You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2841 lines
84KB

  1. /*
  2. * MPEG Audio decoder
  3. * Copyright (c) 2001, 2002 Fabrice Bellard.
  4. *
  5. * This library is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU Lesser General Public
  7. * License as published by the Free Software Foundation; either
  8. * version 2 of the License, or (at your option) any later version.
  9. *
  10. * This library is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * Lesser General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU Lesser General Public
  16. * License along with this library; if not, write to the Free Software
  17. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  18. */
  19. /**
  20. * @file mpegaudiodec.c
  21. * MPEG Audio decoder.
  22. */
  23. //#define DEBUG
  24. #include "avcodec.h"
  25. #include "bitstream.h"
  26. #include "dsputil.h"
  27. /*
  28. * TODO:
  29. * - in low precision mode, use more 16 bit multiplies in synth filter
  30. * - test lsf / mpeg25 extensively.
  31. */
  32. /* define USE_HIGHPRECISION to have a bit exact (but slower) mpeg
  33. audio decoder */
  34. #ifdef CONFIG_MPEGAUDIO_HP
  35. # define USE_HIGHPRECISION
  36. #endif
  37. #include "mpegaudio.h"
  38. #include "mathops.h"
  39. #define FRAC_ONE (1 << FRAC_BITS)
  40. #define FIX(a) ((int)((a) * FRAC_ONE))
  41. /* WARNING: only correct for posititive numbers */
  42. #define FIXR(a) ((int)((a) * FRAC_ONE + 0.5))
  43. #define FRAC_RND(a) (((a) + (FRAC_ONE/2)) >> FRAC_BITS)
  44. #define FIXHR(a) ((int)((a) * (1LL<<32) + 0.5))
  45. /****************/
  46. #define HEADER_SIZE 4
  47. #define BACKSTEP_SIZE 512
  48. #define EXTRABYTES 24
  49. struct GranuleDef;
  50. typedef struct MPADecodeContext {
  51. DECLARE_ALIGNED_8(uint8_t, last_buf[2*BACKSTEP_SIZE + EXTRABYTES]);
  52. int last_buf_size;
  53. int frame_size;
  54. /* next header (used in free format parsing) */
  55. uint32_t free_format_next_header;
  56. int error_protection;
  57. int layer;
  58. int sample_rate;
  59. int sample_rate_index; /* between 0 and 8 */
  60. int bit_rate;
  61. GetBitContext gb;
  62. GetBitContext in_gb;
  63. int nb_channels;
  64. int mode;
  65. int mode_ext;
  66. int lsf;
  67. MPA_INT synth_buf[MPA_MAX_CHANNELS][512 * 2] __attribute__((aligned(16)));
  68. int synth_buf_offset[MPA_MAX_CHANNELS];
  69. int32_t sb_samples[MPA_MAX_CHANNELS][36][SBLIMIT] __attribute__((aligned(16)));
  70. int32_t mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
  71. #ifdef DEBUG
  72. int frame_count;
  73. #endif
  74. void (*compute_antialias)(struct MPADecodeContext *s, struct GranuleDef *g);
  75. int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
  76. unsigned int dither_state;
  77. } MPADecodeContext;
  78. /**
  79. * Context for MP3On4 decoder
  80. */
  81. typedef struct MP3On4DecodeContext {
  82. int frames; ///< number of mp3 frames per block (number of mp3 decoder instances)
  83. int chan_cfg; ///< channel config number
  84. MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
  85. } MP3On4DecodeContext;
  86. /* layer 3 "granule" */
  87. typedef struct GranuleDef {
  88. uint8_t scfsi;
  89. int part2_3_length;
  90. int big_values;
  91. int global_gain;
  92. int scalefac_compress;
  93. uint8_t block_type;
  94. uint8_t switch_point;
  95. int table_select[3];
  96. int subblock_gain[3];
  97. uint8_t scalefac_scale;
  98. uint8_t count1table_select;
  99. int region_size[3]; /* number of huffman codes in each region */
  100. int preflag;
  101. int short_start, long_end; /* long/short band indexes */
  102. uint8_t scale_factors[40];
  103. int32_t sb_hybrid[SBLIMIT * 18]; /* 576 samples */
  104. } GranuleDef;
  105. #define MODE_EXT_MS_STEREO 2
  106. #define MODE_EXT_I_STEREO 1
  107. /* layer 3 huffman tables */
  108. typedef struct HuffTable {
  109. int xsize;
  110. const uint8_t *bits;
  111. const uint16_t *codes;
  112. } HuffTable;
  113. #include "mpegaudiodectab.h"
  114. static void compute_antialias_integer(MPADecodeContext *s, GranuleDef *g);
  115. static void compute_antialias_float(MPADecodeContext *s, GranuleDef *g);
  116. /* vlc structure for decoding layer 3 huffman tables */
  117. static VLC huff_vlc[16];
  118. static VLC huff_quad_vlc[2];
  119. /* computed from band_size_long */
  120. static uint16_t band_index_long[9][23];
  121. /* XXX: free when all decoders are closed */
  122. #define TABLE_4_3_SIZE (8191 + 16)*4
  123. static int8_t *table_4_3_exp;
  124. static uint32_t *table_4_3_value;
  125. static uint32_t exp_table[512];
  126. static uint32_t expval_table[512][16];
  127. /* intensity stereo coef table */
  128. static int32_t is_table[2][16];
  129. static int32_t is_table_lsf[2][2][16];
  130. static int32_t csa_table[8][4];
  131. static float csa_table_float[8][4];
  132. static int32_t mdct_win[8][36];
  133. /* lower 2 bits: modulo 3, higher bits: shift */
  134. static uint16_t scale_factor_modshift[64];
  135. /* [i][j]: 2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
  136. static int32_t scale_factor_mult[15][3];
  137. /* mult table for layer 2 group quantization */
  138. #define SCALE_GEN(v) \
  139. { FIXR(1.0 * (v)), FIXR(0.7937005259 * (v)), FIXR(0.6299605249 * (v)) }
  140. static const int32_t scale_factor_mult2[3][3] = {
  141. SCALE_GEN(4.0 / 3.0), /* 3 steps */
  142. SCALE_GEN(4.0 / 5.0), /* 5 steps */
  143. SCALE_GEN(4.0 / 9.0), /* 9 steps */
  144. };
  145. static MPA_INT window[512] __attribute__((aligned(16)));
  146. /* layer 1 unscaling */
  147. /* n = number of bits of the mantissa minus 1 */
  148. static inline int l1_unscale(int n, int mant, int scale_factor)
  149. {
  150. int shift, mod;
  151. int64_t val;
  152. shift = scale_factor_modshift[scale_factor];
  153. mod = shift & 3;
  154. shift >>= 2;
  155. val = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
  156. shift += n;
  157. /* NOTE: at this point, 1 <= shift >= 21 + 15 */
  158. return (int)((val + (1LL << (shift - 1))) >> shift);
  159. }
  160. static inline int l2_unscale_group(int steps, int mant, int scale_factor)
  161. {
  162. int shift, mod, val;
  163. shift = scale_factor_modshift[scale_factor];
  164. mod = shift & 3;
  165. shift >>= 2;
  166. val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
  167. /* NOTE: at this point, 0 <= shift <= 21 */
  168. if (shift > 0)
  169. val = (val + (1 << (shift - 1))) >> shift;
  170. return val;
  171. }
  172. /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
  173. static inline int l3_unscale(int value, int exponent)
  174. {
  175. unsigned int m;
  176. int e;
  177. e = table_4_3_exp [4*value + (exponent&3)];
  178. m = table_4_3_value[4*value + (exponent&3)];
  179. e -= (exponent >> 2);
  180. assert(e>=1);
  181. if (e > 31)
  182. return 0;
  183. m = (m + (1 << (e-1))) >> e;
  184. return m;
  185. }
  186. /* all integer n^(4/3) computation code */
  187. #define DEV_ORDER 13
  188. #define POW_FRAC_BITS 24
  189. #define POW_FRAC_ONE (1 << POW_FRAC_BITS)
  190. #define POW_FIX(a) ((int)((a) * POW_FRAC_ONE))
  191. #define POW_MULL(a,b) (((int64_t)(a) * (int64_t)(b)) >> POW_FRAC_BITS)
  192. static int dev_4_3_coefs[DEV_ORDER];
  193. #if 0 /* unused */
  194. static int pow_mult3[3] = {
  195. POW_FIX(1.0),
  196. POW_FIX(1.25992104989487316476),
  197. POW_FIX(1.58740105196819947474),
  198. };
  199. #endif
  200. static void int_pow_init(void)
  201. {
  202. int i, a;
  203. a = POW_FIX(1.0);
  204. for(i=0;i<DEV_ORDER;i++) {
  205. a = POW_MULL(a, POW_FIX(4.0 / 3.0) - i * POW_FIX(1.0)) / (i + 1);
  206. dev_4_3_coefs[i] = a;
  207. }
  208. }
  209. #if 0 /* unused, remove? */
  210. /* return the mantissa and the binary exponent */
  211. static int int_pow(int i, int *exp_ptr)
  212. {
  213. int e, er, eq, j;
  214. int a, a1;
  215. /* renormalize */
  216. a = i;
  217. e = POW_FRAC_BITS;
  218. while (a < (1 << (POW_FRAC_BITS - 1))) {
  219. a = a << 1;
  220. e--;
  221. }
  222. a -= (1 << POW_FRAC_BITS);
  223. a1 = 0;
  224. for(j = DEV_ORDER - 1; j >= 0; j--)
  225. a1 = POW_MULL(a, dev_4_3_coefs[j] + a1);
  226. a = (1 << POW_FRAC_BITS) + a1;
  227. /* exponent compute (exact) */
  228. e = e * 4;
  229. er = e % 3;
  230. eq = e / 3;
  231. a = POW_MULL(a, pow_mult3[er]);
  232. while (a >= 2 * POW_FRAC_ONE) {
  233. a = a >> 1;
  234. eq++;
  235. }
  236. /* convert to float */
  237. while (a < POW_FRAC_ONE) {
  238. a = a << 1;
  239. eq--;
  240. }
  241. /* now POW_FRAC_ONE <= a < 2 * POW_FRAC_ONE */
  242. #if POW_FRAC_BITS > FRAC_BITS
  243. a = (a + (1 << (POW_FRAC_BITS - FRAC_BITS - 1))) >> (POW_FRAC_BITS - FRAC_BITS);
  244. /* correct overflow */
  245. if (a >= 2 * (1 << FRAC_BITS)) {
  246. a = a >> 1;
  247. eq++;
  248. }
  249. #endif
  250. *exp_ptr = eq;
  251. return a;
  252. }
  253. #endif
  254. static int decode_init(AVCodecContext * avctx)
  255. {
  256. MPADecodeContext *s = avctx->priv_data;
  257. static int init=0;
  258. int i, j, k;
  259. #if defined(USE_HIGHPRECISION) && defined(CONFIG_AUDIO_NONSHORT)
  260. avctx->sample_fmt= SAMPLE_FMT_S32;
  261. #else
  262. avctx->sample_fmt= SAMPLE_FMT_S16;
  263. #endif
  264. if(avctx->antialias_algo != FF_AA_FLOAT)
  265. s->compute_antialias= compute_antialias_integer;
  266. else
  267. s->compute_antialias= compute_antialias_float;
  268. if (!init && !avctx->parse_only) {
  269. /* scale factors table for layer 1/2 */
  270. for(i=0;i<64;i++) {
  271. int shift, mod;
  272. /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
  273. shift = (i / 3);
  274. mod = i % 3;
  275. scale_factor_modshift[i] = mod | (shift << 2);
  276. }
  277. /* scale factor multiply for layer 1 */
  278. for(i=0;i<15;i++) {
  279. int n, norm;
  280. n = i + 2;
  281. norm = ((int64_t_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
  282. scale_factor_mult[i][0] = MULL(FIXR(1.0 * 2.0), norm);
  283. scale_factor_mult[i][1] = MULL(FIXR(0.7937005259 * 2.0), norm);
  284. scale_factor_mult[i][2] = MULL(FIXR(0.6299605249 * 2.0), norm);
  285. dprintf("%d: norm=%x s=%x %x %x\n",
  286. i, norm,
  287. scale_factor_mult[i][0],
  288. scale_factor_mult[i][1],
  289. scale_factor_mult[i][2]);
  290. }
  291. ff_mpa_synth_init(window);
  292. /* huffman decode tables */
  293. for(i=1;i<16;i++) {
  294. const HuffTable *h = &mpa_huff_tables[i];
  295. int xsize, x, y;
  296. unsigned int n;
  297. uint8_t tmp_bits [512];
  298. uint16_t tmp_codes[512];
  299. memset(tmp_bits , 0, sizeof(tmp_bits ));
  300. memset(tmp_codes, 0, sizeof(tmp_codes));
  301. xsize = h->xsize;
  302. n = xsize * xsize;
  303. j = 0;
  304. for(x=0;x<xsize;x++) {
  305. for(y=0;y<xsize;y++){
  306. tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j ];
  307. tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
  308. }
  309. }
  310. /* XXX: fail test */
  311. init_vlc(&huff_vlc[i], 7, 512,
  312. tmp_bits, 1, 1, tmp_codes, 2, 2, 1);
  313. }
  314. for(i=0;i<2;i++) {
  315. init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
  316. mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1, 1);
  317. }
  318. for(i=0;i<9;i++) {
  319. k = 0;
  320. for(j=0;j<22;j++) {
  321. band_index_long[i][j] = k;
  322. k += band_size_long[i][j];
  323. }
  324. band_index_long[i][22] = k;
  325. }
  326. /* compute n ^ (4/3) and store it in mantissa/exp format */
  327. table_4_3_exp= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_exp[0]));
  328. if(!table_4_3_exp)
  329. return -1;
  330. table_4_3_value= av_mallocz_static(TABLE_4_3_SIZE * sizeof(table_4_3_value[0]));
  331. if(!table_4_3_value)
  332. return -1;
  333. int_pow_init();
  334. for(i=1;i<TABLE_4_3_SIZE;i++) {
  335. double f, fm;
  336. int e, m;
  337. f = pow((double)(i/4), 4.0 / 3.0) * pow(2, (i&3)*0.25);
  338. fm = frexp(f, &e);
  339. m = (uint32_t)(fm*(1LL<<31) + 0.5);
  340. e+= FRAC_BITS - 31 + 5 - 100;
  341. /* normalized to FRAC_BITS */
  342. table_4_3_value[i] = m;
  343. // av_log(NULL, AV_LOG_DEBUG, "%d %d %f\n", i, m, pow((double)i, 4.0 / 3.0));
  344. table_4_3_exp[i] = -e;
  345. }
  346. for(i=0; i<512*16; i++){
  347. int exponent= (i>>4);
  348. double f= pow(i&15, 4.0 / 3.0) * pow(2, (exponent-400)*0.25 + FRAC_BITS + 5);
  349. expval_table[exponent][i&15]= llrint(f);
  350. if((i&15)==1)
  351. exp_table[exponent]= llrint(f);
  352. }
  353. for(i=0;i<7;i++) {
  354. float f;
  355. int v;
  356. if (i != 6) {
  357. f = tan((double)i * M_PI / 12.0);
  358. v = FIXR(f / (1.0 + f));
  359. } else {
  360. v = FIXR(1.0);
  361. }
  362. is_table[0][i] = v;
  363. is_table[1][6 - i] = v;
  364. }
  365. /* invalid values */
  366. for(i=7;i<16;i++)
  367. is_table[0][i] = is_table[1][i] = 0.0;
  368. for(i=0;i<16;i++) {
  369. double f;
  370. int e, k;
  371. for(j=0;j<2;j++) {
  372. e = -(j + 1) * ((i + 1) >> 1);
  373. f = pow(2.0, e / 4.0);
  374. k = i & 1;
  375. is_table_lsf[j][k ^ 1][i] = FIXR(f);
  376. is_table_lsf[j][k][i] = FIXR(1.0);
  377. dprintf("is_table_lsf %d %d: %x %x\n",
  378. i, j, is_table_lsf[j][0][i], is_table_lsf[j][1][i]);
  379. }
  380. }
  381. for(i=0;i<8;i++) {
  382. float ci, cs, ca;
  383. ci = ci_table[i];
  384. cs = 1.0 / sqrt(1.0 + ci * ci);
  385. ca = cs * ci;
  386. csa_table[i][0] = FIXHR(cs/4);
  387. csa_table[i][1] = FIXHR(ca/4);
  388. csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
  389. csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
  390. csa_table_float[i][0] = cs;
  391. csa_table_float[i][1] = ca;
  392. csa_table_float[i][2] = ca + cs;
  393. csa_table_float[i][3] = ca - cs;
  394. // printf("%d %d %d %d\n", FIX(cs), FIX(cs-1), FIX(ca), FIX(cs)-FIX(ca));
  395. // av_log(NULL, AV_LOG_DEBUG,"%f %f %f %f\n", cs, ca, ca+cs, ca-cs);
  396. }
  397. /* compute mdct windows */
  398. for(i=0;i<36;i++) {
  399. for(j=0; j<4; j++){
  400. double d;
  401. if(j==2 && i%3 != 1)
  402. continue;
  403. d= sin(M_PI * (i + 0.5) / 36.0);
  404. if(j==1){
  405. if (i>=30) d= 0;
  406. else if(i>=24) d= sin(M_PI * (i - 18 + 0.5) / 12.0);
  407. else if(i>=18) d= 1;
  408. }else if(j==3){
  409. if (i< 6) d= 0;
  410. else if(i< 12) d= sin(M_PI * (i - 6 + 0.5) / 12.0);
  411. else if(i< 18) d= 1;
  412. }
  413. //merge last stage of imdct into the window coefficients
  414. d*= 0.5 / cos(M_PI*(2*i + 19)/72);
  415. if(j==2)
  416. mdct_win[j][i/3] = FIXHR((d / (1<<5)));
  417. else
  418. mdct_win[j][i ] = FIXHR((d / (1<<5)));
  419. // av_log(NULL, AV_LOG_DEBUG, "%2d %d %f\n", i,j,d / (1<<5));
  420. }
  421. }
  422. /* NOTE: we do frequency inversion adter the MDCT by changing
  423. the sign of the right window coefs */
  424. for(j=0;j<4;j++) {
  425. for(i=0;i<36;i+=2) {
  426. mdct_win[j + 4][i] = mdct_win[j][i];
  427. mdct_win[j + 4][i + 1] = -mdct_win[j][i + 1];
  428. }
  429. }
  430. #if defined(DEBUG)
  431. for(j=0;j<8;j++) {
  432. av_log(avctx, AV_LOG_DEBUG, "win%d=\n", j);
  433. for(i=0;i<36;i++)
  434. av_log(avctx, AV_LOG_DEBUG, "%f, ", (double)mdct_win[j][i] / FRAC_ONE);
  435. av_log(avctx, AV_LOG_DEBUG, "\n");
  436. }
  437. #endif
  438. init = 1;
  439. }
  440. #ifdef DEBUG
  441. s->frame_count = 0;
  442. #endif
  443. if (avctx->codec_id == CODEC_ID_MP3ADU)
  444. s->adu_mode = 1;
  445. return 0;
  446. }
  447. /* tab[i][j] = 1.0 / (2.0 * cos(pi*(2*k+1) / 2^(6 - j))) */
  448. /* cos(i*pi/64) */
  449. #define COS0_0 FIXHR(0.50060299823519630134/2)
  450. #define COS0_1 FIXHR(0.50547095989754365998/2)
  451. #define COS0_2 FIXHR(0.51544730992262454697/2)
  452. #define COS0_3 FIXHR(0.53104259108978417447/2)
  453. #define COS0_4 FIXHR(0.55310389603444452782/2)
  454. #define COS0_5 FIXHR(0.58293496820613387367/2)
  455. #define COS0_6 FIXHR(0.62250412303566481615/2)
  456. #define COS0_7 FIXHR(0.67480834145500574602/2)
  457. #define COS0_8 FIXHR(0.74453627100229844977/2)
  458. #define COS0_9 FIXHR(0.83934964541552703873/2)
  459. #define COS0_10 FIXHR(0.97256823786196069369/2)
  460. #define COS0_11 FIXHR(1.16943993343288495515/4)
  461. #define COS0_12 FIXHR(1.48416461631416627724/4)
  462. #define COS0_13 FIXHR(2.05778100995341155085/8)
  463. #define COS0_14 FIXHR(3.40760841846871878570/8)
  464. #define COS0_15 FIXHR(10.19000812354805681150/32)
  465. #define COS1_0 FIXHR(0.50241928618815570551/2)
  466. #define COS1_1 FIXHR(0.52249861493968888062/2)
  467. #define COS1_2 FIXHR(0.56694403481635770368/2)
  468. #define COS1_3 FIXHR(0.64682178335999012954/2)
  469. #define COS1_4 FIXHR(0.78815462345125022473/2)
  470. #define COS1_5 FIXHR(1.06067768599034747134/4)
  471. #define COS1_6 FIXHR(1.72244709823833392782/4)
  472. #define COS1_7 FIXHR(5.10114861868916385802/16)
  473. #define COS2_0 FIXHR(0.50979557910415916894/2)
  474. #define COS2_1 FIXHR(0.60134488693504528054/2)
  475. #define COS2_2 FIXHR(0.89997622313641570463/2)
  476. #define COS2_3 FIXHR(2.56291544774150617881/8)
  477. #define COS3_0 FIXHR(0.54119610014619698439/2)
  478. #define COS3_1 FIXHR(1.30656296487637652785/4)
  479. #define COS4_0 FIXHR(0.70710678118654752439/2)
  480. /* butterfly operator */
  481. #define BF(a, b, c, s)\
  482. {\
  483. tmp0 = tab[a] + tab[b];\
  484. tmp1 = tab[a] - tab[b];\
  485. tab[a] = tmp0;\
  486. tab[b] = MULH(tmp1<<(s), c);\
  487. }
  488. #define BF1(a, b, c, d)\
  489. {\
  490. BF(a, b, COS4_0, 1);\
  491. BF(c, d,-COS4_0, 1);\
  492. tab[c] += tab[d];\
  493. }
  494. #define BF2(a, b, c, d)\
  495. {\
  496. BF(a, b, COS4_0, 1);\
  497. BF(c, d,-COS4_0, 1);\
  498. tab[c] += tab[d];\
  499. tab[a] += tab[c];\
  500. tab[c] += tab[b];\
  501. tab[b] += tab[d];\
  502. }
  503. #define ADD(a, b) tab[a] += tab[b]
  504. /* DCT32 without 1/sqrt(2) coef zero scaling. */
  505. static void dct32(int32_t *out, int32_t *tab)
  506. {
  507. int tmp0, tmp1;
  508. /* pass 1 */
  509. BF( 0, 31, COS0_0 , 1);
  510. BF(15, 16, COS0_15, 5);
  511. /* pass 2 */
  512. BF( 0, 15, COS1_0 , 1);
  513. BF(16, 31,-COS1_0 , 1);
  514. /* pass 1 */
  515. BF( 7, 24, COS0_7 , 1);
  516. BF( 8, 23, COS0_8 , 1);
  517. /* pass 2 */
  518. BF( 7, 8, COS1_7 , 4);
  519. BF(23, 24,-COS1_7 , 4);
  520. /* pass 3 */
  521. BF( 0, 7, COS2_0 , 1);
  522. BF( 8, 15,-COS2_0 , 1);
  523. BF(16, 23, COS2_0 , 1);
  524. BF(24, 31,-COS2_0 , 1);
  525. /* pass 1 */
  526. BF( 3, 28, COS0_3 , 1);
  527. BF(12, 19, COS0_12, 2);
  528. /* pass 2 */
  529. BF( 3, 12, COS1_3 , 1);
  530. BF(19, 28,-COS1_3 , 1);
  531. /* pass 1 */
  532. BF( 4, 27, COS0_4 , 1);
  533. BF(11, 20, COS0_11, 2);
  534. /* pass 2 */
  535. BF( 4, 11, COS1_4 , 1);
  536. BF(20, 27,-COS1_4 , 1);
  537. /* pass 3 */
  538. BF( 3, 4, COS2_3 , 3);
  539. BF(11, 12,-COS2_3 , 3);
  540. BF(19, 20, COS2_3 , 3);
  541. BF(27, 28,-COS2_3 , 3);
  542. /* pass 4 */
  543. BF( 0, 3, COS3_0 , 1);
  544. BF( 4, 7,-COS3_0 , 1);
  545. BF( 8, 11, COS3_0 , 1);
  546. BF(12, 15,-COS3_0 , 1);
  547. BF(16, 19, COS3_0 , 1);
  548. BF(20, 23,-COS3_0 , 1);
  549. BF(24, 27, COS3_0 , 1);
  550. BF(28, 31,-COS3_0 , 1);
  551. /* pass 1 */
  552. BF( 1, 30, COS0_1 , 1);
  553. BF(14, 17, COS0_14, 3);
  554. /* pass 2 */
  555. BF( 1, 14, COS1_1 , 1);
  556. BF(17, 30,-COS1_1 , 1);
  557. /* pass 1 */
  558. BF( 6, 25, COS0_6 , 1);
  559. BF( 9, 22, COS0_9 , 1);
  560. /* pass 2 */
  561. BF( 6, 9, COS1_6 , 2);
  562. BF(22, 25,-COS1_6 , 2);
  563. /* pass 3 */
  564. BF( 1, 6, COS2_1 , 1);
  565. BF( 9, 14,-COS2_1 , 1);
  566. BF(17, 22, COS2_1 , 1);
  567. BF(25, 30,-COS2_1 , 1);
  568. /* pass 1 */
  569. BF( 2, 29, COS0_2 , 1);
  570. BF(13, 18, COS0_13, 3);
  571. /* pass 2 */
  572. BF( 2, 13, COS1_2 , 1);
  573. BF(18, 29,-COS1_2 , 1);
  574. /* pass 1 */
  575. BF( 5, 26, COS0_5 , 1);
  576. BF(10, 21, COS0_10, 1);
  577. /* pass 2 */
  578. BF( 5, 10, COS1_5 , 2);
  579. BF(21, 26,-COS1_5 , 2);
  580. /* pass 3 */
  581. BF( 2, 5, COS2_2 , 1);
  582. BF(10, 13,-COS2_2 , 1);
  583. BF(18, 21, COS2_2 , 1);
  584. BF(26, 29,-COS2_2 , 1);
  585. /* pass 4 */
  586. BF( 1, 2, COS3_1 , 2);
  587. BF( 5, 6,-COS3_1 , 2);
  588. BF( 9, 10, COS3_1 , 2);
  589. BF(13, 14,-COS3_1 , 2);
  590. BF(17, 18, COS3_1 , 2);
  591. BF(21, 22,-COS3_1 , 2);
  592. BF(25, 26, COS3_1 , 2);
  593. BF(29, 30,-COS3_1 , 2);
  594. /* pass 5 */
  595. BF1( 0, 1, 2, 3);
  596. BF2( 4, 5, 6, 7);
  597. BF1( 8, 9, 10, 11);
  598. BF2(12, 13, 14, 15);
  599. BF1(16, 17, 18, 19);
  600. BF2(20, 21, 22, 23);
  601. BF1(24, 25, 26, 27);
  602. BF2(28, 29, 30, 31);
  603. /* pass 6 */
  604. ADD( 8, 12);
  605. ADD(12, 10);
  606. ADD(10, 14);
  607. ADD(14, 9);
  608. ADD( 9, 13);
  609. ADD(13, 11);
  610. ADD(11, 15);
  611. out[ 0] = tab[0];
  612. out[16] = tab[1];
  613. out[ 8] = tab[2];
  614. out[24] = tab[3];
  615. out[ 4] = tab[4];
  616. out[20] = tab[5];
  617. out[12] = tab[6];
  618. out[28] = tab[7];
  619. out[ 2] = tab[8];
  620. out[18] = tab[9];
  621. out[10] = tab[10];
  622. out[26] = tab[11];
  623. out[ 6] = tab[12];
  624. out[22] = tab[13];
  625. out[14] = tab[14];
  626. out[30] = tab[15];
  627. ADD(24, 28);
  628. ADD(28, 26);
  629. ADD(26, 30);
  630. ADD(30, 25);
  631. ADD(25, 29);
  632. ADD(29, 27);
  633. ADD(27, 31);
  634. out[ 1] = tab[16] + tab[24];
  635. out[17] = tab[17] + tab[25];
  636. out[ 9] = tab[18] + tab[26];
  637. out[25] = tab[19] + tab[27];
  638. out[ 5] = tab[20] + tab[28];
  639. out[21] = tab[21] + tab[29];
  640. out[13] = tab[22] + tab[30];
  641. out[29] = tab[23] + tab[31];
  642. out[ 3] = tab[24] + tab[20];
  643. out[19] = tab[25] + tab[21];
  644. out[11] = tab[26] + tab[22];
  645. out[27] = tab[27] + tab[23];
  646. out[ 7] = tab[28] + tab[18];
  647. out[23] = tab[29] + tab[19];
  648. out[15] = tab[30] + tab[17];
  649. out[31] = tab[31];
  650. }
  651. #if FRAC_BITS <= 15
  652. static inline int round_sample(int *sum)
  653. {
  654. int sum1;
  655. sum1 = (*sum) >> OUT_SHIFT;
  656. *sum &= (1<<OUT_SHIFT)-1;
  657. if (sum1 < OUT_MIN)
  658. sum1 = OUT_MIN;
  659. else if (sum1 > OUT_MAX)
  660. sum1 = OUT_MAX;
  661. return sum1;
  662. }
  663. /* signed 16x16 -> 32 multiply add accumulate */
  664. #define MACS(rt, ra, rb) MAC16(rt, ra, rb)
  665. /* signed 16x16 -> 32 multiply */
  666. #define MULS(ra, rb) MUL16(ra, rb)
  667. #else
  668. static inline int round_sample(int64_t *sum)
  669. {
  670. int sum1;
  671. sum1 = (int)((*sum) >> OUT_SHIFT);
  672. *sum &= (1<<OUT_SHIFT)-1;
  673. if (sum1 < OUT_MIN)
  674. sum1 = OUT_MIN;
  675. else if (sum1 > OUT_MAX)
  676. sum1 = OUT_MAX;
  677. return sum1;
  678. }
  679. # define MULS(ra, rb) MUL64(ra, rb)
  680. #endif
  681. #define SUM8(sum, op, w, p) \
  682. { \
  683. sum op MULS((w)[0 * 64], p[0 * 64]);\
  684. sum op MULS((w)[1 * 64], p[1 * 64]);\
  685. sum op MULS((w)[2 * 64], p[2 * 64]);\
  686. sum op MULS((w)[3 * 64], p[3 * 64]);\
  687. sum op MULS((w)[4 * 64], p[4 * 64]);\
  688. sum op MULS((w)[5 * 64], p[5 * 64]);\
  689. sum op MULS((w)[6 * 64], p[6 * 64]);\
  690. sum op MULS((w)[7 * 64], p[7 * 64]);\
  691. }
  692. #define SUM8P2(sum1, op1, sum2, op2, w1, w2, p) \
  693. { \
  694. int tmp;\
  695. tmp = p[0 * 64];\
  696. sum1 op1 MULS((w1)[0 * 64], tmp);\
  697. sum2 op2 MULS((w2)[0 * 64], tmp);\
  698. tmp = p[1 * 64];\
  699. sum1 op1 MULS((w1)[1 * 64], tmp);\
  700. sum2 op2 MULS((w2)[1 * 64], tmp);\
  701. tmp = p[2 * 64];\
  702. sum1 op1 MULS((w1)[2 * 64], tmp);\
  703. sum2 op2 MULS((w2)[2 * 64], tmp);\
  704. tmp = p[3 * 64];\
  705. sum1 op1 MULS((w1)[3 * 64], tmp);\
  706. sum2 op2 MULS((w2)[3 * 64], tmp);\
  707. tmp = p[4 * 64];\
  708. sum1 op1 MULS((w1)[4 * 64], tmp);\
  709. sum2 op2 MULS((w2)[4 * 64], tmp);\
  710. tmp = p[5 * 64];\
  711. sum1 op1 MULS((w1)[5 * 64], tmp);\
  712. sum2 op2 MULS((w2)[5 * 64], tmp);\
  713. tmp = p[6 * 64];\
  714. sum1 op1 MULS((w1)[6 * 64], tmp);\
  715. sum2 op2 MULS((w2)[6 * 64], tmp);\
  716. tmp = p[7 * 64];\
  717. sum1 op1 MULS((w1)[7 * 64], tmp);\
  718. sum2 op2 MULS((w2)[7 * 64], tmp);\
  719. }
  720. void ff_mpa_synth_init(MPA_INT *window)
  721. {
  722. int i;
  723. /* max = 18760, max sum over all 16 coefs : 44736 */
  724. for(i=0;i<257;i++) {
  725. int v;
  726. v = mpa_enwindow[i];
  727. #if WFRAC_BITS < 16
  728. v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
  729. #endif
  730. window[i] = v;
  731. if ((i & 63) != 0)
  732. v = -v;
  733. if (i != 0)
  734. window[512 - i] = v;
  735. }
  736. }
  737. /* 32 sub band synthesis filter. Input: 32 sub band samples, Output:
  738. 32 samples. */
  739. /* XXX: optimize by avoiding ring buffer usage */
  740. void ff_mpa_synth_filter(MPA_INT *synth_buf_ptr, int *synth_buf_offset,
  741. MPA_INT *window, int *dither_state,
  742. OUT_INT *samples, int incr,
  743. int32_t sb_samples[SBLIMIT])
  744. {
  745. int32_t tmp[32];
  746. register MPA_INT *synth_buf;
  747. register const MPA_INT *w, *w2, *p;
  748. int j, offset, v;
  749. OUT_INT *samples2;
  750. #if FRAC_BITS <= 15
  751. int sum, sum2;
  752. #else
  753. int64_t sum, sum2;
  754. #endif
  755. dct32(tmp, sb_samples);
  756. offset = *synth_buf_offset;
  757. synth_buf = synth_buf_ptr + offset;
  758. for(j=0;j<32;j++) {
  759. v = tmp[j];
  760. #if FRAC_BITS <= 15
  761. /* NOTE: can cause a loss in precision if very high amplitude
  762. sound */
  763. if (v > 32767)
  764. v = 32767;
  765. else if (v < -32768)
  766. v = -32768;
  767. #endif
  768. synth_buf[j] = v;
  769. }
  770. /* copy to avoid wrap */
  771. memcpy(synth_buf + 512, synth_buf, 32 * sizeof(MPA_INT));
  772. samples2 = samples + 31 * incr;
  773. w = window;
  774. w2 = window + 31;
  775. sum = *dither_state;
  776. p = synth_buf + 16;
  777. SUM8(sum, +=, w, p);
  778. p = synth_buf + 48;
  779. SUM8(sum, -=, w + 32, p);
  780. *samples = round_sample(&sum);
  781. samples += incr;
  782. w++;
  783. /* we calculate two samples at the same time to avoid one memory
  784. access per two sample */
  785. for(j=1;j<16;j++) {
  786. sum2 = 0;
  787. p = synth_buf + 16 + j;
  788. SUM8P2(sum, +=, sum2, -=, w, w2, p);
  789. p = synth_buf + 48 - j;
  790. SUM8P2(sum, -=, sum2, -=, w + 32, w2 + 32, p);
  791. *samples = round_sample(&sum);
  792. samples += incr;
  793. sum += sum2;
  794. *samples2 = round_sample(&sum);
  795. samples2 -= incr;
  796. w++;
  797. w2--;
  798. }
  799. p = synth_buf + 32;
  800. SUM8(sum, -=, w + 32, p);
  801. *samples = round_sample(&sum);
  802. *dither_state= sum;
  803. offset = (offset - 32) & 511;
  804. *synth_buf_offset = offset;
  805. }
  806. #define C3 FIXHR(0.86602540378443864676/2)
  807. /* 0.5 / cos(pi*(2*i+1)/36) */
  808. static const int icos36[9] = {
  809. FIXR(0.50190991877167369479),
  810. FIXR(0.51763809020504152469), //0
  811. FIXR(0.55168895948124587824),
  812. FIXR(0.61038729438072803416),
  813. FIXR(0.70710678118654752439), //1
  814. FIXR(0.87172339781054900991),
  815. FIXR(1.18310079157624925896),
  816. FIXR(1.93185165257813657349), //2
  817. FIXR(5.73685662283492756461),
  818. };
  819. /* 0.5 / cos(pi*(2*i+1)/36) */
  820. static const int icos36h[9] = {
  821. FIXHR(0.50190991877167369479/2),
  822. FIXHR(0.51763809020504152469/2), //0
  823. FIXHR(0.55168895948124587824/2),
  824. FIXHR(0.61038729438072803416/2),
  825. FIXHR(0.70710678118654752439/2), //1
  826. FIXHR(0.87172339781054900991/2),
  827. FIXHR(1.18310079157624925896/4),
  828. FIXHR(1.93185165257813657349/4), //2
  829. // FIXHR(5.73685662283492756461),
  830. };
  831. /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
  832. cases. */
  833. static void imdct12(int *out, int *in)
  834. {
  835. int in0, in1, in2, in3, in4, in5, t1, t2;
  836. in0= in[0*3];
  837. in1= in[1*3] + in[0*3];
  838. in2= in[2*3] + in[1*3];
  839. in3= in[3*3] + in[2*3];
  840. in4= in[4*3] + in[3*3];
  841. in5= in[5*3] + in[4*3];
  842. in5 += in3;
  843. in3 += in1;
  844. in2= MULH(2*in2, C3);
  845. in3= MULH(4*in3, C3);
  846. t1 = in0 - in4;
  847. t2 = MULH(2*(in1 - in5), icos36h[4]);
  848. out[ 7]=
  849. out[10]= t1 + t2;
  850. out[ 1]=
  851. out[ 4]= t1 - t2;
  852. in0 += in4>>1;
  853. in4 = in0 + in2;
  854. in5 += 2*in1;
  855. in1 = MULH(in5 + in3, icos36h[1]);
  856. out[ 8]=
  857. out[ 9]= in4 + in1;
  858. out[ 2]=
  859. out[ 3]= in4 - in1;
  860. in0 -= in2;
  861. in5 = MULH(2*(in5 - in3), icos36h[7]);
  862. out[ 0]=
  863. out[ 5]= in0 - in5;
  864. out[ 6]=
  865. out[11]= in0 + in5;
  866. }
  867. /* cos(pi*i/18) */
  868. #define C1 FIXHR(0.98480775301220805936/2)
  869. #define C2 FIXHR(0.93969262078590838405/2)
  870. #define C3 FIXHR(0.86602540378443864676/2)
  871. #define C4 FIXHR(0.76604444311897803520/2)
  872. #define C5 FIXHR(0.64278760968653932632/2)
  873. #define C6 FIXHR(0.5/2)
  874. #define C7 FIXHR(0.34202014332566873304/2)
  875. #define C8 FIXHR(0.17364817766693034885/2)
  876. /* using Lee like decomposition followed by hand coded 9 points DCT */
  877. static void imdct36(int *out, int *buf, int *in, int *win)
  878. {
  879. int i, j, t0, t1, t2, t3, s0, s1, s2, s3;
  880. int tmp[18], *tmp1, *in1;
  881. for(i=17;i>=1;i--)
  882. in[i] += in[i-1];
  883. for(i=17;i>=3;i-=2)
  884. in[i] += in[i-2];
  885. for(j=0;j<2;j++) {
  886. tmp1 = tmp + j;
  887. in1 = in + j;
  888. #if 0
  889. //more accurate but slower
  890. int64_t t0, t1, t2, t3;
  891. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  892. t3 = (in1[2*0] + (int64_t)(in1[2*6]>>1))<<32;
  893. t1 = in1[2*0] - in1[2*6];
  894. tmp1[ 6] = t1 - (t2>>1);
  895. tmp1[16] = t1 + t2;
  896. t0 = MUL64(2*(in1[2*2] + in1[2*4]), C2);
  897. t1 = MUL64( in1[2*4] - in1[2*8] , -2*C8);
  898. t2 = MUL64(2*(in1[2*2] + in1[2*8]), -C4);
  899. tmp1[10] = (t3 - t0 - t2) >> 32;
  900. tmp1[ 2] = (t3 + t0 + t1) >> 32;
  901. tmp1[14] = (t3 + t2 - t1) >> 32;
  902. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  903. t2 = MUL64(2*(in1[2*1] + in1[2*5]), C1);
  904. t3 = MUL64( in1[2*5] - in1[2*7] , -2*C7);
  905. t0 = MUL64(2*in1[2*3], C3);
  906. t1 = MUL64(2*(in1[2*1] + in1[2*7]), -C5);
  907. tmp1[ 0] = (t2 + t3 + t0) >> 32;
  908. tmp1[12] = (t2 + t1 - t0) >> 32;
  909. tmp1[ 8] = (t3 - t1 - t0) >> 32;
  910. #else
  911. t2 = in1[2*4] + in1[2*8] - in1[2*2];
  912. t3 = in1[2*0] + (in1[2*6]>>1);
  913. t1 = in1[2*0] - in1[2*6];
  914. tmp1[ 6] = t1 - (t2>>1);
  915. tmp1[16] = t1 + t2;
  916. t0 = MULH(2*(in1[2*2] + in1[2*4]), C2);
  917. t1 = MULH( in1[2*4] - in1[2*8] , -2*C8);
  918. t2 = MULH(2*(in1[2*2] + in1[2*8]), -C4);
  919. tmp1[10] = t3 - t0 - t2;
  920. tmp1[ 2] = t3 + t0 + t1;
  921. tmp1[14] = t3 + t2 - t1;
  922. tmp1[ 4] = MULH(2*(in1[2*5] + in1[2*7] - in1[2*1]), -C3);
  923. t2 = MULH(2*(in1[2*1] + in1[2*5]), C1);
  924. t3 = MULH( in1[2*5] - in1[2*7] , -2*C7);
  925. t0 = MULH(2*in1[2*3], C3);
  926. t1 = MULH(2*(in1[2*1] + in1[2*7]), -C5);
  927. tmp1[ 0] = t2 + t3 + t0;
  928. tmp1[12] = t2 + t1 - t0;
  929. tmp1[ 8] = t3 - t1 - t0;
  930. #endif
  931. }
  932. i = 0;
  933. for(j=0;j<4;j++) {
  934. t0 = tmp[i];
  935. t1 = tmp[i + 2];
  936. s0 = t1 + t0;
  937. s2 = t1 - t0;
  938. t2 = tmp[i + 1];
  939. t3 = tmp[i + 3];
  940. s1 = MULH(2*(t3 + t2), icos36h[j]);
  941. s3 = MULL(t3 - t2, icos36[8 - j]);
  942. t0 = s0 + s1;
  943. t1 = s0 - s1;
  944. out[(9 + j)*SBLIMIT] = MULH(t1, win[9 + j]) + buf[9 + j];
  945. out[(8 - j)*SBLIMIT] = MULH(t1, win[8 - j]) + buf[8 - j];
  946. buf[9 + j] = MULH(t0, win[18 + 9 + j]);
  947. buf[8 - j] = MULH(t0, win[18 + 8 - j]);
  948. t0 = s2 + s3;
  949. t1 = s2 - s3;
  950. out[(9 + 8 - j)*SBLIMIT] = MULH(t1, win[9 + 8 - j]) + buf[9 + 8 - j];
  951. out[( j)*SBLIMIT] = MULH(t1, win[ j]) + buf[ j];
  952. buf[9 + 8 - j] = MULH(t0, win[18 + 9 + 8 - j]);
  953. buf[ + j] = MULH(t0, win[18 + j]);
  954. i += 4;
  955. }
  956. s0 = tmp[16];
  957. s1 = MULH(2*tmp[17], icos36h[4]);
  958. t0 = s0 + s1;
  959. t1 = s0 - s1;
  960. out[(9 + 4)*SBLIMIT] = MULH(t1, win[9 + 4]) + buf[9 + 4];
  961. out[(8 - 4)*SBLIMIT] = MULH(t1, win[8 - 4]) + buf[8 - 4];
  962. buf[9 + 4] = MULH(t0, win[18 + 9 + 4]);
  963. buf[8 - 4] = MULH(t0, win[18 + 8 - 4]);
  964. }
  965. /* header decoding. MUST check the header before because no
  966. consistency check is done there. Return 1 if free format found and
  967. that the frame size must be computed externally */
  968. static int decode_header(MPADecodeContext *s, uint32_t header)
  969. {
  970. int sample_rate, frame_size, mpeg25, padding;
  971. int sample_rate_index, bitrate_index;
  972. if (header & (1<<20)) {
  973. s->lsf = (header & (1<<19)) ? 0 : 1;
  974. mpeg25 = 0;
  975. } else {
  976. s->lsf = 1;
  977. mpeg25 = 1;
  978. }
  979. s->layer = 4 - ((header >> 17) & 3);
  980. /* extract frequency */
  981. sample_rate_index = (header >> 10) & 3;
  982. sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25);
  983. sample_rate_index += 3 * (s->lsf + mpeg25);
  984. s->sample_rate_index = sample_rate_index;
  985. s->error_protection = ((header >> 16) & 1) ^ 1;
  986. s->sample_rate = sample_rate;
  987. bitrate_index = (header >> 12) & 0xf;
  988. padding = (header >> 9) & 1;
  989. //extension = (header >> 8) & 1;
  990. s->mode = (header >> 6) & 3;
  991. s->mode_ext = (header >> 4) & 3;
  992. //copyright = (header >> 3) & 1;
  993. //original = (header >> 2) & 1;
  994. //emphasis = header & 3;
  995. if (s->mode == MPA_MONO)
  996. s->nb_channels = 1;
  997. else
  998. s->nb_channels = 2;
  999. if (bitrate_index != 0) {
  1000. frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index];
  1001. s->bit_rate = frame_size * 1000;
  1002. switch(s->layer) {
  1003. case 1:
  1004. frame_size = (frame_size * 12000) / sample_rate;
  1005. frame_size = (frame_size + padding) * 4;
  1006. break;
  1007. case 2:
  1008. frame_size = (frame_size * 144000) / sample_rate;
  1009. frame_size += padding;
  1010. break;
  1011. default:
  1012. case 3:
  1013. frame_size = (frame_size * 144000) / (sample_rate << s->lsf);
  1014. frame_size += padding;
  1015. break;
  1016. }
  1017. s->frame_size = frame_size;
  1018. } else {
  1019. /* if no frame size computed, signal it */
  1020. return 1;
  1021. }
  1022. #if defined(DEBUG)
  1023. dprintf("layer%d, %d Hz, %d kbits/s, ",
  1024. s->layer, s->sample_rate, s->bit_rate);
  1025. if (s->nb_channels == 2) {
  1026. if (s->layer == 3) {
  1027. if (s->mode_ext & MODE_EXT_MS_STEREO)
  1028. dprintf("ms-");
  1029. if (s->mode_ext & MODE_EXT_I_STEREO)
  1030. dprintf("i-");
  1031. }
  1032. dprintf("stereo");
  1033. } else {
  1034. dprintf("mono");
  1035. }
  1036. dprintf("\n");
  1037. #endif
  1038. return 0;
  1039. }
  1040. /* useful helper to get mpeg audio stream infos. Return -1 if error in
  1041. header, otherwise the coded frame size in bytes */
  1042. int mpa_decode_header(AVCodecContext *avctx, uint32_t head)
  1043. {
  1044. MPADecodeContext s1, *s = &s1;
  1045. if (ff_mpa_check_header(head) != 0)
  1046. return -1;
  1047. if (decode_header(s, head) != 0) {
  1048. return -1;
  1049. }
  1050. switch(s->layer) {
  1051. case 1:
  1052. avctx->frame_size = 384;
  1053. break;
  1054. case 2:
  1055. avctx->frame_size = 1152;
  1056. break;
  1057. default:
  1058. case 3:
  1059. if (s->lsf)
  1060. avctx->frame_size = 576;
  1061. else
  1062. avctx->frame_size = 1152;
  1063. break;
  1064. }
  1065. avctx->sample_rate = s->sample_rate;
  1066. avctx->channels = s->nb_channels;
  1067. avctx->bit_rate = s->bit_rate;
  1068. avctx->sub_id = s->layer;
  1069. return s->frame_size;
  1070. }
  1071. /* return the number of decoded frames */
  1072. static int mp_decode_layer1(MPADecodeContext *s)
  1073. {
  1074. int bound, i, v, n, ch, j, mant;
  1075. uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
  1076. uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
  1077. if (s->mode == MPA_JSTEREO)
  1078. bound = (s->mode_ext + 1) * 4;
  1079. else
  1080. bound = SBLIMIT;
  1081. /* allocation bits */
  1082. for(i=0;i<bound;i++) {
  1083. for(ch=0;ch<s->nb_channels;ch++) {
  1084. allocation[ch][i] = get_bits(&s->gb, 4);
  1085. }
  1086. }
  1087. for(i=bound;i<SBLIMIT;i++) {
  1088. allocation[0][i] = get_bits(&s->gb, 4);
  1089. }
  1090. /* scale factors */
  1091. for(i=0;i<bound;i++) {
  1092. for(ch=0;ch<s->nb_channels;ch++) {
  1093. if (allocation[ch][i])
  1094. scale_factors[ch][i] = get_bits(&s->gb, 6);
  1095. }
  1096. }
  1097. for(i=bound;i<SBLIMIT;i++) {
  1098. if (allocation[0][i]) {
  1099. scale_factors[0][i] = get_bits(&s->gb, 6);
  1100. scale_factors[1][i] = get_bits(&s->gb, 6);
  1101. }
  1102. }
  1103. /* compute samples */
  1104. for(j=0;j<12;j++) {
  1105. for(i=0;i<bound;i++) {
  1106. for(ch=0;ch<s->nb_channels;ch++) {
  1107. n = allocation[ch][i];
  1108. if (n) {
  1109. mant = get_bits(&s->gb, n + 1);
  1110. v = l1_unscale(n, mant, scale_factors[ch][i]);
  1111. } else {
  1112. v = 0;
  1113. }
  1114. s->sb_samples[ch][j][i] = v;
  1115. }
  1116. }
  1117. for(i=bound;i<SBLIMIT;i++) {
  1118. n = allocation[0][i];
  1119. if (n) {
  1120. mant = get_bits(&s->gb, n + 1);
  1121. v = l1_unscale(n, mant, scale_factors[0][i]);
  1122. s->sb_samples[0][j][i] = v;
  1123. v = l1_unscale(n, mant, scale_factors[1][i]);
  1124. s->sb_samples[1][j][i] = v;
  1125. } else {
  1126. s->sb_samples[0][j][i] = 0;
  1127. s->sb_samples[1][j][i] = 0;
  1128. }
  1129. }
  1130. }
  1131. return 12;
  1132. }
  1133. /* bitrate is in kb/s */
  1134. int l2_select_table(int bitrate, int nb_channels, int freq, int lsf)
  1135. {
  1136. int ch_bitrate, table;
  1137. ch_bitrate = bitrate / nb_channels;
  1138. if (!lsf) {
  1139. if ((freq == 48000 && ch_bitrate >= 56) ||
  1140. (ch_bitrate >= 56 && ch_bitrate <= 80))
  1141. table = 0;
  1142. else if (freq != 48000 && ch_bitrate >= 96)
  1143. table = 1;
  1144. else if (freq != 32000 && ch_bitrate <= 48)
  1145. table = 2;
  1146. else
  1147. table = 3;
  1148. } else {
  1149. table = 4;
  1150. }
  1151. return table;
  1152. }
  1153. static int mp_decode_layer2(MPADecodeContext *s)
  1154. {
  1155. int sblimit; /* number of used subbands */
  1156. const unsigned char *alloc_table;
  1157. int table, bit_alloc_bits, i, j, ch, bound, v;
  1158. unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
  1159. unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
  1160. unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
  1161. int scale, qindex, bits, steps, k, l, m, b;
  1162. /* select decoding table */
  1163. table = l2_select_table(s->bit_rate / 1000, s->nb_channels,
  1164. s->sample_rate, s->lsf);
  1165. sblimit = sblimit_table[table];
  1166. alloc_table = alloc_tables[table];
  1167. if (s->mode == MPA_JSTEREO)
  1168. bound = (s->mode_ext + 1) * 4;
  1169. else
  1170. bound = sblimit;
  1171. dprintf("bound=%d sblimit=%d\n", bound, sblimit);
  1172. /* sanity check */
  1173. if( bound > sblimit ) bound = sblimit;
  1174. /* parse bit allocation */
  1175. j = 0;
  1176. for(i=0;i<bound;i++) {
  1177. bit_alloc_bits = alloc_table[j];
  1178. for(ch=0;ch<s->nb_channels;ch++) {
  1179. bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
  1180. }
  1181. j += 1 << bit_alloc_bits;
  1182. }
  1183. for(i=bound;i<sblimit;i++) {
  1184. bit_alloc_bits = alloc_table[j];
  1185. v = get_bits(&s->gb, bit_alloc_bits);
  1186. bit_alloc[0][i] = v;
  1187. bit_alloc[1][i] = v;
  1188. j += 1 << bit_alloc_bits;
  1189. }
  1190. #ifdef DEBUG
  1191. {
  1192. for(ch=0;ch<s->nb_channels;ch++) {
  1193. for(i=0;i<sblimit;i++)
  1194. dprintf(" %d", bit_alloc[ch][i]);
  1195. dprintf("\n");
  1196. }
  1197. }
  1198. #endif
  1199. /* scale codes */
  1200. for(i=0;i<sblimit;i++) {
  1201. for(ch=0;ch<s->nb_channels;ch++) {
  1202. if (bit_alloc[ch][i])
  1203. scale_code[ch][i] = get_bits(&s->gb, 2);
  1204. }
  1205. }
  1206. /* scale factors */
  1207. for(i=0;i<sblimit;i++) {
  1208. for(ch=0;ch<s->nb_channels;ch++) {
  1209. if (bit_alloc[ch][i]) {
  1210. sf = scale_factors[ch][i];
  1211. switch(scale_code[ch][i]) {
  1212. default:
  1213. case 0:
  1214. sf[0] = get_bits(&s->gb, 6);
  1215. sf[1] = get_bits(&s->gb, 6);
  1216. sf[2] = get_bits(&s->gb, 6);
  1217. break;
  1218. case 2:
  1219. sf[0] = get_bits(&s->gb, 6);
  1220. sf[1] = sf[0];
  1221. sf[2] = sf[0];
  1222. break;
  1223. case 1:
  1224. sf[0] = get_bits(&s->gb, 6);
  1225. sf[2] = get_bits(&s->gb, 6);
  1226. sf[1] = sf[0];
  1227. break;
  1228. case 3:
  1229. sf[0] = get_bits(&s->gb, 6);
  1230. sf[2] = get_bits(&s->gb, 6);
  1231. sf[1] = sf[2];
  1232. break;
  1233. }
  1234. }
  1235. }
  1236. }
  1237. #ifdef DEBUG
  1238. for(ch=0;ch<s->nb_channels;ch++) {
  1239. for(i=0;i<sblimit;i++) {
  1240. if (bit_alloc[ch][i]) {
  1241. sf = scale_factors[ch][i];
  1242. dprintf(" %d %d %d", sf[0], sf[1], sf[2]);
  1243. } else {
  1244. dprintf(" -");
  1245. }
  1246. }
  1247. dprintf("\n");
  1248. }
  1249. #endif
  1250. /* samples */
  1251. for(k=0;k<3;k++) {
  1252. for(l=0;l<12;l+=3) {
  1253. j = 0;
  1254. for(i=0;i<bound;i++) {
  1255. bit_alloc_bits = alloc_table[j];
  1256. for(ch=0;ch<s->nb_channels;ch++) {
  1257. b = bit_alloc[ch][i];
  1258. if (b) {
  1259. scale = scale_factors[ch][i][k];
  1260. qindex = alloc_table[j+b];
  1261. bits = quant_bits[qindex];
  1262. if (bits < 0) {
  1263. /* 3 values at the same time */
  1264. v = get_bits(&s->gb, -bits);
  1265. steps = quant_steps[qindex];
  1266. s->sb_samples[ch][k * 12 + l + 0][i] =
  1267. l2_unscale_group(steps, v % steps, scale);
  1268. v = v / steps;
  1269. s->sb_samples[ch][k * 12 + l + 1][i] =
  1270. l2_unscale_group(steps, v % steps, scale);
  1271. v = v / steps;
  1272. s->sb_samples[ch][k * 12 + l + 2][i] =
  1273. l2_unscale_group(steps, v, scale);
  1274. } else {
  1275. for(m=0;m<3;m++) {
  1276. v = get_bits(&s->gb, bits);
  1277. v = l1_unscale(bits - 1, v, scale);
  1278. s->sb_samples[ch][k * 12 + l + m][i] = v;
  1279. }
  1280. }
  1281. } else {
  1282. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1283. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1284. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1285. }
  1286. }
  1287. /* next subband in alloc table */
  1288. j += 1 << bit_alloc_bits;
  1289. }
  1290. /* XXX: find a way to avoid this duplication of code */
  1291. for(i=bound;i<sblimit;i++) {
  1292. bit_alloc_bits = alloc_table[j];
  1293. b = bit_alloc[0][i];
  1294. if (b) {
  1295. int mant, scale0, scale1;
  1296. scale0 = scale_factors[0][i][k];
  1297. scale1 = scale_factors[1][i][k];
  1298. qindex = alloc_table[j+b];
  1299. bits = quant_bits[qindex];
  1300. if (bits < 0) {
  1301. /* 3 values at the same time */
  1302. v = get_bits(&s->gb, -bits);
  1303. steps = quant_steps[qindex];
  1304. mant = v % steps;
  1305. v = v / steps;
  1306. s->sb_samples[0][k * 12 + l + 0][i] =
  1307. l2_unscale_group(steps, mant, scale0);
  1308. s->sb_samples[1][k * 12 + l + 0][i] =
  1309. l2_unscale_group(steps, mant, scale1);
  1310. mant = v % steps;
  1311. v = v / steps;
  1312. s->sb_samples[0][k * 12 + l + 1][i] =
  1313. l2_unscale_group(steps, mant, scale0);
  1314. s->sb_samples[1][k * 12 + l + 1][i] =
  1315. l2_unscale_group(steps, mant, scale1);
  1316. s->sb_samples[0][k * 12 + l + 2][i] =
  1317. l2_unscale_group(steps, v, scale0);
  1318. s->sb_samples[1][k * 12 + l + 2][i] =
  1319. l2_unscale_group(steps, v, scale1);
  1320. } else {
  1321. for(m=0;m<3;m++) {
  1322. mant = get_bits(&s->gb, bits);
  1323. s->sb_samples[0][k * 12 + l + m][i] =
  1324. l1_unscale(bits - 1, mant, scale0);
  1325. s->sb_samples[1][k * 12 + l + m][i] =
  1326. l1_unscale(bits - 1, mant, scale1);
  1327. }
  1328. }
  1329. } else {
  1330. s->sb_samples[0][k * 12 + l + 0][i] = 0;
  1331. s->sb_samples[0][k * 12 + l + 1][i] = 0;
  1332. s->sb_samples[0][k * 12 + l + 2][i] = 0;
  1333. s->sb_samples[1][k * 12 + l + 0][i] = 0;
  1334. s->sb_samples[1][k * 12 + l + 1][i] = 0;
  1335. s->sb_samples[1][k * 12 + l + 2][i] = 0;
  1336. }
  1337. /* next subband in alloc table */
  1338. j += 1 << bit_alloc_bits;
  1339. }
  1340. /* fill remaining samples to zero */
  1341. for(i=sblimit;i<SBLIMIT;i++) {
  1342. for(ch=0;ch<s->nb_channels;ch++) {
  1343. s->sb_samples[ch][k * 12 + l + 0][i] = 0;
  1344. s->sb_samples[ch][k * 12 + l + 1][i] = 0;
  1345. s->sb_samples[ch][k * 12 + l + 2][i] = 0;
  1346. }
  1347. }
  1348. }
  1349. }
  1350. return 3 * 12;
  1351. }
  1352. static inline void lsf_sf_expand(int *slen,
  1353. int sf, int n1, int n2, int n3)
  1354. {
  1355. if (n3) {
  1356. slen[3] = sf % n3;
  1357. sf /= n3;
  1358. } else {
  1359. slen[3] = 0;
  1360. }
  1361. if (n2) {
  1362. slen[2] = sf % n2;
  1363. sf /= n2;
  1364. } else {
  1365. slen[2] = 0;
  1366. }
  1367. slen[1] = sf % n1;
  1368. sf /= n1;
  1369. slen[0] = sf;
  1370. }
  1371. static void exponents_from_scale_factors(MPADecodeContext *s,
  1372. GranuleDef *g,
  1373. int16_t *exponents)
  1374. {
  1375. const uint8_t *bstab, *pretab;
  1376. int len, i, j, k, l, v0, shift, gain, gains[3];
  1377. int16_t *exp_ptr;
  1378. exp_ptr = exponents;
  1379. gain = g->global_gain - 210;
  1380. shift = g->scalefac_scale + 1;
  1381. bstab = band_size_long[s->sample_rate_index];
  1382. pretab = mpa_pretab[g->preflag];
  1383. for(i=0;i<g->long_end;i++) {
  1384. v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
  1385. len = bstab[i];
  1386. for(j=len;j>0;j--)
  1387. *exp_ptr++ = v0;
  1388. }
  1389. if (g->short_start < 13) {
  1390. bstab = band_size_short[s->sample_rate_index];
  1391. gains[0] = gain - (g->subblock_gain[0] << 3);
  1392. gains[1] = gain - (g->subblock_gain[1] << 3);
  1393. gains[2] = gain - (g->subblock_gain[2] << 3);
  1394. k = g->long_end;
  1395. for(i=g->short_start;i<13;i++) {
  1396. len = bstab[i];
  1397. for(l=0;l<3;l++) {
  1398. v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
  1399. for(j=len;j>0;j--)
  1400. *exp_ptr++ = v0;
  1401. }
  1402. }
  1403. }
  1404. }
  1405. /* handle n = 0 too */
  1406. static inline int get_bitsz(GetBitContext *s, int n)
  1407. {
  1408. if (n == 0)
  1409. return 0;
  1410. else
  1411. return get_bits(s, n);
  1412. }
  1413. static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
  1414. int16_t *exponents, int end_pos2)
  1415. {
  1416. int s_index;
  1417. int i;
  1418. int last_pos, bits_left;
  1419. VLC *vlc;
  1420. int end_pos= FFMIN(end_pos2, s->gb.size_in_bits);
  1421. /* low frequencies (called big values) */
  1422. s_index = 0;
  1423. for(i=0;i<3;i++) {
  1424. int j, k, l, linbits;
  1425. j = g->region_size[i];
  1426. if (j == 0)
  1427. continue;
  1428. /* select vlc table */
  1429. k = g->table_select[i];
  1430. l = mpa_huff_data[k][0];
  1431. linbits = mpa_huff_data[k][1];
  1432. vlc = &huff_vlc[l];
  1433. if(!l){
  1434. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*2*j);
  1435. s_index += 2*j;
  1436. continue;
  1437. }
  1438. /* read huffcode and compute each couple */
  1439. for(;j>0;j--) {
  1440. int exponent, x, y, v;
  1441. int pos= get_bits_count(&s->gb);
  1442. if (pos >= end_pos){
  1443. // av_log(NULL, AV_LOG_ERROR, "pos: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1444. if(s->in_gb.buffer && pos >= s->gb.size_in_bits){
  1445. s->gb= s->in_gb;
  1446. s->in_gb.buffer=NULL;
  1447. assert((get_bits_count(&s->gb) & 7) == 0);
  1448. skip_bits_long(&s->gb, pos - end_pos);
  1449. end_pos2=
  1450. end_pos= end_pos2 + get_bits_count(&s->gb) - pos;
  1451. pos= get_bits_count(&s->gb);
  1452. }
  1453. // av_log(NULL, AV_LOG_ERROR, "new pos: %d %d\n", pos, end_pos);
  1454. if(pos >= end_pos)
  1455. break;
  1456. }
  1457. y = get_vlc2(&s->gb, vlc->table, 7, 3);
  1458. if(!y){
  1459. g->sb_hybrid[s_index ] =
  1460. g->sb_hybrid[s_index+1] = 0;
  1461. s_index += 2;
  1462. continue;
  1463. }
  1464. exponent= exponents[s_index];
  1465. dprintf("region=%d n=%d x=%d y=%d exp=%d\n",
  1466. i, g->region_size[i] - j, x, y, exponent);
  1467. if(y&16){
  1468. x = y >> 5;
  1469. y = y & 0x0f;
  1470. if (x < 15){
  1471. v = expval_table[ exponent ][ x ];
  1472. // v = expval_table[ (exponent&3) ][ x ] >> FFMIN(0 - (exponent>>2), 31);
  1473. }else{
  1474. x += get_bitsz(&s->gb, linbits);
  1475. v = l3_unscale(x, exponent);
  1476. }
  1477. if (get_bits1(&s->gb))
  1478. v = -v;
  1479. g->sb_hybrid[s_index] = v;
  1480. if (y < 15){
  1481. v = expval_table[ exponent ][ y ];
  1482. }else{
  1483. y += get_bitsz(&s->gb, linbits);
  1484. v = l3_unscale(y, exponent);
  1485. }
  1486. if (get_bits1(&s->gb))
  1487. v = -v;
  1488. g->sb_hybrid[s_index+1] = v;
  1489. }else{
  1490. x = y >> 5;
  1491. y = y & 0x0f;
  1492. x += y;
  1493. if (x < 15){
  1494. v = expval_table[ exponent ][ x ];
  1495. }else{
  1496. x += get_bitsz(&s->gb, linbits);
  1497. v = l3_unscale(x, exponent);
  1498. }
  1499. if (get_bits1(&s->gb))
  1500. v = -v;
  1501. g->sb_hybrid[s_index+!!y] = v;
  1502. g->sb_hybrid[s_index+ !y] = 0;
  1503. }
  1504. s_index+=2;
  1505. }
  1506. }
  1507. /* high frequencies */
  1508. vlc = &huff_quad_vlc[g->count1table_select];
  1509. last_pos=0;
  1510. while (s_index <= 572) {
  1511. int pos, code;
  1512. pos = get_bits_count(&s->gb);
  1513. if (pos >= end_pos) {
  1514. if (pos > end_pos2 && last_pos){
  1515. /* some encoders generate an incorrect size for this
  1516. part. We must go back into the data */
  1517. s_index -= 4;
  1518. skip_bits_long(&s->gb, last_pos - pos);
  1519. av_log(NULL, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
  1520. break;
  1521. }
  1522. // av_log(NULL, AV_LOG_ERROR, "pos2: %d %d %d %d\n", pos, end_pos, end_pos2, s_index);
  1523. if(s->in_gb.buffer && pos >= s->gb.size_in_bits){
  1524. s->gb= s->in_gb;
  1525. s->in_gb.buffer=NULL;
  1526. assert((get_bits_count(&s->gb) & 7) == 0);
  1527. skip_bits_long(&s->gb, pos - end_pos);
  1528. end_pos2=
  1529. end_pos= end_pos2 + get_bits_count(&s->gb) - pos;
  1530. pos= get_bits_count(&s->gb);
  1531. }
  1532. // av_log(NULL, AV_LOG_ERROR, "new pos2: %d %d %d\n", pos, end_pos, s_index);
  1533. if(pos >= end_pos)
  1534. break;
  1535. }
  1536. last_pos= pos;
  1537. code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
  1538. dprintf("t=%d code=%d\n", g->count1table_select, code);
  1539. g->sb_hybrid[s_index+0]=
  1540. g->sb_hybrid[s_index+1]=
  1541. g->sb_hybrid[s_index+2]=
  1542. g->sb_hybrid[s_index+3]= 0;
  1543. while(code){
  1544. const static int idxtab[16]={3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0};
  1545. int v;
  1546. int pos= s_index+idxtab[code];
  1547. code ^= 8>>idxtab[code];
  1548. v = exp_table[ exponents[pos] ];
  1549. // v = exp_table[ (exponents[pos]&3) ] >> FFMIN(0 - (exponents[pos]>>2), 31);
  1550. if(get_bits1(&s->gb))
  1551. v = -v;
  1552. g->sb_hybrid[pos] = v;
  1553. }
  1554. s_index+=4;
  1555. }
  1556. memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid)*(576 - s_index));
  1557. /* skip extension bits */
  1558. bits_left = end_pos - get_bits_count(&s->gb);
  1559. //av_log(NULL, AV_LOG_ERROR, "left:%d buf:%p\n", bits_left, s->in_gb.buffer);
  1560. if (bits_left < 0) {
  1561. dprintf("bits_left=%d\n", bits_left);
  1562. return -1;
  1563. }
  1564. skip_bits_long(&s->gb, bits_left);
  1565. return 0;
  1566. }
  1567. /* Reorder short blocks from bitstream order to interleaved order. It
  1568. would be faster to do it in parsing, but the code would be far more
  1569. complicated */
  1570. static void reorder_block(MPADecodeContext *s, GranuleDef *g)
  1571. {
  1572. int i, j, len;
  1573. int32_t *ptr, *dst, *ptr1;
  1574. int32_t tmp[576];
  1575. if (g->block_type != 2)
  1576. return;
  1577. if (g->switch_point) {
  1578. if (s->sample_rate_index != 8) {
  1579. ptr = g->sb_hybrid + 36;
  1580. } else {
  1581. ptr = g->sb_hybrid + 48;
  1582. }
  1583. } else {
  1584. ptr = g->sb_hybrid;
  1585. }
  1586. for(i=g->short_start;i<13;i++) {
  1587. len = band_size_short[s->sample_rate_index][i];
  1588. ptr1 = ptr;
  1589. dst = tmp;
  1590. for(j=len;j>0;j--) {
  1591. *dst++ = ptr[0*len];
  1592. *dst++ = ptr[1*len];
  1593. *dst++ = ptr[2*len];
  1594. ptr++;
  1595. }
  1596. ptr+=2*len;
  1597. memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
  1598. }
  1599. }
  1600. #define ISQRT2 FIXR(0.70710678118654752440)
  1601. static void compute_stereo(MPADecodeContext *s,
  1602. GranuleDef *g0, GranuleDef *g1)
  1603. {
  1604. int i, j, k, l;
  1605. int32_t v1, v2;
  1606. int sf_max, tmp0, tmp1, sf, len, non_zero_found;
  1607. int32_t (*is_tab)[16];
  1608. int32_t *tab0, *tab1;
  1609. int non_zero_found_short[3];
  1610. /* intensity stereo */
  1611. if (s->mode_ext & MODE_EXT_I_STEREO) {
  1612. if (!s->lsf) {
  1613. is_tab = is_table;
  1614. sf_max = 7;
  1615. } else {
  1616. is_tab = is_table_lsf[g1->scalefac_compress & 1];
  1617. sf_max = 16;
  1618. }
  1619. tab0 = g0->sb_hybrid + 576;
  1620. tab1 = g1->sb_hybrid + 576;
  1621. non_zero_found_short[0] = 0;
  1622. non_zero_found_short[1] = 0;
  1623. non_zero_found_short[2] = 0;
  1624. k = (13 - g1->short_start) * 3 + g1->long_end - 3;
  1625. for(i = 12;i >= g1->short_start;i--) {
  1626. /* for last band, use previous scale factor */
  1627. if (i != 11)
  1628. k -= 3;
  1629. len = band_size_short[s->sample_rate_index][i];
  1630. for(l=2;l>=0;l--) {
  1631. tab0 -= len;
  1632. tab1 -= len;
  1633. if (!non_zero_found_short[l]) {
  1634. /* test if non zero band. if so, stop doing i-stereo */
  1635. for(j=0;j<len;j++) {
  1636. if (tab1[j] != 0) {
  1637. non_zero_found_short[l] = 1;
  1638. goto found1;
  1639. }
  1640. }
  1641. sf = g1->scale_factors[k + l];
  1642. if (sf >= sf_max)
  1643. goto found1;
  1644. v1 = is_tab[0][sf];
  1645. v2 = is_tab[1][sf];
  1646. for(j=0;j<len;j++) {
  1647. tmp0 = tab0[j];
  1648. tab0[j] = MULL(tmp0, v1);
  1649. tab1[j] = MULL(tmp0, v2);
  1650. }
  1651. } else {
  1652. found1:
  1653. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1654. /* lower part of the spectrum : do ms stereo
  1655. if enabled */
  1656. for(j=0;j<len;j++) {
  1657. tmp0 = tab0[j];
  1658. tmp1 = tab1[j];
  1659. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1660. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1661. }
  1662. }
  1663. }
  1664. }
  1665. }
  1666. non_zero_found = non_zero_found_short[0] |
  1667. non_zero_found_short[1] |
  1668. non_zero_found_short[2];
  1669. for(i = g1->long_end - 1;i >= 0;i--) {
  1670. len = band_size_long[s->sample_rate_index][i];
  1671. tab0 -= len;
  1672. tab1 -= len;
  1673. /* test if non zero band. if so, stop doing i-stereo */
  1674. if (!non_zero_found) {
  1675. for(j=0;j<len;j++) {
  1676. if (tab1[j] != 0) {
  1677. non_zero_found = 1;
  1678. goto found2;
  1679. }
  1680. }
  1681. /* for last band, use previous scale factor */
  1682. k = (i == 21) ? 20 : i;
  1683. sf = g1->scale_factors[k];
  1684. if (sf >= sf_max)
  1685. goto found2;
  1686. v1 = is_tab[0][sf];
  1687. v2 = is_tab[1][sf];
  1688. for(j=0;j<len;j++) {
  1689. tmp0 = tab0[j];
  1690. tab0[j] = MULL(tmp0, v1);
  1691. tab1[j] = MULL(tmp0, v2);
  1692. }
  1693. } else {
  1694. found2:
  1695. if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1696. /* lower part of the spectrum : do ms stereo
  1697. if enabled */
  1698. for(j=0;j<len;j++) {
  1699. tmp0 = tab0[j];
  1700. tmp1 = tab1[j];
  1701. tab0[j] = MULL(tmp0 + tmp1, ISQRT2);
  1702. tab1[j] = MULL(tmp0 - tmp1, ISQRT2);
  1703. }
  1704. }
  1705. }
  1706. }
  1707. } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
  1708. /* ms stereo ONLY */
  1709. /* NOTE: the 1/sqrt(2) normalization factor is included in the
  1710. global gain */
  1711. tab0 = g0->sb_hybrid;
  1712. tab1 = g1->sb_hybrid;
  1713. for(i=0;i<576;i++) {
  1714. tmp0 = tab0[i];
  1715. tmp1 = tab1[i];
  1716. tab0[i] = tmp0 + tmp1;
  1717. tab1[i] = tmp0 - tmp1;
  1718. }
  1719. }
  1720. }
  1721. static void compute_antialias_integer(MPADecodeContext *s,
  1722. GranuleDef *g)
  1723. {
  1724. int32_t *ptr, *csa;
  1725. int n, i;
  1726. /* we antialias only "long" bands */
  1727. if (g->block_type == 2) {
  1728. if (!g->switch_point)
  1729. return;
  1730. /* XXX: check this for 8000Hz case */
  1731. n = 1;
  1732. } else {
  1733. n = SBLIMIT - 1;
  1734. }
  1735. ptr = g->sb_hybrid + 18;
  1736. for(i = n;i > 0;i--) {
  1737. int tmp0, tmp1, tmp2;
  1738. csa = &csa_table[0][0];
  1739. #define INT_AA(j) \
  1740. tmp0 = ptr[-1-j];\
  1741. tmp1 = ptr[ j];\
  1742. tmp2= MULH(tmp0 + tmp1, csa[0+4*j]);\
  1743. ptr[-1-j] = 4*(tmp2 - MULH(tmp1, csa[2+4*j]));\
  1744. ptr[ j] = 4*(tmp2 + MULH(tmp0, csa[3+4*j]));
  1745. INT_AA(0)
  1746. INT_AA(1)
  1747. INT_AA(2)
  1748. INT_AA(3)
  1749. INT_AA(4)
  1750. INT_AA(5)
  1751. INT_AA(6)
  1752. INT_AA(7)
  1753. ptr += 18;
  1754. }
  1755. }
  1756. static void compute_antialias_float(MPADecodeContext *s,
  1757. GranuleDef *g)
  1758. {
  1759. int32_t *ptr;
  1760. int n, i;
  1761. /* we antialias only "long" bands */
  1762. if (g->block_type == 2) {
  1763. if (!g->switch_point)
  1764. return;
  1765. /* XXX: check this for 8000Hz case */
  1766. n = 1;
  1767. } else {
  1768. n = SBLIMIT - 1;
  1769. }
  1770. ptr = g->sb_hybrid + 18;
  1771. for(i = n;i > 0;i--) {
  1772. float tmp0, tmp1;
  1773. float *csa = &csa_table_float[0][0];
  1774. #define FLOAT_AA(j)\
  1775. tmp0= ptr[-1-j];\
  1776. tmp1= ptr[ j];\
  1777. ptr[-1-j] = lrintf(tmp0 * csa[0+4*j] - tmp1 * csa[1+4*j]);\
  1778. ptr[ j] = lrintf(tmp0 * csa[1+4*j] + tmp1 * csa[0+4*j]);
  1779. FLOAT_AA(0)
  1780. FLOAT_AA(1)
  1781. FLOAT_AA(2)
  1782. FLOAT_AA(3)
  1783. FLOAT_AA(4)
  1784. FLOAT_AA(5)
  1785. FLOAT_AA(6)
  1786. FLOAT_AA(7)
  1787. ptr += 18;
  1788. }
  1789. }
  1790. static void compute_imdct(MPADecodeContext *s,
  1791. GranuleDef *g,
  1792. int32_t *sb_samples,
  1793. int32_t *mdct_buf)
  1794. {
  1795. int32_t *ptr, *win, *win1, *buf, *out_ptr, *ptr1;
  1796. int32_t out2[12];
  1797. int i, j, mdct_long_end, v, sblimit;
  1798. /* find last non zero block */
  1799. ptr = g->sb_hybrid + 576;
  1800. ptr1 = g->sb_hybrid + 2 * 18;
  1801. while (ptr >= ptr1) {
  1802. ptr -= 6;
  1803. v = ptr[0] | ptr[1] | ptr[2] | ptr[3] | ptr[4] | ptr[5];
  1804. if (v != 0)
  1805. break;
  1806. }
  1807. sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
  1808. if (g->block_type == 2) {
  1809. /* XXX: check for 8000 Hz */
  1810. if (g->switch_point)
  1811. mdct_long_end = 2;
  1812. else
  1813. mdct_long_end = 0;
  1814. } else {
  1815. mdct_long_end = sblimit;
  1816. }
  1817. buf = mdct_buf;
  1818. ptr = g->sb_hybrid;
  1819. for(j=0;j<mdct_long_end;j++) {
  1820. /* apply window & overlap with previous buffer */
  1821. out_ptr = sb_samples + j;
  1822. /* select window */
  1823. if (g->switch_point && j < 2)
  1824. win1 = mdct_win[0];
  1825. else
  1826. win1 = mdct_win[g->block_type];
  1827. /* select frequency inversion */
  1828. win = win1 + ((4 * 36) & -(j & 1));
  1829. imdct36(out_ptr, buf, ptr, win);
  1830. out_ptr += 18*SBLIMIT;
  1831. ptr += 18;
  1832. buf += 18;
  1833. }
  1834. for(j=mdct_long_end;j<sblimit;j++) {
  1835. /* select frequency inversion */
  1836. win = mdct_win[2] + ((4 * 36) & -(j & 1));
  1837. out_ptr = sb_samples + j;
  1838. for(i=0; i<6; i++){
  1839. *out_ptr = buf[i];
  1840. out_ptr += SBLIMIT;
  1841. }
  1842. imdct12(out2, ptr + 0);
  1843. for(i=0;i<6;i++) {
  1844. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*1];
  1845. buf[i + 6*2] = MULH(out2[i + 6], win[i + 6]);
  1846. out_ptr += SBLIMIT;
  1847. }
  1848. imdct12(out2, ptr + 1);
  1849. for(i=0;i<6;i++) {
  1850. *out_ptr = MULH(out2[i], win[i]) + buf[i + 6*2];
  1851. buf[i + 6*0] = MULH(out2[i + 6], win[i + 6]);
  1852. out_ptr += SBLIMIT;
  1853. }
  1854. imdct12(out2, ptr + 2);
  1855. for(i=0;i<6;i++) {
  1856. buf[i + 6*0] = MULH(out2[i], win[i]) + buf[i + 6*0];
  1857. buf[i + 6*1] = MULH(out2[i + 6], win[i + 6]);
  1858. buf[i + 6*2] = 0;
  1859. }
  1860. ptr += 18;
  1861. buf += 18;
  1862. }
  1863. /* zero bands */
  1864. for(j=sblimit;j<SBLIMIT;j++) {
  1865. /* overlap */
  1866. out_ptr = sb_samples + j;
  1867. for(i=0;i<18;i++) {
  1868. *out_ptr = buf[i];
  1869. buf[i] = 0;
  1870. out_ptr += SBLIMIT;
  1871. }
  1872. buf += 18;
  1873. }
  1874. }
  1875. #if defined(DEBUG)
  1876. void sample_dump(int fnum, int32_t *tab, int n)
  1877. {
  1878. static FILE *files[16], *f;
  1879. char buf[512];
  1880. int i;
  1881. int32_t v;
  1882. f = files[fnum];
  1883. if (!f) {
  1884. snprintf(buf, sizeof(buf), "/tmp/out%d.%s.pcm",
  1885. fnum,
  1886. #ifdef USE_HIGHPRECISION
  1887. "hp"
  1888. #else
  1889. "lp"
  1890. #endif
  1891. );
  1892. f = fopen(buf, "w");
  1893. if (!f)
  1894. return;
  1895. files[fnum] = f;
  1896. }
  1897. if (fnum == 0) {
  1898. static int pos = 0;
  1899. av_log(NULL, AV_LOG_DEBUG, "pos=%d\n", pos);
  1900. for(i=0;i<n;i++) {
  1901. av_log(NULL, AV_LOG_DEBUG, " %0.4f", (double)tab[i] / FRAC_ONE);
  1902. if ((i % 18) == 17)
  1903. av_log(NULL, AV_LOG_DEBUG, "\n");
  1904. }
  1905. pos += n;
  1906. }
  1907. for(i=0;i<n;i++) {
  1908. /* normalize to 23 frac bits */
  1909. v = tab[i] << (23 - FRAC_BITS);
  1910. fwrite(&v, 1, sizeof(int32_t), f);
  1911. }
  1912. }
  1913. #endif
  1914. /* main layer3 decoding function */
  1915. static int mp_decode_layer3(MPADecodeContext *s)
  1916. {
  1917. int nb_granules, main_data_begin, private_bits;
  1918. int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
  1919. GranuleDef granules[2][2], *g;
  1920. int16_t exponents[576];
  1921. /* read side info */
  1922. if (s->lsf) {
  1923. main_data_begin = get_bits(&s->gb, 8);
  1924. private_bits = get_bits(&s->gb, s->nb_channels);
  1925. nb_granules = 1;
  1926. } else {
  1927. main_data_begin = get_bits(&s->gb, 9);
  1928. if (s->nb_channels == 2)
  1929. private_bits = get_bits(&s->gb, 3);
  1930. else
  1931. private_bits = get_bits(&s->gb, 5);
  1932. nb_granules = 2;
  1933. for(ch=0;ch<s->nb_channels;ch++) {
  1934. granules[ch][0].scfsi = 0; /* all scale factors are transmitted */
  1935. granules[ch][1].scfsi = get_bits(&s->gb, 4);
  1936. }
  1937. }
  1938. for(gr=0;gr<nb_granules;gr++) {
  1939. for(ch=0;ch<s->nb_channels;ch++) {
  1940. dprintf("gr=%d ch=%d: side_info\n", gr, ch);
  1941. g = &granules[ch][gr];
  1942. g->part2_3_length = get_bits(&s->gb, 12);
  1943. g->big_values = get_bits(&s->gb, 9);
  1944. g->global_gain = get_bits(&s->gb, 8);
  1945. /* if MS stereo only is selected, we precompute the
  1946. 1/sqrt(2) renormalization factor */
  1947. if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
  1948. MODE_EXT_MS_STEREO)
  1949. g->global_gain -= 2;
  1950. if (s->lsf)
  1951. g->scalefac_compress = get_bits(&s->gb, 9);
  1952. else
  1953. g->scalefac_compress = get_bits(&s->gb, 4);
  1954. blocksplit_flag = get_bits(&s->gb, 1);
  1955. if (blocksplit_flag) {
  1956. g->block_type = get_bits(&s->gb, 2);
  1957. if (g->block_type == 0)
  1958. return -1;
  1959. g->switch_point = get_bits(&s->gb, 1);
  1960. for(i=0;i<2;i++)
  1961. g->table_select[i] = get_bits(&s->gb, 5);
  1962. for(i=0;i<3;i++)
  1963. g->subblock_gain[i] = get_bits(&s->gb, 3);
  1964. /* compute huffman coded region sizes */
  1965. if (g->block_type == 2)
  1966. g->region_size[0] = (36 / 2);
  1967. else {
  1968. if (s->sample_rate_index <= 2)
  1969. g->region_size[0] = (36 / 2);
  1970. else if (s->sample_rate_index != 8)
  1971. g->region_size[0] = (54 / 2);
  1972. else
  1973. g->region_size[0] = (108 / 2);
  1974. }
  1975. g->region_size[1] = (576 / 2);
  1976. } else {
  1977. int region_address1, region_address2, l;
  1978. g->block_type = 0;
  1979. g->switch_point = 0;
  1980. for(i=0;i<3;i++)
  1981. g->table_select[i] = get_bits(&s->gb, 5);
  1982. /* compute huffman coded region sizes */
  1983. region_address1 = get_bits(&s->gb, 4);
  1984. region_address2 = get_bits(&s->gb, 3);
  1985. dprintf("region1=%d region2=%d\n",
  1986. region_address1, region_address2);
  1987. g->region_size[0] =
  1988. band_index_long[s->sample_rate_index][region_address1 + 1] >> 1;
  1989. l = region_address1 + region_address2 + 2;
  1990. /* should not overflow */
  1991. if (l > 22)
  1992. l = 22;
  1993. g->region_size[1] =
  1994. band_index_long[s->sample_rate_index][l] >> 1;
  1995. }
  1996. /* convert region offsets to region sizes and truncate
  1997. size to big_values */
  1998. g->region_size[2] = (576 / 2);
  1999. j = 0;
  2000. for(i=0;i<3;i++) {
  2001. k = FFMIN(g->region_size[i], g->big_values);
  2002. g->region_size[i] = k - j;
  2003. j = k;
  2004. }
  2005. /* compute band indexes */
  2006. if (g->block_type == 2) {
  2007. if (g->switch_point) {
  2008. /* if switched mode, we handle the 36 first samples as
  2009. long blocks. For 8000Hz, we handle the 48 first
  2010. exponents as long blocks (XXX: check this!) */
  2011. if (s->sample_rate_index <= 2)
  2012. g->long_end = 8;
  2013. else if (s->sample_rate_index != 8)
  2014. g->long_end = 6;
  2015. else
  2016. g->long_end = 4; /* 8000 Hz */
  2017. g->short_start = 2 + (s->sample_rate_index != 8);
  2018. } else {
  2019. g->long_end = 0;
  2020. g->short_start = 0;
  2021. }
  2022. } else {
  2023. g->short_start = 13;
  2024. g->long_end = 22;
  2025. }
  2026. g->preflag = 0;
  2027. if (!s->lsf)
  2028. g->preflag = get_bits(&s->gb, 1);
  2029. g->scalefac_scale = get_bits(&s->gb, 1);
  2030. g->count1table_select = get_bits(&s->gb, 1);
  2031. dprintf("block_type=%d switch_point=%d\n",
  2032. g->block_type, g->switch_point);
  2033. }
  2034. }
  2035. if (!s->adu_mode) {
  2036. const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
  2037. assert((get_bits_count(&s->gb) & 7) == 0);
  2038. /* now we get bits from the main_data_begin offset */
  2039. dprintf("seekback: %d\n", main_data_begin);
  2040. //av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  2041. if(main_data_begin > s->last_buf_size){
  2042. av_log(NULL, AV_LOG_ERROR, "backstep:%d, lastbuf:%d\n", main_data_begin, s->last_buf_size);
  2043. s->last_buf_size= main_data_begin;
  2044. }
  2045. memcpy(s->last_buf + s->last_buf_size, ptr, EXTRABYTES);
  2046. s->in_gb= s->gb;
  2047. init_get_bits(&s->gb, s->last_buf + s->last_buf_size - main_data_begin, main_data_begin*8);
  2048. }
  2049. for(gr=0;gr<nb_granules;gr++) {
  2050. for(ch=0;ch<s->nb_channels;ch++) {
  2051. g = &granules[ch][gr];
  2052. bits_pos = get_bits_count(&s->gb);
  2053. if (!s->lsf) {
  2054. uint8_t *sc;
  2055. int slen, slen1, slen2;
  2056. /* MPEG1 scale factors */
  2057. slen1 = slen_table[0][g->scalefac_compress];
  2058. slen2 = slen_table[1][g->scalefac_compress];
  2059. dprintf("slen1=%d slen2=%d\n", slen1, slen2);
  2060. if (g->block_type == 2) {
  2061. n = g->switch_point ? 17 : 18;
  2062. j = 0;
  2063. if(slen1){
  2064. for(i=0;i<n;i++)
  2065. g->scale_factors[j++] = get_bits(&s->gb, slen1);
  2066. }else{
  2067. for(i=0;i<n;i++)
  2068. g->scale_factors[j++] = 0;
  2069. }
  2070. if(slen2){
  2071. for(i=0;i<18;i++)
  2072. g->scale_factors[j++] = get_bits(&s->gb, slen2);
  2073. for(i=0;i<3;i++)
  2074. g->scale_factors[j++] = 0;
  2075. }else{
  2076. for(i=0;i<21;i++)
  2077. g->scale_factors[j++] = 0;
  2078. }
  2079. } else {
  2080. sc = granules[ch][0].scale_factors;
  2081. j = 0;
  2082. for(k=0;k<4;k++) {
  2083. n = (k == 0 ? 6 : 5);
  2084. if ((g->scfsi & (0x8 >> k)) == 0) {
  2085. slen = (k < 2) ? slen1 : slen2;
  2086. if(slen){
  2087. for(i=0;i<n;i++)
  2088. g->scale_factors[j++] = get_bits(&s->gb, slen);
  2089. }else{
  2090. for(i=0;i<n;i++)
  2091. g->scale_factors[j++] = 0;
  2092. }
  2093. } else {
  2094. /* simply copy from last granule */
  2095. for(i=0;i<n;i++) {
  2096. g->scale_factors[j] = sc[j];
  2097. j++;
  2098. }
  2099. }
  2100. }
  2101. g->scale_factors[j++] = 0;
  2102. }
  2103. #if defined(DEBUG)
  2104. {
  2105. dprintf("scfsi=%x gr=%d ch=%d scale_factors:\n",
  2106. g->scfsi, gr, ch);
  2107. for(i=0;i<j;i++)
  2108. dprintf(" %d", g->scale_factors[i]);
  2109. dprintf("\n");
  2110. }
  2111. #endif
  2112. } else {
  2113. int tindex, tindex2, slen[4], sl, sf;
  2114. /* LSF scale factors */
  2115. if (g->block_type == 2) {
  2116. tindex = g->switch_point ? 2 : 1;
  2117. } else {
  2118. tindex = 0;
  2119. }
  2120. sf = g->scalefac_compress;
  2121. if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
  2122. /* intensity stereo case */
  2123. sf >>= 1;
  2124. if (sf < 180) {
  2125. lsf_sf_expand(slen, sf, 6, 6, 0);
  2126. tindex2 = 3;
  2127. } else if (sf < 244) {
  2128. lsf_sf_expand(slen, sf - 180, 4, 4, 0);
  2129. tindex2 = 4;
  2130. } else {
  2131. lsf_sf_expand(slen, sf - 244, 3, 0, 0);
  2132. tindex2 = 5;
  2133. }
  2134. } else {
  2135. /* normal case */
  2136. if (sf < 400) {
  2137. lsf_sf_expand(slen, sf, 5, 4, 4);
  2138. tindex2 = 0;
  2139. } else if (sf < 500) {
  2140. lsf_sf_expand(slen, sf - 400, 5, 4, 0);
  2141. tindex2 = 1;
  2142. } else {
  2143. lsf_sf_expand(slen, sf - 500, 3, 0, 0);
  2144. tindex2 = 2;
  2145. g->preflag = 1;
  2146. }
  2147. }
  2148. j = 0;
  2149. for(k=0;k<4;k++) {
  2150. n = lsf_nsf_table[tindex2][tindex][k];
  2151. sl = slen[k];
  2152. if(sl){
  2153. for(i=0;i<n;i++)
  2154. g->scale_factors[j++] = get_bits(&s->gb, sl);
  2155. }else{
  2156. for(i=0;i<n;i++)
  2157. g->scale_factors[j++] = 0;
  2158. }
  2159. }
  2160. /* XXX: should compute exact size */
  2161. for(;j<40;j++)
  2162. g->scale_factors[j] = 0;
  2163. #if defined(DEBUG)
  2164. {
  2165. dprintf("gr=%d ch=%d scale_factors:\n",
  2166. gr, ch);
  2167. for(i=0;i<40;i++)
  2168. dprintf(" %d", g->scale_factors[i]);
  2169. dprintf("\n");
  2170. }
  2171. #endif
  2172. }
  2173. exponents_from_scale_factors(s, g, exponents);
  2174. /* read Huffman coded residue */
  2175. if (huffman_decode(s, g, exponents,
  2176. bits_pos + g->part2_3_length) < 0)
  2177. return -1;
  2178. #if defined(DEBUG)
  2179. sample_dump(0, g->sb_hybrid, 576);
  2180. #endif
  2181. } /* ch */
  2182. if (s->nb_channels == 2)
  2183. compute_stereo(s, &granules[0][gr], &granules[1][gr]);
  2184. for(ch=0;ch<s->nb_channels;ch++) {
  2185. g = &granules[ch][gr];
  2186. reorder_block(s, g);
  2187. #if defined(DEBUG)
  2188. sample_dump(0, g->sb_hybrid, 576);
  2189. #endif
  2190. s->compute_antialias(s, g);
  2191. #if defined(DEBUG)
  2192. sample_dump(1, g->sb_hybrid, 576);
  2193. #endif
  2194. compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
  2195. #if defined(DEBUG)
  2196. sample_dump(2, &s->sb_samples[ch][18 * gr][0], 576);
  2197. #endif
  2198. }
  2199. } /* gr */
  2200. return nb_granules * 18;
  2201. }
  2202. static int mp_decode_frame(MPADecodeContext *s,
  2203. OUT_INT *samples, const uint8_t *buf, int buf_size)
  2204. {
  2205. int i, nb_frames, ch;
  2206. OUT_INT *samples_ptr;
  2207. init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE)*8);
  2208. /* skip error protection field */
  2209. if (s->error_protection)
  2210. get_bits(&s->gb, 16);
  2211. dprintf("frame %d:\n", s->frame_count);
  2212. switch(s->layer) {
  2213. case 1:
  2214. nb_frames = mp_decode_layer1(s);
  2215. break;
  2216. case 2:
  2217. nb_frames = mp_decode_layer2(s);
  2218. break;
  2219. case 3:
  2220. default:
  2221. nb_frames = mp_decode_layer3(s);
  2222. s->last_buf_size=0;
  2223. if(s->in_gb.buffer){
  2224. align_get_bits(&s->gb);
  2225. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2226. if(i >= 0 && i <= BACKSTEP_SIZE){
  2227. memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
  2228. s->last_buf_size=i;
  2229. }else
  2230. av_log(NULL, AV_LOG_ERROR, "invalid old backstep %d\n", i);
  2231. s->gb= s->in_gb;
  2232. }
  2233. align_get_bits(&s->gb);
  2234. assert((get_bits_count(&s->gb) & 7) == 0);
  2235. i= (s->gb.size_in_bits - get_bits_count(&s->gb))>>3;
  2236. if(i<0 || i > BACKSTEP_SIZE || nb_frames<0){
  2237. av_log(NULL, AV_LOG_ERROR, "invalid new backstep %d\n", i);
  2238. i= FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
  2239. }
  2240. assert(i <= buf_size - HEADER_SIZE && i>= 0);
  2241. memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
  2242. s->last_buf_size += i;
  2243. break;
  2244. }
  2245. #if defined(DEBUG)
  2246. for(i=0;i<nb_frames;i++) {
  2247. for(ch=0;ch<s->nb_channels;ch++) {
  2248. int j;
  2249. dprintf("%d-%d:", i, ch);
  2250. for(j=0;j<SBLIMIT;j++)
  2251. dprintf(" %0.6f", (double)s->sb_samples[ch][i][j] / FRAC_ONE);
  2252. dprintf("\n");
  2253. }
  2254. }
  2255. #endif
  2256. /* apply the synthesis filter */
  2257. for(ch=0;ch<s->nb_channels;ch++) {
  2258. samples_ptr = samples + ch;
  2259. for(i=0;i<nb_frames;i++) {
  2260. ff_mpa_synth_filter(s->synth_buf[ch], &(s->synth_buf_offset[ch]),
  2261. window, &s->dither_state,
  2262. samples_ptr, s->nb_channels,
  2263. s->sb_samples[ch][i]);
  2264. samples_ptr += 32 * s->nb_channels;
  2265. }
  2266. }
  2267. #ifdef DEBUG
  2268. s->frame_count++;
  2269. #endif
  2270. return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
  2271. }
  2272. static int decode_frame(AVCodecContext * avctx,
  2273. void *data, int *data_size,
  2274. uint8_t * buf, int buf_size)
  2275. {
  2276. MPADecodeContext *s = avctx->priv_data;
  2277. uint32_t header;
  2278. int out_size;
  2279. OUT_INT *out_samples = data;
  2280. retry:
  2281. if(buf_size < HEADER_SIZE)
  2282. return -1;
  2283. header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
  2284. if(ff_mpa_check_header(header) < 0){
  2285. buf++;
  2286. // buf_size--;
  2287. av_log(avctx, AV_LOG_ERROR, "header missing skiping one byte\n");
  2288. goto retry;
  2289. }
  2290. if (decode_header(s, header) == 1) {
  2291. /* free format: prepare to compute frame size */
  2292. s->frame_size = -1;
  2293. return -1;
  2294. }
  2295. /* update codec info */
  2296. avctx->sample_rate = s->sample_rate;
  2297. avctx->channels = s->nb_channels;
  2298. avctx->bit_rate = s->bit_rate;
  2299. avctx->sub_id = s->layer;
  2300. switch(s->layer) {
  2301. case 1:
  2302. avctx->frame_size = 384;
  2303. break;
  2304. case 2:
  2305. avctx->frame_size = 1152;
  2306. break;
  2307. case 3:
  2308. if (s->lsf)
  2309. avctx->frame_size = 576;
  2310. else
  2311. avctx->frame_size = 1152;
  2312. break;
  2313. }
  2314. if(s->frame_size<=0 || s->frame_size > buf_size){
  2315. av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
  2316. return -1;
  2317. }else if(s->frame_size < buf_size){
  2318. av_log(avctx, AV_LOG_ERROR, "incorrect frame size\n");
  2319. }
  2320. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2321. if(out_size>=0)
  2322. *data_size = out_size;
  2323. else
  2324. av_log(avctx, AV_LOG_DEBUG, "Error while decoding mpeg audio frame\n"); //FIXME return -1 / but also return the number of bytes consumed
  2325. s->frame_size = 0;
  2326. return buf_size;
  2327. }
  2328. static int decode_frame_adu(AVCodecContext * avctx,
  2329. void *data, int *data_size,
  2330. uint8_t * buf, int buf_size)
  2331. {
  2332. MPADecodeContext *s = avctx->priv_data;
  2333. uint32_t header;
  2334. int len, out_size;
  2335. OUT_INT *out_samples = data;
  2336. len = buf_size;
  2337. // Discard too short frames
  2338. if (buf_size < HEADER_SIZE) {
  2339. *data_size = 0;
  2340. return buf_size;
  2341. }
  2342. if (len > MPA_MAX_CODED_FRAME_SIZE)
  2343. len = MPA_MAX_CODED_FRAME_SIZE;
  2344. // Get header and restore sync word
  2345. header = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3] | 0xffe00000;
  2346. if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
  2347. *data_size = 0;
  2348. return buf_size;
  2349. }
  2350. decode_header(s, header);
  2351. /* update codec info */
  2352. avctx->sample_rate = s->sample_rate;
  2353. avctx->channels = s->nb_channels;
  2354. avctx->bit_rate = s->bit_rate;
  2355. avctx->sub_id = s->layer;
  2356. avctx->frame_size=s->frame_size = len;
  2357. if (avctx->parse_only) {
  2358. out_size = buf_size;
  2359. } else {
  2360. out_size = mp_decode_frame(s, out_samples, buf, buf_size);
  2361. }
  2362. *data_size = out_size;
  2363. return buf_size;
  2364. }
  2365. /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
  2366. static int mp3Frames[16] = {0,1,1,2,3,3,4,5,2}; /* number of mp3 decoder instances */
  2367. static int mp3Channels[16] = {0,1,2,3,4,5,6,8,4}; /* total output channels */
  2368. /* offsets into output buffer, assume output order is FL FR BL BR C LFE */
  2369. static int chan_offset[9][5] = {
  2370. {0},
  2371. {0}, // C
  2372. {0}, // FLR
  2373. {2,0}, // C FLR
  2374. {2,0,3}, // C FLR BS
  2375. {4,0,2}, // C FLR BLRS
  2376. {4,0,2,5}, // C FLR BLRS LFE
  2377. {4,0,2,6,5}, // C FLR BLRS BLR LFE
  2378. {0,2} // FLR BLRS
  2379. };
  2380. static int decode_init_mp3on4(AVCodecContext * avctx)
  2381. {
  2382. MP3On4DecodeContext *s = avctx->priv_data;
  2383. int i;
  2384. if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
  2385. av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
  2386. return -1;
  2387. }
  2388. s->chan_cfg = (((unsigned char *)avctx->extradata)[1] >> 3) & 0x0f;
  2389. s->frames = mp3Frames[s->chan_cfg];
  2390. if(!s->frames) {
  2391. av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
  2392. return -1;
  2393. }
  2394. avctx->channels = mp3Channels[s->chan_cfg];
  2395. /* Init the first mp3 decoder in standard way, so that all tables get builded
  2396. * We replace avctx->priv_data with the context of the first decoder so that
  2397. * decode_init() does not have to be changed.
  2398. * Other decoders will be inited here copying data from the first context
  2399. */
  2400. // Allocate zeroed memory for the first decoder context
  2401. s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
  2402. // Put decoder context in place to make init_decode() happy
  2403. avctx->priv_data = s->mp3decctx[0];
  2404. decode_init(avctx);
  2405. // Restore mp3on4 context pointer
  2406. avctx->priv_data = s;
  2407. s->mp3decctx[0]->adu_mode = 1; // Set adu mode
  2408. /* Create a separate codec/context for each frame (first is already ok).
  2409. * Each frame is 1 or 2 channels - up to 5 frames allowed
  2410. */
  2411. for (i = 1; i < s->frames; i++) {
  2412. s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
  2413. s->mp3decctx[i]->compute_antialias = s->mp3decctx[0]->compute_antialias;
  2414. s->mp3decctx[i]->adu_mode = 1;
  2415. }
  2416. return 0;
  2417. }
  2418. static int decode_close_mp3on4(AVCodecContext * avctx)
  2419. {
  2420. MP3On4DecodeContext *s = avctx->priv_data;
  2421. int i;
  2422. for (i = 0; i < s->frames; i++)
  2423. if (s->mp3decctx[i])
  2424. av_free(s->mp3decctx[i]);
  2425. return 0;
  2426. }
  2427. static int decode_frame_mp3on4(AVCodecContext * avctx,
  2428. void *data, int *data_size,
  2429. uint8_t * buf, int buf_size)
  2430. {
  2431. MP3On4DecodeContext *s = avctx->priv_data;
  2432. MPADecodeContext *m;
  2433. int len, out_size = 0;
  2434. uint32_t header;
  2435. OUT_INT *out_samples = data;
  2436. OUT_INT decoded_buf[MPA_FRAME_SIZE * MPA_MAX_CHANNELS];
  2437. OUT_INT *outptr, *bp;
  2438. int fsize;
  2439. unsigned char *start2 = buf, *start;
  2440. int fr, i, j, n;
  2441. int off = avctx->channels;
  2442. int *coff = chan_offset[s->chan_cfg];
  2443. len = buf_size;
  2444. // Discard too short frames
  2445. if (buf_size < HEADER_SIZE) {
  2446. *data_size = 0;
  2447. return buf_size;
  2448. }
  2449. // If only one decoder interleave is not needed
  2450. outptr = s->frames == 1 ? out_samples : decoded_buf;
  2451. for (fr = 0; fr < s->frames; fr++) {
  2452. start = start2;
  2453. fsize = (start[0] << 4) | (start[1] >> 4);
  2454. start2 += fsize;
  2455. if (fsize > len)
  2456. fsize = len;
  2457. len -= fsize;
  2458. if (fsize > MPA_MAX_CODED_FRAME_SIZE)
  2459. fsize = MPA_MAX_CODED_FRAME_SIZE;
  2460. m = s->mp3decctx[fr];
  2461. assert (m != NULL);
  2462. // Get header
  2463. header = (start[0] << 24) | (start[1] << 16) | (start[2] << 8) | start[3] | 0xfff00000;
  2464. if (ff_mpa_check_header(header) < 0) { // Bad header, discard block
  2465. *data_size = 0;
  2466. return buf_size;
  2467. }
  2468. decode_header(m, header);
  2469. mp_decode_frame(m, decoded_buf, start, fsize);
  2470. n = MPA_FRAME_SIZE * m->nb_channels;
  2471. out_size += n * sizeof(OUT_INT);
  2472. if(s->frames > 1) {
  2473. /* interleave output data */
  2474. bp = out_samples + coff[fr];
  2475. if(m->nb_channels == 1) {
  2476. for(j = 0; j < n; j++) {
  2477. *bp = decoded_buf[j];
  2478. bp += off;
  2479. }
  2480. } else {
  2481. for(j = 0; j < n; j++) {
  2482. bp[0] = decoded_buf[j++];
  2483. bp[1] = decoded_buf[j];
  2484. bp += off;
  2485. }
  2486. }
  2487. }
  2488. }
  2489. /* update codec info */
  2490. avctx->sample_rate = s->mp3decctx[0]->sample_rate;
  2491. avctx->frame_size= buf_size;
  2492. avctx->bit_rate = 0;
  2493. for (i = 0; i < s->frames; i++)
  2494. avctx->bit_rate += s->mp3decctx[i]->bit_rate;
  2495. *data_size = out_size;
  2496. return buf_size;
  2497. }
  2498. AVCodec mp2_decoder =
  2499. {
  2500. "mp2",
  2501. CODEC_TYPE_AUDIO,
  2502. CODEC_ID_MP2,
  2503. sizeof(MPADecodeContext),
  2504. decode_init,
  2505. NULL,
  2506. NULL,
  2507. decode_frame,
  2508. CODEC_CAP_PARSE_ONLY,
  2509. };
  2510. AVCodec mp3_decoder =
  2511. {
  2512. "mp3",
  2513. CODEC_TYPE_AUDIO,
  2514. CODEC_ID_MP3,
  2515. sizeof(MPADecodeContext),
  2516. decode_init,
  2517. NULL,
  2518. NULL,
  2519. decode_frame,
  2520. CODEC_CAP_PARSE_ONLY,
  2521. };
  2522. AVCodec mp3adu_decoder =
  2523. {
  2524. "mp3adu",
  2525. CODEC_TYPE_AUDIO,
  2526. CODEC_ID_MP3ADU,
  2527. sizeof(MPADecodeContext),
  2528. decode_init,
  2529. NULL,
  2530. NULL,
  2531. decode_frame_adu,
  2532. CODEC_CAP_PARSE_ONLY,
  2533. };
  2534. AVCodec mp3on4_decoder =
  2535. {
  2536. "mp3on4",
  2537. CODEC_TYPE_AUDIO,
  2538. CODEC_ID_MP3ON4,
  2539. sizeof(MP3On4DecodeContext),
  2540. decode_init_mp3on4,
  2541. NULL,
  2542. decode_close_mp3on4,
  2543. decode_frame_mp3on4,
  2544. 0
  2545. };