You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1115 lines
43KB

  1. /*
  2. * AAC coefficients encoder
  3. * Copyright (C) 2008-2009 Konstantin Shishkov
  4. *
  5. * This file is part of FFmpeg.
  6. *
  7. * FFmpeg is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * FFmpeg is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with FFmpeg; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * AAC coefficients encoder
  24. */
  25. /***********************************
  26. * TODOs:
  27. * speedup quantizer selection
  28. * add sane pulse detection
  29. ***********************************/
  30. #include <float.h>
  31. #include "avcodec.h"
  32. #include "put_bits.h"
  33. #include "aac.h"
  34. #include "aacenc.h"
  35. #include "aactab.h"
  36. /** bits needed to code codebook run value for long windows */
  37. static const uint8_t run_value_bits_long[64] = {
  38. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  39. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 10,
  40. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
  41. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
  42. };
  43. /** bits needed to code codebook run value for short windows */
  44. static const uint8_t run_value_bits_short[16] = {
  45. 3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
  46. };
  47. static const uint8_t *run_value_bits[2] = {
  48. run_value_bits_long, run_value_bits_short
  49. };
  50. /**
  51. * Quantize one coefficient.
  52. * @return absolute value of the quantized coefficient
  53. * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
  54. */
  55. static av_always_inline int quant(float coef, const float Q)
  56. {
  57. float a = coef * Q;
  58. return sqrtf(a * sqrtf(a)) + 0.4054;
  59. }
  60. static void quantize_bands(int *out, const float *in, const float *scaled,
  61. int size, float Q34, int is_signed, int maxval)
  62. {
  63. int i;
  64. double qc;
  65. for (i = 0; i < size; i++) {
  66. qc = scaled[i] * Q34;
  67. out[i] = (int)FFMIN(qc + 0.4054, (double)maxval);
  68. if (is_signed && in[i] < 0.0f) {
  69. out[i] = -out[i];
  70. }
  71. }
  72. }
  73. static void abs_pow34_v(float *out, const float *in, const int size)
  74. {
  75. #ifndef USE_REALLY_FULL_SEARCH
  76. int i;
  77. for (i = 0; i < size; i++) {
  78. float a = fabsf(in[i]);
  79. out[i] = sqrtf(a * sqrtf(a));
  80. }
  81. #endif /* USE_REALLY_FULL_SEARCH */
  82. }
  83. static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
  84. static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
  85. /**
  86. * Calculate rate distortion cost for quantizing with given codebook
  87. *
  88. * @return quantization distortion
  89. */
  90. static av_always_inline float quantize_and_encode_band_cost_template(
  91. struct AACEncContext *s,
  92. PutBitContext *pb, const float *in,
  93. const float *scaled, int size, int scale_idx,
  94. int cb, const float lambda, const float uplim,
  95. int *bits, int BT_ZERO, int BT_UNSIGNED,
  96. int BT_PAIR, int BT_ESC)
  97. {
  98. const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
  99. const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
  100. const float CLIPPED_ESCAPE = 165140.0f*IQ;
  101. int i, j, k;
  102. float cost = 0;
  103. const int dim = BT_PAIR ? 2 : 4;
  104. int resbits = 0;
  105. const float Q34 = sqrtf(Q * sqrtf(Q));
  106. const int range = aac_cb_range[cb];
  107. const int maxval = aac_cb_maxval[cb];
  108. int off;
  109. if (BT_ZERO) {
  110. for (i = 0; i < size; i++)
  111. cost += in[i]*in[i];
  112. if (bits)
  113. *bits = 0;
  114. return cost * lambda;
  115. }
  116. if (!scaled) {
  117. abs_pow34_v(s->scoefs, in, size);
  118. scaled = s->scoefs;
  119. }
  120. quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, maxval);
  121. if (BT_UNSIGNED) {
  122. off = 0;
  123. } else {
  124. off = maxval;
  125. }
  126. for (i = 0; i < size; i += dim) {
  127. const float *vec;
  128. int *quants = s->qcoefs + i;
  129. int curidx = 0;
  130. int curbits;
  131. float rd = 0.0f;
  132. for (j = 0; j < dim; j++) {
  133. curidx *= range;
  134. curidx += quants[j] + off;
  135. }
  136. curbits = ff_aac_spectral_bits[cb-1][curidx];
  137. vec = &ff_aac_codebook_vectors[cb-1][curidx*dim];
  138. if (BT_UNSIGNED) {
  139. for (k = 0; k < dim; k++) {
  140. float t = fabsf(in[i+k]);
  141. float di;
  142. if (BT_ESC && vec[k] == 64.0f) { //FIXME: slow
  143. if (t >= CLIPPED_ESCAPE) {
  144. di = t - CLIPPED_ESCAPE;
  145. curbits += 21;
  146. } else {
  147. int c = av_clip(quant(t, Q), 0, 8191);
  148. di = t - c*cbrtf(c)*IQ;
  149. curbits += av_log2(c)*2 - 4 + 1;
  150. }
  151. } else {
  152. di = t - vec[k]*IQ;
  153. }
  154. if (vec[k] != 0.0f)
  155. curbits++;
  156. rd += di*di;
  157. }
  158. } else {
  159. for (k = 0; k < dim; k++) {
  160. float di = in[i+k] - vec[k]*IQ;
  161. rd += di*di;
  162. }
  163. }
  164. cost += rd * lambda + curbits;
  165. resbits += curbits;
  166. if (cost >= uplim)
  167. return uplim;
  168. if (pb) {
  169. put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
  170. if (BT_UNSIGNED)
  171. for (j = 0; j < dim; j++)
  172. if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
  173. put_bits(pb, 1, in[i+j] < 0.0f);
  174. if (BT_ESC) {
  175. for (j = 0; j < 2; j++) {
  176. if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
  177. int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
  178. int len = av_log2(coef);
  179. put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
  180. put_bits(pb, len, coef & ((1 << len) - 1));
  181. }
  182. }
  183. }
  184. }
  185. }
  186. if (bits)
  187. *bits = resbits;
  188. return cost;
  189. }
  190. #define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC) \
  191. static float quantize_and_encode_band_cost_ ## NAME( \
  192. struct AACEncContext *s, \
  193. PutBitContext *pb, const float *in, \
  194. const float *scaled, int size, int scale_idx, \
  195. int cb, const float lambda, const float uplim, \
  196. int *bits) { \
  197. return quantize_and_encode_band_cost_template( \
  198. s, pb, in, scaled, size, scale_idx, \
  199. BT_ESC ? ESC_BT : cb, lambda, uplim, bits, \
  200. BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC); \
  201. }
  202. QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO, 1, 0, 0, 0)
  203. QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0)
  204. QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0)
  205. QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0)
  206. QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0)
  207. QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC, 0, 1, 1, 1)
  208. static float (*const quantize_and_encode_band_cost_arr[])(
  209. struct AACEncContext *s,
  210. PutBitContext *pb, const float *in,
  211. const float *scaled, int size, int scale_idx,
  212. int cb, const float lambda, const float uplim,
  213. int *bits) = {
  214. quantize_and_encode_band_cost_ZERO,
  215. quantize_and_encode_band_cost_SQUAD,
  216. quantize_and_encode_band_cost_SQUAD,
  217. quantize_and_encode_band_cost_UQUAD,
  218. quantize_and_encode_band_cost_UQUAD,
  219. quantize_and_encode_band_cost_SPAIR,
  220. quantize_and_encode_band_cost_SPAIR,
  221. quantize_and_encode_band_cost_UPAIR,
  222. quantize_and_encode_band_cost_UPAIR,
  223. quantize_and_encode_band_cost_UPAIR,
  224. quantize_and_encode_band_cost_UPAIR,
  225. quantize_and_encode_band_cost_ESC,
  226. };
  227. #define quantize_and_encode_band_cost( \
  228. s, pb, in, scaled, size, scale_idx, cb, \
  229. lambda, uplim, bits) \
  230. quantize_and_encode_band_cost_arr[cb]( \
  231. s, pb, in, scaled, size, scale_idx, cb, \
  232. lambda, uplim, bits)
  233. static float quantize_band_cost(struct AACEncContext *s, const float *in,
  234. const float *scaled, int size, int scale_idx,
  235. int cb, const float lambda, const float uplim,
  236. int *bits)
  237. {
  238. return quantize_and_encode_band_cost(s, NULL, in, scaled, size, scale_idx,
  239. cb, lambda, uplim, bits);
  240. }
  241. static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
  242. const float *in, int size, int scale_idx,
  243. int cb, const float lambda)
  244. {
  245. quantize_and_encode_band_cost(s, pb, in, NULL, size, scale_idx, cb, lambda,
  246. INFINITY, NULL);
  247. }
  248. static float find_max_val(int group_len, int swb_size, const float *scaled) {
  249. float maxval = 0.0f;
  250. int w2, i;
  251. for (w2 = 0; w2 < group_len; w2++) {
  252. for (i = 0; i < swb_size; i++) {
  253. maxval = FFMAX(maxval, scaled[w2*128+i]);
  254. }
  255. }
  256. return maxval;
  257. }
  258. static int find_min_book(float maxval, int sf) {
  259. float Q = ff_aac_pow2sf_tab[200 - sf + SCALE_ONE_POS - SCALE_DIV_512];
  260. float Q34 = sqrtf(Q * sqrtf(Q));
  261. int qmaxval, cb;
  262. qmaxval = maxval * Q34 + 0.4054f;
  263. if (qmaxval == 0) cb = 0;
  264. else if (qmaxval == 1) cb = 1;
  265. else if (qmaxval == 2) cb = 3;
  266. else if (qmaxval <= 4) cb = 5;
  267. else if (qmaxval <= 7) cb = 7;
  268. else if (qmaxval <= 12) cb = 9;
  269. else cb = 11;
  270. return cb;
  271. }
  272. /**
  273. * structure used in optimal codebook search
  274. */
  275. typedef struct BandCodingPath {
  276. int prev_idx; ///< pointer to the previous path point
  277. float cost; ///< path cost
  278. int run;
  279. } BandCodingPath;
  280. /**
  281. * Encode band info for single window group bands.
  282. */
  283. static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
  284. int win, int group_len, const float lambda)
  285. {
  286. BandCodingPath path[120][12];
  287. int w, swb, cb, start, start2, size;
  288. int i, j;
  289. const int max_sfb = sce->ics.max_sfb;
  290. const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
  291. const int run_esc = (1 << run_bits) - 1;
  292. int idx, ppos, count;
  293. int stackrun[120], stackcb[120], stack_len;
  294. float next_minrd = INFINITY;
  295. int next_mincb = 0;
  296. abs_pow34_v(s->scoefs, sce->coeffs, 1024);
  297. start = win*128;
  298. for (cb = 0; cb < 12; cb++) {
  299. path[0][cb].cost = 0.0f;
  300. path[0][cb].prev_idx = -1;
  301. path[0][cb].run = 0;
  302. }
  303. for (swb = 0; swb < max_sfb; swb++) {
  304. start2 = start;
  305. size = sce->ics.swb_sizes[swb];
  306. if (sce->zeroes[win*16 + swb]) {
  307. for (cb = 0; cb < 12; cb++) {
  308. path[swb+1][cb].prev_idx = cb;
  309. path[swb+1][cb].cost = path[swb][cb].cost;
  310. path[swb+1][cb].run = path[swb][cb].run + 1;
  311. }
  312. } else {
  313. float minrd = next_minrd;
  314. int mincb = next_mincb;
  315. next_minrd = INFINITY;
  316. next_mincb = 0;
  317. for (cb = 0; cb < 12; cb++) {
  318. float cost_stay_here, cost_get_here;
  319. float rd = 0.0f;
  320. for (w = 0; w < group_len; w++) {
  321. FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
  322. rd += quantize_band_cost(s, sce->coeffs + start + w*128,
  323. s->scoefs + start + w*128, size,
  324. sce->sf_idx[(win+w)*16+swb], cb,
  325. lambda / band->threshold, INFINITY, NULL);
  326. }
  327. cost_stay_here = path[swb][cb].cost + rd;
  328. cost_get_here = minrd + rd + run_bits + 4;
  329. if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
  330. != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
  331. cost_stay_here += run_bits;
  332. if (cost_get_here < cost_stay_here) {
  333. path[swb+1][cb].prev_idx = mincb;
  334. path[swb+1][cb].cost = cost_get_here;
  335. path[swb+1][cb].run = 1;
  336. } else {
  337. path[swb+1][cb].prev_idx = cb;
  338. path[swb+1][cb].cost = cost_stay_here;
  339. path[swb+1][cb].run = path[swb][cb].run + 1;
  340. }
  341. if (path[swb+1][cb].cost < next_minrd) {
  342. next_minrd = path[swb+1][cb].cost;
  343. next_mincb = cb;
  344. }
  345. }
  346. }
  347. start += sce->ics.swb_sizes[swb];
  348. }
  349. //convert resulting path from backward-linked list
  350. stack_len = 0;
  351. idx = 0;
  352. for (cb = 1; cb < 12; cb++)
  353. if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
  354. idx = cb;
  355. ppos = max_sfb;
  356. while (ppos > 0) {
  357. cb = idx;
  358. stackrun[stack_len] = path[ppos][cb].run;
  359. stackcb [stack_len] = cb;
  360. idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
  361. ppos -= path[ppos][cb].run;
  362. stack_len++;
  363. }
  364. //perform actual band info encoding
  365. start = 0;
  366. for (i = stack_len - 1; i >= 0; i--) {
  367. put_bits(&s->pb, 4, stackcb[i]);
  368. count = stackrun[i];
  369. memset(sce->zeroes + win*16 + start, !stackcb[i], count);
  370. //XXX: memset when band_type is also uint8_t
  371. for (j = 0; j < count; j++) {
  372. sce->band_type[win*16 + start] = stackcb[i];
  373. start++;
  374. }
  375. while (count >= run_esc) {
  376. put_bits(&s->pb, run_bits, run_esc);
  377. count -= run_esc;
  378. }
  379. put_bits(&s->pb, run_bits, count);
  380. }
  381. }
  382. static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
  383. int win, int group_len, const float lambda)
  384. {
  385. BandCodingPath path[120][12];
  386. int w, swb, cb, start, start2, size;
  387. int i, j;
  388. const int max_sfb = sce->ics.max_sfb;
  389. const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
  390. const int run_esc = (1 << run_bits) - 1;
  391. int idx, ppos, count;
  392. int stackrun[120], stackcb[120], stack_len;
  393. float next_minrd = INFINITY;
  394. int next_mincb = 0;
  395. abs_pow34_v(s->scoefs, sce->coeffs, 1024);
  396. start = win*128;
  397. for (cb = 0; cb < 12; cb++) {
  398. path[0][cb].cost = run_bits+4;
  399. path[0][cb].prev_idx = -1;
  400. path[0][cb].run = 0;
  401. }
  402. for (swb = 0; swb < max_sfb; swb++) {
  403. start2 = start;
  404. size = sce->ics.swb_sizes[swb];
  405. if (sce->zeroes[win*16 + swb]) {
  406. for (cb = 0; cb < 12; cb++) {
  407. path[swb+1][cb].prev_idx = cb;
  408. path[swb+1][cb].cost = path[swb][cb].cost;
  409. path[swb+1][cb].run = path[swb][cb].run + 1;
  410. }
  411. } else {
  412. float minrd = next_minrd;
  413. int mincb = next_mincb;
  414. int startcb = sce->band_type[win*16+swb];
  415. next_minrd = INFINITY;
  416. next_mincb = 0;
  417. for (cb = 0; cb < startcb; cb++) {
  418. path[swb+1][cb].cost = 61450;
  419. path[swb+1][cb].prev_idx = -1;
  420. path[swb+1][cb].run = 0;
  421. }
  422. for (cb = startcb; cb < 12; cb++) {
  423. float cost_stay_here, cost_get_here;
  424. float rd = 0.0f;
  425. for (w = 0; w < group_len; w++) {
  426. rd += quantize_band_cost(s, sce->coeffs + start + w*128,
  427. s->scoefs + start + w*128, size,
  428. sce->sf_idx[(win+w)*16+swb], cb,
  429. 0, INFINITY, NULL);
  430. }
  431. cost_stay_here = path[swb][cb].cost + rd;
  432. cost_get_here = minrd + rd + run_bits + 4;
  433. if ( run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
  434. != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
  435. cost_stay_here += run_bits;
  436. if (cost_get_here < cost_stay_here) {
  437. path[swb+1][cb].prev_idx = mincb;
  438. path[swb+1][cb].cost = cost_get_here;
  439. path[swb+1][cb].run = 1;
  440. } else {
  441. path[swb+1][cb].prev_idx = cb;
  442. path[swb+1][cb].cost = cost_stay_here;
  443. path[swb+1][cb].run = path[swb][cb].run + 1;
  444. }
  445. if (path[swb+1][cb].cost < next_minrd) {
  446. next_minrd = path[swb+1][cb].cost;
  447. next_mincb = cb;
  448. }
  449. }
  450. }
  451. start += sce->ics.swb_sizes[swb];
  452. }
  453. //convert resulting path from backward-linked list
  454. stack_len = 0;
  455. idx = 0;
  456. for (cb = 1; cb < 12; cb++)
  457. if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
  458. idx = cb;
  459. ppos = max_sfb;
  460. while (ppos > 0) {
  461. assert(idx >= 0);
  462. cb = idx;
  463. stackrun[stack_len] = path[ppos][cb].run;
  464. stackcb [stack_len] = cb;
  465. idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
  466. ppos -= path[ppos][cb].run;
  467. stack_len++;
  468. }
  469. //perform actual band info encoding
  470. start = 0;
  471. for (i = stack_len - 1; i >= 0; i--) {
  472. put_bits(&s->pb, 4, stackcb[i]);
  473. count = stackrun[i];
  474. memset(sce->zeroes + win*16 + start, !stackcb[i], count);
  475. //XXX: memset when band_type is also uint8_t
  476. for (j = 0; j < count; j++) {
  477. sce->band_type[win*16 + start] = stackcb[i];
  478. start++;
  479. }
  480. while (count >= run_esc) {
  481. put_bits(&s->pb, run_bits, run_esc);
  482. count -= run_esc;
  483. }
  484. put_bits(&s->pb, run_bits, count);
  485. }
  486. }
  487. /** Return the minimum scalefactor where the quantized coef does not clip. */
  488. static av_always_inline uint8_t coef2minsf(float coef) {
  489. return av_clip_uint8(log2(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
  490. }
  491. /** Return the maximum scalefactor where the quantized coef is not zero. */
  492. static av_always_inline uint8_t coef2maxsf(float coef) {
  493. return av_clip_uint8(log2(coef)*4 + 6 + SCALE_ONE_POS - SCALE_DIV_512);
  494. }
  495. typedef struct TrellisPath {
  496. float cost;
  497. int prev;
  498. } TrellisPath;
  499. #define TRELLIS_STAGES 121
  500. #define TRELLIS_STATES (SCALE_MAX_DIFF+1)
  501. static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
  502. SingleChannelElement *sce,
  503. const float lambda)
  504. {
  505. int q, w, w2, g, start = 0;
  506. int i, j;
  507. int idx;
  508. TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
  509. int bandaddr[TRELLIS_STAGES];
  510. int minq;
  511. float mincost;
  512. float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
  513. int q0, q1, qcnt = 0;
  514. for (i = 0; i < 1024; i++) {
  515. float t = fabsf(sce->coeffs[i]);
  516. if (t > 0.0f) {
  517. q0f = FFMIN(q0f, t);
  518. q1f = FFMAX(q1f, t);
  519. qnrgf += t*t;
  520. qcnt++;
  521. }
  522. }
  523. if (!qcnt) {
  524. memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
  525. memset(sce->zeroes, 1, sizeof(sce->zeroes));
  526. return;
  527. }
  528. //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
  529. q0 = coef2minsf(q0f);
  530. //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
  531. q1 = coef2maxsf(q1f);
  532. //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
  533. if (q1 - q0 > 60) {
  534. int q0low = q0;
  535. int q1high = q1;
  536. //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
  537. int qnrg = av_clip_uint8(log2(sqrt(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
  538. q1 = qnrg + 30;
  539. q0 = qnrg - 30;
  540. //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
  541. if (q0 < q0low) {
  542. q1 += q0low - q0;
  543. q0 = q0low;
  544. } else if (q1 > q1high) {
  545. q0 -= q1 - q1high;
  546. q1 = q1high;
  547. }
  548. }
  549. //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
  550. for (i = 0; i < TRELLIS_STATES; i++) {
  551. paths[0][i].cost = 0.0f;
  552. paths[0][i].prev = -1;
  553. }
  554. for (j = 1; j < TRELLIS_STAGES; j++) {
  555. for (i = 0; i < TRELLIS_STATES; i++) {
  556. paths[j][i].cost = INFINITY;
  557. paths[j][i].prev = -2;
  558. }
  559. }
  560. idx = 1;
  561. abs_pow34_v(s->scoefs, sce->coeffs, 1024);
  562. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  563. start = w*128;
  564. for (g = 0; g < sce->ics.num_swb; g++) {
  565. const float *coefs = sce->coeffs + start;
  566. float qmin, qmax;
  567. int nz = 0;
  568. bandaddr[idx] = w * 16 + g;
  569. qmin = INT_MAX;
  570. qmax = 0.0f;
  571. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  572. FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
  573. if (band->energy <= band->threshold || band->threshold == 0.0f) {
  574. sce->zeroes[(w+w2)*16+g] = 1;
  575. continue;
  576. }
  577. sce->zeroes[(w+w2)*16+g] = 0;
  578. nz = 1;
  579. for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
  580. float t = fabsf(coefs[w2*128+i]);
  581. if (t > 0.0f)
  582. qmin = FFMIN(qmin, t);
  583. qmax = FFMAX(qmax, t);
  584. }
  585. }
  586. if (nz) {
  587. int minscale, maxscale;
  588. float minrd = INFINITY;
  589. float maxval;
  590. //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
  591. minscale = coef2minsf(qmin);
  592. //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
  593. maxscale = coef2maxsf(qmax);
  594. minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
  595. maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
  596. maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
  597. for (q = minscale; q < maxscale; q++) {
  598. float dist = 0;
  599. int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
  600. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  601. FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
  602. dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
  603. q + q0, cb, lambda / band->threshold, INFINITY, NULL);
  604. }
  605. minrd = FFMIN(minrd, dist);
  606. for (i = 0; i < q1 - q0; i++) {
  607. float cost;
  608. cost = paths[idx - 1][i].cost + dist
  609. + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
  610. if (cost < paths[idx][q].cost) {
  611. paths[idx][q].cost = cost;
  612. paths[idx][q].prev = i;
  613. }
  614. }
  615. }
  616. } else {
  617. for (q = 0; q < q1 - q0; q++) {
  618. paths[idx][q].cost = paths[idx - 1][q].cost + 1;
  619. paths[idx][q].prev = q;
  620. }
  621. }
  622. sce->zeroes[w*16+g] = !nz;
  623. start += sce->ics.swb_sizes[g];
  624. idx++;
  625. }
  626. }
  627. idx--;
  628. mincost = paths[idx][0].cost;
  629. minq = 0;
  630. for (i = 1; i < TRELLIS_STATES; i++) {
  631. if (paths[idx][i].cost < mincost) {
  632. mincost = paths[idx][i].cost;
  633. minq = i;
  634. }
  635. }
  636. while (idx) {
  637. sce->sf_idx[bandaddr[idx]] = minq + q0;
  638. minq = paths[idx][minq].prev;
  639. idx--;
  640. }
  641. //set the same quantizers inside window groups
  642. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
  643. for (g = 0; g < sce->ics.num_swb; g++)
  644. for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
  645. sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
  646. }
  647. /**
  648. * two-loop quantizers search taken from ISO 13818-7 Appendix C
  649. */
  650. static void search_for_quantizers_twoloop(AVCodecContext *avctx,
  651. AACEncContext *s,
  652. SingleChannelElement *sce,
  653. const float lambda)
  654. {
  655. int start = 0, i, w, w2, g;
  656. int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels;
  657. float dists[128], uplims[128];
  658. int fflag, minscaler;
  659. int its = 0;
  660. int allz = 0;
  661. float minthr = INFINITY;
  662. //XXX: some heuristic to determine initial quantizers will reduce search time
  663. memset(dists, 0, sizeof(dists));
  664. //determine zero bands and upper limits
  665. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  666. for (g = 0; g < sce->ics.num_swb; g++) {
  667. int nz = 0;
  668. float uplim = 0.0f;
  669. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  670. FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
  671. uplim += band->threshold;
  672. if (band->energy <= band->threshold || band->threshold == 0.0f) {
  673. sce->zeroes[(w+w2)*16+g] = 1;
  674. continue;
  675. }
  676. nz = 1;
  677. }
  678. uplims[w*16+g] = uplim *512;
  679. sce->zeroes[w*16+g] = !nz;
  680. if (nz)
  681. minthr = FFMIN(minthr, uplim);
  682. allz = FFMAX(allz, nz);
  683. }
  684. }
  685. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  686. for (g = 0; g < sce->ics.num_swb; g++) {
  687. if (sce->zeroes[w*16+g]) {
  688. sce->sf_idx[w*16+g] = SCALE_ONE_POS;
  689. continue;
  690. }
  691. sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2(uplims[w*16+g]/minthr)*4,59);
  692. }
  693. }
  694. if (!allz)
  695. return;
  696. abs_pow34_v(s->scoefs, sce->coeffs, 1024);
  697. //perform two-loop search
  698. //outer loop - improve quality
  699. do {
  700. int tbits, qstep;
  701. minscaler = sce->sf_idx[0];
  702. //inner loop - quantize spectrum to fit into given number of bits
  703. qstep = its ? 1 : 32;
  704. do {
  705. int prev = -1;
  706. tbits = 0;
  707. fflag = 0;
  708. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  709. start = w*128;
  710. for (g = 0; g < sce->ics.num_swb; g++) {
  711. const float *coefs = sce->coeffs + start;
  712. const float *scaled = s->scoefs + start;
  713. int bits = 0;
  714. int cb;
  715. float dist = 0.0f;
  716. if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
  717. start += sce->ics.swb_sizes[g];
  718. continue;
  719. }
  720. minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
  721. cb = find_min_book(find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled), sce->sf_idx[w*16+g]);
  722. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  723. int b;
  724. dist += quantize_band_cost(s, coefs + w2*128,
  725. scaled + w2*128,
  726. sce->ics.swb_sizes[g],
  727. sce->sf_idx[w*16+g],
  728. cb,
  729. 1.0f,
  730. INFINITY,
  731. &b);
  732. bits += b;
  733. }
  734. dists[w*16+g] = dist - bits;
  735. if (prev != -1) {
  736. bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
  737. }
  738. tbits += bits;
  739. start += sce->ics.swb_sizes[g];
  740. prev = sce->sf_idx[w*16+g];
  741. }
  742. }
  743. if (tbits > destbits) {
  744. for (i = 0; i < 128; i++)
  745. if (sce->sf_idx[i] < 218 - qstep)
  746. sce->sf_idx[i] += qstep;
  747. } else {
  748. for (i = 0; i < 128; i++)
  749. if (sce->sf_idx[i] > 60 - qstep)
  750. sce->sf_idx[i] -= qstep;
  751. }
  752. qstep >>= 1;
  753. if (!qstep && tbits > destbits*1.02)
  754. qstep = 1;
  755. if (sce->sf_idx[0] >= 217)
  756. break;
  757. } while (qstep);
  758. fflag = 0;
  759. minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
  760. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  761. start = w*128;
  762. for (g = 0; g < sce->ics.num_swb; g++) {
  763. int prevsc = sce->sf_idx[w*16+g];
  764. const float *scaled = s->scoefs + start;
  765. if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60)
  766. sce->sf_idx[w*16+g]--;
  767. sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
  768. sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
  769. if (sce->sf_idx[w*16+g] != prevsc)
  770. fflag = 1;
  771. sce->band_type[w*16+g] = find_min_book(find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled), sce->sf_idx[w*16+g]);
  772. start += sce->ics.swb_sizes[g];
  773. }
  774. }
  775. its++;
  776. } while (fflag && its < 10);
  777. }
  778. static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
  779. SingleChannelElement *sce,
  780. const float lambda)
  781. {
  782. int start = 0, i, w, w2, g;
  783. float uplim[128], maxq[128];
  784. int minq, maxsf;
  785. float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
  786. int last = 0, lastband = 0, curband = 0;
  787. float avg_energy = 0.0;
  788. if (sce->ics.num_windows == 1) {
  789. start = 0;
  790. for (i = 0; i < 1024; i++) {
  791. if (i - start >= sce->ics.swb_sizes[curband]) {
  792. start += sce->ics.swb_sizes[curband];
  793. curband++;
  794. }
  795. if (sce->coeffs[i]) {
  796. avg_energy += sce->coeffs[i] * sce->coeffs[i];
  797. last = i;
  798. lastband = curband;
  799. }
  800. }
  801. } else {
  802. for (w = 0; w < 8; w++) {
  803. const float *coeffs = sce->coeffs + w*128;
  804. start = 0;
  805. for (i = 0; i < 128; i++) {
  806. if (i - start >= sce->ics.swb_sizes[curband]) {
  807. start += sce->ics.swb_sizes[curband];
  808. curband++;
  809. }
  810. if (coeffs[i]) {
  811. avg_energy += coeffs[i] * coeffs[i];
  812. last = FFMAX(last, i);
  813. lastband = FFMAX(lastband, curband);
  814. }
  815. }
  816. }
  817. }
  818. last++;
  819. avg_energy /= last;
  820. if (avg_energy == 0.0f) {
  821. for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
  822. sce->sf_idx[i] = SCALE_ONE_POS;
  823. return;
  824. }
  825. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  826. start = w*128;
  827. for (g = 0; g < sce->ics.num_swb; g++) {
  828. float *coefs = sce->coeffs + start;
  829. const int size = sce->ics.swb_sizes[g];
  830. int start2 = start, end2 = start + size, peakpos = start;
  831. float maxval = -1, thr = 0.0f, t;
  832. maxq[w*16+g] = 0.0f;
  833. if (g > lastband) {
  834. maxq[w*16+g] = 0.0f;
  835. start += size;
  836. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
  837. memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
  838. continue;
  839. }
  840. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  841. for (i = 0; i < size; i++) {
  842. float t = coefs[w2*128+i]*coefs[w2*128+i];
  843. maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
  844. thr += t;
  845. if (sce->ics.num_windows == 1 && maxval < t) {
  846. maxval = t;
  847. peakpos = start+i;
  848. }
  849. }
  850. }
  851. if (sce->ics.num_windows == 1) {
  852. start2 = FFMAX(peakpos - 2, start2);
  853. end2 = FFMIN(peakpos + 3, end2);
  854. } else {
  855. start2 -= start;
  856. end2 -= start;
  857. }
  858. start += size;
  859. thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
  860. t = 1.0 - (1.0 * start2 / last);
  861. uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
  862. }
  863. }
  864. memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
  865. abs_pow34_v(s->scoefs, sce->coeffs, 1024);
  866. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  867. start = w*128;
  868. for (g = 0; g < sce->ics.num_swb; g++) {
  869. const float *coefs = sce->coeffs + start;
  870. const float *scaled = s->scoefs + start;
  871. const int size = sce->ics.swb_sizes[g];
  872. int scf, prev_scf, step;
  873. int min_scf = -1, max_scf = 256;
  874. float curdiff;
  875. if (maxq[w*16+g] < 21.544) {
  876. sce->zeroes[w*16+g] = 1;
  877. start += size;
  878. continue;
  879. }
  880. sce->zeroes[w*16+g] = 0;
  881. scf = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2(1/maxq[w*16+g])*16/3, 60, 218);
  882. step = 16;
  883. for (;;) {
  884. float dist = 0.0f;
  885. int quant_max;
  886. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  887. int b;
  888. dist += quantize_band_cost(s, coefs + w2*128,
  889. scaled + w2*128,
  890. sce->ics.swb_sizes[g],
  891. scf,
  892. ESC_BT,
  893. lambda,
  894. INFINITY,
  895. &b);
  896. dist -= b;
  897. }
  898. dist *= 1.0f / 512.0f / lambda;
  899. quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[200 - scf + SCALE_ONE_POS - SCALE_DIV_512]);
  900. if (quant_max >= 8191) { // too much, return to the previous quantizer
  901. sce->sf_idx[w*16+g] = prev_scf;
  902. break;
  903. }
  904. prev_scf = scf;
  905. curdiff = fabsf(dist - uplim[w*16+g]);
  906. if (curdiff <= 1.0f)
  907. step = 0;
  908. else
  909. step = log2(curdiff);
  910. if (dist > uplim[w*16+g])
  911. step = -step;
  912. scf += step;
  913. scf = av_clip_uint8(scf);
  914. step = scf - prev_scf;
  915. if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
  916. sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
  917. break;
  918. }
  919. if (step > 0)
  920. min_scf = prev_scf;
  921. else
  922. max_scf = prev_scf;
  923. }
  924. start += size;
  925. }
  926. }
  927. minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
  928. for (i = 1; i < 128; i++) {
  929. if (!sce->sf_idx[i])
  930. sce->sf_idx[i] = sce->sf_idx[i-1];
  931. else
  932. minq = FFMIN(minq, sce->sf_idx[i]);
  933. }
  934. if (minq == INT_MAX)
  935. minq = 0;
  936. minq = FFMIN(minq, SCALE_MAX_POS);
  937. maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
  938. for (i = 126; i >= 0; i--) {
  939. if (!sce->sf_idx[i])
  940. sce->sf_idx[i] = sce->sf_idx[i+1];
  941. sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
  942. }
  943. }
  944. static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
  945. SingleChannelElement *sce,
  946. const float lambda)
  947. {
  948. int start = 0, i, w, w2, g;
  949. int minq = 255;
  950. memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
  951. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
  952. start = w*128;
  953. for (g = 0; g < sce->ics.num_swb; g++) {
  954. for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
  955. FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
  956. if (band->energy <= band->threshold) {
  957. sce->sf_idx[(w+w2)*16+g] = 218;
  958. sce->zeroes[(w+w2)*16+g] = 1;
  959. } else {
  960. sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2(band->threshold), 80, 218);
  961. sce->zeroes[(w+w2)*16+g] = 0;
  962. }
  963. minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
  964. }
  965. }
  966. }
  967. for (i = 0; i < 128; i++) {
  968. sce->sf_idx[i] = 140;
  969. //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
  970. }
  971. //set the same quantizers inside window groups
  972. for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
  973. for (g = 0; g < sce->ics.num_swb; g++)
  974. for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
  975. sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
  976. }
  977. static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
  978. const float lambda)
  979. {
  980. int start = 0, i, w, w2, g;
  981. float M[128], S[128];
  982. float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
  983. SingleChannelElement *sce0 = &cpe->ch[0];
  984. SingleChannelElement *sce1 = &cpe->ch[1];
  985. if (!cpe->common_window)
  986. return;
  987. for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
  988. for (g = 0; g < sce0->ics.num_swb; g++) {
  989. if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
  990. float dist1 = 0.0f, dist2 = 0.0f;
  991. for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
  992. FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
  993. FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
  994. float minthr = FFMIN(band0->threshold, band1->threshold);
  995. float maxthr = FFMAX(band0->threshold, band1->threshold);
  996. for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
  997. M[i] = (sce0->coeffs[start+w2*128+i]
  998. + sce1->coeffs[start+w2*128+i]) * 0.5;
  999. S[i] = sce0->coeffs[start+w2*128+i]
  1000. - sce1->coeffs[start+w2*128+i];
  1001. }
  1002. abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
  1003. abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
  1004. abs_pow34_v(M34, M, sce0->ics.swb_sizes[g]);
  1005. abs_pow34_v(S34, S, sce0->ics.swb_sizes[g]);
  1006. dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
  1007. L34,
  1008. sce0->ics.swb_sizes[g],
  1009. sce0->sf_idx[(w+w2)*16+g],
  1010. sce0->band_type[(w+w2)*16+g],
  1011. lambda / band0->threshold, INFINITY, NULL);
  1012. dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
  1013. R34,
  1014. sce1->ics.swb_sizes[g],
  1015. sce1->sf_idx[(w+w2)*16+g],
  1016. sce1->band_type[(w+w2)*16+g],
  1017. lambda / band1->threshold, INFINITY, NULL);
  1018. dist2 += quantize_band_cost(s, M,
  1019. M34,
  1020. sce0->ics.swb_sizes[g],
  1021. sce0->sf_idx[(w+w2)*16+g],
  1022. sce0->band_type[(w+w2)*16+g],
  1023. lambda / maxthr, INFINITY, NULL);
  1024. dist2 += quantize_band_cost(s, S,
  1025. S34,
  1026. sce1->ics.swb_sizes[g],
  1027. sce1->sf_idx[(w+w2)*16+g],
  1028. sce1->band_type[(w+w2)*16+g],
  1029. lambda / minthr, INFINITY, NULL);
  1030. }
  1031. cpe->ms_mask[w*16+g] = dist2 < dist1;
  1032. }
  1033. start += sce0->ics.swb_sizes[g];
  1034. }
  1035. }
  1036. }
  1037. AACCoefficientsEncoder ff_aac_coders[] = {
  1038. {
  1039. search_for_quantizers_faac,
  1040. encode_window_bands_info,
  1041. quantize_and_encode_band,
  1042. search_for_ms,
  1043. },
  1044. {
  1045. search_for_quantizers_anmr,
  1046. encode_window_bands_info,
  1047. quantize_and_encode_band,
  1048. search_for_ms,
  1049. },
  1050. {
  1051. search_for_quantizers_twoloop,
  1052. codebook_trellis_rate,
  1053. quantize_and_encode_band,
  1054. search_for_ms,
  1055. },
  1056. {
  1057. search_for_quantizers_fast,
  1058. encode_window_bands_info,
  1059. quantize_and_encode_band,
  1060. search_for_ms,
  1061. },
  1062. };