * -# 2 -> [-512, 511.f] x [-128, 127.f]
  293. * -# 3 -> [-1024, 1023.f] x [-256, 255.f]
  294. */
  295. uint8_t mvrange;
  296. uint8_t pquantizer; ///< Uniform (over sequence) quantizer in use
  297. VLC *cbpcy_vlc; ///< CBPCY VLC table
  298. int tt_index; ///< Index for Transform Type tables
  299. uint8_t* mv_type_mb_plane; ///< bitplane for mv_type == (4MV)
  300. uint8_t* direct_mb_plane; ///< bitplane for "direct" MBs
  301. int mv_type_is_raw; ///< mv type mb plane is not coded
  302. int dmb_is_raw; ///< direct mb plane is raw
  303. int skip_is_raw; ///< skip mb plane is not coded
  304. uint8_t luty[256], lutuv[256]; // lookup tables used for intensity compensation
  305. int use_ic; ///< use intensity compensation in B-frames
  306. int rnd; ///< rounding control
  307. /** Frame decoding info for S/M profiles only */
  308. //@{
  309. uint8_t rangeredfrm; ///< out_sample = CLIP((in_sample-128)*2+128)
  310. uint8_t interpfrm;
  311. //@}
  312. /** Frame decoding info for Advanced profile */
  313. //@{
  314. uint8_t fcm; ///< 0->Progressive, 2->Frame-Interlace, 3->Field-Interlace
  315. uint8_t numpanscanwin;
  316. uint8_t tfcntr;
  317. uint8_t rptfrm, tff, rff;
  318. uint16_t topleftx;
  319. uint16_t toplefty;
  320. uint16_t bottomrightx;
  321. uint16_t bottomrighty;
  322. uint8_t uvsamp;
  323. uint8_t postproc;
  324. int hrd_num_leaky_buckets;
  325. uint8_t bit_rate_exponent;
  326. uint8_t buffer_size_exponent;
  327. uint8_t* acpred_plane; ///< AC prediction flags bitplane
  328. int acpred_is_raw;
  329. uint8_t* over_flags_plane; ///< Overflags bitplane
  330. int overflg_is_raw;
  331. uint8_t condover;
  332. uint16_t *hrd_rate, *hrd_buffer;
  333. uint8_t *hrd_fullness;
  334. uint8_t range_mapy_flag;
  335. uint8_t range_mapuv_flag;
  336. uint8_t range_mapy;
  337. uint8_t range_mapuv;
  338. //@}
  339. int p_frame_skipped;
  340. int bi_type;
  341. } VC1Context;
  342. /**
  343. * Get unary code of limited length
  344. * @fixme FIXME Slow and ugly
  345. * @param gb GetBitContext
  346. * @param[in] stop The bitstop value (unary code of 1's or 0's)
  347. * @param[in] len Maximum length
  348. * @return Unary length/index
  349. */
  350. static int get_prefix(GetBitContext *gb, int stop, int len)
  351. {
  352. #if 1
  353. int i;
  354. for(i = 0; i < len && get_bits1(gb) != stop; i++);
  355. return i;
  356. /* int i = 0, tmp = !stop;
  357. while (i != len && tmp != stop)
  358. {
  359. tmp = get_bits(gb, 1);
  360. i++;
  361. }
  362. if (i == len && tmp != stop) return len+1;
  363. return i;*/
  364. #else
  365. unsigned int buf;
  366. int log;
  367. OPEN_READER(re, gb);
  368. UPDATE_CACHE(re, gb);
  369. buf=GET_CACHE(re, gb); //Still not sure
  370. if (stop) buf = ~buf;
  371. log= av_log2(-buf); //FIXME: -?
  372. if (log < limit){
  373. LAST_SKIP_BITS(re, gb, log+1);
  374. CLOSE_READER(re, gb);
  375. return log;
  376. }
  377. LAST_SKIP_BITS(re, gb, limit);
  378. CLOSE_READER(re, gb);
  379. return limit;
  380. #endif
  381. }
  382. static inline int decode210(GetBitContext *gb){
  383. int n;
  384. n = get_bits1(gb);
  385. if (n == 1)
  386. return 0;
  387. else
  388. return 2 - get_bits1(gb);
  389. }
  390. /**
  391. * Init VC-1 specific tables and VC1Context members
  392. * @param v The VC1Context to initialize
  393. * @return Status
  394. */
  395. static int vc1_init_common(VC1Context *v)
  396. {
  397. static int done = 0;
  398. int i = 0;
  399. v->hrd_rate = v->hrd_buffer = NULL;
  400. /* VLC tables */
  401. if(!done)
  402. {
  403. done = 1;
  404. init_vlc(&vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
  405. vc1_bfraction_bits, 1, 1,
  406. vc1_bfraction_codes, 1, 1, 1);
  407. init_vlc(&vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
  408. vc1_norm2_bits, 1, 1,
  409. vc1_norm2_codes, 1, 1, 1);
  410. init_vlc(&vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
  411. vc1_norm6_bits, 1, 1,
  412. vc1_norm6_codes, 2, 2, 1);
  413. init_vlc(&vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
  414. vc1_imode_bits, 1, 1,
  415. vc1_imode_codes, 1, 1, 1);
  416. for (i=0; i<3; i++)
  417. {
  418. init_vlc(&vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
  419. vc1_ttmb_bits[i], 1, 1,
  420. vc1_ttmb_codes[i], 2, 2, 1);
  421. init_vlc(&vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
  422. vc1_ttblk_bits[i], 1, 1,
  423. vc1_ttblk_codes[i], 1, 1, 1);
  424. init_vlc(&vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
  425. vc1_subblkpat_bits[i], 1, 1,
  426. vc1_subblkpat_codes[i], 1, 1, 1);
  427. }
  428. for(i=0; i<4; i++)
  429. {
  430. init_vlc(&vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
  431. vc1_4mv_block_pattern_bits[i], 1, 1,
  432. vc1_4mv_block_pattern_codes[i], 1, 1, 1);
  433. init_vlc(&vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
  434. vc1_cbpcy_p_bits[i], 1, 1,
  435. vc1_cbpcy_p_codes[i], 2, 2, 1);
  436. init_vlc(&vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
  437. vc1_mv_diff_bits[i], 1, 1,
  438. vc1_mv_diff_codes[i], 2, 2, 1);
  439. }
  440. for(i=0; i<8; i++)
  441. init_vlc(&vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
  442. &vc1_ac_tables[i][0][1], 8, 4,
  443. &vc1_ac_tables[i][0][0], 8, 4, 1);
  444. init_vlc(&ff_msmp4_mb_i_vlc, MB_INTRA_VLC_BITS, 64,
  445. &ff_msmp4_mb_i_table[0][1], 4, 2,
  446. &ff_msmp4_mb_i_table[0][0], 4, 2, 1);
  447. }
  448. /* Other defaults */
  449. v->pq = -1;
  450. v->mvrange = 0; /* 7.1.1.18, p80 */
  451. return 0;
  452. }
  453. /***********************************************************************/
  454. /**
  455. * @defgroup bitplane VC9 Bitplane decoding
  456. * @see 8.7, p56
  457. * @{
  458. */
  459. /** @addtogroup bitplane
  460. * Imode types
  461. * @{
  462. */
  463. enum Imode {
  464. IMODE_RAW,
  465. IMODE_NORM2,
  466. IMODE_DIFF2,
  467. IMODE_NORM6,
  468. IMODE_DIFF6,
  469. IMODE_ROWSKIP,
  470. IMODE_COLSKIP
  471. };
  472. /** @} */ //imode defines
  473. /** Decode rows by checking if they are skipped
  474. * @param plane Buffer to store decoded bits
  475. * @param[in] width Width of this buffer
  476. * @param[in] height Height of this buffer
  477. * @param[in] stride of this buffer
  478. */
  479. static void decode_rowskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  480. int x, y;
  481. for (y=0; y<height; y++){
  482. if (!get_bits(gb, 1)) //rowskip
  483. memset(plane, 0, width);
  484. else
  485. for (x=0; x<width; x++)
  486. plane[x] = get_bits(gb, 1);
  487. plane += stride;
  488. }
  489. }
  490. /** Decode columns by checking if they are skipped
  491. * @param plane Buffer to store decoded bits
  492. * @param[in] width Width of this buffer
  493. * @param[in] height Height of this buffer
  494. * @param[in] stride of this buffer
  495. * @fixme FIXME: Optimize
  496. */
  497. static void decode_colskip(uint8_t* plane, int width, int height, int stride, GetBitContext *gb){
  498. int x, y;
  499. for (x=0; x<width; x++){
  500. if (!get_bits(gb, 1)) //colskip
  501. for (y=0; y<height; y++)
  502. plane[y*stride] = 0;
  503. else
  504. for (y=0; y<height; y++)
  505. plane[y*stride] = get_bits(gb, 1);
  506. plane ++;
  507. }
  508. }
  509. /** Decode a bitplane's bits
  510. * @param bp Bitplane where to store the decode bits
  511. * @param v VC-1 context for bit reading and logging
  512. * @return Status
  513. * @fixme FIXME: Optimize
  514. */
  515. static int bitplane_decoding(uint8_t* data, int *raw_flag, VC1Context *v)
  516. {
  517. GetBitContext *gb = &v->s.gb;
  518. int imode, x, y, code, offset;
  519. uint8_t invert, *planep = data;
  520. int width, height, stride;
  521. width = v->s.mb_width;
  522. height = v->s.mb_height;
  523. stride = v->s.mb_stride;
  524. invert = get_bits(gb, 1);
  525. imode = get_vlc2(gb, vc1_imode_vlc.table, VC1_IMODE_VLC_BITS, 1);
  526. *raw_flag = 0;
  527. switch (imode)
  528. {
  529. case IMODE_RAW:
  530. //Data is actually read in the MB layer (same for all tests == "raw")
  531. *raw_flag = 1; //invert ignored
  532. return invert;
  533. case IMODE_DIFF2:
  534. case IMODE_NORM2:
  535. if ((height * width) & 1)
  536. {
  537. *planep++ = get_bits(gb, 1);
  538. offset = 1;
  539. }
  540. else offset = 0;
  541. // decode bitplane as one long line
  542. for (y = offset; y < height * width; y += 2) {
  543. code = get_vlc2(gb, vc1_norm2_vlc.table, VC1_NORM2_VLC_BITS, 1);
  544. *planep++ = code & 1;
  545. offset++;
  546. if(offset == width) {
  547. offset = 0;
  548. planep += stride - width;
  549. }
  550. *planep++ = code >> 1;
  551. offset++;
  552. if(offset == width) {
  553. offset = 0;
  554. planep += stride - width;
  555. }
  556. }
  557. break;
  558. case IMODE_DIFF6:
  559. case IMODE_NORM6:
  560. if(!(height % 3) && (width % 3)) { // use 2x3 decoding
  561. for(y = 0; y < height; y+= 3) {
  562. for(x = width & 1; x < width; x += 2) {
  563. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  564. if(code < 0){
  565. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  566. return -1;
  567. }
  568. planep[x + 0] = (code >> 0) & 1;
  569. planep[x + 1] = (code >> 1) & 1;
  570. planep[x + 0 + stride] = (code >> 2) & 1;
  571. planep[x + 1 + stride] = (code >> 3) & 1;
  572. planep[x + 0 + stride * 2] = (code >> 4) & 1;
  573. planep[x + 1 + stride * 2] = (code >> 5) & 1;
  574. }
  575. planep += stride * 3;
  576. }
  577. if(width & 1) decode_colskip(data, 1, height, stride, &v->s.gb);
  578. } else { // 3x2
  579. planep += (height & 1) * stride;
  580. for(y = height & 1; y < height; y += 2) {
  581. for(x = width % 3; x < width; x += 3) {
  582. code = get_vlc2(gb, vc1_norm6_vlc.table, VC1_NORM6_VLC_BITS, 2);
  583. if(code < 0){
  584. av_log(v->s.avctx, AV_LOG_DEBUG, "invalid NORM-6 VLC\n");
  585. return -1;
  586. }
  587. planep[x + 0] = (code >> 0) & 1;
  588. planep[x + 1] = (code >> 1) & 1;
  589. planep[x + 2] = (code >> 2) & 1;
  590. planep[x + 0 + stride] = (code >> 3) & 1;
  591. planep[x + 1 + stride] = (code >> 4) & 1;
  592. planep[x + 2 + stride] = (code >> 5) & 1;
  593. }
  594. planep += stride * 2;
  595. }
  596. x = width % 3;
  597. if(x) decode_colskip(data , x, height , stride, &v->s.gb);
  598. if(height & 1) decode_rowskip(data+x, width - x, 1, stride, &v->s.gb);
  599. }
  600. break;
  601. case IMODE_ROWSKIP:
  602. decode_rowskip(data, width, height, stride, &v->s.gb);
  603. break;
  604. case IMODE_COLSKIP:
  605. decode_colskip(data, width, height, stride, &v->s.gb);
  606. break;
  607. default: break;
  608. }
  609. /* Applying diff operator */
  610. if (imode == IMODE_DIFF2 || imode == IMODE_DIFF6)
  611. {
  612. planep = data;
  613. planep[0] ^= invert;
  614. for (x=1; x<width; x++)
  615. planep[x] ^= planep[x-1];
  616. for (y=1; y<height; y++)
  617. {
  618. planep += stride;
  619. planep[0] ^= planep[-stride];
  620. for (x=1; x<width; x++)
  621. {
  622. if (planep[x-1] != planep[x-stride]) planep[x] ^= invert;
  623. else planep[x] ^= planep[x-1];
  624. }
  625. }
  626. }
  627. else if (invert)
  628. {
  629. planep = data;
  630. for (x=0; x<stride*height; x++) planep[x] = !planep[x]; //FIXME stride
  631. }
  632. return (imode<<1) + invert;
  633. }
  634. /** @} */ //Bitplane group
  635. /***********************************************************************/
  636. /** VOP Dquant decoding
  637. * @param v VC-1 Context
  638. */
  639. static int vop_dquant_decoding(VC1Context *v)
  640. {
  641. GetBitContext *gb = &v->s.gb;
  642. int pqdiff;
  643. //variable size
  644. if (v->dquant == 2)
  645. {
  646. pqdiff = get_bits(gb, 3);
  647. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  648. else v->altpq = v->pq + pqdiff + 1;
  649. }
  650. else
  651. {
  652. v->dquantfrm = get_bits(gb, 1);
  653. if ( v->dquantfrm )
  654. {
  655. v->dqprofile = get_bits(gb, 2);
  656. switch (v->dqprofile)
  657. {
  658. case DQPROFILE_SINGLE_EDGE:
  659. case DQPROFILE_DOUBLE_EDGES:
  660. v->dqsbedge = get_bits(gb, 2);
  661. break;
  662. case DQPROFILE_ALL_MBS:
  663. v->dqbilevel = get_bits(gb, 1);
  664. default: break; //Forbidden ?
  665. }
  666. if (v->dqbilevel || v->dqprofile != DQPROFILE_ALL_MBS)
  667. {
  668. pqdiff = get_bits(gb, 3);
  669. if (pqdiff == 7) v->altpq = get_bits(gb, 5);
  670. else v->altpq = v->pq + pqdiff + 1;
  671. }
  672. }
  673. }
  674. return 0;
  675. }
  676. /** Put block onto picture
  677. */
  678. static void vc1_put_block(VC1Context *v, DCTELEM block[6][64])
  679. {
  680. uint8_t *Y;
  681. int ys, us, vs;
  682. DSPContext *dsp = &v->s.dsp;
  683. if(v->rangeredfrm) {
  684. int i, j, k;
  685. for(k = 0; k < 6; k++)
  686. for(j = 0; j < 8; j++)
  687. for(i = 0; i < 8; i++)
  688. block[k][i + j*8] = ((block[k][i + j*8] - 128) << 1) + 128;
  689. }
  690. ys = v->s.current_picture.linesize[0];
  691. us = v->s.current_picture.linesize[1];
  692. vs = v->s.current_picture.linesize[2];
  693. Y = v->s.dest[0];
  694. dsp->put_pixels_clamped(block[0], Y, ys);
  695. dsp->put_pixels_clamped(block[1], Y + 8, ys);
  696. Y += ys * 8;
  697. dsp->put_pixels_clamped(block[2], Y, ys);
  698. dsp->put_pixels_clamped(block[3], Y + 8, ys);
  699. if(!(v->s.flags & CODEC_FLAG_GRAY)) {
  700. dsp->put_pixels_clamped(block[4], v->s.dest[1], us);
  701. dsp->put_pixels_clamped(block[5], v->s.dest[2], vs);
  702. }
  703. }
  704. /** Do motion compensation over 1 macroblock
  705. * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
  706. */
  707. static void vc1_mc_1mv(VC1Context *v, int dir)
  708. {
  709. MpegEncContext *s = &v->s;
  710. DSPContext *dsp = &v->s.dsp;
  711. uint8_t *srcY, *srcU, *srcV;
  712. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  713. if(!v->s.last_picture.data[0])return;
  714. mx = s->mv[dir][0][0];
  715. my = s->mv[dir][0][1];
  716. // store motion vectors for further use in B frames
  717. if(s->pict_type == P_TYPE) {
  718. s->current_picture.motion_val[1][s->block_index[0]][0] = mx;
  719. s->current_picture.motion_val[1][s->block_index[0]][1] = my;
  720. }
  721. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  722. uvmy = (my + ((my & 3) == 3)) >> 1;
  723. if(!dir) {
  724. srcY = s->last_picture.data[0];
  725. srcU = s->last_picture.data[1];
  726. srcV = s->last_picture.data[2];
  727. } else {
  728. srcY = s->next_picture.data[0];
  729. srcU = s->next_picture.data[1];
  730. srcV = s->next_picture.data[2];
  731. }
  732. src_x = s->mb_x * 16 + (mx >> 2);
  733. src_y = s->mb_y * 16 + (my >> 2);
  734. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  735. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  736. src_x = clip( src_x, -16, s->mb_width * 16);
  737. src_y = clip( src_y, -16, s->mb_height * 16);
  738. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  739. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  740. srcY += src_y * s->linesize + src_x;
  741. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  742. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  743. /* for grayscale we should not try to read from unknown area */
  744. if(s->flags & CODEC_FLAG_GRAY) {
  745. srcU = s->edge_emu_buffer + 18 * s->linesize;
  746. srcV = s->edge_emu_buffer + 18 * s->linesize;
  747. }
  748. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  749. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel*3
  750. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 16 - s->mspel*3){
  751. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  752. srcY -= s->mspel * (1 + s->linesize);
  753. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  754. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  755. srcY = s->edge_emu_buffer;
  756. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  757. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  758. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  759. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  760. srcU = uvbuf;
  761. srcV = uvbuf + 16;
  762. /* if we deal with range reduction we need to scale source blocks */
  763. if(v->rangeredfrm) {
  764. int i, j;
  765. uint8_t *src, *src2;
  766. src = srcY;
  767. for(j = 0; j < 17 + s->mspel*2; j++) {
  768. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  769. src += s->linesize;
  770. }
  771. src = srcU; src2 = srcV;
  772. for(j = 0; j < 9; j++) {
  773. for(i = 0; i < 9; i++) {
  774. src[i] = ((src[i] - 128) >> 1) + 128;
  775. src2[i] = ((src2[i] - 128) >> 1) + 128;
  776. }
  777. src += s->uvlinesize;
  778. src2 += s->uvlinesize;
  779. }
  780. }
  781. /* if we deal with intensity compensation we need to scale source blocks */
  782. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  783. int i, j;
  784. uint8_t *src, *src2;
  785. src = srcY;
  786. for(j = 0; j < 17 + s->mspel*2; j++) {
  787. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  788. src += s->linesize;
  789. }
  790. src = srcU; src2 = srcV;
  791. for(j = 0; j < 9; j++) {
  792. for(i = 0; i < 9; i++) {
  793. src[i] = v->lutuv[src[i]];
  794. src2[i] = v->lutuv[src2[i]];
  795. }
  796. src += s->uvlinesize;
  797. src2 += s->uvlinesize;
  798. }
  799. }
  800. srcY += s->mspel * (1 + s->linesize);
  801. }
  802. if(v->fastuvmc) {
  803. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  804. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  805. }
  806. if(s->mspel) {
  807. dxy = ((my & 3) << 2) | (mx & 3);
  808. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] , srcY , s->linesize, v->rnd);
  809. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8, srcY + 8, s->linesize, v->rnd);
  810. srcY += s->linesize * 8;
  811. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize , srcY , s->linesize, v->rnd);
  812. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
  813. } else { // hpel mc - always used for luma
  814. dxy = (my & 2) | ((mx & 2) >> 1);
  815. if(!v->rnd)
  816. dsp->put_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  817. else
  818. dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  819. }
  820. if(s->flags & CODEC_FLAG_GRAY) return;
  821. /* Chroma MC always uses qpel bilinear */
  822. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  823. uvmx = (uvmx&3)<<1;
  824. uvmy = (uvmy&3)<<1;
  825. if(!v->rnd){
  826. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  827. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  828. }else{
  829. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  830. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  831. }
  832. }
  833. /** Do motion compensation for 4-MV macroblock - luminance block
  834. */
  835. static void vc1_mc_4mv_luma(VC1Context *v, int n)
  836. {
  837. MpegEncContext *s = &v->s;
  838. DSPContext *dsp = &v->s.dsp;
  839. uint8_t *srcY;
  840. int dxy, mx, my, src_x, src_y;
  841. int off;
  842. if(!v->s.last_picture.data[0])return;
  843. mx = s->mv[0][n][0];
  844. my = s->mv[0][n][1];
  845. srcY = s->last_picture.data[0];
  846. off = s->linesize * 4 * (n&2) + (n&1) * 8;
  847. src_x = s->mb_x * 16 + (n&1) * 8 + (mx >> 2);
  848. src_y = s->mb_y * 16 + (n&2) * 4 + (my >> 2);
  849. src_x = clip( src_x, -16, s->mb_width * 16);
  850. src_y = clip( src_y, -16, s->mb_height * 16);
  851. srcY += src_y * s->linesize + src_x;
  852. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  853. || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 8 - s->mspel*2
  854. || (unsigned)(src_y - s->mspel) > s->v_edge_pos - (my&3) - 8 - s->mspel*2){
  855. srcY -= s->mspel * (1 + s->linesize);
  856. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 9+s->mspel*2, 9+s->mspel*2,
  857. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  858. srcY = s->edge_emu_buffer;
  859. /* if we deal with range reduction we need to scale source blocks */
  860. if(v->rangeredfrm) {
  861. int i, j;
  862. uint8_t *src;
  863. src = srcY;
  864. for(j = 0; j < 9 + s->mspel*2; j++) {
  865. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  866. src += s->linesize;
  867. }
  868. }
  869. /* if we deal with intensity compensation we need to scale source blocks */
  870. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  871. int i, j;
  872. uint8_t *src;
  873. src = srcY;
  874. for(j = 0; j < 9 + s->mspel*2; j++) {
  875. for(i = 0; i < 9 + s->mspel*2; i++) src[i] = v->luty[src[i]];
  876. src += s->linesize;
  877. }
  878. }
  879. srcY += s->mspel * (1 + s->linesize);
  880. }
  881. if(s->mspel) {
  882. dxy = ((my & 3) << 2) | (mx & 3);
  883. dsp->put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, v->rnd);
  884. } else { // hpel mc - always used for luma
  885. dxy = (my & 2) | ((mx & 2) >> 1);
  886. if(!v->rnd)
  887. dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  888. else
  889. dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
  890. }
  891. }
  892. static inline int median4(int a, int b, int c, int d)
  893. {
  894. if(a < b) {
  895. if(c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
  896. else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
  897. } else {
  898. if(c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
  899. else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
  900. }
  901. }
  902. /** Do motion compensation for 4-MV macroblock - both chroma blocks
  903. */
  904. static void vc1_mc_4mv_chroma(VC1Context *v)
  905. {
  906. MpegEncContext *s = &v->s;
  907. DSPContext *dsp = &v->s.dsp;
  908. uint8_t *srcU, *srcV;
  909. int uvdxy, uvmx, uvmy, uvsrc_x, uvsrc_y;
  910. int i, idx, tx = 0, ty = 0;
  911. int mvx[4], mvy[4], intra[4];
  912. static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
  913. if(!v->s.last_picture.data[0])return;
  914. if(s->flags & CODEC_FLAG_GRAY) return;
  915. for(i = 0; i < 4; i++) {
  916. mvx[i] = s->mv[0][i][0];
  917. mvy[i] = s->mv[0][i][1];
  918. intra[i] = v->mb_type[0][s->block_index[i]];
  919. }
  920. /* calculate chroma MV vector from four luma MVs */
  921. idx = (intra[3] << 3) | (intra[2] << 2) | (intra[1] << 1) | intra[0];
  922. if(!idx) { // all blocks are inter
  923. tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
  924. ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
  925. } else if(count[idx] == 1) { // 3 inter blocks
  926. switch(idx) {
  927. case 0x1:
  928. tx = mid_pred(mvx[1], mvx[2], mvx[3]);
  929. ty = mid_pred(mvy[1], mvy[2], mvy[3]);
  930. break;
  931. case 0x2:
  932. tx = mid_pred(mvx[0], mvx[2], mvx[3]);
  933. ty = mid_pred(mvy[0], mvy[2], mvy[3]);
  934. break;
  935. case 0x4:
  936. tx = mid_pred(mvx[0], mvx[1], mvx[3]);
  937. ty = mid_pred(mvy[0], mvy[1], mvy[3]);
  938. break;
  939. case 0x8:
  940. tx = mid_pred(mvx[0], mvx[1], mvx[2]);
  941. ty = mid_pred(mvy[0], mvy[1], mvy[2]);
  942. break;
  943. }
  944. } else if(count[idx] == 2) {
  945. int t1 = 0, t2 = 0;
  946. for(i=0; i<3;i++) if(!intra[i]) {t1 = i; break;}
  947. for(i= t1+1; i<4; i++)if(!intra[i]) {t2 = i; break;}
  948. tx = (mvx[t1] + mvx[t2]) / 2;
  949. ty = (mvy[t1] + mvy[t2]) / 2;
  950. } else
  951. return; //no need to do MC for inter blocks
  952. s->current_picture.motion_val[1][s->block_index[0]][0] = tx;
  953. s->current_picture.motion_val[1][s->block_index[0]][1] = ty;
  954. uvmx = (tx + ((tx&3) == 3)) >> 1;
  955. uvmy = (ty + ((ty&3) == 3)) >> 1;
  956. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  957. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  958. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  959. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  960. srcU = s->last_picture.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
  961. srcV = s->last_picture.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
  962. if(v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  963. || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
  964. || (unsigned)uvsrc_y > (s->v_edge_pos >> 1) - 9){
  965. ff_emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize, 8+1, 8+1,
  966. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  967. ff_emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize, 8+1, 8+1,
  968. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  969. srcU = s->edge_emu_buffer;
  970. srcV = s->edge_emu_buffer + 16;
  971. /* if we deal with range reduction we need to scale source blocks */
  972. if(v->rangeredfrm) {
  973. int i, j;
  974. uint8_t *src, *src2;
  975. src = srcU; src2 = srcV;
  976. for(j = 0; j < 9; j++) {
  977. for(i = 0; i < 9; i++) {
  978. src[i] = ((src[i] - 128) >> 1) + 128;
  979. src2[i] = ((src2[i] - 128) >> 1) + 128;
  980. }
  981. src += s->uvlinesize;
  982. src2 += s->uvlinesize;
  983. }
  984. }
  985. /* if we deal with intensity compensation we need to scale source blocks */
  986. if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  987. int i, j;
  988. uint8_t *src, *src2;
  989. src = srcU; src2 = srcV;
  990. for(j = 0; j < 9; j++) {
  991. for(i = 0; i < 9; i++) {
  992. src[i] = v->lutuv[src[i]];
  993. src2[i] = v->lutuv[src2[i]];
  994. }
  995. src += s->uvlinesize;
  996. src2 += s->uvlinesize;
  997. }
  998. }
  999. }
  1000. if(v->fastuvmc) {
  1001. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  1002. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  1003. }
  1004. /* Chroma MC always uses qpel bilinear */
  1005. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1006. uvmx = (uvmx&3)<<1;
  1007. uvmy = (uvmy&3)<<1;
  1008. if(!v->rnd){
  1009. dsp->put_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1010. dsp->put_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1011. }else{
  1012. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1013. dsp->put_no_rnd_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1014. }
  1015. }
  1016. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb);
  1017. /**
  1018. * Decode Simple/Main Profiles sequence header
  1019. * @see Figure 7-8, p16-17
  1020. * @param avctx Codec context
  1021. * @param gb GetBit context initialized from Codec context extra_data
  1022. * @return Status
  1023. */
  1024. static int decode_sequence_header(AVCodecContext *avctx, GetBitContext *gb)
  1025. {
  1026. VC1Context *v = avctx->priv_data;
  1027. av_log(avctx, AV_LOG_DEBUG, "Header: %0X\n", show_bits(gb, 32));
  1028. v->profile = get_bits(gb, 2);
  1029. if (v->profile == 2)
  1030. {
  1031. av_log(avctx, AV_LOG_ERROR, "Profile value 2 is forbidden (and WMV3 Complex Profile is unsupported)\n");
  1032. return -1;
  1033. }
  1034. if (v->profile == PROFILE_ADVANCED)
  1035. {
  1036. return decode_sequence_header_adv(v, gb);
  1037. }
  1038. else
  1039. {
  1040. v->res_sm = get_bits(gb, 2); //reserved
  1041. if (v->res_sm)
  1042. {
  1043. av_log(avctx, AV_LOG_ERROR,
  1044. "Reserved RES_SM=%i is forbidden\n", v->res_sm);
  1045. return -1;
  1046. }
  1047. }
  1048. // (fps-2)/4 (->30)
  1049. v->frmrtq_postproc = get_bits(gb, 3); //common
  1050. // (bitrate-32kbps)/64kbps
  1051. v->bitrtq_postproc = get_bits(gb, 5); //common
  1052. v->s.loop_filter = get_bits(gb, 1); //common
  1053. if(v->s.loop_filter == 1 && v->profile == PROFILE_SIMPLE)
  1054. {
  1055. av_log(avctx, AV_LOG_ERROR,
  1056. "LOOPFILTER shell not be enabled in simple profile\n");
  1057. }
  1058. v->res_x8 = get_bits(gb, 1); //reserved
  1059. if (v->res_x8)
  1060. {
  1061. av_log(avctx, AV_LOG_ERROR,
  1062. "1 for reserved RES_X8 is forbidden\n");
  1063. //return -1;
  1064. }
  1065. v->multires = get_bits(gb, 1);
  1066. v->res_fasttx = get_bits(gb, 1);
  1067. if (!v->res_fasttx)
  1068. {
  1069. av_log(avctx, AV_LOG_ERROR,
  1070. "0 for reserved RES_FASTTX is forbidden\n");
  1071. //return -1;
  1072. }
  1073. v->fastuvmc = get_bits(gb, 1); //common
  1074. if (!v->profile && !v->fastuvmc)
  1075. {
  1076. av_log(avctx, AV_LOG_ERROR,
  1077. "FASTUVMC unavailable in Simple Profile\n");
  1078. return -1;
  1079. }
  1080. v->extended_mv = get_bits(gb, 1); //common
  1081. if (!v->profile && v->extended_mv)
  1082. {
  1083. av_log(avctx, AV_LOG_ERROR,
  1084. "Extended MVs unavailable in Simple Profile\n");
  1085. return -1;
  1086. }
  1087. v->dquant = get_bits(gb, 2); //common
  1088. v->vstransform = get_bits(gb, 1); //common
  1089. v->res_transtab = get_bits(gb, 1);
  1090. if (v->res_transtab)
  1091. {
  1092. av_log(avctx, AV_LOG_ERROR,
  1093. "1 for reserved RES_TRANSTAB is forbidden\n");
  1094. return -1;
  1095. }
  1096. v->overlap = get_bits(gb, 1); //common
  1097. v->s.resync_marker = get_bits(gb, 1);
  1098. v->rangered = get_bits(gb, 1);
  1099. if (v->rangered && v->profile == PROFILE_SIMPLE)
  1100. {
  1101. av_log(avctx, AV_LOG_INFO,
  1102. "RANGERED should be set to 0 in simple profile\n");
  1103. }
  1104. v->s.max_b_frames = avctx->max_b_frames = get_bits(gb, 3); //common
  1105. v->quantizer_mode = get_bits(gb, 2); //common
  1106. v->finterpflag = get_bits(gb, 1); //common
  1107. v->res_rtm_flag = get_bits(gb, 1); //reserved
  1108. if (!v->res_rtm_flag)
  1109. {
  1110. // av_log(avctx, AV_LOG_ERROR,
  1111. // "0 for reserved RES_RTM_FLAG is forbidden\n");
  1112. av_log(avctx, AV_LOG_ERROR,
  1113. "Old WMV3 version detected, only I-frames will be decoded\n");
  1114. //return -1;
  1115. }
  1116. av_log(avctx, AV_LOG_DEBUG,
  1117. "Profile %i:\nfrmrtq_postproc=%i, bitrtq_postproc=%i\n"
  1118. "LoopFilter=%i, MultiRes=%i, FastUVMC=%i, Extended MV=%i\n"
  1119. "Rangered=%i, VSTransform=%i, Overlap=%i, SyncMarker=%i\n"
  1120. "DQuant=%i, Quantizer mode=%i, Max B frames=%i\n",
  1121. v->profile, v->frmrtq_postproc, v->bitrtq_postproc,
  1122. v->s.loop_filter, v->multires, v->fastuvmc, v->extended_mv,
  1123. v->rangered, v->vstransform, v->overlap, v->s.resync_marker,
  1124. v->dquant, v->quantizer_mode, avctx->max_b_frames
  1125. );
  1126. return 0;
  1127. }
  1128. static int decode_sequence_header_adv(VC1Context *v, GetBitContext *gb)
  1129. {
  1130. v->res_rtm_flag = 1;
  1131. v->level = get_bits(gb, 3);
  1132. if(v->level >= 5)
  1133. {
  1134. av_log(v->s.avctx, AV_LOG_ERROR, "Reserved LEVEL %i\n",v->level);
  1135. }
  1136. v->chromaformat = get_bits(gb, 2);
  1137. if (v->chromaformat != 1)
  1138. {
  1139. av_log(v->s.avctx, AV_LOG_ERROR,
  1140. "Only 4:2:0 chroma format supported\n");
  1141. return -1;
  1142. }
  1143. // (fps-2)/4 (->30)
  1144. v->frmrtq_postproc = get_bits(gb, 3); //common
  1145. // (bitrate-32kbps)/64kbps
  1146. v->bitrtq_postproc = get_bits(gb, 5); //common
  1147. v->postprocflag = get_bits(gb, 1); //common
  1148. v->s.avctx->coded_width = (get_bits(gb, 12) + 1) << 1;
  1149. v->s.avctx->coded_height = (get_bits(gb, 12) + 1) << 1;
  1150. v->broadcast = get_bits1(gb);
  1151. v->interlace = get_bits1(gb);
  1152. v->tfcntrflag = get_bits1(gb);
  1153. v->finterpflag = get_bits1(gb);
  1154. get_bits1(gb); // reserved
  1155. v->psf = get_bits1(gb);
  1156. if(v->psf) { //PsF, 6.1.13
  1157. av_log(v->s.avctx, AV_LOG_ERROR, "Progressive Segmented Frame mode: not supported (yet)\n");
  1158. return -1;
  1159. }
  1160. if(get_bits1(gb)) { //Display Info - decoding is not affected by it
  1161. int w, h, ar = 0;
  1162. av_log(v->s.avctx, AV_LOG_INFO, "Display extended info:\n");
  1163. w = get_bits(gb, 14);
  1164. h = get_bits(gb, 14);
  1165. av_log(v->s.avctx, AV_LOG_INFO, "Display dimensions: %ix%i\n", w, h);
  1166. //TODO: store aspect ratio in AVCodecContext
  1167. if(get_bits1(gb))
  1168. ar = get_bits(gb, 4);
  1169. if(ar == 15) {
  1170. w = get_bits(gb, 8);
  1171. h = get_bits(gb, 8);
  1172. }
  1173. if(get_bits1(gb)){ //framerate stuff
  1174. if(get_bits1(gb)) {
  1175. get_bits(gb, 16);
  1176. } else {
  1177. get_bits(gb, 8);
  1178. get_bits(gb, 4);
  1179. }
  1180. }
  1181. if(get_bits1(gb)){
  1182. v->color_prim = get_bits(gb, 8);
  1183. v->transfer_char = get_bits(gb, 8);
  1184. v->matrix_coef = get_bits(gb, 8);
  1185. }
  1186. }
  1187. v->hrd_param_flag = get_bits1(gb);
  1188. if(v->hrd_param_flag) {
  1189. int i;
  1190. v->hrd_num_leaky_buckets = get_bits(gb, 5);
  1191. get_bits(gb, 4); //bitrate exponent
  1192. get_bits(gb, 4); //buffer size exponent
  1193. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1194. get_bits(gb, 16); //hrd_rate[n]
  1195. get_bits(gb, 16); //hrd_buffer[n]
  1196. }
  1197. }
  1198. return 0;
  1199. }
  1200. static int decode_entry_point(AVCodecContext *avctx, GetBitContext *gb)
  1201. {
  1202. VC1Context *v = avctx->priv_data;
  1203. int i;
  1204. av_log(avctx, AV_LOG_DEBUG, "Entry point: %08X\n", show_bits_long(gb, 32));
  1205. get_bits1(gb); // broken link
  1206. avctx->max_b_frames = 1 - get_bits1(gb); // 'closed entry' also signalize possible B-frames
  1207. v->panscanflag = get_bits1(gb);
  1208. get_bits1(gb); // refdist flag
  1209. v->s.loop_filter = get_bits1(gb);
  1210. v->fastuvmc = get_bits1(gb);
  1211. v->extended_mv = get_bits1(gb);
  1212. v->dquant = get_bits(gb, 2);
  1213. v->vstransform = get_bits1(gb);
  1214. v->overlap = get_bits1(gb);
  1215. v->quantizer_mode = get_bits(gb, 2);
  1216. if(v->hrd_param_flag){
  1217. for(i = 0; i < v->hrd_num_leaky_buckets; i++) {
  1218. get_bits(gb, 8); //hrd_full[n]
  1219. }
  1220. }
  1221. if(get_bits1(gb)){
  1222. avctx->coded_width = (get_bits(gb, 12)+1)<<1;
  1223. avctx->coded_height = (get_bits(gb, 12)+1)<<1;
  1224. }
  1225. if(v->extended_mv)
  1226. v->extended_dmv = get_bits1(gb);
  1227. if(get_bits1(gb)) {
  1228. av_log(avctx, AV_LOG_ERROR, "Luma scaling is not supported, expect wrong picture\n");
  1229. skip_bits(gb, 3); // Y range, ignored for now
  1230. }
  1231. if(get_bits1(gb)) {
  1232. av_log(avctx, AV_LOG_ERROR, "Chroma scaling is not supported, expect wrong picture\n");
  1233. skip_bits(gb, 3); // UV range, ignored for now
  1234. }
  1235. return 0;
  1236. }
  1237. static int vc1_parse_frame_header(VC1Context *v, GetBitContext* gb)
  1238. {
  1239. int pqindex, lowquant, status;
  1240. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1241. skip_bits(gb, 2); //framecnt unused
  1242. v->rangeredfrm = 0;
  1243. if (v->rangered) v->rangeredfrm = get_bits(gb, 1);
  1244. v->s.pict_type = get_bits(gb, 1);
  1245. if (v->s.avctx->max_b_frames) {
  1246. if (!v->s.pict_type) {
  1247. if (get_bits(gb, 1)) v->s.pict_type = I_TYPE;
  1248. else v->s.pict_type = B_TYPE;
  1249. } else v->s.pict_type = P_TYPE;
  1250. } else v->s.pict_type = v->s.pict_type ? P_TYPE : I_TYPE;
  1251. v->bi_type = 0;
  1252. if(v->s.pict_type == B_TYPE) {
  1253. v->bfraction = get_vlc2(gb, vc1_bfraction_vlc.table, VC1_BFRACTION_VLC_BITS, 1);
  1254. v->bfraction = vc1_bfraction_lut[v->bfraction];
  1255. if(v->bfraction == 0) {
  1256. v->s.pict_type = BI_TYPE;
  1257. }
  1258. }
  1259. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1260. get_bits(gb, 7); // skip buffer fullness
  1261. /* calculate RND */
  1262. if(v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1263. v->rnd = 1;
  1264. if(v->s.pict_type == P_TYPE)
  1265. v->rnd ^= 1;
  1266. /* Quantizer stuff */
  1267. pqindex = get_bits(gb, 5);
  1268. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1269. v->pq = pquant_table[0][pqindex];
  1270. else
  1271. v->pq = pquant_table[1][pqindex];
  1272. v->pquantizer = 1;
  1273. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1274. v->pquantizer = pqindex < 9;
  1275. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1276. v->pquantizer = 0;
  1277. v->pqindex = pqindex;
  1278. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1279. else v->halfpq = 0;
  1280. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1281. v->pquantizer = get_bits(gb, 1);
  1282. v->dquantfrm = 0;
  1283. if (v->extended_mv == 1) v->mvrange = get_prefix(gb, 0, 3);
  1284. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1285. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1286. v->range_x = 1 << (v->k_x - 1);
  1287. v->range_y = 1 << (v->k_y - 1);
  1288. if (v->profile == PROFILE_ADVANCED)
  1289. {
  1290. if (v->postprocflag) v->postproc = get_bits(gb, 1);
  1291. }
  1292. else
  1293. if (v->multires && v->s.pict_type != B_TYPE) v->respic = get_bits(gb, 2);
  1294. //av_log(v->s.avctx, AV_LOG_INFO, "%c Frame: QP=[%i]%i (+%i/2) %i\n",
  1295. // (v->s.pict_type == P_TYPE) ? 'P' : ((v->s.pict_type == I_TYPE) ? 'I' : 'B'), pqindex, v->pq, v->halfpq, v->rangeredfrm);
  1296. if(v->s.pict_type == I_TYPE || v->s.pict_type == P_TYPE) v->use_ic = 0;
  1297. switch(v->s.pict_type) {
  1298. case P_TYPE:
  1299. if (v->pq < 5) v->tt_index = 0;
  1300. else if(v->pq < 13) v->tt_index = 1;
  1301. else v->tt_index = 2;
  1302. lowquant = (v->pq > 12) ? 0 : 1;
  1303. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1304. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1305. {
  1306. int scale, shift, i;
  1307. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1308. v->lumscale = get_bits(gb, 6);
  1309. v->lumshift = get_bits(gb, 6);
  1310. v->use_ic = 1;
  1311. /* fill lookup tables for intensity compensation */
  1312. if(!v->lumscale) {
  1313. scale = -64;
  1314. shift = (255 - v->lumshift * 2) << 6;
  1315. if(v->lumshift > 31)
  1316. shift += 128 << 6;
  1317. } else {
  1318. scale = v->lumscale + 32;
  1319. if(v->lumshift > 31)
  1320. shift = (v->lumshift - 64) << 6;
  1321. else
  1322. shift = v->lumshift << 6;
  1323. }
  1324. for(i = 0; i < 256; i++) {
  1325. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1326. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1327. }
  1328. }
  1329. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1330. v->s.quarter_sample = 0;
  1331. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1332. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1333. v->s.quarter_sample = 0;
  1334. else
  1335. v->s.quarter_sample = 1;
  1336. } else
  1337. v->s.quarter_sample = 1;
  1338. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1339. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1340. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1341. || v->mv_mode == MV_PMODE_MIXED_MV)
  1342. {
  1343. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1344. if (status < 0) return -1;
  1345. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1346. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1347. } else {
  1348. v->mv_type_is_raw = 0;
  1349. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1350. }
  1351. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1352. if (status < 0) return -1;
  1353. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1354. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1355. /* Hopefully this is correct for P frames */
  1356. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1357. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1358. if (v->dquant)
  1359. {
  1360. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1361. vop_dquant_decoding(v);
  1362. }
  1363. v->ttfrm = 0; //FIXME Is that so ?
  1364. if (v->vstransform)
  1365. {
  1366. v->ttmbf = get_bits(gb, 1);
  1367. if (v->ttmbf)
  1368. {
  1369. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1370. }
  1371. } else {
  1372. v->ttmbf = 1;
  1373. v->ttfrm = TT_8X8;
  1374. }
  1375. break;
  1376. case B_TYPE:
  1377. if (v->pq < 5) v->tt_index = 0;
  1378. else if(v->pq < 13) v->tt_index = 1;
  1379. else v->tt_index = 2;
  1380. lowquant = (v->pq > 12) ? 0 : 1;
  1381. v->mv_mode = get_bits1(gb) ? MV_PMODE_1MV : MV_PMODE_1MV_HPEL_BILIN;
  1382. v->s.quarter_sample = (v->mv_mode == MV_PMODE_1MV);
  1383. v->s.mspel = v->s.quarter_sample;
  1384. status = bitplane_decoding(v->direct_mb_plane, &v->dmb_is_raw, v);
  1385. if (status < 0) return -1;
  1386. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Direct Type plane encoding: "
  1387. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1388. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1389. if (status < 0) return -1;
  1390. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1391. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1392. v->s.mv_table_index = get_bits(gb, 2);
  1393. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1394. if (v->dquant)
  1395. {
  1396. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1397. vop_dquant_decoding(v);
  1398. }
  1399. v->ttfrm = 0;
  1400. if (v->vstransform)
  1401. {
  1402. v->ttmbf = get_bits(gb, 1);
  1403. if (v->ttmbf)
  1404. {
  1405. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1406. }
  1407. } else {
  1408. v->ttmbf = 1;
  1409. v->ttfrm = TT_8X8;
  1410. }
  1411. break;
  1412. }
  1413. /* AC Syntax */
  1414. v->c_ac_table_index = decode012(gb);
  1415. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1416. {
  1417. v->y_ac_table_index = decode012(gb);
  1418. }
  1419. /* DC Syntax */
  1420. v->s.dc_table_index = get_bits(gb, 1);
  1421. if(v->s.pict_type == BI_TYPE) {
  1422. v->s.pict_type = B_TYPE;
  1423. v->bi_type = 1;
  1424. }
  1425. return 0;
  1426. }
  1427. static int vc1_parse_frame_header_adv(VC1Context *v, GetBitContext* gb)
  1428. {
  1429. int fcm;
  1430. int pqindex, lowquant;
  1431. int status;
  1432. v->p_frame_skipped = 0;
  1433. if(v->interlace)
  1434. fcm = decode012(gb);
  1435. switch(get_prefix(gb, 0, 4)) {
  1436. case 0:
  1437. v->s.pict_type = P_TYPE;
  1438. break;
  1439. case 1:
  1440. v->s.pict_type = B_TYPE;
  1441. return -1;
  1442. // break;
  1443. case 2:
  1444. v->s.pict_type = I_TYPE;
  1445. break;
  1446. case 3:
  1447. v->s.pict_type = BI_TYPE;
  1448. break;
  1449. case 4:
  1450. v->s.pict_type = P_TYPE; // skipped pic
  1451. v->p_frame_skipped = 1;
  1452. return 0;
  1453. }
  1454. if(v->tfcntrflag)
  1455. get_bits(gb, 8);
  1456. if(v->broadcast) {
  1457. if(!v->interlace || v->panscanflag) {
  1458. get_bits(gb, 2);
  1459. } else {
  1460. get_bits1(gb);
  1461. get_bits1(gb);
  1462. }
  1463. }
  1464. if(v->panscanflag) {
  1465. //...
  1466. }
  1467. v->rnd = get_bits1(gb);
  1468. if(v->interlace)
  1469. v->uvsamp = get_bits1(gb);
  1470. if(v->finterpflag) v->interpfrm = get_bits(gb, 1);
  1471. pqindex = get_bits(gb, 5);
  1472. v->pqindex = pqindex;
  1473. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1474. v->pq = pquant_table[0][pqindex];
  1475. else
  1476. v->pq = pquant_table[1][pqindex];
  1477. v->pquantizer = 1;
  1478. if (v->quantizer_mode == QUANT_FRAME_IMPLICIT)
  1479. v->pquantizer = pqindex < 9;
  1480. if (v->quantizer_mode == QUANT_NON_UNIFORM)
  1481. v->pquantizer = 0;
  1482. v->pqindex = pqindex;
  1483. if (pqindex < 9) v->halfpq = get_bits(gb, 1);
  1484. else v->halfpq = 0;
  1485. if (v->quantizer_mode == QUANT_FRAME_EXPLICIT)
  1486. v->pquantizer = get_bits(gb, 1);
  1487. switch(v->s.pict_type) {
  1488. case I_TYPE:
  1489. case BI_TYPE:
  1490. status = bitplane_decoding(v->acpred_plane, &v->acpred_is_raw, v);
  1491. if (status < 0) return -1;
  1492. av_log(v->s.avctx, AV_LOG_DEBUG, "ACPRED plane encoding: "
  1493. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1494. v->condover = CONDOVER_NONE;
  1495. if(v->overlap && v->pq <= 8) {
  1496. v->condover = decode012(gb);
  1497. if(v->condover == CONDOVER_SELECT) {
  1498. status = bitplane_decoding(v->over_flags_plane, &v->overflg_is_raw, v);
  1499. if (status < 0) return -1;
  1500. av_log(v->s.avctx, AV_LOG_DEBUG, "CONDOVER plane encoding: "
  1501. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1502. }
  1503. }
  1504. break;
  1505. case P_TYPE:
  1506. if(v->postprocflag)
  1507. v->postproc = get_bits1(gb);
  1508. if (v->extended_mv) v->mvrange = get_prefix(gb, 0, 3);
  1509. else v->mvrange = 0;
  1510. v->k_x = v->mvrange + 9 + (v->mvrange >> 1); //k_x can be 9 10 12 13
  1511. v->k_y = v->mvrange + 8; //k_y can be 8 9 10 11
  1512. v->range_x = 1 << (v->k_x - 1);
  1513. v->range_y = 1 << (v->k_y - 1);
  1514. if (v->pq < 5) v->tt_index = 0;
  1515. else if(v->pq < 13) v->tt_index = 1;
  1516. else v->tt_index = 2;
  1517. lowquant = (v->pq > 12) ? 0 : 1;
  1518. v->mv_mode = mv_pmode_table[lowquant][get_prefix(gb, 1, 4)];
  1519. if (v->mv_mode == MV_PMODE_INTENSITY_COMP)
  1520. {
  1521. int scale, shift, i;
  1522. v->mv_mode2 = mv_pmode_table2[lowquant][get_prefix(gb, 1, 3)];
  1523. v->lumscale = get_bits(gb, 6);
  1524. v->lumshift = get_bits(gb, 6);
  1525. /* fill lookup tables for intensity compensation */
  1526. if(!v->lumscale) {
  1527. scale = -64;
  1528. shift = (255 - v->lumshift * 2) << 6;
  1529. if(v->lumshift > 31)
  1530. shift += 128 << 6;
  1531. } else {
  1532. scale = v->lumscale + 32;
  1533. if(v->lumshift > 31)
  1534. shift = (v->lumshift - 64) << 6;
  1535. else
  1536. shift = v->lumshift << 6;
  1537. }
  1538. for(i = 0; i < 256; i++) {
  1539. v->luty[i] = clip_uint8((scale * i + shift + 32) >> 6);
  1540. v->lutuv[i] = clip_uint8((scale * (i - 128) + 128*64 + 32) >> 6);
  1541. }
  1542. }
  1543. if(v->mv_mode == MV_PMODE_1MV_HPEL || v->mv_mode == MV_PMODE_1MV_HPEL_BILIN)
  1544. v->s.quarter_sample = 0;
  1545. else if(v->mv_mode == MV_PMODE_INTENSITY_COMP) {
  1546. if(v->mv_mode2 == MV_PMODE_1MV_HPEL || v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN)
  1547. v->s.quarter_sample = 0;
  1548. else
  1549. v->s.quarter_sample = 1;
  1550. } else
  1551. v->s.quarter_sample = 1;
  1552. v->s.mspel = !(v->mv_mode == MV_PMODE_1MV_HPEL_BILIN || (v->mv_mode == MV_PMODE_INTENSITY_COMP && v->mv_mode2 == MV_PMODE_1MV_HPEL_BILIN));
  1553. if ((v->mv_mode == MV_PMODE_INTENSITY_COMP &&
  1554. v->mv_mode2 == MV_PMODE_MIXED_MV)
  1555. || v->mv_mode == MV_PMODE_MIXED_MV)
  1556. {
  1557. status = bitplane_decoding(v->mv_type_mb_plane, &v->mv_type_is_raw, v);
  1558. if (status < 0) return -1;
  1559. av_log(v->s.avctx, AV_LOG_DEBUG, "MB MV Type plane encoding: "
  1560. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1561. } else {
  1562. v->mv_type_is_raw = 0;
  1563. memset(v->mv_type_mb_plane, 0, v->s.mb_stride * v->s.mb_height);
  1564. }
  1565. status = bitplane_decoding(v->s.mbskip_table, &v->skip_is_raw, v);
  1566. if (status < 0) return -1;
  1567. av_log(v->s.avctx, AV_LOG_DEBUG, "MB Skip plane encoding: "
  1568. "Imode: %i, Invert: %i\n", status>>1, status&1);
  1569. /* Hopefully this is correct for P frames */
  1570. v->s.mv_table_index = get_bits(gb, 2); //but using vc1_ tables
  1571. v->cbpcy_vlc = &vc1_cbpcy_p_vlc[get_bits(gb, 2)];
  1572. if (v->dquant)
  1573. {
  1574. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1575. vop_dquant_decoding(v);
  1576. }
  1577. v->ttfrm = 0; //FIXME Is that so ?
  1578. if (v->vstransform)
  1579. {
  1580. v->ttmbf = get_bits(gb, 1);
  1581. if (v->ttmbf)
  1582. {
  1583. v->ttfrm = ttfrm_to_tt[get_bits(gb, 2)];
  1584. }
  1585. } else {
  1586. v->ttmbf = 1;
  1587. v->ttfrm = TT_8X8;
  1588. }
  1589. break;
  1590. }
  1591. /* AC Syntax */
  1592. v->c_ac_table_index = decode012(gb);
  1593. if (v->s.pict_type == I_TYPE || v->s.pict_type == BI_TYPE)
  1594. {
  1595. v->y_ac_table_index = decode012(gb);
  1596. }
  1597. /* DC Syntax */
  1598. v->s.dc_table_index = get_bits(gb, 1);
  1599. if (v->s.pict_type == I_TYPE && v->dquant) {
  1600. av_log(v->s.avctx, AV_LOG_DEBUG, "VOP DQuant info\n");
  1601. vop_dquant_decoding(v);
  1602. }
  1603. v->bi_type = 0;
  1604. if(v->s.pict_type == BI_TYPE) {
  1605. v->s.pict_type = B_TYPE;
  1606. v->bi_type = 1;
  1607. }
  1608. return 0;
  1609. }
  1610. /***********************************************************************/
  1611. /**
  1612. * @defgroup block VC-1 Block-level functions
  1613. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  1614. * @{
  1615. */
  1616. /**
  1617. * @def GET_MQUANT
  1618. * @brief Get macroblock-level quantizer scale
  1619. */
  1620. #define GET_MQUANT() \
  1621. if (v->dquantfrm) \
  1622. { \
  1623. int edges = 0; \
  1624. if (v->dqprofile == DQPROFILE_ALL_MBS) \
  1625. { \
  1626. if (v->dqbilevel) \
  1627. { \
  1628. mquant = (get_bits(gb, 1)) ? v->altpq : v->pq; \
  1629. } \
  1630. else \
  1631. { \
  1632. mqdiff = get_bits(gb, 3); \
  1633. if (mqdiff != 7) mquant = v->pq + mqdiff; \
  1634. else mquant = get_bits(gb, 5); \
  1635. } \
  1636. } \
  1637. if(v->dqprofile == DQPROFILE_SINGLE_EDGE) \
  1638. edges = 1 << v->dqsbedge; \
  1639. else if(v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
  1640. edges = (3 << v->dqsbedge) % 15; \
  1641. else if(v->dqprofile == DQPROFILE_FOUR_EDGES) \
  1642. edges = 15; \
  1643. if((edges&1) && !s->mb_x) \
  1644. mquant = v->altpq; \
  1645. if((edges&2) && s->first_slice_line) \
  1646. mquant = v->altpq; \
  1647. if((edges&4) && s->mb_x == (s->mb_width - 1)) \
  1648. mquant = v->altpq; \
  1649. if((edges&8) && s->mb_y == (s->mb_height - 1)) \
  1650. mquant = v->altpq; \
  1651. }
  1652. /**
  1653. * @def GET_MVDATA(_dmv_x, _dmv_y)
  1654. * @brief Get MV differentials
  1655. * @see MVDATA decoding from 8.3.5.2, p(1)20
  1656. * @param _dmv_x Horizontal differential for decoded MV
  1657. * @param _dmv_y Vertical differential for decoded MV
  1658. */
  1659. #define GET_MVDATA(_dmv_x, _dmv_y) \
  1660. index = 1 + get_vlc2(gb, vc1_mv_diff_vlc[s->mv_table_index].table,\
  1661. VC1_MV_DIFF_VLC_BITS, 2); \
  1662. if (index > 36) \
  1663. { \
  1664. mb_has_coeffs = 1; \
  1665. index -= 37; \
  1666. } \
  1667. else mb_has_coeffs = 0; \
  1668. s->mb_intra = 0; \
  1669. if (!index) { _dmv_x = _dmv_y = 0; } \
  1670. else if (index == 35) \
  1671. { \
  1672. _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
  1673. _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
  1674. } \
  1675. else if (index == 36) \
  1676. { \
  1677. _dmv_x = 0; \
  1678. _dmv_y = 0; \
  1679. s->mb_intra = 1; \
  1680. } \
  1681. else \
  1682. { \
  1683. index1 = index%6; \
  1684. if (!s->quarter_sample && index1 == 5) val = 1; \
  1685. else val = 0; \
  1686. if(size_table[index1] - val > 0) \
  1687. val = get_bits(gb, size_table[index1] - val); \
  1688. else val = 0; \
  1689. sign = 0 - (val&1); \
  1690. _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1691. \
  1692. index1 = index/6; \
  1693. if (!s->quarter_sample && index1 == 5) val = 1; \
  1694. else val = 0; \
  1695. if(size_table[index1] - val > 0) \
  1696. val = get_bits(gb, size_table[index1] - val); \
  1697. else val = 0; \
  1698. sign = 0 - (val&1); \
  1699. _dmv_y = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
  1700. }
  1701. /** Predict and set motion vector
  1702. */
  1703. static inline void vc1_pred_mv(MpegEncContext *s, int n, int dmv_x, int dmv_y, int mv1, int r_x, int r_y, uint8_t* is_intra)
  1704. {
  1705. int xy, wrap, off = 0;
  1706. int16_t *A, *B, *C;
  1707. int px, py;
  1708. int sum;
  1709. /* scale MV difference to be quad-pel */
  1710. dmv_x <<= 1 - s->quarter_sample;
  1711. dmv_y <<= 1 - s->quarter_sample;
  1712. wrap = s->b8_stride;
  1713. xy = s->block_index[n];
  1714. if(s->mb_intra){
  1715. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = 0;
  1716. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = 0;
  1717. if(mv1) { /* duplicate motion data for 1-MV block */
  1718. s->current_picture.motion_val[0][xy + 1][0] = 0;
  1719. s->current_picture.motion_val[0][xy + 1][1] = 0;
  1720. s->current_picture.motion_val[0][xy + wrap][0] = 0;
  1721. s->current_picture.motion_val[0][xy + wrap][1] = 0;
  1722. s->current_picture.motion_val[0][xy + wrap + 1][0] = 0;
  1723. s->current_picture.motion_val[0][xy + wrap + 1][1] = 0;
  1724. }
  1725. return;
  1726. }
  1727. C = s->current_picture.motion_val[0][xy - 1];
  1728. A = s->current_picture.motion_val[0][xy - wrap];
  1729. if(mv1)
  1730. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
  1731. else {
  1732. //in 4-MV mode different blocks have different B predictor position
  1733. switch(n){
  1734. case 0:
  1735. off = (s->mb_x > 0) ? -1 : 1;
  1736. break;
  1737. case 1:
  1738. off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
  1739. break;
  1740. case 2:
  1741. off = 1;
  1742. break;
  1743. case 3:
  1744. off = -1;
  1745. }
  1746. }
  1747. B = s->current_picture.motion_val[0][xy - wrap + off];
  1748. if(!s->first_slice_line || (n==2 || n==3)) { // predictor A is not out of bounds
  1749. if(s->mb_width == 1) {
  1750. px = A[0];
  1751. py = A[1];
  1752. } else {
  1753. px = mid_pred(A[0], B[0], C[0]);
  1754. py = mid_pred(A[1], B[1], C[1]);
  1755. }
  1756. } else if(s->mb_x || (n==1 || n==3)) { // predictor C is not out of bounds
  1757. px = C[0];
  1758. py = C[1];
  1759. } else {
  1760. px = py = 0;
  1761. }
  1762. /* Pullback MV as specified in 8.3.5.3.4 */
  1763. {
  1764. int qx, qy, X, Y;
  1765. qx = (s->mb_x << 6) + ((n==1 || n==3) ? 32 : 0);
  1766. qy = (s->mb_y << 6) + ((n==2 || n==3) ? 32 : 0);
  1767. X = (s->mb_width << 6) - 4;
  1768. Y = (s->mb_height << 6) - 4;
  1769. if(mv1) {
  1770. if(qx + px < -60) px = -60 - qx;
  1771. if(qy + py < -60) py = -60 - qy;
  1772. } else {
  1773. if(qx + px < -28) px = -28 - qx;
  1774. if(qy + py < -28) py = -28 - qy;
  1775. }
  1776. if(qx + px > X) px = X - qx;
  1777. if(qy + py > Y) py = Y - qy;
  1778. }
  1779. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  1780. if((!s->first_slice_line || (n==2 || n==3)) && (s->mb_x || (n==1 || n==3))) {
  1781. if(is_intra[xy - wrap])
  1782. sum = ABS(px) + ABS(py);
  1783. else
  1784. sum = ABS(px - A[0]) + ABS(py - A[1]);
  1785. if(sum > 32) {
  1786. if(get_bits1(&s->gb)) {
  1787. px = A[0];
  1788. py = A[1];
  1789. } else {
  1790. px = C[0];
  1791. py = C[1];
  1792. }
  1793. } else {
  1794. if(is_intra[xy - 1])
  1795. sum = ABS(px) + ABS(py);
  1796. else
  1797. sum = ABS(px - C[0]) + ABS(py - C[1]);
  1798. if(sum > 32) {
  1799. if(get_bits1(&s->gb)) {
  1800. px = A[0];
  1801. py = A[1];
  1802. } else {
  1803. px = C[0];
  1804. py = C[1];
  1805. }
  1806. }
  1807. }
  1808. }
  1809. /* store MV using signed modulus of MV range defined in 4.11 */
  1810. s->mv[0][n][0] = s->current_picture.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
  1811. s->mv[0][n][1] = s->current_picture.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
  1812. if(mv1) { /* duplicate motion data for 1-MV block */
  1813. s->current_picture.motion_val[0][xy + 1][0] = s->current_picture.motion_val[0][xy][0];
  1814. s->current_picture.motion_val[0][xy + 1][1] = s->current_picture.motion_val[0][xy][1];
  1815. s->current_picture.motion_val[0][xy + wrap][0] = s->current_picture.motion_val[0][xy][0];
  1816. s->current_picture.motion_val[0][xy + wrap][1] = s->current_picture.motion_val[0][xy][1];
  1817. s->current_picture.motion_val[0][xy + wrap + 1][0] = s->current_picture.motion_val[0][xy][0];
  1818. s->current_picture.motion_val[0][xy + wrap + 1][1] = s->current_picture.motion_val[0][xy][1];
  1819. }
  1820. }
  1821. /** Motion compensation for direct or interpolated blocks in B-frames
  1822. */
  1823. static void vc1_interp_mc(VC1Context *v)
  1824. {
  1825. MpegEncContext *s = &v->s;
  1826. DSPContext *dsp = &v->s.dsp;
  1827. uint8_t *srcY, *srcU, *srcV;
  1828. int dxy, uvdxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
  1829. if(!v->s.next_picture.data[0])return;
  1830. mx = s->mv[1][0][0];
  1831. my = s->mv[1][0][1];
  1832. uvmx = (mx + ((mx & 3) == 3)) >> 1;
  1833. uvmy = (my + ((my & 3) == 3)) >> 1;
  1834. srcY = s->next_picture.data[0];
  1835. srcU = s->next_picture.data[1];
  1836. srcV = s->next_picture.data[2];
  1837. src_x = s->mb_x * 16 + (mx >> 2);
  1838. src_y = s->mb_y * 16 + (my >> 2);
  1839. uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
  1840. uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
  1841. src_x = clip( src_x, -16, s->mb_width * 16);
  1842. src_y = clip( src_y, -16, s->mb_height * 16);
  1843. uvsrc_x = clip(uvsrc_x, -8, s->mb_width * 8);
  1844. uvsrc_y = clip(uvsrc_y, -8, s->mb_height * 8);
  1845. srcY += src_y * s->linesize + src_x;
  1846. srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
  1847. srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
  1848. /* for grayscale we should not try to read from unknown area */
  1849. if(s->flags & CODEC_FLAG_GRAY) {
  1850. srcU = s->edge_emu_buffer + 18 * s->linesize;
  1851. srcV = s->edge_emu_buffer + 18 * s->linesize;
  1852. }
  1853. if(v->rangeredfrm
  1854. || (unsigned)src_x > s->h_edge_pos - (mx&3) - 16
  1855. || (unsigned)src_y > s->v_edge_pos - (my&3) - 16){
  1856. uint8_t *uvbuf= s->edge_emu_buffer + 19 * s->linesize;
  1857. srcY -= s->mspel * (1 + s->linesize);
  1858. ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, 17+s->mspel*2, 17+s->mspel*2,
  1859. src_x - s->mspel, src_y - s->mspel, s->h_edge_pos, s->v_edge_pos);
  1860. srcY = s->edge_emu_buffer;
  1861. ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8+1, 8+1,
  1862. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1863. ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8+1, 8+1,
  1864. uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
  1865. srcU = uvbuf;
  1866. srcV = uvbuf + 16;
  1867. /* if we deal with range reduction we need to scale source blocks */
  1868. if(v->rangeredfrm) {
  1869. int i, j;
  1870. uint8_t *src, *src2;
  1871. src = srcY;
  1872. for(j = 0; j < 17 + s->mspel*2; j++) {
  1873. for(i = 0; i < 17 + s->mspel*2; i++) src[i] = ((src[i] - 128) >> 1) + 128;
  1874. src += s->linesize;
  1875. }
  1876. src = srcU; src2 = srcV;
  1877. for(j = 0; j < 9; j++) {
  1878. for(i = 0; i < 9; i++) {
  1879. src[i] = ((src[i] - 128) >> 1) + 128;
  1880. src2[i] = ((src2[i] - 128) >> 1) + 128;
  1881. }
  1882. src += s->uvlinesize;
  1883. src2 += s->uvlinesize;
  1884. }
  1885. }
  1886. srcY += s->mspel * (1 + s->linesize);
  1887. }
  1888. if(v->fastuvmc) {
  1889. uvmx = uvmx + ((uvmx<0)?(uvmx&1):-(uvmx&1));
  1890. uvmy = uvmy + ((uvmy<0)?(uvmy&1):-(uvmy&1));
  1891. }
  1892. mx >>= 1;
  1893. my >>= 1;
  1894. dxy = ((my & 1) << 1) | (mx & 1);
  1895. dsp->avg_pixels_tab[0][dxy](s->dest[0], srcY, s->linesize, 16);
  1896. if(s->flags & CODEC_FLAG_GRAY) return;
  1897. /* Chroma MC always uses qpel blilinear */
  1898. uvdxy = ((uvmy & 3) << 2) | (uvmx & 3);
  1899. uvmx = (uvmx&3)<<1;
  1900. uvmy = (uvmy&3)<<1;
  1901. dsp->avg_h264_chroma_pixels_tab[0](s->dest[1], srcU, s->uvlinesize, 8, uvmx, uvmy);
  1902. dsp->avg_h264_chroma_pixels_tab[0](s->dest[2], srcV, s->uvlinesize, 8, uvmx, uvmy);
  1903. }
  1904. static always_inline int scale_mv(int value, int bfrac, int inv, int qs)
  1905. {
  1906. int n = bfrac;
  1907. #if B_FRACTION_DEN==256
  1908. if(inv)
  1909. n -= 256;
  1910. if(!qs)
  1911. return 2 * ((value * n + 255) >> 9);
  1912. return (value * n + 128) >> 8;
  1913. #else
  1914. if(inv)
  1915. n -= B_FRACTION_DEN;
  1916. if(!qs)
  1917. return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
  1918. return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
  1919. #endif
  1920. }
  1921. /** Reconstruct motion vector for B-frame and do motion compensation
  1922. */
  1923. static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mode)
  1924. {
  1925. int t;
  1926. if(v->use_ic) {
  1927. v->mv_mode2 = v->mv_mode;
  1928. v->mv_mode = MV_PMODE_INTENSITY_COMP;
  1929. }
  1930. if(direct) {
  1931. vc1_mc_1mv(v, 0);
  1932. vc1_interp_mc(v);
  1933. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1934. return;
  1935. }
  1936. if(mode == BMV_TYPE_INTERPOLATED) {
  1937. vc1_mc_1mv(v, 0);
  1938. vc1_interp_mc(v);
  1939. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1940. return;
  1941. }
  1942. if(v->use_ic && (mode == BMV_TYPE_BACKWARD)) v->mv_mode = v->mv_mode2;
  1943. vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
  1944. if(v->use_ic) v->mv_mode = v->mv_mode2;
  1945. }
  1946. static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2], int direct, int mvtype)
  1947. {
  1948. MpegEncContext *s = &v->s;
  1949. int xy, wrap, off = 0;
  1950. int16_t *A, *B, *C;
  1951. int px, py;
  1952. int sum;
  1953. int r_x, r_y;
  1954. const uint8_t *is_intra = v->mb_type[0];
  1955. r_x = v->range_x;
  1956. r_y = v->range_y;
  1957. /* scale MV difference to be quad-pel */
  1958. dmv_x[0] <<= 1 - s->quarter_sample;
  1959. dmv_y[0] <<= 1 - s->quarter_sample;
  1960. dmv_x[1] <<= 1 - s->quarter_sample;
  1961. dmv_y[1] <<= 1 - s->quarter_sample;
  1962. wrap = s->b8_stride;
  1963. xy = s->block_index[0];
  1964. if(s->mb_intra) {
  1965. s->current_picture.motion_val[0][xy][0] =
  1966. s->current_picture.motion_val[0][xy][1] =
  1967. s->current_picture.motion_val[1][xy][0] =
  1968. s->current_picture.motion_val[1][xy][1] = 0;
  1969. return;
  1970. }
  1971. s->mv[0][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
  1972. s->mv[0][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
  1973. s->mv[1][0][0] = scale_mv(s->next_picture.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
  1974. s->mv[1][0][1] = scale_mv(s->next_picture.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
  1975. if(direct) {
  1976. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  1977. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  1978. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  1979. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  1980. return;
  1981. }
  1982. if((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  1983. C = s->current_picture.motion_val[0][xy - 2];
  1984. A = s->current_picture.motion_val[0][xy - wrap*2];
  1985. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  1986. B = s->current_picture.motion_val[0][xy - wrap*2 + off];
  1987. if(!s->first_slice_line) { // predictor A is not out of bounds
  1988. if(s->mb_width == 1) {
  1989. px = A[0];
  1990. py = A[1];
  1991. } else {
  1992. px = mid_pred(A[0], B[0], C[0]);
  1993. py = mid_pred(A[1], B[1], C[1]);
  1994. }
  1995. } else if(s->mb_x) { // predictor C is not out of bounds
  1996. px = C[0];
  1997. py = C[1];
  1998. } else {
  1999. px = py = 0;
  2000. }
  2001. /* Pullback MV as specified in 8.3.5.3.4 */
  2002. {
  2003. int qx, qy, X, Y;
  2004. if(v->profile < PROFILE_ADVANCED) {
  2005. qx = (s->mb_x << 5);
  2006. qy = (s->mb_y << 5);
  2007. X = (s->mb_width << 5) - 4;
  2008. Y = (s->mb_height << 5) - 4;
  2009. if(qx + px < -28) px = -28 - qx;
  2010. if(qy + py < -28) py = -28 - qy;
  2011. if(qx + px > X) px = X - qx;
  2012. if(qy + py > Y) py = Y - qy;
  2013. } else {
  2014. qx = (s->mb_x << 6);
  2015. qy = (s->mb_y << 6);
  2016. X = (s->mb_width << 6) - 4;
  2017. Y = (s->mb_height << 6) - 4;
  2018. if(qx + px < -60) px = -60 - qx;
  2019. if(qy + py < -60) py = -60 - qy;
  2020. if(qx + px > X) px = X - qx;
  2021. if(qy + py > Y) py = Y - qy;
  2022. }
  2023. }
  2024. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2025. if(0 && !s->first_slice_line && s->mb_x) {
  2026. if(is_intra[xy - wrap])
  2027. sum = ABS(px) + ABS(py);
  2028. else
  2029. sum = ABS(px - A[0]) + ABS(py - A[1]);
  2030. if(sum > 32) {
  2031. if(get_bits1(&s->gb)) {
  2032. px = A[0];
  2033. py = A[1];
  2034. } else {
  2035. px = C[0];
  2036. py = C[1];
  2037. }
  2038. } else {
  2039. if(is_intra[xy - 2])
  2040. sum = ABS(px) + ABS(py);
  2041. else
  2042. sum = ABS(px - C[0]) + ABS(py - C[1]);
  2043. if(sum > 32) {
  2044. if(get_bits1(&s->gb)) {
  2045. px = A[0];
  2046. py = A[1];
  2047. } else {
  2048. px = C[0];
  2049. py = C[1];
  2050. }
  2051. }
  2052. }
  2053. }
  2054. /* store MV using signed modulus of MV range defined in 4.11 */
  2055. s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
  2056. s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
  2057. }
  2058. if((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
  2059. C = s->current_picture.motion_val[1][xy - 2];
  2060. A = s->current_picture.motion_val[1][xy - wrap*2];
  2061. off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
  2062. B = s->current_picture.motion_val[1][xy - wrap*2 + off];
  2063. if(!s->first_slice_line) { // predictor A is not out of bounds
  2064. if(s->mb_width == 1) {
  2065. px = A[0];
  2066. py = A[1];
  2067. } else {
  2068. px = mid_pred(A[0], B[0], C[0]);
  2069. py = mid_pred(A[1], B[1], C[1]);
  2070. }
  2071. } else if(s->mb_x) { // predictor C is not out of bounds
  2072. px = C[0];
  2073. py = C[1];
  2074. } else {
  2075. px = py = 0;
  2076. }
  2077. /* Pullback MV as specified in 8.3.5.3.4 */
  2078. {
  2079. int qx, qy, X, Y;
  2080. if(v->profile < PROFILE_ADVANCED) {
  2081. qx = (s->mb_x << 5);
  2082. qy = (s->mb_y << 5);
  2083. X = (s->mb_width << 5) - 4;
  2084. Y = (s->mb_height << 5) - 4;
  2085. if(qx + px < -28) px = -28 - qx;
  2086. if(qy + py < -28) py = -28 - qy;
  2087. if(qx + px > X) px = X - qx;
  2088. if(qy + py > Y) py = Y - qy;
  2089. } else {
  2090. qx = (s->mb_x << 6);
  2091. qy = (s->mb_y << 6);
  2092. X = (s->mb_width << 6) - 4;
  2093. Y = (s->mb_height << 6) - 4;
  2094. if(qx + px < -60) px = -60 - qx;
  2095. if(qy + py < -60) py = -60 - qy;
  2096. if(qx + px > X) px = X - qx;
  2097. if(qy + py > Y) py = Y - qy;
  2098. }
  2099. }
  2100. /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
  2101. if(0 && !s->first_slice_line && s->mb_x) {
  2102. if(is_intra[xy - wrap])
  2103. sum = ABS(px) + ABS(py);
  2104. else
  2105. sum = ABS(px - A[0]) + ABS(py - A[1]);
  2106. if(sum > 32) {
  2107. if(get_bits1(&s->gb)) {
  2108. px = A[0];
  2109. py = A[1];
  2110. } else {
  2111. px = C[0];
  2112. py = C[1];
  2113. }
  2114. } else {
  2115. if(is_intra[xy - 2])
  2116. sum = ABS(px) + ABS(py);
  2117. else
  2118. sum = ABS(px - C[0]) + ABS(py - C[1]);
  2119. if(sum > 32) {
  2120. if(get_bits1(&s->gb)) {
  2121. px = A[0];
  2122. py = A[1];
  2123. } else {
  2124. px = C[0];
  2125. py = C[1];
  2126. }
  2127. }
  2128. }
  2129. }
  2130. /* store MV using signed modulus of MV range defined in 4.11 */
  2131. s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
  2132. s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
  2133. }
  2134. s->current_picture.motion_val[0][xy][0] = s->mv[0][0][0];
  2135. s->current_picture.motion_val[0][xy][1] = s->mv[0][0][1];
  2136. s->current_picture.motion_val[1][xy][0] = s->mv[1][0][0];
  2137. s->current_picture.motion_val[1][xy][1] = s->mv[1][0][1];
  2138. }
  2139. /** Get predicted DC value for I-frames only
  2140. * prediction dir: left=0, top=1
  2141. * @param s MpegEncContext
  2142. * @param[in] n block index in the current MB
  2143. * @param dc_val_ptr Pointer to DC predictor
  2144. * @param dir_ptr Prediction direction for use in AC prediction
  2145. */
  2146. static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2147. int16_t **dc_val_ptr, int *dir_ptr)
  2148. {
  2149. int a, b, c, wrap, pred, scale;
  2150. int16_t *dc_val;
  2151. static const uint16_t dcpred[32] = {
  2152. -1, 1024, 512, 341, 256, 205, 171, 146, 128,
  2153. 114, 102, 93, 85, 79, 73, 68, 64,
  2154. 60, 57, 54, 51, 49, 47, 45, 43,
  2155. 41, 39, 38, 37, 35, 34, 33
  2156. };
  2157. /* find prediction - wmv3_dc_scale always used here in fact */
  2158. if (n < 4) scale = s->y_dc_scale;
  2159. else scale = s->c_dc_scale;
  2160. wrap = s->block_wrap[n];
  2161. dc_val= s->dc_val[0] + s->block_index[n];
  2162. /* B A
  2163. * C X
  2164. */
  2165. c = dc_val[ - 1];
  2166. b = dc_val[ - 1 - wrap];
  2167. a = dc_val[ - wrap];
  2168. if (pq < 9 || !overlap)
  2169. {
  2170. /* Set outer values */
  2171. if (s->first_slice_line && (n!=2 && n!=3)) b=a=dcpred[scale];
  2172. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=dcpred[scale];
  2173. }
  2174. else
  2175. {
  2176. /* Set outer values */
  2177. if (s->first_slice_line && (n!=2 && n!=3)) b=a=0;
  2178. if (s->mb_x == 0 && (n!=1 && n!=3)) b=c=0;
  2179. }
  2180. if (abs(a - b) <= abs(b - c)) {
  2181. pred = c;
  2182. *dir_ptr = 1;//left
  2183. } else {
  2184. pred = a;
  2185. *dir_ptr = 0;//top
  2186. }
  2187. /* update predictor */
  2188. *dc_val_ptr = &dc_val[0];
  2189. return pred;
  2190. }
  2191. /** Get predicted DC value
  2192. * prediction dir: left=0, top=1
  2193. * @param s MpegEncContext
  2194. * @param[in] n block index in the current MB
  2195. * @param dc_val_ptr Pointer to DC predictor
  2196. * @param dir_ptr Prediction direction for use in AC prediction
  2197. */
  2198. static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
  2199. int a_avail, int c_avail,
  2200. int16_t **dc_val_ptr, int *dir_ptr)
  2201. {
  2202. int a, b, c, wrap, pred, scale;
  2203. int16_t *dc_val;
  2204. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2205. int q1, q2 = 0;
  2206. /* find prediction - wmv3_dc_scale always used here in fact */
  2207. if (n < 4) scale = s->y_dc_scale;
  2208. else scale = s->c_dc_scale;
  2209. wrap = s->block_wrap[n];
  2210. dc_val= s->dc_val[0] + s->block_index[n];
  2211. /* B A
  2212. * C X
  2213. */
  2214. c = dc_val[ - 1];
  2215. b = dc_val[ - 1 - wrap];
  2216. a = dc_val[ - wrap];
  2217. /* scale predictors if needed */
  2218. q1 = s->current_picture.qscale_table[mb_pos];
  2219. if(c_avail && (n!= 1 && n!=3)) {
  2220. q2 = s->current_picture.qscale_table[mb_pos - 1];
  2221. if(q2 && q2 != q1)
  2222. c = (c * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2223. }
  2224. if(a_avail && (n!= 2 && n!=3)) {
  2225. q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2226. if(q2 && q2 != q1)
  2227. a = (a * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2228. }
  2229. if(a_avail && c_avail && (n!=3)) {
  2230. int off = mb_pos;
  2231. if(n != 1) off--;
  2232. if(n != 2) off -= s->mb_stride;
  2233. q2 = s->current_picture.qscale_table[off];
  2234. if(q2 && q2 != q1)
  2235. b = (b * s->y_dc_scale_table[q2] * vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
  2236. }
  2237. if(a_avail && c_avail) {
  2238. if(abs(a - b) <= abs(b - c)) {
  2239. pred = c;
  2240. *dir_ptr = 1;//left
  2241. } else {
  2242. pred = a;
  2243. *dir_ptr = 0;//top
  2244. }
  2245. } else if(a_avail) {
  2246. pred = a;
  2247. *dir_ptr = 0;//top
  2248. } else if(c_avail) {
  2249. pred = c;
  2250. *dir_ptr = 1;//left
  2251. } else {
  2252. pred = 0;
  2253. *dir_ptr = 1;//left
  2254. }
  2255. /* update predictor */
  2256. *dc_val_ptr = &dc_val[0];
  2257. return pred;
  2258. }
  2259. /**
  2260. * @defgroup std_mb VC1 Macroblock-level functions in Simple/Main Profiles
  2261. * @see 7.1.4, p91 and 8.1.1.7, p(1)04
  2262. * @{
  2263. */
  2264. static inline int vc1_coded_block_pred(MpegEncContext * s, int n, uint8_t **coded_block_ptr)
  2265. {
  2266. int xy, wrap, pred, a, b, c;
  2267. xy = s->block_index[n];
  2268. wrap = s->b8_stride;
  2269. /* B C
  2270. * A X
  2271. */
  2272. a = s->coded_block[xy - 1 ];
  2273. b = s->coded_block[xy - 1 - wrap];
  2274. c = s->coded_block[xy - wrap];
  2275. if (b == c) {
  2276. pred = a;
  2277. } else {
  2278. pred = c;
  2279. }
  2280. /* store value */
  2281. *coded_block_ptr = &s->coded_block[xy];
  2282. return pred;
  2283. }
  2284. /**
  2285. * Decode one AC coefficient
  2286. * @param v The VC1 context
  2287. * @param last Last coefficient
  2288. * @param skip How much zero coefficients to skip
  2289. * @param value Decoded AC coefficient value
  2290. * @see 8.1.3.4
  2291. */
  2292. static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip, int *value, int codingset)
  2293. {
  2294. GetBitContext *gb = &v->s.gb;
  2295. int index, escape, run = 0, level = 0, lst = 0;
  2296. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2297. if (index != vc1_ac_sizes[codingset] - 1) {
  2298. run = vc1_index_decode_table[codingset][index][0];
  2299. level = vc1_index_decode_table[codingset][index][1];
  2300. lst = index >= vc1_last_decode_table[codingset];
  2301. if(get_bits(gb, 1))
  2302. level = -level;
  2303. } else {
  2304. escape = decode210(gb);
  2305. if (escape != 2) {
  2306. index = get_vlc2(gb, vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
  2307. run = vc1_index_decode_table[codingset][index][0];
  2308. level = vc1_index_decode_table[codingset][index][1];
  2309. lst = index >= vc1_last_decode_table[codingset];
  2310. if(escape == 0) {
  2311. if(lst)
  2312. level += vc1_last_delta_level_table[codingset][run];
  2313. else
  2314. level += vc1_delta_level_table[codingset][run];
  2315. } else {
  2316. if(lst)
  2317. run += vc1_last_delta_run_table[codingset][level] + 1;
  2318. else
  2319. run += vc1_delta_run_table[codingset][level] + 1;
  2320. }
  2321. if(get_bits(gb, 1))
  2322. level = -level;
  2323. } else {
  2324. int sign;
  2325. lst = get_bits(gb, 1);
  2326. if(v->s.esc3_level_length == 0) {
  2327. if(v->pq < 8 || v->dquantfrm) { // table 59
  2328. v->s.esc3_level_length = get_bits(gb, 3);
  2329. if(!v->s.esc3_level_length)
  2330. v->s.esc3_level_length = get_bits(gb, 2) + 8;
  2331. } else { //table 60
  2332. v->s.esc3_level_length = get_prefix(gb, 1, 6) + 2;
  2333. }
  2334. v->s.esc3_run_length = 3 + get_bits(gb, 2);
  2335. }
  2336. run = get_bits(gb, v->s.esc3_run_length);
  2337. sign = get_bits(gb, 1);
  2338. level = get_bits(gb, v->s.esc3_level_length);
  2339. if(sign)
  2340. level = -level;
  2341. }
  2342. }
  2343. *last = lst;
  2344. *skip = run;
  2345. *value = level;
  2346. }
  2347. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2348. * @param v VC1Context
  2349. * @param block block to decode
  2350. * @param coded are AC coeffs present or not
  2351. * @param codingset set of VLC to decode data
  2352. */
  2353. static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset)
  2354. {
  2355. GetBitContext *gb = &v->s.gb;
  2356. MpegEncContext *s = &v->s;
  2357. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2358. int run_diff, i;
  2359. int16_t *dc_val;
  2360. int16_t *ac_val, *ac_val2;
  2361. int dcdiff;
  2362. /* Get DC differential */
  2363. if (n < 4) {
  2364. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2365. } else {
  2366. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2367. }
  2368. if (dcdiff < 0){
  2369. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2370. return -1;
  2371. }
  2372. if (dcdiff)
  2373. {
  2374. if (dcdiff == 119 /* ESC index value */)
  2375. {
  2376. /* TODO: Optimize */
  2377. if (v->pq == 1) dcdiff = get_bits(gb, 10);
  2378. else if (v->pq == 2) dcdiff = get_bits(gb, 9);
  2379. else dcdiff = get_bits(gb, 8);
  2380. }
  2381. else
  2382. {
  2383. if (v->pq == 1)
  2384. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2385. else if (v->pq == 2)
  2386. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2387. }
  2388. if (get_bits(gb, 1))
  2389. dcdiff = -dcdiff;
  2390. }
  2391. /* Prediction */
  2392. dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
  2393. *dc_val = dcdiff;
  2394. /* Store the quantized DC coeff, used for prediction */
  2395. if (n < 4) {
  2396. block[0] = dcdiff * s->y_dc_scale;
  2397. } else {
  2398. block[0] = dcdiff * s->c_dc_scale;
  2399. }
  2400. /* Skip ? */
  2401. run_diff = 0;
  2402. i = 0;
  2403. if (!coded) {
  2404. goto not_coded;
  2405. }
  2406. //AC Decoding
  2407. i = 1;
  2408. {
  2409. int last = 0, skip, value;
  2410. const int8_t *zz_table;
  2411. int scale;
  2412. int k;
  2413. scale = v->pq * 2 + v->halfpq;
  2414. if(v->s.ac_pred) {
  2415. if(!dc_pred_dir)
  2416. zz_table = vc1_horizontal_zz;
  2417. else
  2418. zz_table = vc1_vertical_zz;
  2419. } else
  2420. zz_table = vc1_normal_zz;
  2421. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2422. ac_val2 = ac_val;
  2423. if(dc_pred_dir) //left
  2424. ac_val -= 16;
  2425. else //top
  2426. ac_val -= 16 * s->block_wrap[n];
  2427. while (!last) {
  2428. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2429. i += skip;
  2430. if(i > 63)
  2431. break;
  2432. block[zz_table[i++]] = value;
  2433. }
  2434. /* apply AC prediction if needed */
  2435. if(s->ac_pred) {
  2436. if(dc_pred_dir) { //left
  2437. for(k = 1; k < 8; k++)
  2438. block[k << 3] += ac_val[k];
  2439. } else { //top
  2440. for(k = 1; k < 8; k++)
  2441. block[k] += ac_val[k + 8];
  2442. }
  2443. }
  2444. /* save AC coeffs for further prediction */
  2445. for(k = 1; k < 8; k++) {
  2446. ac_val2[k] = block[k << 3];
  2447. ac_val2[k + 8] = block[k];
  2448. }
  2449. /* scale AC coeffs */
  2450. for(k = 1; k < 64; k++)
  2451. if(block[k]) {
  2452. block[k] *= scale;
  2453. if(!v->pquantizer)
  2454. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2455. }
  2456. if(s->ac_pred) i = 63;
  2457. }
  2458. not_coded:
  2459. if(!coded) {
  2460. int k, scale;
  2461. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2462. ac_val2 = ac_val;
  2463. scale = v->pq * 2 + v->halfpq;
  2464. memset(ac_val2, 0, 16 * 2);
  2465. if(dc_pred_dir) {//left
  2466. ac_val -= 16;
  2467. if(s->ac_pred)
  2468. memcpy(ac_val2, ac_val, 8 * 2);
  2469. } else {//top
  2470. ac_val -= 16 * s->block_wrap[n];
  2471. if(s->ac_pred)
  2472. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2473. }
  2474. /* apply AC prediction if needed */
  2475. if(s->ac_pred) {
  2476. if(dc_pred_dir) { //left
  2477. for(k = 1; k < 8; k++) {
  2478. block[k << 3] = ac_val[k] * scale;
  2479. if(!v->pquantizer && block[k << 3])
  2480. block[k << 3] += (block[k << 3] < 0) ? -v->pq : v->pq;
  2481. }
  2482. } else { //top
  2483. for(k = 1; k < 8; k++) {
  2484. block[k] = ac_val[k + 8] * scale;
  2485. if(!v->pquantizer && block[k])
  2486. block[k] += (block[k] < 0) ? -v->pq : v->pq;
  2487. }
  2488. }
  2489. i = 63;
  2490. }
  2491. }
  2492. s->block_last_index[n] = i;
  2493. return 0;
  2494. }
  2495. /** Decode intra block in intra frames - should be faster than decode_intra_block
  2496. * @param v VC1Context
  2497. * @param block block to decode
  2498. * @param coded are AC coeffs present or not
  2499. * @param codingset set of VLC to decode data
  2500. */
  2501. static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n, int coded, int codingset, int mquant)
  2502. {
  2503. GetBitContext *gb = &v->s.gb;
  2504. MpegEncContext *s = &v->s;
  2505. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2506. int run_diff, i;
  2507. int16_t *dc_val;
  2508. int16_t *ac_val, *ac_val2;
  2509. int dcdiff;
  2510. int a_avail = v->a_avail, c_avail = v->c_avail;
  2511. int use_pred = s->ac_pred;
  2512. int scale;
  2513. int q1, q2 = 0;
  2514. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2515. /* Get DC differential */
  2516. if (n < 4) {
  2517. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2518. } else {
  2519. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2520. }
  2521. if (dcdiff < 0){
  2522. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2523. return -1;
  2524. }
  2525. if (dcdiff)
  2526. {
  2527. if (dcdiff == 119 /* ESC index value */)
  2528. {
  2529. /* TODO: Optimize */
  2530. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2531. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2532. else dcdiff = get_bits(gb, 8);
  2533. }
  2534. else
  2535. {
  2536. if (mquant == 1)
  2537. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2538. else if (mquant == 2)
  2539. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2540. }
  2541. if (get_bits(gb, 1))
  2542. dcdiff = -dcdiff;
  2543. }
  2544. /* Prediction */
  2545. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
  2546. *dc_val = dcdiff;
  2547. /* Store the quantized DC coeff, used for prediction */
  2548. if (n < 4) {
  2549. block[0] = dcdiff * s->y_dc_scale;
  2550. } else {
  2551. block[0] = dcdiff * s->c_dc_scale;
  2552. }
  2553. /* Skip ? */
  2554. run_diff = 0;
  2555. i = 0;
  2556. //AC Decoding
  2557. i = 1;
  2558. /* check if AC is needed at all and adjust direction if needed */
  2559. if(!a_avail) dc_pred_dir = 1;
  2560. if(!c_avail) dc_pred_dir = 0;
  2561. if(!a_avail && !c_avail) use_pred = 0;
  2562. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2563. ac_val2 = ac_val;
  2564. scale = mquant * 2 + v->halfpq;
  2565. if(dc_pred_dir) //left
  2566. ac_val -= 16;
  2567. else //top
  2568. ac_val -= 16 * s->block_wrap[n];
  2569. q1 = s->current_picture.qscale_table[mb_pos];
  2570. if(dc_pred_dir && c_avail) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2571. if(!dc_pred_dir && a_avail) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2572. if(n && n<4) q2 = q1;
  2573. if(coded) {
  2574. int last = 0, skip, value;
  2575. const int8_t *zz_table;
  2576. int k;
  2577. if(v->s.ac_pred) {
  2578. if(!dc_pred_dir)
  2579. zz_table = vc1_horizontal_zz;
  2580. else
  2581. zz_table = vc1_vertical_zz;
  2582. } else
  2583. zz_table = vc1_normal_zz;
  2584. while (!last) {
  2585. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2586. i += skip;
  2587. if(i > 63)
  2588. break;
  2589. block[zz_table[i++]] = value;
  2590. }
  2591. /* apply AC prediction if needed */
  2592. if(use_pred) {
  2593. /* scale predictors if needed*/
  2594. if(q2 && q1!=q2) {
  2595. q1 = q1 * 2 - 1;
  2596. q2 = q2 * 2 - 1;
  2597. if(dc_pred_dir) { //left
  2598. for(k = 1; k < 8; k++)
  2599. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2600. } else { //top
  2601. for(k = 1; k < 8; k++)
  2602. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2603. }
  2604. } else {
  2605. if(dc_pred_dir) { //left
  2606. for(k = 1; k < 8; k++)
  2607. block[k << 3] += ac_val[k];
  2608. } else { //top
  2609. for(k = 1; k < 8; k++)
  2610. block[k] += ac_val[k + 8];
  2611. }
  2612. }
  2613. }
  2614. /* save AC coeffs for further prediction */
  2615. for(k = 1; k < 8; k++) {
  2616. ac_val2[k] = block[k << 3];
  2617. ac_val2[k + 8] = block[k];
  2618. }
  2619. /* scale AC coeffs */
  2620. for(k = 1; k < 64; k++)
  2621. if(block[k]) {
  2622. block[k] *= scale;
  2623. if(!v->pquantizer)
  2624. block[k] += (block[k] < 0) ? -mquant : mquant;
  2625. }
  2626. if(use_pred) i = 63;
  2627. } else { // no AC coeffs
  2628. int k;
  2629. memset(ac_val2, 0, 16 * 2);
  2630. if(dc_pred_dir) {//left
  2631. if(use_pred) {
  2632. memcpy(ac_val2, ac_val, 8 * 2);
  2633. if(q2 && q1!=q2) {
  2634. q1 = q1 * 2 - 1;
  2635. q2 = q2 * 2 - 1;
  2636. for(k = 1; k < 8; k++)
  2637. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2638. }
  2639. }
  2640. } else {//top
  2641. if(use_pred) {
  2642. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2643. if(q2 && q1!=q2) {
  2644. q1 = q1 * 2 - 1;
  2645. q2 = q2 * 2 - 1;
  2646. for(k = 1; k < 8; k++)
  2647. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2648. }
  2649. }
  2650. }
  2651. /* apply AC prediction if needed */
  2652. if(use_pred) {
  2653. if(dc_pred_dir) { //left
  2654. for(k = 1; k < 8; k++) {
  2655. block[k << 3] = ac_val2[k] * scale;
  2656. if(!v->pquantizer && block[k << 3])
  2657. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2658. }
  2659. } else { //top
  2660. for(k = 1; k < 8; k++) {
  2661. block[k] = ac_val2[k + 8] * scale;
  2662. if(!v->pquantizer && block[k])
  2663. block[k] += (block[k] < 0) ? -mquant : mquant;
  2664. }
  2665. }
  2666. i = 63;
  2667. }
  2668. }
  2669. s->block_last_index[n] = i;
  2670. return 0;
  2671. }
  2672. /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
  2673. * @param v VC1Context
  2674. * @param block block to decode
  2675. * @param coded are AC coeffs present or not
  2676. * @param mquant block quantizer
  2677. * @param codingset set of VLC to decode data
  2678. */
  2679. static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n, int coded, int mquant, int codingset)
  2680. {
  2681. GetBitContext *gb = &v->s.gb;
  2682. MpegEncContext *s = &v->s;
  2683. int dc_pred_dir = 0; /* Direction of the DC prediction used */
  2684. int run_diff, i;
  2685. int16_t *dc_val;
  2686. int16_t *ac_val, *ac_val2;
  2687. int dcdiff;
  2688. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2689. int a_avail = v->a_avail, c_avail = v->c_avail;
  2690. int use_pred = s->ac_pred;
  2691. int scale;
  2692. int q1, q2 = 0;
  2693. /* XXX: Guard against dumb values of mquant */
  2694. mquant = (mquant < 1) ? 0 : ( (mquant>31) ? 31 : mquant );
  2695. /* Set DC scale - y and c use the same */
  2696. s->y_dc_scale = s->y_dc_scale_table[mquant];
  2697. s->c_dc_scale = s->c_dc_scale_table[mquant];
  2698. /* Get DC differential */
  2699. if (n < 4) {
  2700. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2701. } else {
  2702. dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
  2703. }
  2704. if (dcdiff < 0){
  2705. av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
  2706. return -1;
  2707. }
  2708. if (dcdiff)
  2709. {
  2710. if (dcdiff == 119 /* ESC index value */)
  2711. {
  2712. /* TODO: Optimize */
  2713. if (mquant == 1) dcdiff = get_bits(gb, 10);
  2714. else if (mquant == 2) dcdiff = get_bits(gb, 9);
  2715. else dcdiff = get_bits(gb, 8);
  2716. }
  2717. else
  2718. {
  2719. if (mquant == 1)
  2720. dcdiff = (dcdiff<<2) + get_bits(gb, 2) - 3;
  2721. else if (mquant == 2)
  2722. dcdiff = (dcdiff<<1) + get_bits(gb, 1) - 1;
  2723. }
  2724. if (get_bits(gb, 1))
  2725. dcdiff = -dcdiff;
  2726. }
  2727. /* Prediction */
  2728. dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
  2729. *dc_val = dcdiff;
  2730. /* Store the quantized DC coeff, used for prediction */
  2731. if (n < 4) {
  2732. block[0] = dcdiff * s->y_dc_scale;
  2733. } else {
  2734. block[0] = dcdiff * s->c_dc_scale;
  2735. }
  2736. /* Skip ? */
  2737. run_diff = 0;
  2738. i = 0;
  2739. //AC Decoding
  2740. i = 1;
  2741. /* check if AC is needed at all and adjust direction if needed */
  2742. if(!a_avail) dc_pred_dir = 1;
  2743. if(!c_avail) dc_pred_dir = 0;
  2744. if(!a_avail && !c_avail) use_pred = 0;
  2745. ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
  2746. ac_val2 = ac_val;
  2747. scale = mquant * 2 + v->halfpq;
  2748. if(dc_pred_dir) //left
  2749. ac_val -= 16;
  2750. else //top
  2751. ac_val -= 16 * s->block_wrap[n];
  2752. q1 = s->current_picture.qscale_table[mb_pos];
  2753. if(dc_pred_dir && c_avail) q2 = s->current_picture.qscale_table[mb_pos - 1];
  2754. if(!dc_pred_dir && a_avail) q2 = s->current_picture.qscale_table[mb_pos - s->mb_stride];
  2755. if(n && n<4) q2 = q1;
  2756. if(coded) {
  2757. int last = 0, skip, value;
  2758. const int8_t *zz_table;
  2759. int k;
  2760. zz_table = vc1_simple_progressive_8x8_zz;
  2761. while (!last) {
  2762. vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
  2763. i += skip;
  2764. if(i > 63)
  2765. break;
  2766. block[zz_table[i++]] = value;
  2767. }
  2768. /* apply AC prediction if needed */
  2769. if(use_pred) {
  2770. /* scale predictors if needed*/
  2771. if(q2 && q1!=q2) {
  2772. q1 = q1 * 2 - 1;
  2773. q2 = q2 * 2 - 1;
  2774. if(dc_pred_dir) { //left
  2775. for(k = 1; k < 8; k++)
  2776. block[k << 3] += (ac_val[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2777. } else { //top
  2778. for(k = 1; k < 8; k++)
  2779. block[k] += (ac_val[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2780. }
  2781. } else {
  2782. if(dc_pred_dir) { //left
  2783. for(k = 1; k < 8; k++)
  2784. block[k << 3] += ac_val[k];
  2785. } else { //top
  2786. for(k = 1; k < 8; k++)
  2787. block[k] += ac_val[k + 8];
  2788. }
  2789. }
  2790. }
  2791. /* save AC coeffs for further prediction */
  2792. for(k = 1; k < 8; k++) {
  2793. ac_val2[k] = block[k << 3];
  2794. ac_val2[k + 8] = block[k];
  2795. }
  2796. /* scale AC coeffs */
  2797. for(k = 1; k < 64; k++)
  2798. if(block[k]) {
  2799. block[k] *= scale;
  2800. if(!v->pquantizer)
  2801. block[k] += (block[k] < 0) ? -mquant : mquant;
  2802. }
  2803. if(use_pred) i = 63;
  2804. } else { // no AC coeffs
  2805. int k;
  2806. memset(ac_val2, 0, 16 * 2);
  2807. if(dc_pred_dir) {//left
  2808. if(use_pred) {
  2809. memcpy(ac_val2, ac_val, 8 * 2);
  2810. if(q2 && q1!=q2) {
  2811. q1 = q1 * 2 - 1;
  2812. q2 = q2 * 2 - 1;
  2813. for(k = 1; k < 8; k++)
  2814. ac_val2[k] = (ac_val2[k] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2815. }
  2816. }
  2817. } else {//top
  2818. if(use_pred) {
  2819. memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
  2820. if(q2 && q1!=q2) {
  2821. q1 = q1 * 2 - 1;
  2822. q2 = q2 * 2 - 1;
  2823. for(k = 1; k < 8; k++)
  2824. ac_val2[k + 8] = (ac_val2[k + 8] * q2 * vc1_dqscale[q1 - 1] + 0x20000) >> 18;
  2825. }
  2826. }
  2827. }
  2828. /* apply AC prediction if needed */
  2829. if(use_pred) {
  2830. if(dc_pred_dir) { //left
  2831. for(k = 1; k < 8; k++) {
  2832. block[k << 3] = ac_val2[k] * scale;
  2833. if(!v->pquantizer && block[k << 3])
  2834. block[k << 3] += (block[k << 3] < 0) ? -mquant : mquant;
  2835. }
  2836. } else { //top
  2837. for(k = 1; k < 8; k++) {
  2838. block[k] = ac_val2[k + 8] * scale;
  2839. if(!v->pquantizer && block[k])
  2840. block[k] += (block[k] < 0) ? -mquant : mquant;
  2841. }
  2842. }
  2843. i = 63;
  2844. }
  2845. }
  2846. s->block_last_index[n] = i;
  2847. return 0;
  2848. }
  2849. /** Decode P block
  2850. */
  2851. static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n, int mquant, int ttmb, int first_block)
  2852. {
  2853. MpegEncContext *s = &v->s;
  2854. GetBitContext *gb = &s->gb;
  2855. int i, j;
  2856. int subblkpat = 0;
  2857. int scale, off, idx, last, skip, value;
  2858. int ttblk = ttmb & 7;
  2859. if(ttmb == -1) {
  2860. ttblk = ttblk_to_tt[v->tt_index][get_vlc2(gb, vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
  2861. }
  2862. if(ttblk == TT_4X4) {
  2863. subblkpat = ~(get_vlc2(gb, vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
  2864. }
  2865. if((ttblk != TT_8X8 && ttblk != TT_4X4) && (v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))) {
  2866. subblkpat = decode012(gb);
  2867. if(subblkpat) subblkpat ^= 3; //swap decoded pattern bits
  2868. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) ttblk = TT_8X4;
  2869. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) ttblk = TT_4X8;
  2870. }
  2871. scale = 2 * mquant + v->halfpq;
  2872. // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
  2873. if(ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
  2874. subblkpat = 2 - (ttblk == TT_8X4_TOP);
  2875. ttblk = TT_8X4;
  2876. }
  2877. if(ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
  2878. subblkpat = 2 - (ttblk == TT_4X8_LEFT);
  2879. ttblk = TT_4X8;
  2880. }
  2881. switch(ttblk) {
  2882. case TT_8X8:
  2883. i = 0;
  2884. last = 0;
  2885. while (!last) {
  2886. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2887. i += skip;
  2888. if(i > 63)
  2889. break;
  2890. idx = vc1_simple_progressive_8x8_zz[i++];
  2891. block[idx] = value * scale;
  2892. if(!v->pquantizer)
  2893. block[idx] += (block[idx] < 0) ? -mquant : mquant;
  2894. }
  2895. s->dsp.vc1_inv_trans_8x8(block);
  2896. break;
  2897. case TT_4X4:
  2898. for(j = 0; j < 4; j++) {
  2899. last = subblkpat & (1 << (3 - j));
  2900. i = 0;
  2901. off = (j & 1) * 4 + (j & 2) * 16;
  2902. while (!last) {
  2903. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2904. i += skip;
  2905. if(i > 15)
  2906. break;
  2907. idx = vc1_simple_progressive_4x4_zz[i++];
  2908. block[idx + off] = value * scale;
  2909. if(!v->pquantizer)
  2910. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2911. }
  2912. if(!(subblkpat & (1 << (3 - j))))
  2913. s->dsp.vc1_inv_trans_4x4(block, j);
  2914. }
  2915. break;
  2916. case TT_8X4:
  2917. for(j = 0; j < 2; j++) {
  2918. last = subblkpat & (1 << (1 - j));
  2919. i = 0;
  2920. off = j * 32;
  2921. while (!last) {
  2922. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2923. i += skip;
  2924. if(i > 31)
  2925. break;
  2926. if(v->profile < PROFILE_ADVANCED)
  2927. idx = vc1_simple_progressive_8x4_zz[i++];
  2928. else
  2929. idx = vc1_adv_progressive_8x4_zz[i++];
  2930. block[idx + off] = value * scale;
  2931. if(!v->pquantizer)
  2932. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2933. }
  2934. if(!(subblkpat & (1 << (1 - j))))
  2935. s->dsp.vc1_inv_trans_8x4(block, j);
  2936. }
  2937. break;
  2938. case TT_4X8:
  2939. for(j = 0; j < 2; j++) {
  2940. last = subblkpat & (1 << (1 - j));
  2941. i = 0;
  2942. off = j * 4;
  2943. while (!last) {
  2944. vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
  2945. i += skip;
  2946. if(i > 31)
  2947. break;
  2948. if(v->profile < PROFILE_ADVANCED)
  2949. idx = vc1_simple_progressive_4x8_zz[i++];
  2950. else
  2951. idx = vc1_adv_progressive_4x8_zz[i++];
  2952. block[idx + off] = value * scale;
  2953. if(!v->pquantizer)
  2954. block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
  2955. }
  2956. if(!(subblkpat & (1 << (1 - j))))
  2957. s->dsp.vc1_inv_trans_4x8(block, j);
  2958. }
  2959. break;
  2960. }
  2961. return 0;
  2962. }
  2963. /** Decode one P-frame MB (in Simple/Main profile)
  2964. */
  2965. static int vc1_decode_p_mb(VC1Context *v)
  2966. {
  2967. MpegEncContext *s = &v->s;
  2968. GetBitContext *gb = &s->gb;
  2969. int i, j;
  2970. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  2971. int cbp; /* cbp decoding stuff */
  2972. int mqdiff, mquant; /* MB quantization */
  2973. int ttmb = v->ttfrm; /* MB Transform type */
  2974. int status;
  2975. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  2976. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  2977. int mb_has_coeffs = 1; /* last_flag */
  2978. int dmv_x, dmv_y; /* Differential MV components */
  2979. int index, index1; /* LUT indices */
  2980. int val, sign; /* temp values */
  2981. int first_block = 1;
  2982. int dst_idx, off;
  2983. int skipped, fourmv;
  2984. mquant = v->pq; /* Loosy initialization */
  2985. if (v->mv_type_is_raw)
  2986. fourmv = get_bits1(gb);
  2987. else
  2988. fourmv = v->mv_type_mb_plane[mb_pos];
  2989. if (v->skip_is_raw)
  2990. skipped = get_bits1(gb);
  2991. else
  2992. skipped = v->s.mbskip_table[mb_pos];
  2993. s->dsp.clear_blocks(s->block[0]);
  2994. if (!fourmv) /* 1MV mode */
  2995. {
  2996. if (!skipped)
  2997. {
  2998. GET_MVDATA(dmv_x, dmv_y);
  2999. if (s->mb_intra) {
  3000. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3001. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3002. }
  3003. s->current_picture.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
  3004. vc1_pred_mv(s, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0]);
  3005. /* FIXME Set DC val for inter block ? */
  3006. if (s->mb_intra && !mb_has_coeffs)
  3007. {
  3008. GET_MQUANT();
  3009. s->ac_pred = get_bits(gb, 1);
  3010. cbp = 0;
  3011. }
  3012. else if (mb_has_coeffs)
  3013. {
  3014. if (s->mb_intra) s->ac_pred = get_bits(gb, 1);
  3015. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3016. GET_MQUANT();
  3017. }
  3018. else
  3019. {
  3020. mquant = v->pq;
  3021. cbp = 0;
  3022. }
  3023. s->current_picture.qscale_table[mb_pos] = mquant;
  3024. if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3025. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table,
  3026. VC1_TTMB_VLC_BITS, 2);
  3027. if(!s->mb_intra) vc1_mc_1mv(v, 0);
  3028. dst_idx = 0;
  3029. for (i=0; i<6; i++)
  3030. {
  3031. s->dc_val[0][s->block_index[i]] = 0;
  3032. dst_idx += i >> 2;
  3033. val = ((cbp >> (5 - i)) & 1);
  3034. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3035. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3036. if(s->mb_intra) {
  3037. /* check if prediction blocks A and C are available */
  3038. v->a_avail = v->c_avail = 0;
  3039. if(i == 2 || i == 3 || !s->first_slice_line)
  3040. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3041. if(i == 1 || i == 3 || s->mb_x)
  3042. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3043. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3044. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3045. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3046. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3047. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3048. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3049. if(v->pq >= 9 && v->overlap) {
  3050. if(v->a_avail)
  3051. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? ((i&1)>>1) : (s->mb_y&1));
  3052. if(v->c_avail)
  3053. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? (i&1) : (s->mb_x&1));
  3054. }
  3055. } else if(val) {
  3056. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3057. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3058. first_block = 0;
  3059. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3060. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3061. }
  3062. }
  3063. }
  3064. else //Skipped
  3065. {
  3066. s->mb_intra = 0;
  3067. for(i = 0; i < 6; i++) {
  3068. v->mb_type[0][s->block_index[i]] = 0;
  3069. s->dc_val[0][s->block_index[i]] = 0;
  3070. }
  3071. s->current_picture.mb_type[mb_pos] = MB_TYPE_SKIP;
  3072. s->current_picture.qscale_table[mb_pos] = 0;
  3073. vc1_pred_mv(s, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0]);
  3074. vc1_mc_1mv(v, 0);
  3075. return 0;
  3076. }
  3077. } //1MV mode
  3078. else //4MV mode
  3079. {
  3080. if (!skipped /* unskipped MB */)
  3081. {
  3082. int intra_count = 0, coded_inter = 0;
  3083. int is_intra[6], is_coded[6];
  3084. /* Get CBPCY */
  3085. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3086. for (i=0; i<6; i++)
  3087. {
  3088. val = ((cbp >> (5 - i)) & 1);
  3089. s->dc_val[0][s->block_index[i]] = 0;
  3090. s->mb_intra = 0;
  3091. if(i < 4) {
  3092. dmv_x = dmv_y = 0;
  3093. s->mb_intra = 0;
  3094. mb_has_coeffs = 0;
  3095. if(val) {
  3096. GET_MVDATA(dmv_x, dmv_y);
  3097. }
  3098. vc1_pred_mv(s, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
  3099. if(!s->mb_intra) vc1_mc_4mv_luma(v, i);
  3100. intra_count += s->mb_intra;
  3101. is_intra[i] = s->mb_intra;
  3102. is_coded[i] = mb_has_coeffs;
  3103. }
  3104. if(i&4){
  3105. is_intra[i] = (intra_count >= 3);
  3106. is_coded[i] = val;
  3107. }
  3108. if(i == 4) vc1_mc_4mv_chroma(v);
  3109. v->mb_type[0][s->block_index[i]] = is_intra[i];
  3110. if(!coded_inter) coded_inter = !is_intra[i] & is_coded[i];
  3111. }
  3112. // if there are no coded blocks then don't do anything more
  3113. if(!intra_count && !coded_inter) return 0;
  3114. dst_idx = 0;
  3115. GET_MQUANT();
  3116. s->current_picture.qscale_table[mb_pos] = mquant;
  3117. /* test if block is intra and has pred */
  3118. {
  3119. int intrapred = 0;
  3120. for(i=0; i<6; i++)
  3121. if(is_intra[i]) {
  3122. if(((!s->first_slice_line || (i==2 || i==3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
  3123. || ((s->mb_x || (i==1 || i==3)) && v->mb_type[0][s->block_index[i] - 1])) {
  3124. intrapred = 1;
  3125. break;
  3126. }
  3127. }
  3128. if(intrapred)s->ac_pred = get_bits(gb, 1);
  3129. else s->ac_pred = 0;
  3130. }
  3131. if (!v->ttmbf && coded_inter)
  3132. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3133. for (i=0; i<6; i++)
  3134. {
  3135. dst_idx += i >> 2;
  3136. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3137. s->mb_intra = is_intra[i];
  3138. if (is_intra[i]) {
  3139. /* check if prediction blocks A and C are available */
  3140. v->a_avail = v->c_avail = 0;
  3141. if(i == 2 || i == 3 || !s->first_slice_line)
  3142. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3143. if(i == 1 || i == 3 || s->mb_x)
  3144. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3145. vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant, (i&4)?v->codingset2:v->codingset);
  3146. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3147. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3148. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3149. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3150. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3151. if(v->pq >= 9 && v->overlap) {
  3152. if(v->a_avail)
  3153. s->dsp.vc1_v_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? ((i&1)>>1) : (s->mb_y&1));
  3154. if(v->c_avail)
  3155. s->dsp.vc1_h_overlap(s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2), (i<4) ? (i&1) : (s->mb_x&1));
  3156. }
  3157. } else if(is_coded[i]) {
  3158. status = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3159. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3160. first_block = 0;
  3161. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3162. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3163. }
  3164. }
  3165. return status;
  3166. }
  3167. else //Skipped MB
  3168. {
  3169. s->mb_intra = 0;
  3170. s->current_picture.qscale_table[mb_pos] = 0;
  3171. for (i=0; i<6; i++) {
  3172. v->mb_type[0][s->block_index[i]] = 0;
  3173. s->dc_val[0][s->block_index[i]] = 0;
  3174. }
  3175. for (i=0; i<4; i++)
  3176. {
  3177. vc1_pred_mv(s, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0]);
  3178. vc1_mc_4mv_luma(v, i);
  3179. }
  3180. vc1_mc_4mv_chroma(v);
  3181. s->current_picture.qscale_table[mb_pos] = 0;
  3182. return 0;
  3183. }
  3184. }
  3185. /* Should never happen */
  3186. return -1;
  3187. }
  3188. /** Decode one B-frame MB (in Main profile)
  3189. */
  3190. static void vc1_decode_b_mb(VC1Context *v)
  3191. {
  3192. MpegEncContext *s = &v->s;
  3193. GetBitContext *gb = &s->gb;
  3194. int i, j;
  3195. int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3196. int cbp = 0; /* cbp decoding stuff */
  3197. int mqdiff, mquant; /* MB quantization */
  3198. int ttmb = v->ttfrm; /* MB Transform type */
  3199. static const int size_table[6] = { 0, 2, 3, 4, 5, 8 },
  3200. offset_table[6] = { 0, 1, 3, 7, 15, 31 };
  3201. int mb_has_coeffs = 0; /* last_flag */
  3202. int index, index1; /* LUT indices */
  3203. int val, sign; /* temp values */
  3204. int first_block = 1;
  3205. int dst_idx, off;
  3206. int skipped, direct;
  3207. int dmv_x[2], dmv_y[2];
  3208. int bmvtype = BMV_TYPE_BACKWARD;
  3209. mquant = v->pq; /* Loosy initialization */
  3210. s->mb_intra = 0;
  3211. if (v->dmb_is_raw)
  3212. direct = get_bits1(gb);
  3213. else
  3214. direct = v->direct_mb_plane[mb_pos];
  3215. if (v->skip_is_raw)
  3216. skipped = get_bits1(gb);
  3217. else
  3218. skipped = v->s.mbskip_table[mb_pos];
  3219. s->dsp.clear_blocks(s->block[0]);
  3220. dmv_x[0] = dmv_x[1] = dmv_y[0] = dmv_y[1] = 0;
  3221. for(i = 0; i < 6; i++) {
  3222. v->mb_type[0][s->block_index[i]] = 0;
  3223. s->dc_val[0][s->block_index[i]] = 0;
  3224. }
  3225. s->current_picture.qscale_table[mb_pos] = 0;
  3226. if (!direct) {
  3227. if (!skipped) {
  3228. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3229. dmv_x[1] = dmv_x[0];
  3230. dmv_y[1] = dmv_y[0];
  3231. }
  3232. if(skipped || !s->mb_intra) {
  3233. bmvtype = decode012(gb);
  3234. switch(bmvtype) {
  3235. case 0:
  3236. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_BACKWARD : BMV_TYPE_FORWARD;
  3237. break;
  3238. case 1:
  3239. bmvtype = (v->bfraction >= (B_FRACTION_DEN/2)) ? BMV_TYPE_FORWARD : BMV_TYPE_BACKWARD;
  3240. break;
  3241. case 2:
  3242. bmvtype = BMV_TYPE_INTERPOLATED;
  3243. dmv_x[0] = dmv_y[0] = 0;
  3244. }
  3245. }
  3246. }
  3247. for(i = 0; i < 6; i++)
  3248. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3249. if (skipped) {
  3250. if(direct) bmvtype = BMV_TYPE_INTERPOLATED;
  3251. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3252. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3253. return;
  3254. }
  3255. if (direct) {
  3256. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3257. GET_MQUANT();
  3258. s->mb_intra = 0;
  3259. mb_has_coeffs = 0;
  3260. s->current_picture.qscale_table[mb_pos] = mquant;
  3261. if(!v->ttmbf)
  3262. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3263. dmv_x[0] = dmv_y[0] = dmv_x[1] = dmv_y[1] = 0;
  3264. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3265. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3266. } else {
  3267. if(!mb_has_coeffs && !s->mb_intra) {
  3268. /* no coded blocks - effectively skipped */
  3269. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3270. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3271. return;
  3272. }
  3273. if(s->mb_intra && !mb_has_coeffs) {
  3274. GET_MQUANT();
  3275. s->current_picture.qscale_table[mb_pos] = mquant;
  3276. s->ac_pred = get_bits1(gb);
  3277. cbp = 0;
  3278. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3279. } else {
  3280. if(bmvtype == BMV_TYPE_INTERPOLATED) {
  3281. GET_MVDATA(dmv_x[0], dmv_y[0]);
  3282. if(!mb_has_coeffs) {
  3283. /* interpolated skipped block */
  3284. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3285. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3286. return;
  3287. }
  3288. }
  3289. vc1_pred_b_mv(v, dmv_x, dmv_y, direct, bmvtype);
  3290. if(!s->mb_intra) {
  3291. vc1_b_mc(v, dmv_x, dmv_y, direct, bmvtype);
  3292. }
  3293. if(s->mb_intra)
  3294. s->ac_pred = get_bits1(gb);
  3295. cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
  3296. GET_MQUANT();
  3297. s->current_picture.qscale_table[mb_pos] = mquant;
  3298. if(!v->ttmbf && !s->mb_intra && mb_has_coeffs)
  3299. ttmb = get_vlc2(gb, vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
  3300. }
  3301. }
  3302. dst_idx = 0;
  3303. for (i=0; i<6; i++)
  3304. {
  3305. s->dc_val[0][s->block_index[i]] = 0;
  3306. dst_idx += i >> 2;
  3307. val = ((cbp >> (5 - i)) & 1);
  3308. off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
  3309. v->mb_type[0][s->block_index[i]] = s->mb_intra;
  3310. if(s->mb_intra) {
  3311. /* check if prediction blocks A and C are available */
  3312. v->a_avail = v->c_avail = 0;
  3313. if(i == 2 || i == 3 || !s->first_slice_line)
  3314. v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
  3315. if(i == 1 || i == 3 || s->mb_x)
  3316. v->c_avail = v->mb_type[0][s->block_index[i] - 1];
  3317. vc1_decode_intra_block(v, s->block[i], i, val, mquant, (i&4)?v->codingset2:v->codingset);
  3318. if((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
  3319. s->dsp.vc1_inv_trans_8x8(s->block[i]);
  3320. if(v->rangeredfrm) for(j = 0; j < 64; j++) s->block[i][j] <<= 1;
  3321. for(j = 0; j < 64; j++) s->block[i][j] += 128;
  3322. s->dsp.put_pixels_clamped(s->block[i], s->dest[dst_idx] + off, s->linesize >> ((i & 4) >> 2));
  3323. } else if(val) {
  3324. vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block);
  3325. if(!v->ttmbf && ttmb < 8) ttmb = -1;
  3326. first_block = 0;
  3327. if((i<4) || !(s->flags & CODEC_FLAG_GRAY))
  3328. s->dsp.add_pixels_clamped(s->block[i], s->dest[dst_idx] + off, (i&4)?s->uvlinesize:s->linesize);
  3329. }
  3330. }
  3331. }
  3332. /** Decode blocks of I-frame
  3333. */
  3334. static void vc1_decode_i_blocks(VC1Context *v)
  3335. {
  3336. int k, j;
  3337. MpegEncContext *s = &v->s;
  3338. int cbp, val;
  3339. uint8_t *coded_val;
  3340. int mb_pos;
  3341. /* select codingmode used for VLC tables selection */
  3342. switch(v->y_ac_table_index){
  3343. case 0:
  3344. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3345. break;
  3346. case 1:
  3347. v->codingset = CS_HIGH_MOT_INTRA;
  3348. break;
  3349. case 2:
  3350. v->codingset = CS_MID_RATE_INTRA;
  3351. break;
  3352. }
  3353. switch(v->c_ac_table_index){
  3354. case 0:
  3355. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3356. break;
  3357. case 1:
  3358. v->codingset2 = CS_HIGH_MOT_INTER;
  3359. break;
  3360. case 2:
  3361. v->codingset2 = CS_MID_RATE_INTER;
  3362. break;
  3363. }
  3364. /* Set DC scale - y and c use the same */
  3365. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3366. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3367. //do frame decode
  3368. s->mb_x = s->mb_y = 0;
  3369. s->mb_intra = 1;
  3370. s->first_slice_line = 1;
  3371. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3372. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3373. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3374. ff_init_block_index(s);
  3375. ff_update_block_index(s);
  3376. s->dsp.clear_blocks(s->block[0]);
  3377. mb_pos = s->mb_x + s->mb_y * s->mb_width;
  3378. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3379. s->current_picture.qscale_table[mb_pos] = v->pq;
  3380. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3381. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3382. // do actual MB decoding and displaying
  3383. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3384. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3385. for(k = 0; k < 6; k++) {
  3386. val = ((cbp >> (5 - k)) & 1);
  3387. if (k < 4) {
  3388. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3389. val = val ^ pred;
  3390. *coded_val = val;
  3391. }
  3392. cbp |= val << (5 - k);
  3393. vc1_decode_i_block(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2);
  3394. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3395. if(v->pq >= 9 && v->overlap) {
  3396. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3397. }
  3398. }
  3399. vc1_put_block(v, s->block);
  3400. if(v->pq >= 9 && v->overlap) {
  3401. if(!s->first_slice_line) {
  3402. s->dsp.vc1_v_overlap(s->dest[0], s->linesize, 0);
  3403. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize, 0);
  3404. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3405. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize, s->mb_y&1);
  3406. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize, s->mb_y&1);
  3407. }
  3408. }
  3409. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 1);
  3410. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
  3411. if(s->mb_x) {
  3412. s->dsp.vc1_h_overlap(s->dest[0], s->linesize, 0);
  3413. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 0);
  3414. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3415. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize, s->mb_x&1);
  3416. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize, s->mb_x&1);
  3417. }
  3418. }
  3419. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize, 1);
  3420. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
  3421. }
  3422. if(get_bits_count(&s->gb) > v->bits) {
  3423. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3424. return;
  3425. }
  3426. }
  3427. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3428. s->first_slice_line = 0;
  3429. }
  3430. }
  3431. /** Decode blocks of I-frame for advanced profile
  3432. */
  3433. static void vc1_decode_i_blocks_adv(VC1Context *v)
  3434. {
  3435. int k, j;
  3436. MpegEncContext *s = &v->s;
  3437. int cbp, val;
  3438. uint8_t *coded_val;
  3439. int mb_pos;
  3440. int mquant = v->pq;
  3441. int mqdiff;
  3442. int overlap;
  3443. GetBitContext *gb = &s->gb;
  3444. /* select codingmode used for VLC tables selection */
  3445. switch(v->y_ac_table_index){
  3446. case 0:
  3447. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3448. break;
  3449. case 1:
  3450. v->codingset = CS_HIGH_MOT_INTRA;
  3451. break;
  3452. case 2:
  3453. v->codingset = CS_MID_RATE_INTRA;
  3454. break;
  3455. }
  3456. switch(v->c_ac_table_index){
  3457. case 0:
  3458. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3459. break;
  3460. case 1:
  3461. v->codingset2 = CS_HIGH_MOT_INTER;
  3462. break;
  3463. case 2:
  3464. v->codingset2 = CS_MID_RATE_INTER;
  3465. break;
  3466. }
  3467. /* Set DC scale - y and c use the same */
  3468. s->y_dc_scale = s->y_dc_scale_table[v->pq];
  3469. s->c_dc_scale = s->c_dc_scale_table[v->pq];
  3470. //do frame decode
  3471. s->mb_x = s->mb_y = 0;
  3472. s->mb_intra = 1;
  3473. s->first_slice_line = 1;
  3474. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3475. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3476. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3477. ff_init_block_index(s);
  3478. ff_update_block_index(s);
  3479. s->dsp.clear_blocks(s->block[0]);
  3480. mb_pos = s->mb_x + s->mb_y * s->mb_stride;
  3481. s->current_picture.mb_type[mb_pos] = MB_TYPE_INTRA;
  3482. s->current_picture.motion_val[1][s->block_index[0]][0] = 0;
  3483. s->current_picture.motion_val[1][s->block_index[0]][1] = 0;
  3484. // do actual MB decoding and displaying
  3485. cbp = get_vlc2(&v->s.gb, ff_msmp4_mb_i_vlc.table, MB_INTRA_VLC_BITS, 2);
  3486. if(v->acpred_is_raw)
  3487. v->s.ac_pred = get_bits(&v->s.gb, 1);
  3488. else
  3489. v->s.ac_pred = v->acpred_plane[mb_pos];
  3490. if(v->condover == CONDOVER_SELECT) {
  3491. if(v->overflg_is_raw)
  3492. overlap = get_bits(&v->s.gb, 1);
  3493. else
  3494. overlap = v->over_flags_plane[mb_pos];
  3495. } else
  3496. overlap = (v->condover == CONDOVER_ALL);
  3497. GET_MQUANT();
  3498. s->current_picture.qscale_table[mb_pos] = mquant;
  3499. for(k = 0; k < 6; k++) {
  3500. val = ((cbp >> (5 - k)) & 1);
  3501. if (k < 4) {
  3502. int pred = vc1_coded_block_pred(&v->s, k, &coded_val);
  3503. val = val ^ pred;
  3504. *coded_val = val;
  3505. }
  3506. cbp |= val << (5 - k);
  3507. v->a_avail = !s->first_slice_line || (k==2 || k==3);
  3508. v->c_avail = !!s->mb_x || (k==1 || k==3);
  3509. vc1_decode_i_block_adv(v, s->block[k], k, val, (k<4)? v->codingset : v->codingset2, mquant);
  3510. s->dsp.vc1_inv_trans_8x8(s->block[k]);
  3511. for(j = 0; j < 64; j++) s->block[k][j] += 128;
  3512. }
  3513. vc1_put_block(v, s->block);
  3514. if(overlap) {
  3515. if(!s->first_slice_line) {
  3516. s->dsp.vc1_v_overlap(s->dest[0], s->linesize, 0);
  3517. s->dsp.vc1_v_overlap(s->dest[0] + 8, s->linesize, 0);
  3518. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3519. s->dsp.vc1_v_overlap(s->dest[1], s->uvlinesize, s->mb_y&1);
  3520. s->dsp.vc1_v_overlap(s->dest[2], s->uvlinesize, s->mb_y&1);
  3521. }
  3522. }
  3523. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 1);
  3524. s->dsp.vc1_v_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
  3525. if(s->mb_x) {
  3526. s->dsp.vc1_h_overlap(s->dest[0], s->linesize, 0);
  3527. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize, s->linesize, 0);
  3528. if(!(s->flags & CODEC_FLAG_GRAY)) {
  3529. s->dsp.vc1_h_overlap(s->dest[1], s->uvlinesize, s->mb_x&1);
  3530. s->dsp.vc1_h_overlap(s->dest[2], s->uvlinesize, s->mb_x&1);
  3531. }
  3532. }
  3533. s->dsp.vc1_h_overlap(s->dest[0] + 8, s->linesize, 1);
  3534. s->dsp.vc1_h_overlap(s->dest[0] + 8 * s->linesize + 8, s->linesize, 1);
  3535. }
  3536. if(get_bits_count(&s->gb) > v->bits) {
  3537. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i\n", get_bits_count(&s->gb), v->bits);
  3538. return;
  3539. }
  3540. }
  3541. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3542. s->first_slice_line = 0;
  3543. }
  3544. }
  3545. static void vc1_decode_p_blocks(VC1Context *v)
  3546. {
  3547. MpegEncContext *s = &v->s;
  3548. /* select codingmode used for VLC tables selection */
  3549. switch(v->c_ac_table_index){
  3550. case 0:
  3551. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3552. break;
  3553. case 1:
  3554. v->codingset = CS_HIGH_MOT_INTRA;
  3555. break;
  3556. case 2:
  3557. v->codingset = CS_MID_RATE_INTRA;
  3558. break;
  3559. }
  3560. switch(v->c_ac_table_index){
  3561. case 0:
  3562. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3563. break;
  3564. case 1:
  3565. v->codingset2 = CS_HIGH_MOT_INTER;
  3566. break;
  3567. case 2:
  3568. v->codingset2 = CS_MID_RATE_INTER;
  3569. break;
  3570. }
  3571. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3572. s->first_slice_line = 1;
  3573. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3574. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3575. ff_init_block_index(s);
  3576. ff_update_block_index(s);
  3577. s->dsp.clear_blocks(s->block[0]);
  3578. vc1_decode_p_mb(v);
  3579. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3580. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3581. return;
  3582. }
  3583. }
  3584. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3585. s->first_slice_line = 0;
  3586. }
  3587. }
  3588. static void vc1_decode_b_blocks(VC1Context *v)
  3589. {
  3590. MpegEncContext *s = &v->s;
  3591. /* select codingmode used for VLC tables selection */
  3592. switch(v->c_ac_table_index){
  3593. case 0:
  3594. v->codingset = (v->pqindex <= 8) ? CS_HIGH_RATE_INTRA : CS_LOW_MOT_INTRA;
  3595. break;
  3596. case 1:
  3597. v->codingset = CS_HIGH_MOT_INTRA;
  3598. break;
  3599. case 2:
  3600. v->codingset = CS_MID_RATE_INTRA;
  3601. break;
  3602. }
  3603. switch(v->c_ac_table_index){
  3604. case 0:
  3605. v->codingset2 = (v->pqindex <= 8) ? CS_HIGH_RATE_INTER : CS_LOW_MOT_INTER;
  3606. break;
  3607. case 1:
  3608. v->codingset2 = CS_HIGH_MOT_INTER;
  3609. break;
  3610. case 2:
  3611. v->codingset2 = CS_MID_RATE_INTER;
  3612. break;
  3613. }
  3614. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3615. s->first_slice_line = 1;
  3616. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3617. for(s->mb_x = 0; s->mb_x < s->mb_width; s->mb_x++) {
  3618. ff_init_block_index(s);
  3619. ff_update_block_index(s);
  3620. s->dsp.clear_blocks(s->block[0]);
  3621. vc1_decode_b_mb(v);
  3622. if(get_bits_count(&s->gb) > v->bits || get_bits_count(&s->gb) < 0) {
  3623. av_log(s->avctx, AV_LOG_ERROR, "Bits overconsumption: %i > %i at %ix%i\n", get_bits_count(&s->gb), v->bits,s->mb_x,s->mb_y);
  3624. return;
  3625. }
  3626. }
  3627. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3628. s->first_slice_line = 0;
  3629. }
  3630. }
  3631. static void vc1_decode_skip_blocks(VC1Context *v)
  3632. {
  3633. MpegEncContext *s = &v->s;
  3634. ff_er_add_slice(s, 0, 0, s->mb_width - 1, s->mb_height - 1, (AC_END|DC_END|MV_END));
  3635. s->first_slice_line = 1;
  3636. for(s->mb_y = 0; s->mb_y < s->mb_height; s->mb_y++) {
  3637. s->mb_x = 0;
  3638. ff_init_block_index(s);
  3639. ff_update_block_index(s);
  3640. memcpy(s->dest[0], s->last_picture.data[0] + s->mb_y * 16 * s->linesize, s->linesize * 16);
  3641. memcpy(s->dest[1], s->last_picture.data[1] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3642. memcpy(s->dest[2], s->last_picture.data[2] + s->mb_y * 8 * s->uvlinesize, s->uvlinesize * 8);
  3643. ff_draw_horiz_band(s, s->mb_y * 16, 16);
  3644. s->first_slice_line = 0;
  3645. }
  3646. s->pict_type = P_TYPE;
  3647. }
  3648. static void vc1_decode_blocks(VC1Context *v)
  3649. {
  3650. v->s.esc3_level_length = 0;
  3651. switch(v->s.pict_type) {
  3652. case I_TYPE:
  3653. if(v->profile == PROFILE_ADVANCED)
  3654. vc1_decode_i_blocks_adv(v);
  3655. else
  3656. vc1_decode_i_blocks(v);
  3657. break;
  3658. case P_TYPE:
  3659. if(v->p_frame_skipped)
  3660. vc1_decode_skip_blocks(v);
  3661. else
  3662. vc1_decode_p_blocks(v);
  3663. break;
  3664. case B_TYPE:
  3665. if(v->bi_type)
  3666. vc1_decode_i_blocks(v);
  3667. else
  3668. vc1_decode_b_blocks(v);
  3669. break;
  3670. }
  3671. }
  3672. /** Initialize a VC1/WMV3 decoder
  3673. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3674. * @todo TODO: Decypher remaining bits in extra_data
  3675. */
  3676. static int vc1_decode_init(AVCodecContext *avctx)
  3677. {
  3678. VC1Context *v = avctx->priv_data;
  3679. MpegEncContext *s = &v->s;
  3680. GetBitContext gb;
  3681. if (!avctx->extradata_size || !avctx->extradata) return -1;
  3682. if (!(avctx->flags & CODEC_FLAG_GRAY))
  3683. avctx->pix_fmt = PIX_FMT_YUV420P;
  3684. else
  3685. avctx->pix_fmt = PIX_FMT_GRAY8;
  3686. v->s.avctx = avctx;
  3687. avctx->flags |= CODEC_FLAG_EMU_EDGE;
  3688. v->s.flags |= CODEC_FLAG_EMU_EDGE;
  3689. if(ff_h263_decode_init(avctx) < 0)
  3690. return -1;
  3691. if (vc1_init_common(v) < 0) return -1;
  3692. avctx->coded_width = avctx->width;
  3693. avctx->coded_height = avctx->height;
  3694. if (avctx->codec_id == CODEC_ID_WMV3)
  3695. {
  3696. int count = 0;
  3697. // looks like WMV3 has a sequence header stored in the extradata
  3698. // advanced sequence header may be before the first frame
  3699. // the last byte of the extradata is a version number, 1 for the
  3700. // samples we can decode
  3701. init_get_bits(&gb, avctx->extradata, avctx->extradata_size*8);
  3702. if (decode_sequence_header(avctx, &gb) < 0)
  3703. return -1;
  3704. count = avctx->extradata_size*8 - get_bits_count(&gb);
  3705. if (count>0)
  3706. {
  3707. av_log(avctx, AV_LOG_INFO, "Extra data: %i bits left, value: %X\n",
  3708. count, get_bits(&gb, count));
  3709. }
  3710. else if (count < 0)
  3711. {
  3712. av_log(avctx, AV_LOG_INFO, "Read %i bits in overflow\n", -count);
  3713. }
  3714. } else { // VC1/WVC1
  3715. int edata_size = avctx->extradata_size;
  3716. uint8_t *edata = avctx->extradata;
  3717. if(avctx->extradata_size < 16) {
  3718. av_log(avctx, AV_LOG_ERROR, "Extradata size too small: %i\n", edata_size);
  3719. return -1;
  3720. }
  3721. while(edata_size > 8) {
  3722. // test if we've found header
  3723. if(BE_32(edata) == 0x0000010F) {
  3724. edata += 4;
  3725. edata_size -= 4;
  3726. break;
  3727. }
  3728. edata_size--;
  3729. edata++;
  3730. }
  3731. init_get_bits(&gb, edata, edata_size*8);
  3732. if (decode_sequence_header(avctx, &gb) < 0)
  3733. return -1;
  3734. while(edata_size > 8) {
  3735. // test if we've found entry point
  3736. if(BE_32(edata) == 0x0000010E) {
  3737. edata += 4;
  3738. edata_size -= 4;
  3739. break;
  3740. }
  3741. edata_size--;
  3742. edata++;
  3743. }
  3744. init_get_bits(&gb, edata, edata_size*8);
  3745. if (decode_entry_point(avctx, &gb) < 0)
  3746. return -1;
  3747. }
  3748. avctx->has_b_frames= !!(avctx->max_b_frames);
  3749. s->low_delay = !avctx->has_b_frames;
  3750. s->mb_width = (avctx->coded_width+15)>>4;
  3751. s->mb_height = (avctx->coded_height+15)>>4;
  3752. /* Allocate mb bitplanes */
  3753. v->mv_type_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3754. v->direct_mb_plane = av_malloc(s->mb_stride * s->mb_height);
  3755. v->acpred_plane = av_malloc(s->mb_stride * s->mb_height);
  3756. v->over_flags_plane = av_malloc(s->mb_stride * s->mb_height);
  3757. /* allocate block type info in that way so it could be used with s->block_index[] */
  3758. v->mb_type_base = av_malloc(s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride * (s->mb_height + 1) * 2);
  3759. v->mb_type[0] = v->mb_type_base + s->b8_stride + 1;
  3760. v->mb_type[1] = v->mb_type_base + s->b8_stride * (s->mb_height * 2 + 1) + s->mb_stride + 1;
  3761. v->mb_type[2] = v->mb_type[1] + s->mb_stride * (s->mb_height + 1);
  3762. /* Init coded blocks info */
  3763. if (v->profile == PROFILE_ADVANCED)
  3764. {
  3765. // if (alloc_bitplane(&v->over_flags_plane, s->mb_width, s->mb_height) < 0)
  3766. // return -1;
  3767. // if (alloc_bitplane(&v->ac_pred_plane, s->mb_width, s->mb_height) < 0)
  3768. // return -1;
  3769. }
  3770. return 0;
  3771. }
  3772. /** Decode a VC1/WMV3 frame
  3773. * @todo TODO: Handle VC-1 IDUs (Transport level?)
  3774. */
  3775. static int vc1_decode_frame(AVCodecContext *avctx,
  3776. void *data, int *data_size,
  3777. uint8_t *buf, int buf_size)
  3778. {
  3779. VC1Context *v = avctx->priv_data;
  3780. MpegEncContext *s = &v->s;
  3781. AVFrame *pict = data;
  3782. uint8_t *buf2 = NULL;
  3783. /* no supplementary picture */
  3784. if (buf_size == 0) {
  3785. /* special case for last picture */
  3786. if (s->low_delay==0 && s->next_picture_ptr) {
  3787. *pict= *(AVFrame*)s->next_picture_ptr;
  3788. s->next_picture_ptr= NULL;
  3789. *data_size = sizeof(AVFrame);
  3790. }
  3791. return 0;
  3792. }
  3793. //we need to set current_picture_ptr before reading the header, otherwise we cant store anyting im there
  3794. if(s->current_picture_ptr==NULL || s->current_picture_ptr->data[0]){
  3795. int i= ff_find_unused_picture(s, 0);
  3796. s->current_picture_ptr= &s->picture[i];
  3797. }
  3798. //for advanced profile we need to unescape buffer
  3799. if (avctx->codec_id == CODEC_ID_VC1) {
  3800. int i, buf_size2;
  3801. buf2 = av_malloc(buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  3802. buf_size2 = 0;
  3803. for(i = 0; i < buf_size; i++) {
  3804. if(buf[i] == 3 && i >= 2 && !buf[i-1] && !buf[i-2] && i < buf_size-1 && buf[i+1] < 4) {
  3805. buf2[buf_size2++] = buf[i+1];
  3806. i++;
  3807. } else
  3808. buf2[buf_size2++] = buf[i];
  3809. }
  3810. init_get_bits(&s->gb, buf2, buf_size2*8);
  3811. } else
  3812. init_get_bits(&s->gb, buf, buf_size*8);
  3813. // do parse frame header
  3814. if(v->profile < PROFILE_ADVANCED) {
  3815. if(vc1_parse_frame_header(v, &s->gb) == -1) {
  3816. av_free(buf2);
  3817. return -1;
  3818. }
  3819. } else {
  3820. if(vc1_parse_frame_header_adv(v, &s->gb) == -1) {
  3821. av_free(buf2);
  3822. return -1;
  3823. }
  3824. }
  3825. if(s->pict_type != I_TYPE && !v->res_rtm_flag){
  3826. av_free(buf2);
  3827. return -1;
  3828. }
  3829. // for hurry_up==5
  3830. s->current_picture.pict_type= s->pict_type;
  3831. s->current_picture.key_frame= s->pict_type == I_TYPE;
  3832. /* skip B-frames if we don't have reference frames */
  3833. if(s->last_picture_ptr==NULL && (s->pict_type==B_TYPE || s->dropable)){
  3834. av_free(buf2);
  3835. return -1;//buf_size;
  3836. }
  3837. /* skip b frames if we are in a hurry */
  3838. if(avctx->hurry_up && s->pict_type==B_TYPE) return -1;//buf_size;
  3839. if( (avctx->skip_frame >= AVDISCARD_NONREF && s->pict_type==B_TYPE)
  3840. || (avctx->skip_frame >= AVDISCARD_NONKEY && s->pict_type!=I_TYPE)
  3841. || avctx->skip_frame >= AVDISCARD_ALL) {
  3842. av_free(buf2);
  3843. return buf_size;
  3844. }
  3845. /* skip everything if we are in a hurry>=5 */
  3846. if(avctx->hurry_up>=5) {
  3847. av_free(buf2);
  3848. return -1;//buf_size;
  3849. }
  3850. if(s->next_p_frame_damaged){
  3851. if(s->pict_type==B_TYPE)
  3852. return buf_size;
  3853. else
  3854. s->next_p_frame_damaged=0;
  3855. }
  3856. if(MPV_frame_start(s, avctx) < 0) {
  3857. av_free(buf2);
  3858. return -1;
  3859. }
  3860. ff_er_frame_start(s);
  3861. v->bits = buf_size * 8;
  3862. vc1_decode_blocks(v);
  3863. //av_log(s->avctx, AV_LOG_INFO, "Consumed %i/%i bits\n", get_bits_count(&s->gb), buf_size*8);
  3864. // if(get_bits_count(&s->gb) > buf_size * 8)
  3865. // return -1;
  3866. ff_er_frame_end(s);
  3867. MPV_frame_end(s);
  3868. assert(s->current_picture.pict_type == s->current_picture_ptr->pict_type);
  3869. assert(s->current_picture.pict_type == s->pict_type);
  3870. if (s->pict_type == B_TYPE || s->low_delay) {
  3871. *pict= *(AVFrame*)s->current_picture_ptr;
  3872. } else if (s->last_picture_ptr != NULL) {
  3873. *pict= *(AVFrame*)s->last_picture_ptr;
  3874. }
  3875. if(s->last_picture_ptr || s->low_delay){
  3876. *data_size = sizeof(AVFrame);
  3877. ff_print_debug_info(s, pict);
  3878. }
  3879. /* Return the Picture timestamp as the frame number */
  3880. /* we substract 1 because it is added on utils.c */
  3881. avctx->frame_number = s->picture_number - 1;
  3882. av_free(buf2);
  3883. return buf_size;
  3884. }
  3885. /** Close a VC1/WMV3 decoder
  3886. * @warning Initial try at using MpegEncContext stuff
  3887. */
  3888. static int vc1_decode_end(AVCodecContext *avctx)
  3889. {
  3890. VC1Context *v = avctx->priv_data;
  3891. av_freep(&v->hrd_rate);
  3892. av_freep(&v->hrd_buffer);
  3893. MPV_common_end(&v->s);
  3894. av_freep(&v->mv_type_mb_plane);
  3895. av_freep(&v->direct_mb_plane);
  3896. av_freep(&v->acpred_plane);
  3897. av_freep(&v->over_flags_plane);
  3898. av_freep(&v->mb_type_base);
  3899. return 0;
  3900. }
  3901. AVCodec vc1_decoder = {
  3902. "vc1",
  3903. CODEC_TYPE_VIDEO,
  3904. CODEC_ID_VC1,
  3905. sizeof(VC1Context),
  3906. vc1_decode_init,
  3907. NULL,
  3908. vc1_decode_end,
  3909. vc1_decode_frame,
  3910. CODEC_CAP_DELAY,
  3911. NULL
  3912. };
  3913. AVCodec wmv3_decoder = {
  3914. "wmv3",
  3915. CODEC_TYPE_VIDEO,
  3916. CODEC_ID_WMV3,
  3917. sizeof(VC1Context),
  3918. vc1_decode_init,
  3919. NULL,
  3920. vc1_decode_end,
  3921. vc1_decode_frame,
  3922. CODEC_CAP_DELAY,
  3923. NULL
  3924. };