You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

855 lines
28KB

  1. /*
  2. * ALAC (Apple Lossless Audio Codec) decoder
  3. * Copyright (c) 2005 David Hammerton
  4. * All rights reserved.
  5. *
  6. * This library is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU Lesser General Public
  8. * License as published by the Free Software Foundation; either
  9. * version 2 of the License, or (at your option) any later version.
  10. *
  11. * This library is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  14. * Lesser General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU Lesser General Public
  17. * License along with this library; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  19. */
  20. /**
  21. * @file alac.c
  22. * ALAC (Apple Lossless Audio Codec) decoder
  23. * @author 2005 David Hammerton
  24. *
  25. * For more information on the ALAC format, visit:
  26. * http://crazney.net/programs/itunes/alac.html
  27. *
  28. * Note: This decoder expects a 36- (0x24-)byte QuickTime atom to be
  29. * passed through the extradata[_size] fields. This atom is tacked onto
  30. * the end of an 'alac' stsd atom and has the following format:
  31. * bytes 0-3 atom size (0x24), big-endian
  32. * bytes 4-7 atom type ('alac', not the 'alac' tag from start of stsd)
  33. * bytes 8-35 data bytes needed by decoder
  34. *
  35. * Extradata:
  36. * 32bit size
  37. * 32bit tag (=alac)
  38. * 32bit zero?
  39. * 32bit max sample per frame
  40. * 8bit ?? (zero?)
  41. * 8bit sample size
  42. * 8bit history mult
  43. * 8bit initial history
  44. * 8bit kmodifier
  45. * 8bit channels?
  46. * 16bit ??
  47. * 32bit max coded frame size
  48. * 32bit bitrate?
  49. * 32bit samplerate
  50. */
  51. #include "avcodec.h"
  52. #include "bitstream.h"
  53. #define ALAC_EXTRADATA_SIZE 36
  54. typedef struct {
  55. AVCodecContext *avctx;
  56. GetBitContext gb;
  57. /* init to 0; first frame decode should initialize from extradata and
  58. * set this to 1 */
  59. int context_initialized;
  60. int samplesize;
  61. int numchannels;
  62. int bytespersample;
  63. /* buffers */
  64. int32_t *predicterror_buffer_a;
  65. int32_t *predicterror_buffer_b;
  66. int32_t *outputsamples_buffer_a;
  67. int32_t *outputsamples_buffer_b;
  68. /* stuff from setinfo */
  69. uint32_t setinfo_max_samples_per_frame; /* 0x1000 = 4096 */ /* max samples per frame? */
  70. uint8_t setinfo_7a; /* 0x00 */
  71. uint8_t setinfo_sample_size; /* 0x10 */
  72. uint8_t setinfo_rice_historymult; /* 0x28 */
  73. uint8_t setinfo_rice_initialhistory; /* 0x0a */
  74. uint8_t setinfo_rice_kmodifier; /* 0x0e */
  75. uint8_t setinfo_7f; /* 0x02 */
  76. uint16_t setinfo_80; /* 0x00ff */
  77. uint32_t setinfo_82; /* 0x000020e7 */
  78. uint32_t setinfo_86; /* 0x00069fe4 */
  79. uint32_t setinfo_8a_rate; /* 0x0000ac44 */
  80. /* end setinfo stuff */
  81. } ALACContext;
  82. static void allocate_buffers(ALACContext *alac)
  83. {
  84. alac->predicterror_buffer_a = av_malloc(alac->setinfo_max_samples_per_frame * 4);
  85. alac->predicterror_buffer_b = av_malloc(alac->setinfo_max_samples_per_frame * 4);
  86. alac->outputsamples_buffer_a = av_malloc(alac->setinfo_max_samples_per_frame * 4);
  87. alac->outputsamples_buffer_b = av_malloc(alac->setinfo_max_samples_per_frame * 4);
  88. }
  89. static int alac_set_info(ALACContext *alac)
  90. {
  91. unsigned char *ptr = alac->avctx->extradata;
  92. ptr += 4; /* size */
  93. ptr += 4; /* alac */
  94. ptr += 4; /* 0 ? */
  95. if(BE_32(ptr) >= UINT_MAX/4){
  96. av_log(alac->avctx, AV_LOG_ERROR, "setinfo_max_samples_per_frame too large\n");
  97. return -1;
  98. }
  99. alac->setinfo_max_samples_per_frame = BE_32(ptr); /* buffer size / 2 ? */
  100. ptr += 4;
  101. alac->setinfo_7a = *ptr++;
  102. alac->setinfo_sample_size = *ptr++;
  103. alac->setinfo_rice_historymult = *ptr++;
  104. alac->setinfo_rice_initialhistory = *ptr++;
  105. alac->setinfo_rice_kmodifier = *ptr++;
  106. alac->setinfo_7f = *ptr++; // channels?
  107. alac->setinfo_80 = BE_16(ptr);
  108. ptr += 2;
  109. alac->setinfo_82 = BE_32(ptr); // max coded frame size
  110. ptr += 4;
  111. alac->setinfo_86 = BE_32(ptr); // bitrate ?
  112. ptr += 4;
  113. alac->setinfo_8a_rate = BE_32(ptr); // samplerate
  114. ptr += 4;
  115. allocate_buffers(alac);
  116. return 0;
  117. }
  118. /* hideously inefficient. could use a bitmask search,
  119. * alternatively bsr on x86,
  120. */
  121. static int count_leading_zeros(int32_t input)
  122. {
  123. int i = 0;
  124. while (!(0x80000000 & input) && i < 32) {
  125. i++;
  126. input = input << 1;
  127. }
  128. return i;
  129. }
  130. static void bastardized_rice_decompress(ALACContext *alac,
  131. int32_t *output_buffer,
  132. int output_size,
  133. int readsamplesize, /* arg_10 */
  134. int rice_initialhistory, /* arg424->b */
  135. int rice_kmodifier, /* arg424->d */
  136. int rice_historymult, /* arg424->c */
  137. int rice_kmodifier_mask /* arg424->e */
  138. )
  139. {
  140. int output_count;
  141. unsigned int history = rice_initialhistory;
  142. int sign_modifier = 0;
  143. for (output_count = 0; output_count < output_size; output_count++) {
  144. int32_t x = 0;
  145. int32_t x_modified;
  146. int32_t final_val;
  147. /* read x - number of 1s before 0 represent the rice */
  148. while (x <= 8 && get_bits1(&alac->gb)) {
  149. x++;
  150. }
  151. if (x > 8) { /* RICE THRESHOLD */
  152. /* use alternative encoding */
  153. int32_t value;
  154. value = get_bits(&alac->gb, readsamplesize);
  155. /* mask value to readsamplesize size */
  156. if (readsamplesize != 32)
  157. value &= (0xffffffff >> (32 - readsamplesize));
  158. x = value;
  159. } else {
  160. /* standard rice encoding */
  161. int extrabits;
  162. int k; /* size of extra bits */
  163. /* read k, that is bits as is */
  164. k = 31 - rice_kmodifier - count_leading_zeros((history >> 9) + 3);
  165. if (k < 0)
  166. k += rice_kmodifier;
  167. else
  168. k = rice_kmodifier;
  169. if (k != 1) {
  170. extrabits = show_bits(&alac->gb, k);
  171. /* multiply x by 2^k - 1, as part of their strange algorithm */
  172. x = (x << k) - x;
  173. if (extrabits > 1) {
  174. x += extrabits - 1;
  175. get_bits(&alac->gb, k);
  176. } else {
  177. get_bits(&alac->gb, k - 1);
  178. }
  179. }
  180. }
  181. x_modified = sign_modifier + x;
  182. final_val = (x_modified + 1) / 2;
  183. if (x_modified & 1) final_val *= -1;
  184. output_buffer[output_count] = final_val;
  185. sign_modifier = 0;
  186. /* now update the history */
  187. history += (x_modified * rice_historymult)
  188. - ((history * rice_historymult) >> 9);
  189. if (x_modified > 0xffff)
  190. history = 0xffff;
  191. /* special case: there may be compressed blocks of 0 */
  192. if ((history < 128) && (output_count+1 < output_size)) {
  193. int block_size;
  194. sign_modifier = 1;
  195. x = 0;
  196. while (x <= 8 && get_bits1(&alac->gb)) {
  197. x++;
  198. }
  199. if (x > 8) {
  200. block_size = get_bits(&alac->gb, 16);
  201. block_size &= 0xffff;
  202. } else {
  203. int k;
  204. int extrabits;
  205. k = count_leading_zeros(history) + ((history + 16) >> 6 /* / 64 */) - 24;
  206. extrabits = show_bits(&alac->gb, k);
  207. block_size = (((1 << k) - 1) & rice_kmodifier_mask) * x
  208. + extrabits - 1;
  209. if (extrabits < 2) {
  210. x = 1 - extrabits;
  211. block_size += x;
  212. get_bits(&alac->gb, k - 1);
  213. } else {
  214. get_bits(&alac->gb, k);
  215. }
  216. }
  217. if (block_size > 0) {
  218. memset(&output_buffer[output_count+1], 0, block_size * 4);
  219. output_count += block_size;
  220. }
  221. if (block_size > 0xffff)
  222. sign_modifier = 0;
  223. history = 0;
  224. }
  225. }
  226. }
  227. #define SIGN_EXTENDED32(val, bits) ((val << (32 - bits)) >> (32 - bits))
  228. #define SIGN_ONLY(v) \
  229. ((v < 0) ? (-1) : \
  230. ((v > 0) ? (1) : \
  231. (0)))
  232. static void predictor_decompress_fir_adapt(int32_t *error_buffer,
  233. int32_t *buffer_out,
  234. int output_size,
  235. int readsamplesize,
  236. int16_t *predictor_coef_table,
  237. int predictor_coef_num,
  238. int predictor_quantitization)
  239. {
  240. int i;
  241. /* first sample always copies */
  242. *buffer_out = *error_buffer;
  243. if (!predictor_coef_num) {
  244. if (output_size <= 1) return;
  245. memcpy(buffer_out+1, error_buffer+1, (output_size-1) * 4);
  246. return;
  247. }
  248. if (predictor_coef_num == 0x1f) { /* 11111 - max value of predictor_coef_num */
  249. /* second-best case scenario for fir decompression,
  250. * error describes a small difference from the previous sample only
  251. */
  252. if (output_size <= 1) return;
  253. for (i = 0; i < output_size - 1; i++) {
  254. int32_t prev_value;
  255. int32_t error_value;
  256. prev_value = buffer_out[i];
  257. error_value = error_buffer[i+1];
  258. buffer_out[i+1] = SIGN_EXTENDED32((prev_value + error_value), readsamplesize);
  259. }
  260. return;
  261. }
  262. /* read warm-up samples */
  263. if (predictor_coef_num > 0) {
  264. int i;
  265. for (i = 0; i < predictor_coef_num; i++) {
  266. int32_t val;
  267. val = buffer_out[i] + error_buffer[i+1];
  268. val = SIGN_EXTENDED32(val, readsamplesize);
  269. buffer_out[i+1] = val;
  270. }
  271. }
  272. #if 0
  273. /* 4 and 8 are very common cases (the only ones i've seen). these
  274. * should be unrolled and optimised
  275. */
  276. if (predictor_coef_num == 4) {
  277. /* FIXME: optimised general case */
  278. return;
  279. }
  280. if (predictor_coef_table == 8) {
  281. /* FIXME: optimised general case */
  282. return;
  283. }
  284. #endif
  285. /* general case */
  286. if (predictor_coef_num > 0) {
  287. for (i = predictor_coef_num + 1;
  288. i < output_size;
  289. i++) {
  290. int j;
  291. int sum = 0;
  292. int outval;
  293. int error_val = error_buffer[i];
  294. for (j = 0; j < predictor_coef_num; j++) {
  295. sum += (buffer_out[predictor_coef_num-j] - buffer_out[0]) *
  296. predictor_coef_table[j];
  297. }
  298. outval = (1 << (predictor_quantitization-1)) + sum;
  299. outval = outval >> predictor_quantitization;
  300. outval = outval + buffer_out[0] + error_val;
  301. outval = SIGN_EXTENDED32(outval, readsamplesize);
  302. buffer_out[predictor_coef_num+1] = outval;
  303. if (error_val > 0) {
  304. int predictor_num = predictor_coef_num - 1;
  305. while (predictor_num >= 0 && error_val > 0) {
  306. int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
  307. int sign = SIGN_ONLY(val);
  308. predictor_coef_table[predictor_num] -= sign;
  309. val *= sign; /* absolute value */
  310. error_val -= ((val >> predictor_quantitization) *
  311. (predictor_coef_num - predictor_num));
  312. predictor_num--;
  313. }
  314. } else if (error_val < 0) {
  315. int predictor_num = predictor_coef_num - 1;
  316. while (predictor_num >= 0 && error_val < 0) {
  317. int val = buffer_out[0] - buffer_out[predictor_coef_num - predictor_num];
  318. int sign = - SIGN_ONLY(val);
  319. predictor_coef_table[predictor_num] -= sign;
  320. val *= sign; /* neg value */
  321. error_val -= ((val >> predictor_quantitization) *
  322. (predictor_coef_num - predictor_num));
  323. predictor_num--;
  324. }
  325. }
  326. buffer_out++;
  327. }
  328. }
  329. }
  330. static void deinterlace_16(int32_t *buffer_a, int32_t *buffer_b,
  331. int16_t *buffer_out,
  332. int numchannels, int numsamples,
  333. uint8_t interlacing_shift,
  334. uint8_t interlacing_leftweight)
  335. {
  336. int i;
  337. if (numsamples <= 0) return;
  338. /* weighted interlacing */
  339. if (interlacing_leftweight) {
  340. for (i = 0; i < numsamples; i++) {
  341. int32_t difference, midright;
  342. int16_t left;
  343. int16_t right;
  344. midright = buffer_a[i];
  345. difference = buffer_b[i];
  346. right = midright - ((difference * interlacing_leftweight) >> interlacing_shift);
  347. left = (midright - ((difference * interlacing_leftweight) >> interlacing_shift))
  348. + difference;
  349. buffer_out[i*numchannels] = left;
  350. buffer_out[i*numchannels + 1] = right;
  351. }
  352. return;
  353. }
  354. /* otherwise basic interlacing took place */
  355. for (i = 0; i < numsamples; i++) {
  356. int16_t left, right;
  357. left = buffer_a[i];
  358. right = buffer_b[i];
  359. buffer_out[i*numchannels] = left;
  360. buffer_out[i*numchannels + 1] = right;
  361. }
  362. }
  363. static int alac_decode_frame(AVCodecContext *avctx,
  364. void *outbuffer, int *outputsize,
  365. uint8_t *inbuffer, int input_buffer_size)
  366. {
  367. ALACContext *alac = avctx->priv_data;
  368. int channels;
  369. int32_t outputsamples;
  370. /* short-circuit null buffers */
  371. if (!inbuffer || !input_buffer_size)
  372. return input_buffer_size;
  373. /* initialize from the extradata */
  374. if (!alac->context_initialized) {
  375. if (alac->avctx->extradata_size != ALAC_EXTRADATA_SIZE) {
  376. av_log(avctx, AV_LOG_ERROR, "alac: expected %d extradata bytes\n",
  377. ALAC_EXTRADATA_SIZE);
  378. return input_buffer_size;
  379. }
  380. alac_set_info(alac);
  381. alac->context_initialized = 1;
  382. }
  383. outputsamples = alac->setinfo_max_samples_per_frame;
  384. init_get_bits(&alac->gb, inbuffer, input_buffer_size * 8);
  385. channels = get_bits(&alac->gb, 3);
  386. *outputsize = outputsamples * alac->bytespersample;
  387. switch(channels) {
  388. case 0: { /* 1 channel */
  389. int hassize;
  390. int isnotcompressed;
  391. int readsamplesize;
  392. int wasted_bytes;
  393. int ricemodifier;
  394. /* 2^result = something to do with output waiting.
  395. * perhaps matters if we read > 1 frame in a pass?
  396. */
  397. get_bits(&alac->gb, 4);
  398. get_bits(&alac->gb, 12); /* unknown, skip 12 bits */
  399. hassize = get_bits(&alac->gb, 1); /* the output sample size is stored soon */
  400. wasted_bytes = get_bits(&alac->gb, 2); /* unknown ? */
  401. isnotcompressed = get_bits(&alac->gb, 1); /* whether the frame is compressed */
  402. if (hassize) {
  403. /* now read the number of samples,
  404. * as a 32bit integer */
  405. outputsamples = get_bits(&alac->gb, 32);
  406. *outputsize = outputsamples * alac->bytespersample;
  407. }
  408. readsamplesize = alac->setinfo_sample_size - (wasted_bytes * 8);
  409. if (!isnotcompressed) {
  410. /* so it is compressed */
  411. int16_t predictor_coef_table[32];
  412. int predictor_coef_num;
  413. int prediction_type;
  414. int prediction_quantitization;
  415. int i;
  416. /* FIXME: skip 16 bits, not sure what they are. seem to be used in
  417. * two channel case */
  418. get_bits(&alac->gb, 8);
  419. get_bits(&alac->gb, 8);
  420. prediction_type = get_bits(&alac->gb, 4);
  421. prediction_quantitization = get_bits(&alac->gb, 4);
  422. ricemodifier = get_bits(&alac->gb, 3);
  423. predictor_coef_num = get_bits(&alac->gb, 5);
  424. /* read the predictor table */
  425. for (i = 0; i < predictor_coef_num; i++) {
  426. predictor_coef_table[i] = (int16_t)get_bits(&alac->gb, 16);
  427. }
  428. if (wasted_bytes) {
  429. /* these bytes seem to have something to do with
  430. * > 2 channel files.
  431. */
  432. av_log(avctx, AV_LOG_ERROR, "FIXME: unimplemented, unhandling of wasted_bytes\n");
  433. }
  434. bastardized_rice_decompress(alac,
  435. alac->predicterror_buffer_a,
  436. outputsamples,
  437. readsamplesize,
  438. alac->setinfo_rice_initialhistory,
  439. alac->setinfo_rice_kmodifier,
  440. ricemodifier * alac->setinfo_rice_historymult / 4,
  441. (1 << alac->setinfo_rice_kmodifier) - 1);
  442. if (prediction_type == 0) {
  443. /* adaptive fir */
  444. predictor_decompress_fir_adapt(alac->predicterror_buffer_a,
  445. alac->outputsamples_buffer_a,
  446. outputsamples,
  447. readsamplesize,
  448. predictor_coef_table,
  449. predictor_coef_num,
  450. prediction_quantitization);
  451. } else {
  452. av_log(avctx, AV_LOG_ERROR, "FIXME: unhandled prediction type: %i\n", prediction_type);
  453. /* i think the only other prediction type (or perhaps this is just a
  454. * boolean?) runs adaptive fir twice.. like:
  455. * predictor_decompress_fir_adapt(predictor_error, tempout, ...)
  456. * predictor_decompress_fir_adapt(predictor_error, outputsamples ...)
  457. * little strange..
  458. */
  459. }
  460. } else {
  461. /* not compressed, easy case */
  462. if (readsamplesize <= 16) {
  463. int i;
  464. for (i = 0; i < outputsamples; i++) {
  465. int32_t audiobits = get_bits(&alac->gb, readsamplesize);
  466. audiobits = SIGN_EXTENDED32(audiobits, readsamplesize);
  467. alac->outputsamples_buffer_a[i] = audiobits;
  468. }
  469. } else {
  470. int i;
  471. for (i = 0; i < outputsamples; i++) {
  472. int32_t audiobits;
  473. audiobits = get_bits(&alac->gb, 16);
  474. /* special case of sign extension..
  475. * as we'll be ORing the low 16bits into this */
  476. audiobits = audiobits << 16;
  477. audiobits = audiobits >> (32 - readsamplesize);
  478. audiobits |= get_bits(&alac->gb, readsamplesize - 16);
  479. alac->outputsamples_buffer_a[i] = audiobits;
  480. }
  481. }
  482. /* wasted_bytes = 0; // unused */
  483. }
  484. switch(alac->setinfo_sample_size) {
  485. case 16: {
  486. int i;
  487. for (i = 0; i < outputsamples; i++) {
  488. int16_t sample = alac->outputsamples_buffer_a[i];
  489. ((int16_t*)outbuffer)[i * alac->numchannels] = sample;
  490. }
  491. break;
  492. }
  493. case 20:
  494. case 24:
  495. case 32:
  496. av_log(avctx, AV_LOG_ERROR, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
  497. break;
  498. default:
  499. break;
  500. }
  501. break;
  502. }
  503. case 1: { /* 2 channels */
  504. int hassize;
  505. int isnotcompressed;
  506. int readsamplesize;
  507. int wasted_bytes;
  508. uint8_t interlacing_shift;
  509. uint8_t interlacing_leftweight;
  510. /* 2^result = something to do with output waiting.
  511. * perhaps matters if we read > 1 frame in a pass?
  512. */
  513. get_bits(&alac->gb, 4);
  514. get_bits(&alac->gb, 12); /* unknown, skip 12 bits */
  515. hassize = get_bits(&alac->gb, 1); /* the output sample size is stored soon */
  516. wasted_bytes = get_bits(&alac->gb, 2); /* unknown ? */
  517. isnotcompressed = get_bits(&alac->gb, 1); /* whether the frame is compressed */
  518. if (hassize) {
  519. /* now read the number of samples,
  520. * as a 32bit integer */
  521. outputsamples = get_bits(&alac->gb, 32);
  522. *outputsize = outputsamples * alac->bytespersample;
  523. }
  524. readsamplesize = alac->setinfo_sample_size - (wasted_bytes * 8) + 1;
  525. if (!isnotcompressed) {
  526. /* compressed */
  527. int16_t predictor_coef_table_a[32];
  528. int predictor_coef_num_a;
  529. int prediction_type_a;
  530. int prediction_quantitization_a;
  531. int ricemodifier_a;
  532. int16_t predictor_coef_table_b[32];
  533. int predictor_coef_num_b;
  534. int prediction_type_b;
  535. int prediction_quantitization_b;
  536. int ricemodifier_b;
  537. int i;
  538. interlacing_shift = get_bits(&alac->gb, 8);
  539. interlacing_leftweight = get_bits(&alac->gb, 8);
  540. /******** channel 1 ***********/
  541. prediction_type_a = get_bits(&alac->gb, 4);
  542. prediction_quantitization_a = get_bits(&alac->gb, 4);
  543. ricemodifier_a = get_bits(&alac->gb, 3);
  544. predictor_coef_num_a = get_bits(&alac->gb, 5);
  545. /* read the predictor table */
  546. for (i = 0; i < predictor_coef_num_a; i++) {
  547. predictor_coef_table_a[i] = (int16_t)get_bits(&alac->gb, 16);
  548. }
  549. /******** channel 2 *********/
  550. prediction_type_b = get_bits(&alac->gb, 4);
  551. prediction_quantitization_b = get_bits(&alac->gb, 4);
  552. ricemodifier_b = get_bits(&alac->gb, 3);
  553. predictor_coef_num_b = get_bits(&alac->gb, 5);
  554. /* read the predictor table */
  555. for (i = 0; i < predictor_coef_num_b; i++) {
  556. predictor_coef_table_b[i] = (int16_t)get_bits(&alac->gb, 16);
  557. }
  558. /*********************/
  559. if (wasted_bytes) {
  560. /* see mono case */
  561. av_log(avctx, AV_LOG_ERROR, "FIXME: unimplemented, unhandling of wasted_bytes\n");
  562. }
  563. /* channel 1 */
  564. bastardized_rice_decompress(alac,
  565. alac->predicterror_buffer_a,
  566. outputsamples,
  567. readsamplesize,
  568. alac->setinfo_rice_initialhistory,
  569. alac->setinfo_rice_kmodifier,
  570. ricemodifier_a * alac->setinfo_rice_historymult / 4,
  571. (1 << alac->setinfo_rice_kmodifier) - 1);
  572. if (prediction_type_a == 0) {
  573. /* adaptive fir */
  574. predictor_decompress_fir_adapt(alac->predicterror_buffer_a,
  575. alac->outputsamples_buffer_a,
  576. outputsamples,
  577. readsamplesize,
  578. predictor_coef_table_a,
  579. predictor_coef_num_a,
  580. prediction_quantitization_a);
  581. } else {
  582. /* see mono case */
  583. av_log(avctx, AV_LOG_ERROR, "FIXME: unhandled prediction type: %i\n", prediction_type_a);
  584. }
  585. /* channel 2 */
  586. bastardized_rice_decompress(alac,
  587. alac->predicterror_buffer_b,
  588. outputsamples,
  589. readsamplesize,
  590. alac->setinfo_rice_initialhistory,
  591. alac->setinfo_rice_kmodifier,
  592. ricemodifier_b * alac->setinfo_rice_historymult / 4,
  593. (1 << alac->setinfo_rice_kmodifier) - 1);
  594. if (prediction_type_b == 0) {
  595. /* adaptive fir */
  596. predictor_decompress_fir_adapt(alac->predicterror_buffer_b,
  597. alac->outputsamples_buffer_b,
  598. outputsamples,
  599. readsamplesize,
  600. predictor_coef_table_b,
  601. predictor_coef_num_b,
  602. prediction_quantitization_b);
  603. } else {
  604. av_log(avctx, AV_LOG_ERROR, "FIXME: unhandled prediction type: %i\n", prediction_type_b);
  605. }
  606. } else {
  607. /* not compressed, easy case */
  608. if (alac->setinfo_sample_size <= 16) {
  609. int i;
  610. for (i = 0; i < outputsamples; i++) {
  611. int32_t audiobits_a, audiobits_b;
  612. audiobits_a = get_bits(&alac->gb, alac->setinfo_sample_size);
  613. audiobits_b = get_bits(&alac->gb, alac->setinfo_sample_size);
  614. audiobits_a = SIGN_EXTENDED32(audiobits_a, alac->setinfo_sample_size);
  615. audiobits_b = SIGN_EXTENDED32(audiobits_b, alac->setinfo_sample_size);
  616. alac->outputsamples_buffer_a[i] = audiobits_a;
  617. alac->outputsamples_buffer_b[i] = audiobits_b;
  618. }
  619. } else {
  620. int i;
  621. for (i = 0; i < outputsamples; i++) {
  622. int32_t audiobits_a, audiobits_b;
  623. audiobits_a = get_bits(&alac->gb, 16);
  624. audiobits_a = audiobits_a << 16;
  625. audiobits_a = audiobits_a >> (32 - alac->setinfo_sample_size);
  626. audiobits_a |= get_bits(&alac->gb, alac->setinfo_sample_size - 16);
  627. audiobits_b = get_bits(&alac->gb, 16);
  628. audiobits_b = audiobits_b << 16;
  629. audiobits_b = audiobits_b >> (32 - alac->setinfo_sample_size);
  630. audiobits_b |= get_bits(&alac->gb, alac->setinfo_sample_size - 16);
  631. alac->outputsamples_buffer_a[i] = audiobits_a;
  632. alac->outputsamples_buffer_b[i] = audiobits_b;
  633. }
  634. }
  635. /* wasted_bytes = 0; */
  636. interlacing_shift = 0;
  637. interlacing_leftweight = 0;
  638. }
  639. switch(alac->setinfo_sample_size) {
  640. case 16: {
  641. deinterlace_16(alac->outputsamples_buffer_a,
  642. alac->outputsamples_buffer_b,
  643. (int16_t*)outbuffer,
  644. alac->numchannels,
  645. outputsamples,
  646. interlacing_shift,
  647. interlacing_leftweight);
  648. break;
  649. }
  650. case 20:
  651. case 24:
  652. case 32:
  653. av_log(avctx, AV_LOG_ERROR, "FIXME: unimplemented sample size %i\n", alac->setinfo_sample_size);
  654. break;
  655. default:
  656. break;
  657. }
  658. break;
  659. }
  660. }
  661. return input_buffer_size;
  662. }
  663. static int alac_decode_init(AVCodecContext * avctx)
  664. {
  665. ALACContext *alac = avctx->priv_data;
  666. alac->avctx = avctx;
  667. alac->context_initialized = 0;
  668. alac->samplesize = alac->avctx->bits_per_sample;
  669. alac->numchannels = alac->avctx->channels;
  670. alac->bytespersample = (alac->samplesize / 8) * alac->numchannels;
  671. return 0;
  672. }
  673. static int alac_decode_close(AVCodecContext *avctx)
  674. {
  675. ALACContext *alac = avctx->priv_data;
  676. av_free(alac->predicterror_buffer_a);
  677. av_free(alac->predicterror_buffer_b);
  678. av_free(alac->outputsamples_buffer_a);
  679. av_free(alac->outputsamples_buffer_b);
  680. return 0;
  681. }
  682. AVCodec alac_decoder = {
  683. "alac",
  684. CODEC_TYPE_AUDIO,
  685. CODEC_ID_ALAC,
  686. sizeof(ALACContext),
  687. alac_decode_init,
  688. NULL,
  689. alac_decode_close,
  690. alac_decode_frame,
  691. };