You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1273 lines
40KB

  1. /*
  2. * huffyuv codec for libavcodec
  3. *
  4. * Copyright (c) 2002-2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * see http://www.pcisys.net/~melanson/codecs/huffyuv.txt for a description of
  21. * the algorithm used
  22. */
  23. /**
  24. * @file huffyuv.c
  25. * huffyuv codec for libavcodec.
  26. */
  27. #include "common.h"
  28. #include "bitstream.h"
  29. #include "avcodec.h"
  30. #include "dsputil.h"
  31. #define VLC_BITS 11
  32. #ifdef WORDS_BIGENDIAN
  33. #define B 3
  34. #define G 2
  35. #define R 1
  36. #else
  37. #define B 0
  38. #define G 1
  39. #define R 2
  40. #endif
  41. typedef enum Predictor{
  42. LEFT= 0,
  43. PLANE,
  44. MEDIAN,
  45. } Predictor;
  46. typedef struct HYuvContext{
  47. AVCodecContext *avctx;
  48. Predictor predictor;
  49. GetBitContext gb;
  50. PutBitContext pb;
  51. int interlaced;
  52. int decorrelate;
  53. int bitstream_bpp;
  54. int version;
  55. int yuy2; //use yuy2 instead of 422P
  56. int bgr32; //use bgr32 instead of bgr24
  57. int width, height;
  58. int flags;
  59. int context;
  60. int picture_number;
  61. int last_slice_end;
  62. uint8_t *temp[3];
  63. uint64_t stats[3][256];
  64. uint8_t len[3][256];
  65. uint32_t bits[3][256];
  66. VLC vlc[3];
  67. AVFrame picture;
  68. uint8_t *bitstream_buffer;
  69. unsigned int bitstream_buffer_size;
  70. DSPContext dsp;
  71. }HYuvContext;
  72. static const unsigned char classic_shift_luma[] = {
  73. 34,36,35,69,135,232,9,16,10,24,11,23,12,16,13,10,14,8,15,8,
  74. 16,8,17,20,16,10,207,206,205,236,11,8,10,21,9,23,8,8,199,70,
  75. 69,68, 0
  76. };
  77. static const unsigned char classic_shift_chroma[] = {
  78. 66,36,37,38,39,40,41,75,76,77,110,239,144,81,82,83,84,85,118,183,
  79. 56,57,88,89,56,89,154,57,58,57,26,141,57,56,58,57,58,57,184,119,
  80. 214,245,116,83,82,49,80,79,78,77,44,75,41,40,39,38,37,36,34, 0
  81. };
  82. static const unsigned char classic_add_luma[256] = {
  83. 3, 9, 5, 12, 10, 35, 32, 29, 27, 50, 48, 45, 44, 41, 39, 37,
  84. 73, 70, 68, 65, 64, 61, 58, 56, 53, 50, 49, 46, 44, 41, 38, 36,
  85. 68, 65, 63, 61, 58, 55, 53, 51, 48, 46, 45, 43, 41, 39, 38, 36,
  86. 35, 33, 32, 30, 29, 27, 26, 25, 48, 47, 46, 44, 43, 41, 40, 39,
  87. 37, 36, 35, 34, 32, 31, 30, 28, 27, 26, 24, 23, 22, 20, 19, 37,
  88. 35, 34, 33, 31, 30, 29, 27, 26, 24, 23, 21, 20, 18, 17, 15, 29,
  89. 27, 26, 24, 22, 21, 19, 17, 16, 14, 26, 25, 23, 21, 19, 18, 16,
  90. 15, 27, 25, 23, 21, 19, 17, 16, 14, 26, 25, 23, 21, 18, 17, 14,
  91. 12, 17, 19, 13, 4, 9, 2, 11, 1, 7, 8, 0, 16, 3, 14, 6,
  92. 12, 10, 5, 15, 18, 11, 10, 13, 15, 16, 19, 20, 22, 24, 27, 15,
  93. 18, 20, 22, 24, 26, 14, 17, 20, 22, 24, 27, 15, 18, 20, 23, 25,
  94. 28, 16, 19, 22, 25, 28, 32, 36, 21, 25, 29, 33, 38, 42, 45, 49,
  95. 28, 31, 34, 37, 40, 42, 44, 47, 49, 50, 52, 54, 56, 57, 59, 60,
  96. 62, 64, 66, 67, 69, 35, 37, 39, 40, 42, 43, 45, 47, 48, 51, 52,
  97. 54, 55, 57, 59, 60, 62, 63, 66, 67, 69, 71, 72, 38, 40, 42, 43,
  98. 46, 47, 49, 51, 26, 28, 30, 31, 33, 34, 18, 19, 11, 13, 7, 8,
  99. };
  100. static const unsigned char classic_add_chroma[256] = {
  101. 3, 1, 2, 2, 2, 2, 3, 3, 7, 5, 7, 5, 8, 6, 11, 9,
  102. 7, 13, 11, 10, 9, 8, 7, 5, 9, 7, 6, 4, 7, 5, 8, 7,
  103. 11, 8, 13, 11, 19, 15, 22, 23, 20, 33, 32, 28, 27, 29, 51, 77,
  104. 43, 45, 76, 81, 46, 82, 75, 55, 56,144, 58, 80, 60, 74,147, 63,
  105. 143, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
  106. 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 27, 30, 21, 22,
  107. 17, 14, 5, 6,100, 54, 47, 50, 51, 53,106,107,108,109,110,111,
  108. 112,113,114,115, 4,117,118, 92, 94,121,122, 3,124,103, 2, 1,
  109. 0,129,130,131,120,119,126,125,136,137,138,139,140,141,142,134,
  110. 135,132,133,104, 64,101, 62, 57,102, 95, 93, 59, 61, 28, 97, 96,
  111. 52, 49, 48, 29, 32, 25, 24, 46, 23, 98, 45, 44, 43, 20, 42, 41,
  112. 19, 18, 99, 40, 15, 39, 38, 16, 13, 12, 11, 37, 10, 9, 8, 36,
  113. 7,128,127,105,123,116, 35, 34, 33,145, 31, 79, 42,146, 78, 26,
  114. 83, 48, 49, 50, 44, 47, 26, 31, 30, 18, 17, 19, 21, 24, 25, 13,
  115. 14, 16, 17, 18, 20, 21, 12, 14, 15, 9, 10, 6, 9, 6, 5, 8,
  116. 6, 12, 8, 10, 7, 9, 6, 4, 6, 2, 2, 3, 3, 3, 3, 2,
  117. };
  118. static inline int add_left_prediction(uint8_t *dst, uint8_t *src, int w, int acc){
  119. int i;
  120. for(i=0; i<w-1; i++){
  121. acc+= src[i];
  122. dst[i]= acc;
  123. i++;
  124. acc+= src[i];
  125. dst[i]= acc;
  126. }
  127. for(; i<w; i++){
  128. acc+= src[i];
  129. dst[i]= acc;
  130. }
  131. return acc;
  132. }
  133. static inline void add_median_prediction(uint8_t *dst, uint8_t *src1, uint8_t *diff, int w, int *left, int *left_top){
  134. int i;
  135. uint8_t l, lt;
  136. l= *left;
  137. lt= *left_top;
  138. for(i=0; i<w; i++){
  139. l= mid_pred(l, src1[i], (l + src1[i] - lt)&0xFF) + diff[i];
  140. lt= src1[i];
  141. dst[i]= l;
  142. }
  143. *left= l;
  144. *left_top= lt;
  145. }
  146. static inline void add_left_prediction_bgr32(uint8_t *dst, uint8_t *src, int w, int *red, int *green, int *blue){
  147. int i;
  148. int r,g,b;
  149. r= *red;
  150. g= *green;
  151. b= *blue;
  152. for(i=0; i<w; i++){
  153. b+= src[4*i+B];
  154. g+= src[4*i+G];
  155. r+= src[4*i+R];
  156. dst[4*i+B]= b;
  157. dst[4*i+G]= g;
  158. dst[4*i+R]= r;
  159. }
  160. *red= r;
  161. *green= g;
  162. *blue= b;
  163. }
  164. static inline int sub_left_prediction(HYuvContext *s, uint8_t *dst, uint8_t *src, int w, int left){
  165. int i;
  166. if(w<32){
  167. for(i=0; i<w; i++){
  168. const int temp= src[i];
  169. dst[i]= temp - left;
  170. left= temp;
  171. }
  172. return left;
  173. }else{
  174. for(i=0; i<16; i++){
  175. const int temp= src[i];
  176. dst[i]= temp - left;
  177. left= temp;
  178. }
  179. s->dsp.diff_bytes(dst+16, src+16, src+15, w-16);
  180. return src[w-1];
  181. }
  182. }
  183. static void read_len_table(uint8_t *dst, GetBitContext *gb){
  184. int i, val, repeat;
  185. for(i=0; i<256;){
  186. repeat= get_bits(gb, 3);
  187. val = get_bits(gb, 5);
  188. if(repeat==0)
  189. repeat= get_bits(gb, 8);
  190. //printf("%d %d\n", val, repeat);
  191. while (repeat--)
  192. dst[i++] = val;
  193. }
  194. }
  195. static int generate_bits_table(uint32_t *dst, uint8_t *len_table){
  196. int len, index;
  197. uint32_t bits=0;
  198. for(len=32; len>0; len--){
  199. for(index=0; index<256; index++){
  200. if(len_table[index]==len)
  201. dst[index]= bits++;
  202. }
  203. if(bits & 1){
  204. av_log(NULL, AV_LOG_ERROR, "Error generating huffman table\n");
  205. return -1;
  206. }
  207. bits >>= 1;
  208. }
  209. return 0;
  210. }
  211. static void generate_len_table(uint8_t *dst, uint64_t *stats, int size){
  212. uint64_t counts[2*size];
  213. int up[2*size];
  214. int offset, i, next;
  215. for(offset=1; ; offset<<=1){
  216. for(i=0; i<size; i++){
  217. counts[i]= stats[i] + offset - 1;
  218. }
  219. for(next=size; next<size*2; next++){
  220. uint64_t min1, min2;
  221. int min1_i, min2_i;
  222. min1=min2= INT64_MAX;
  223. min1_i= min2_i=-1;
  224. for(i=0; i<next; i++){
  225. if(min2 > counts[i]){
  226. if(min1 > counts[i]){
  227. min2= min1;
  228. min2_i= min1_i;
  229. min1= counts[i];
  230. min1_i= i;
  231. }else{
  232. min2= counts[i];
  233. min2_i= i;
  234. }
  235. }
  236. }
  237. if(min2==INT64_MAX) break;
  238. counts[next]= min1 + min2;
  239. counts[min1_i]=
  240. counts[min2_i]= INT64_MAX;
  241. up[min1_i]=
  242. up[min2_i]= next;
  243. up[next]= -1;
  244. }
  245. for(i=0; i<size; i++){
  246. int len;
  247. int index=i;
  248. for(len=0; up[index] != -1; len++)
  249. index= up[index];
  250. if(len >= 32) break;
  251. dst[i]= len;
  252. }
  253. if(i==size) break;
  254. }
  255. }
  256. static int read_huffman_tables(HYuvContext *s, uint8_t *src, int length){
  257. GetBitContext gb;
  258. int i;
  259. init_get_bits(&gb, src, length*8);
  260. for(i=0; i<3; i++){
  261. read_len_table(s->len[i], &gb);
  262. if(generate_bits_table(s->bits[i], s->len[i])<0){
  263. return -1;
  264. }
  265. #if 0
  266. for(j=0; j<256; j++){
  267. printf("%6X, %2d, %3d\n", s->bits[i][j], s->len[i][j], j);
  268. }
  269. #endif
  270. free_vlc(&s->vlc[i]);
  271. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  272. }
  273. return (get_bits_count(&gb)+7)/8;
  274. }
  275. static int read_old_huffman_tables(HYuvContext *s){
  276. #if 1
  277. GetBitContext gb;
  278. int i;
  279. init_get_bits(&gb, classic_shift_luma, sizeof(classic_shift_luma)*8);
  280. read_len_table(s->len[0], &gb);
  281. init_get_bits(&gb, classic_shift_chroma, sizeof(classic_shift_chroma)*8);
  282. read_len_table(s->len[1], &gb);
  283. for(i=0; i<256; i++) s->bits[0][i] = classic_add_luma [i];
  284. for(i=0; i<256; i++) s->bits[1][i] = classic_add_chroma[i];
  285. if(s->bitstream_bpp >= 24){
  286. memcpy(s->bits[1], s->bits[0], 256*sizeof(uint32_t));
  287. memcpy(s->len[1] , s->len [0], 256*sizeof(uint8_t));
  288. }
  289. memcpy(s->bits[2], s->bits[1], 256*sizeof(uint32_t));
  290. memcpy(s->len[2] , s->len [1], 256*sizeof(uint8_t));
  291. for(i=0; i<3; i++){
  292. free_vlc(&s->vlc[i]);
  293. init_vlc(&s->vlc[i], VLC_BITS, 256, s->len[i], 1, 1, s->bits[i], 4, 4, 0);
  294. }
  295. return 0;
  296. #else
  297. av_log(s->avctx, AV_LOG_DEBUG, "v1 huffyuv is not supported \n");
  298. return -1;
  299. #endif
  300. }
  301. static void alloc_temp(HYuvContext *s){
  302. int i;
  303. if(s->bitstream_bpp<24){
  304. for(i=0; i<3; i++){
  305. s->temp[i]= av_malloc(s->width + 16);
  306. }
  307. }else{
  308. s->temp[0]= av_malloc(4*s->width + 16);
  309. }
  310. }
  311. static int common_init(AVCodecContext *avctx){
  312. HYuvContext *s = avctx->priv_data;
  313. s->avctx= avctx;
  314. s->flags= avctx->flags;
  315. dsputil_init(&s->dsp, avctx);
  316. s->width= avctx->width;
  317. s->height= avctx->height;
  318. assert(s->width>0 && s->height>0);
  319. return 0;
  320. }
  321. static int decode_init(AVCodecContext *avctx)
  322. {
  323. HYuvContext *s = avctx->priv_data;
  324. common_init(avctx);
  325. memset(s->vlc, 0, 3*sizeof(VLC));
  326. avctx->coded_frame= &s->picture;
  327. s->interlaced= s->height > 288;
  328. s->bgr32=1;
  329. //if(avctx->extradata)
  330. // printf("extradata:%X, extradata_size:%d\n", *(uint32_t*)avctx->extradata, avctx->extradata_size);
  331. if(avctx->extradata_size){
  332. if((avctx->bits_per_sample&7) && avctx->bits_per_sample != 12)
  333. s->version=1; // do such files exist at all?
  334. else
  335. s->version=2;
  336. }else
  337. s->version=0;
  338. if(s->version==2){
  339. int method, interlace;
  340. method= ((uint8_t*)avctx->extradata)[0];
  341. s->decorrelate= method&64 ? 1 : 0;
  342. s->predictor= method&63;
  343. s->bitstream_bpp= ((uint8_t*)avctx->extradata)[1];
  344. if(s->bitstream_bpp==0)
  345. s->bitstream_bpp= avctx->bits_per_sample&~7;
  346. interlace= (((uint8_t*)avctx->extradata)[2] & 0x30) >> 4;
  347. s->interlaced= (interlace==1) ? 1 : (interlace==2) ? 0 : s->interlaced;
  348. s->context= ((uint8_t*)avctx->extradata)[2] & 0x40 ? 1 : 0;
  349. if(read_huffman_tables(s, ((uint8_t*)avctx->extradata)+4, avctx->extradata_size) < 0)
  350. return -1;
  351. }else{
  352. switch(avctx->bits_per_sample&7){
  353. case 1:
  354. s->predictor= LEFT;
  355. s->decorrelate= 0;
  356. break;
  357. case 2:
  358. s->predictor= LEFT;
  359. s->decorrelate= 1;
  360. break;
  361. case 3:
  362. s->predictor= PLANE;
  363. s->decorrelate= avctx->bits_per_sample >= 24;
  364. break;
  365. case 4:
  366. s->predictor= MEDIAN;
  367. s->decorrelate= 0;
  368. break;
  369. default:
  370. s->predictor= LEFT; //OLD
  371. s->decorrelate= 0;
  372. break;
  373. }
  374. s->bitstream_bpp= avctx->bits_per_sample & ~7;
  375. s->context= 0;
  376. if(read_old_huffman_tables(s) < 0)
  377. return -1;
  378. }
  379. switch(s->bitstream_bpp){
  380. case 12:
  381. avctx->pix_fmt = PIX_FMT_YUV420P;
  382. break;
  383. case 16:
  384. if(s->yuy2){
  385. avctx->pix_fmt = PIX_FMT_YUV422;
  386. }else{
  387. avctx->pix_fmt = PIX_FMT_YUV422P;
  388. }
  389. break;
  390. case 24:
  391. case 32:
  392. if(s->bgr32){
  393. avctx->pix_fmt = PIX_FMT_RGBA32;
  394. }else{
  395. avctx->pix_fmt = PIX_FMT_BGR24;
  396. }
  397. break;
  398. default:
  399. assert(0);
  400. }
  401. alloc_temp(s);
  402. // av_log(NULL, AV_LOG_DEBUG, "pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  403. return 0;
  404. }
  405. static int store_table(HYuvContext *s, uint8_t *len, uint8_t *buf){
  406. int i;
  407. int index= 0;
  408. for(i=0; i<256;){
  409. int val= len[i];
  410. int repeat=0;
  411. for(; i<256 && len[i]==val && repeat<255; i++)
  412. repeat++;
  413. assert(val < 32 && val >0 && repeat<256 && repeat>0);
  414. if(repeat>7){
  415. buf[index++]= val;
  416. buf[index++]= repeat;
  417. }else{
  418. buf[index++]= val | (repeat<<5);
  419. }
  420. }
  421. return index;
  422. }
  423. static int encode_init(AVCodecContext *avctx)
  424. {
  425. HYuvContext *s = avctx->priv_data;
  426. int i, j;
  427. common_init(avctx);
  428. avctx->extradata= av_mallocz(1024*30); // 256*3+4 == 772
  429. avctx->stats_out= av_mallocz(1024*30); // 21*256*3(%llu ) + 3(\n) + 1(0) = 16132
  430. s->version=2;
  431. avctx->coded_frame= &s->picture;
  432. switch(avctx->pix_fmt){
  433. case PIX_FMT_YUV420P:
  434. s->bitstream_bpp= 12;
  435. break;
  436. case PIX_FMT_YUV422P:
  437. s->bitstream_bpp= 16;
  438. break;
  439. default:
  440. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  441. return -1;
  442. }
  443. avctx->bits_per_sample= s->bitstream_bpp;
  444. s->decorrelate= s->bitstream_bpp >= 24;
  445. s->predictor= avctx->prediction_method;
  446. s->interlaced= avctx->flags&CODEC_FLAG_INTERLACED_ME ? 1 : 0;
  447. if(avctx->context_model==1){
  448. s->context= avctx->context_model;
  449. if(s->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  450. av_log(avctx, AV_LOG_ERROR, "context=1 is not compatible with 2 pass huffyuv encoding\n");
  451. return -1;
  452. }
  453. }else s->context= 0;
  454. if(avctx->codec->id==CODEC_ID_HUFFYUV){
  455. if(avctx->pix_fmt==PIX_FMT_YUV420P){
  456. av_log(avctx, AV_LOG_ERROR, "Error: YV12 is not supported by huffyuv; use vcodec=ffvhuff or format=422p\n");
  457. return -1;
  458. }
  459. if(avctx->context_model){
  460. av_log(avctx, AV_LOG_ERROR, "Error: per-frame huffman tables are not supported by huffyuv; use vcodec=ffvhuff\n");
  461. return -1;
  462. }
  463. if(s->interlaced != ( s->height > 288 ))
  464. av_log(avctx, AV_LOG_INFO, "using huffyuv 2.2.0 or newer interlacing flag\n");
  465. }
  466. ((uint8_t*)avctx->extradata)[0]= s->predictor;
  467. ((uint8_t*)avctx->extradata)[1]= s->bitstream_bpp;
  468. ((uint8_t*)avctx->extradata)[2]= s->interlaced ? 0x10 : 0x20;
  469. if(s->context)
  470. ((uint8_t*)avctx->extradata)[2]|= 0x40;
  471. ((uint8_t*)avctx->extradata)[3]= 0;
  472. s->avctx->extradata_size= 4;
  473. if(avctx->stats_in){
  474. char *p= avctx->stats_in;
  475. for(i=0; i<3; i++)
  476. for(j=0; j<256; j++)
  477. s->stats[i][j]= 1;
  478. for(;;){
  479. for(i=0; i<3; i++){
  480. char *next;
  481. for(j=0; j<256; j++){
  482. s->stats[i][j]+= strtol(p, &next, 0);
  483. if(next==p) return -1;
  484. p=next;
  485. }
  486. }
  487. if(p[0]==0 || p[1]==0 || p[2]==0) break;
  488. }
  489. }else{
  490. for(i=0; i<3; i++)
  491. for(j=0; j<256; j++){
  492. int d= FFMIN(j, 256-j);
  493. s->stats[i][j]= 100000000/(d+1);
  494. }
  495. }
  496. for(i=0; i<3; i++){
  497. generate_len_table(s->len[i], s->stats[i], 256);
  498. if(generate_bits_table(s->bits[i], s->len[i])<0){
  499. return -1;
  500. }
  501. s->avctx->extradata_size+=
  502. store_table(s, s->len[i], &((uint8_t*)s->avctx->extradata)[s->avctx->extradata_size]);
  503. }
  504. if(s->context){
  505. for(i=0; i<3; i++){
  506. int pels = s->width*s->height / (i?40:10);
  507. for(j=0; j<256; j++){
  508. int d= FFMIN(j, 256-j);
  509. s->stats[i][j]= pels/(d+1);
  510. }
  511. }
  512. }else{
  513. for(i=0; i<3; i++)
  514. for(j=0; j<256; j++)
  515. s->stats[i][j]= 0;
  516. }
  517. // printf("pred:%d bpp:%d hbpp:%d il:%d\n", s->predictor, s->bitstream_bpp, avctx->bits_per_sample, s->interlaced);
  518. alloc_temp(s);
  519. s->picture_number=0;
  520. return 0;
  521. }
  522. static void decode_422_bitstream(HYuvContext *s, int count){
  523. int i;
  524. count/=2;
  525. for(i=0; i<count; i++){
  526. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  527. s->temp[1][ i ]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  528. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  529. s->temp[2][ i ]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  530. }
  531. }
  532. static void decode_gray_bitstream(HYuvContext *s, int count){
  533. int i;
  534. count/=2;
  535. for(i=0; i<count; i++){
  536. s->temp[0][2*i ]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  537. s->temp[0][2*i+1]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  538. }
  539. }
  540. static int encode_422_bitstream(HYuvContext *s, int count){
  541. int i;
  542. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 2*4*count){
  543. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  544. return -1;
  545. }
  546. count/=2;
  547. if(s->flags&CODEC_FLAG_PASS1){
  548. for(i=0; i<count; i++){
  549. s->stats[0][ s->temp[0][2*i ] ]++;
  550. s->stats[1][ s->temp[1][ i ] ]++;
  551. s->stats[0][ s->temp[0][2*i+1] ]++;
  552. s->stats[2][ s->temp[2][ i ] ]++;
  553. }
  554. }
  555. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  556. return 0;
  557. if(s->context){
  558. for(i=0; i<count; i++){
  559. s->stats[0][ s->temp[0][2*i ] ]++;
  560. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  561. s->stats[1][ s->temp[1][ i ] ]++;
  562. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  563. s->stats[0][ s->temp[0][2*i+1] ]++;
  564. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  565. s->stats[2][ s->temp[2][ i ] ]++;
  566. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  567. }
  568. }else{
  569. for(i=0; i<count; i++){
  570. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  571. put_bits(&s->pb, s->len[1][ s->temp[1][ i ] ], s->bits[1][ s->temp[1][ i ] ]);
  572. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  573. put_bits(&s->pb, s->len[2][ s->temp[2][ i ] ], s->bits[2][ s->temp[2][ i ] ]);
  574. }
  575. }
  576. return 0;
  577. }
  578. static int encode_gray_bitstream(HYuvContext *s, int count){
  579. int i;
  580. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < 4*count){
  581. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  582. return -1;
  583. }
  584. count/=2;
  585. if(s->flags&CODEC_FLAG_PASS1){
  586. for(i=0; i<count; i++){
  587. s->stats[0][ s->temp[0][2*i ] ]++;
  588. s->stats[0][ s->temp[0][2*i+1] ]++;
  589. }
  590. }
  591. if(s->avctx->flags2&CODEC_FLAG2_NO_OUTPUT)
  592. return 0;
  593. if(s->context){
  594. for(i=0; i<count; i++){
  595. s->stats[0][ s->temp[0][2*i ] ]++;
  596. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  597. s->stats[0][ s->temp[0][2*i+1] ]++;
  598. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  599. }
  600. }else{
  601. for(i=0; i<count; i++){
  602. put_bits(&s->pb, s->len[0][ s->temp[0][2*i ] ], s->bits[0][ s->temp[0][2*i ] ]);
  603. put_bits(&s->pb, s->len[0][ s->temp[0][2*i+1] ], s->bits[0][ s->temp[0][2*i+1] ]);
  604. }
  605. }
  606. return 0;
  607. }
  608. static void decode_bgr_bitstream(HYuvContext *s, int count){
  609. int i;
  610. if(s->decorrelate){
  611. if(s->bitstream_bpp==24){
  612. for(i=0; i<count; i++){
  613. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  614. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  615. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  616. }
  617. }else{
  618. for(i=0; i<count; i++){
  619. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  620. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  621. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3) + s->temp[0][4*i+G];
  622. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  623. }
  624. }
  625. }else{
  626. if(s->bitstream_bpp==24){
  627. for(i=0; i<count; i++){
  628. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  629. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  630. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  631. }
  632. }else{
  633. for(i=0; i<count; i++){
  634. s->temp[0][4*i+B]= get_vlc2(&s->gb, s->vlc[0].table, VLC_BITS, 3);
  635. s->temp[0][4*i+G]= get_vlc2(&s->gb, s->vlc[1].table, VLC_BITS, 3);
  636. s->temp[0][4*i+R]= get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3);
  637. get_vlc2(&s->gb, s->vlc[2].table, VLC_BITS, 3); //?!
  638. }
  639. }
  640. }
  641. }
  642. static void draw_slice(HYuvContext *s, int y){
  643. int h, cy;
  644. int offset[4];
  645. if(s->avctx->draw_horiz_band==NULL)
  646. return;
  647. h= y - s->last_slice_end;
  648. y -= h;
  649. if(s->bitstream_bpp==12){
  650. cy= y>>1;
  651. }else{
  652. cy= y;
  653. }
  654. offset[0] = s->picture.linesize[0]*y;
  655. offset[1] = s->picture.linesize[1]*cy;
  656. offset[2] = s->picture.linesize[2]*cy;
  657. offset[3] = 0;
  658. emms_c();
  659. s->avctx->draw_horiz_band(s->avctx, &s->picture, offset, y, 3, h);
  660. s->last_slice_end= y + h;
  661. }
  662. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, uint8_t *buf, int buf_size){
  663. HYuvContext *s = avctx->priv_data;
  664. const int width= s->width;
  665. const int width2= s->width>>1;
  666. const int height= s->height;
  667. int fake_ystride, fake_ustride, fake_vstride;
  668. AVFrame * const p= &s->picture;
  669. int table_size= 0;
  670. AVFrame *picture = data;
  671. s->bitstream_buffer= av_fast_realloc(s->bitstream_buffer, &s->bitstream_buffer_size, buf_size + FF_INPUT_BUFFER_PADDING_SIZE);
  672. s->dsp.bswap_buf((uint32_t*)s->bitstream_buffer, (uint32_t*)buf, buf_size/4);
  673. if(p->data[0])
  674. avctx->release_buffer(avctx, p);
  675. p->reference= 0;
  676. if(avctx->get_buffer(avctx, p) < 0){
  677. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  678. return -1;
  679. }
  680. if(s->context){
  681. table_size = read_huffman_tables(s, s->bitstream_buffer, buf_size);
  682. if(table_size < 0)
  683. return -1;
  684. }
  685. if((unsigned)(buf_size-table_size) >= INT_MAX/8)
  686. return -1;
  687. init_get_bits(&s->gb, s->bitstream_buffer+table_size, (buf_size-table_size)*8);
  688. fake_ystride= s->interlaced ? p->linesize[0]*2 : p->linesize[0];
  689. fake_ustride= s->interlaced ? p->linesize[1]*2 : p->linesize[1];
  690. fake_vstride= s->interlaced ? p->linesize[2]*2 : p->linesize[2];
  691. s->last_slice_end= 0;
  692. if(s->bitstream_bpp<24){
  693. int y, cy;
  694. int lefty, leftu, leftv;
  695. int lefttopy, lefttopu, lefttopv;
  696. if(s->yuy2){
  697. p->data[0][3]= get_bits(&s->gb, 8);
  698. p->data[0][2]= get_bits(&s->gb, 8);
  699. p->data[0][1]= get_bits(&s->gb, 8);
  700. p->data[0][0]= get_bits(&s->gb, 8);
  701. av_log(avctx, AV_LOG_ERROR, "YUY2 output is not implemented yet\n");
  702. return -1;
  703. }else{
  704. leftv= p->data[2][0]= get_bits(&s->gb, 8);
  705. lefty= p->data[0][1]= get_bits(&s->gb, 8);
  706. leftu= p->data[1][0]= get_bits(&s->gb, 8);
  707. p->data[0][0]= get_bits(&s->gb, 8);
  708. switch(s->predictor){
  709. case LEFT:
  710. case PLANE:
  711. decode_422_bitstream(s, width-2);
  712. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  713. if(!(s->flags&CODEC_FLAG_GRAY)){
  714. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  715. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  716. }
  717. for(cy=y=1; y<s->height; y++,cy++){
  718. uint8_t *ydst, *udst, *vdst;
  719. if(s->bitstream_bpp==12){
  720. decode_gray_bitstream(s, width);
  721. ydst= p->data[0] + p->linesize[0]*y;
  722. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  723. if(s->predictor == PLANE){
  724. if(y>s->interlaced)
  725. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  726. }
  727. y++;
  728. if(y>=s->height) break;
  729. }
  730. draw_slice(s, y);
  731. ydst= p->data[0] + p->linesize[0]*y;
  732. udst= p->data[1] + p->linesize[1]*cy;
  733. vdst= p->data[2] + p->linesize[2]*cy;
  734. decode_422_bitstream(s, width);
  735. lefty= add_left_prediction(ydst, s->temp[0], width, lefty);
  736. if(!(s->flags&CODEC_FLAG_GRAY)){
  737. leftu= add_left_prediction(udst, s->temp[1], width2, leftu);
  738. leftv= add_left_prediction(vdst, s->temp[2], width2, leftv);
  739. }
  740. if(s->predictor == PLANE){
  741. if(cy>s->interlaced){
  742. s->dsp.add_bytes(ydst, ydst - fake_ystride, width);
  743. if(!(s->flags&CODEC_FLAG_GRAY)){
  744. s->dsp.add_bytes(udst, udst - fake_ustride, width2);
  745. s->dsp.add_bytes(vdst, vdst - fake_vstride, width2);
  746. }
  747. }
  748. }
  749. }
  750. draw_slice(s, height);
  751. break;
  752. case MEDIAN:
  753. /* first line except first 2 pixels is left predicted */
  754. decode_422_bitstream(s, width-2);
  755. lefty= add_left_prediction(p->data[0] + 2, s->temp[0], width-2, lefty);
  756. if(!(s->flags&CODEC_FLAG_GRAY)){
  757. leftu= add_left_prediction(p->data[1] + 1, s->temp[1], width2-1, leftu);
  758. leftv= add_left_prediction(p->data[2] + 1, s->temp[2], width2-1, leftv);
  759. }
  760. cy=y=1;
  761. /* second line is left predicted for interlaced case */
  762. if(s->interlaced){
  763. decode_422_bitstream(s, width);
  764. lefty= add_left_prediction(p->data[0] + p->linesize[0], s->temp[0], width, lefty);
  765. if(!(s->flags&CODEC_FLAG_GRAY)){
  766. leftu= add_left_prediction(p->data[1] + p->linesize[2], s->temp[1], width2, leftu);
  767. leftv= add_left_prediction(p->data[2] + p->linesize[1], s->temp[2], width2, leftv);
  768. }
  769. y++; cy++;
  770. }
  771. /* next 4 pixels are left predicted too */
  772. decode_422_bitstream(s, 4);
  773. lefty= add_left_prediction(p->data[0] + fake_ystride, s->temp[0], 4, lefty);
  774. if(!(s->flags&CODEC_FLAG_GRAY)){
  775. leftu= add_left_prediction(p->data[1] + fake_ustride, s->temp[1], 2, leftu);
  776. leftv= add_left_prediction(p->data[2] + fake_vstride, s->temp[2], 2, leftv);
  777. }
  778. /* next line except the first 4 pixels is median predicted */
  779. lefttopy= p->data[0][3];
  780. decode_422_bitstream(s, width-4);
  781. add_median_prediction(p->data[0] + fake_ystride+4, p->data[0]+4, s->temp[0], width-4, &lefty, &lefttopy);
  782. if(!(s->flags&CODEC_FLAG_GRAY)){
  783. lefttopu= p->data[1][1];
  784. lefttopv= p->data[2][1];
  785. add_median_prediction(p->data[1] + fake_ustride+2, p->data[1]+2, s->temp[1], width2-2, &leftu, &lefttopu);
  786. add_median_prediction(p->data[2] + fake_vstride+2, p->data[2]+2, s->temp[2], width2-2, &leftv, &lefttopv);
  787. }
  788. y++; cy++;
  789. for(; y<height; y++,cy++){
  790. uint8_t *ydst, *udst, *vdst;
  791. if(s->bitstream_bpp==12){
  792. while(2*cy > y){
  793. decode_gray_bitstream(s, width);
  794. ydst= p->data[0] + p->linesize[0]*y;
  795. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  796. y++;
  797. }
  798. if(y>=height) break;
  799. }
  800. draw_slice(s, y);
  801. decode_422_bitstream(s, width);
  802. ydst= p->data[0] + p->linesize[0]*y;
  803. udst= p->data[1] + p->linesize[1]*cy;
  804. vdst= p->data[2] + p->linesize[2]*cy;
  805. add_median_prediction(ydst, ydst - fake_ystride, s->temp[0], width, &lefty, &lefttopy);
  806. if(!(s->flags&CODEC_FLAG_GRAY)){
  807. add_median_prediction(udst, udst - fake_ustride, s->temp[1], width2, &leftu, &lefttopu);
  808. add_median_prediction(vdst, vdst - fake_vstride, s->temp[2], width2, &leftv, &lefttopv);
  809. }
  810. }
  811. draw_slice(s, height);
  812. break;
  813. }
  814. }
  815. }else{
  816. int y;
  817. int leftr, leftg, leftb;
  818. const int last_line= (height-1)*p->linesize[0];
  819. if(s->bitstream_bpp==32){
  820. skip_bits(&s->gb, 8);
  821. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  822. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  823. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  824. }else{
  825. leftr= p->data[0][last_line+R]= get_bits(&s->gb, 8);
  826. leftg= p->data[0][last_line+G]= get_bits(&s->gb, 8);
  827. leftb= p->data[0][last_line+B]= get_bits(&s->gb, 8);
  828. skip_bits(&s->gb, 8);
  829. }
  830. if(s->bgr32){
  831. switch(s->predictor){
  832. case LEFT:
  833. case PLANE:
  834. decode_bgr_bitstream(s, width-1);
  835. add_left_prediction_bgr32(p->data[0] + last_line+4, s->temp[0], width-1, &leftr, &leftg, &leftb);
  836. for(y=s->height-2; y>=0; y--){ //yes its stored upside down
  837. decode_bgr_bitstream(s, width);
  838. add_left_prediction_bgr32(p->data[0] + p->linesize[0]*y, s->temp[0], width, &leftr, &leftg, &leftb);
  839. if(s->predictor == PLANE){
  840. if((y&s->interlaced)==0 && y<s->height-1-s->interlaced){
  841. s->dsp.add_bytes(p->data[0] + p->linesize[0]*y,
  842. p->data[0] + p->linesize[0]*y + fake_ystride, fake_ystride);
  843. }
  844. }
  845. }
  846. draw_slice(s, height); // just 1 large slice as this is not possible in reverse order
  847. break;
  848. default:
  849. av_log(avctx, AV_LOG_ERROR, "prediction type not supported!\n");
  850. }
  851. }else{
  852. av_log(avctx, AV_LOG_ERROR, "BGR24 output is not implemented yet\n");
  853. return -1;
  854. }
  855. }
  856. emms_c();
  857. *picture= *p;
  858. *data_size = sizeof(AVFrame);
  859. return (get_bits_count(&s->gb)+31)/32*4 + table_size;
  860. }
  861. static int common_end(HYuvContext *s){
  862. int i;
  863. for(i=0; i<3; i++){
  864. av_freep(&s->temp[i]);
  865. }
  866. return 0;
  867. }
  868. static int decode_end(AVCodecContext *avctx)
  869. {
  870. HYuvContext *s = avctx->priv_data;
  871. int i;
  872. common_end(s);
  873. av_freep(&s->bitstream_buffer);
  874. for(i=0; i<3; i++){
  875. free_vlc(&s->vlc[i]);
  876. }
  877. return 0;
  878. }
  879. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  880. HYuvContext *s = avctx->priv_data;
  881. AVFrame *pict = data;
  882. const int width= s->width;
  883. const int width2= s->width>>1;
  884. const int height= s->height;
  885. const int fake_ystride= s->interlaced ? pict->linesize[0]*2 : pict->linesize[0];
  886. const int fake_ustride= s->interlaced ? pict->linesize[1]*2 : pict->linesize[1];
  887. const int fake_vstride= s->interlaced ? pict->linesize[2]*2 : pict->linesize[2];
  888. AVFrame * const p= &s->picture;
  889. int i, j, size=0;
  890. *p = *pict;
  891. p->pict_type= FF_I_TYPE;
  892. p->key_frame= 1;
  893. if(s->context){
  894. for(i=0; i<3; i++){
  895. generate_len_table(s->len[i], s->stats[i], 256);
  896. if(generate_bits_table(s->bits[i], s->len[i])<0)
  897. return -1;
  898. size+= store_table(s, s->len[i], &buf[size]);
  899. }
  900. for(i=0; i<3; i++)
  901. for(j=0; j<256; j++)
  902. s->stats[i][j] >>= 1;
  903. }
  904. init_put_bits(&s->pb, buf+size, buf_size-size);
  905. if(avctx->pix_fmt == PIX_FMT_YUV422P || avctx->pix_fmt == PIX_FMT_YUV420P){
  906. int lefty, leftu, leftv, y, cy;
  907. put_bits(&s->pb, 8, leftv= p->data[2][0]);
  908. put_bits(&s->pb, 8, lefty= p->data[0][1]);
  909. put_bits(&s->pb, 8, leftu= p->data[1][0]);
  910. put_bits(&s->pb, 8, p->data[0][0]);
  911. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+2, width-2 , lefty);
  912. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+1, width2-1, leftu);
  913. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+1, width2-1, leftv);
  914. encode_422_bitstream(s, width-2);
  915. if(s->predictor==MEDIAN){
  916. int lefttopy, lefttopu, lefttopv;
  917. cy=y=1;
  918. if(s->interlaced){
  919. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+p->linesize[0], width , lefty);
  920. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+p->linesize[1], width2, leftu);
  921. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+p->linesize[2], width2, leftv);
  922. encode_422_bitstream(s, width);
  923. y++; cy++;
  924. }
  925. lefty= sub_left_prediction(s, s->temp[0], p->data[0]+fake_ystride, 4, lefty);
  926. leftu= sub_left_prediction(s, s->temp[1], p->data[1]+fake_ustride, 2, leftu);
  927. leftv= sub_left_prediction(s, s->temp[2], p->data[2]+fake_vstride, 2, leftv);
  928. encode_422_bitstream(s, 4);
  929. lefttopy= p->data[0][3];
  930. lefttopu= p->data[1][1];
  931. lefttopv= p->data[2][1];
  932. s->dsp.sub_hfyu_median_prediction(s->temp[0], p->data[0]+4, p->data[0] + fake_ystride+4, width-4 , &lefty, &lefttopy);
  933. s->dsp.sub_hfyu_median_prediction(s->temp[1], p->data[1]+2, p->data[1] + fake_ustride+2, width2-2, &leftu, &lefttopu);
  934. s->dsp.sub_hfyu_median_prediction(s->temp[2], p->data[2]+2, p->data[2] + fake_vstride+2, width2-2, &leftv, &lefttopv);
  935. encode_422_bitstream(s, width-4);
  936. y++; cy++;
  937. for(; y<height; y++,cy++){
  938. uint8_t *ydst, *udst, *vdst;
  939. if(s->bitstream_bpp==12){
  940. while(2*cy > y){
  941. ydst= p->data[0] + p->linesize[0]*y;
  942. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  943. encode_gray_bitstream(s, width);
  944. y++;
  945. }
  946. if(y>=height) break;
  947. }
  948. ydst= p->data[0] + p->linesize[0]*y;
  949. udst= p->data[1] + p->linesize[1]*cy;
  950. vdst= p->data[2] + p->linesize[2]*cy;
  951. s->dsp.sub_hfyu_median_prediction(s->temp[0], ydst - fake_ystride, ydst, width , &lefty, &lefttopy);
  952. s->dsp.sub_hfyu_median_prediction(s->temp[1], udst - fake_ustride, udst, width2, &leftu, &lefttopu);
  953. s->dsp.sub_hfyu_median_prediction(s->temp[2], vdst - fake_vstride, vdst, width2, &leftv, &lefttopv);
  954. encode_422_bitstream(s, width);
  955. }
  956. }else{
  957. for(cy=y=1; y<height; y++,cy++){
  958. uint8_t *ydst, *udst, *vdst;
  959. /* encode a luma only line & y++ */
  960. if(s->bitstream_bpp==12){
  961. ydst= p->data[0] + p->linesize[0]*y;
  962. if(s->predictor == PLANE && s->interlaced < y){
  963. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  964. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  965. }else{
  966. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  967. }
  968. encode_gray_bitstream(s, width);
  969. y++;
  970. if(y>=height) break;
  971. }
  972. ydst= p->data[0] + p->linesize[0]*y;
  973. udst= p->data[1] + p->linesize[1]*cy;
  974. vdst= p->data[2] + p->linesize[2]*cy;
  975. if(s->predictor == PLANE && s->interlaced < cy){
  976. s->dsp.diff_bytes(s->temp[1], ydst, ydst - fake_ystride, width);
  977. s->dsp.diff_bytes(s->temp[2], udst, udst - fake_ustride, width2);
  978. s->dsp.diff_bytes(s->temp[2] + width2, vdst, vdst - fake_vstride, width2);
  979. lefty= sub_left_prediction(s, s->temp[0], s->temp[1], width , lefty);
  980. leftu= sub_left_prediction(s, s->temp[1], s->temp[2], width2, leftu);
  981. leftv= sub_left_prediction(s, s->temp[2], s->temp[2] + width2, width2, leftv);
  982. }else{
  983. lefty= sub_left_prediction(s, s->temp[0], ydst, width , lefty);
  984. leftu= sub_left_prediction(s, s->temp[1], udst, width2, leftu);
  985. leftv= sub_left_prediction(s, s->temp[2], vdst, width2, leftv);
  986. }
  987. encode_422_bitstream(s, width);
  988. }
  989. }
  990. }else{
  991. av_log(avctx, AV_LOG_ERROR, "Format not supported!\n");
  992. }
  993. emms_c();
  994. size+= (put_bits_count(&s->pb)+31)/8;
  995. size/= 4;
  996. if((s->flags&CODEC_FLAG_PASS1) && (s->picture_number&31)==0){
  997. int j;
  998. char *p= avctx->stats_out;
  999. char *end= p + 1024*30;
  1000. for(i=0; i<3; i++){
  1001. for(j=0; j<256; j++){
  1002. snprintf(p, end-p, "%"PRIu64" ", s->stats[i][j]);
  1003. p+= strlen(p);
  1004. s->stats[i][j]= 0;
  1005. }
  1006. snprintf(p, end-p, "\n");
  1007. p++;
  1008. }
  1009. }
  1010. if(!(s->avctx->flags2 & CODEC_FLAG2_NO_OUTPUT)){
  1011. flush_put_bits(&s->pb);
  1012. s->dsp.bswap_buf((uint32_t*)buf, (uint32_t*)buf, size);
  1013. avctx->stats_out[0] = '\0';
  1014. }
  1015. s->picture_number++;
  1016. return size*4;
  1017. }
  1018. static int encode_end(AVCodecContext *avctx)
  1019. {
  1020. HYuvContext *s = avctx->priv_data;
  1021. common_end(s);
  1022. av_freep(&avctx->extradata);
  1023. av_freep(&avctx->stats_out);
  1024. return 0;
  1025. }
  1026. AVCodec huffyuv_decoder = {
  1027. "huffyuv",
  1028. CODEC_TYPE_VIDEO,
  1029. CODEC_ID_HUFFYUV,
  1030. sizeof(HYuvContext),
  1031. decode_init,
  1032. NULL,
  1033. decode_end,
  1034. decode_frame,
  1035. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1036. NULL
  1037. };
  1038. AVCodec ffvhuff_decoder = {
  1039. "ffvhuff",
  1040. CODEC_TYPE_VIDEO,
  1041. CODEC_ID_FFVHUFF,
  1042. sizeof(HYuvContext),
  1043. decode_init,
  1044. NULL,
  1045. decode_end,
  1046. decode_frame,
  1047. CODEC_CAP_DR1 | CODEC_CAP_DRAW_HORIZ_BAND,
  1048. NULL
  1049. };
  1050. #ifdef CONFIG_ENCODERS
  1051. AVCodec huffyuv_encoder = {
  1052. "huffyuv",
  1053. CODEC_TYPE_VIDEO,
  1054. CODEC_ID_HUFFYUV,
  1055. sizeof(HYuvContext),
  1056. encode_init,
  1057. encode_frame,
  1058. encode_end,
  1059. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV422P, -1},
  1060. };
  1061. AVCodec ffvhuff_encoder = {
  1062. "ffvhuff",
  1063. CODEC_TYPE_VIDEO,
  1064. CODEC_ID_FFVHUFF,
  1065. sizeof(HYuvContext),
  1066. encode_init,
  1067. encode_frame,
  1068. encode_end,
  1069. .pix_fmts= (enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUV422P, -1},
  1070. };
  1071. #endif //CONFIG_ENCODERS