You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

385 lines
10KB

  1. /*
  2. * FFT/IFFT transforms
  3. * Copyright (c) 2008 Loren Merritt
  4. * Copyright (c) 2002 Fabrice Bellard
  5. * Partly based on libdjbfft by D. J. Bernstein
  6. *
  7. * This file is part of FFmpeg.
  8. *
  9. * FFmpeg is free software; you can redistribute it and/or
  10. * modify it under the terms of the GNU Lesser General Public
  11. * License as published by the Free Software Foundation; either
  12. * version 2.1 of the License, or (at your option) any later version.
  13. *
  14. * FFmpeg is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. * Lesser General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU Lesser General Public
  20. * License along with FFmpeg; if not, write to the Free Software
  21. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. */
  23. /**
  24. * @file libavcodec/fft.c
  25. * FFT/IFFT transforms.
  26. */
  27. #include "dsputil.h"
  28. /* cos(2*pi*x/n) for 0<=x<=n/4, followed by its reverse */
  29. DECLARE_ALIGNED_16(FFTSample, ff_cos_16[8]);
  30. DECLARE_ALIGNED_16(FFTSample, ff_cos_32[16]);
  31. DECLARE_ALIGNED_16(FFTSample, ff_cos_64[32]);
  32. DECLARE_ALIGNED_16(FFTSample, ff_cos_128[64]);
  33. DECLARE_ALIGNED_16(FFTSample, ff_cos_256[128]);
  34. DECLARE_ALIGNED_16(FFTSample, ff_cos_512[256]);
  35. DECLARE_ALIGNED_16(FFTSample, ff_cos_1024[512]);
  36. DECLARE_ALIGNED_16(FFTSample, ff_cos_2048[1024]);
  37. DECLARE_ALIGNED_16(FFTSample, ff_cos_4096[2048]);
  38. DECLARE_ALIGNED_16(FFTSample, ff_cos_8192[4096]);
  39. DECLARE_ALIGNED_16(FFTSample, ff_cos_16384[8192]);
  40. DECLARE_ALIGNED_16(FFTSample, ff_cos_32768[16384]);
  41. DECLARE_ALIGNED_16(FFTSample, ff_cos_65536[32768]);
  42. FFTSample * const ff_cos_tabs[] = {
  43. ff_cos_16, ff_cos_32, ff_cos_64, ff_cos_128, ff_cos_256, ff_cos_512, ff_cos_1024,
  44. ff_cos_2048, ff_cos_4096, ff_cos_8192, ff_cos_16384, ff_cos_32768, ff_cos_65536,
  45. };
  46. static int split_radix_permutation(int i, int n, int inverse)
  47. {
  48. int m;
  49. if(n <= 2) return i&1;
  50. m = n >> 1;
  51. if(!(i&m)) return split_radix_permutation(i, m, inverse)*2;
  52. m >>= 1;
  53. if(inverse == !(i&m)) return split_radix_permutation(i, m, inverse)*4 + 1;
  54. else return split_radix_permutation(i, m, inverse)*4 - 1;
  55. }
  56. av_cold int ff_fft_init(FFTContext *s, int nbits, int inverse)
  57. {
  58. int i, j, m, n;
  59. float alpha, c1, s1, s2;
  60. int split_radix = 1;
  61. int av_unused has_vectors;
  62. int revtab_shift = 0;
  63. if (nbits < 2 || nbits > 16)
  64. goto fail;
  65. s->nbits = nbits;
  66. n = 1 << nbits;
  67. s->tmp_buf = NULL;
  68. s->exptab = av_malloc((n / 2) * sizeof(FFTComplex));
  69. if (!s->exptab)
  70. goto fail;
  71. s->revtab = av_malloc(n * sizeof(uint16_t));
  72. if (!s->revtab)
  73. goto fail;
  74. s->inverse = inverse;
  75. s2 = inverse ? 1.0 : -1.0;
  76. s->fft_permute = ff_fft_permute_c;
  77. s->fft_calc = ff_fft_calc_c;
  78. s->imdct_calc = ff_imdct_calc_c;
  79. s->imdct_half = ff_imdct_half_c;
  80. s->mdct_calc = ff_mdct_calc_c;
  81. s->exptab1 = NULL;
  82. #if HAVE_MMX && HAVE_YASM
  83. has_vectors = mm_support();
  84. if (has_vectors & FF_MM_SSE && HAVE_SSE) {
  85. /* SSE for P3/P4/K8 */
  86. s->imdct_calc = ff_imdct_calc_sse;
  87. s->imdct_half = ff_imdct_half_sse;
  88. s->fft_permute = ff_fft_permute_sse;
  89. s->fft_calc = ff_fft_calc_sse;
  90. } else if (has_vectors & FF_MM_3DNOWEXT && HAVE_AMD3DNOWEXT) {
  91. /* 3DNowEx for K7 */
  92. s->imdct_calc = ff_imdct_calc_3dn2;
  93. s->imdct_half = ff_imdct_half_3dn2;
  94. s->fft_calc = ff_fft_calc_3dn2;
  95. } else if (has_vectors & FF_MM_3DNOW && HAVE_AMD3DNOW) {
  96. /* 3DNow! for K6-2/3 */
  97. s->imdct_calc = ff_imdct_calc_3dn;
  98. s->imdct_half = ff_imdct_half_3dn;
  99. s->fft_calc = ff_fft_calc_3dn;
  100. }
  101. #elif HAVE_ALTIVEC
  102. has_vectors = mm_support();
  103. if (has_vectors & FF_MM_ALTIVEC) {
  104. s->fft_calc = ff_fft_calc_altivec;
  105. split_radix = 0;
  106. }
  107. #elif HAVE_NEON
  108. s->fft_permute = ff_fft_permute_neon;
  109. s->fft_calc = ff_fft_calc_neon;
  110. s->imdct_calc = ff_imdct_calc_neon;
  111. s->imdct_half = ff_imdct_half_neon;
  112. s->mdct_calc = ff_mdct_calc_neon;
  113. revtab_shift = 3;
  114. #endif
  115. if (split_radix) {
  116. for(j=4; j<=nbits; j++) {
  117. int m = 1<<j;
  118. double freq = 2*M_PI/m;
  119. FFTSample *tab = ff_cos_tabs[j-4];
  120. for(i=0; i<=m/4; i++)
  121. tab[i] = cos(i*freq);
  122. for(i=1; i<m/4; i++)
  123. tab[m/2-i] = tab[i];
  124. }
  125. for(i=0; i<n; i++)
  126. s->revtab[-split_radix_permutation(i, n, s->inverse) & (n-1)] =
  127. i << revtab_shift;
  128. s->tmp_buf = av_malloc(n * sizeof(FFTComplex));
  129. } else {
  130. int np, nblocks, np2, l;
  131. FFTComplex *q;
  132. for(i=0; i<(n/2); i++) {
  133. alpha = 2 * M_PI * (float)i / (float)n;
  134. c1 = cos(alpha);
  135. s1 = sin(alpha) * s2;
  136. s->exptab[i].re = c1;
  137. s->exptab[i].im = s1;
  138. }
  139. np = 1 << nbits;
  140. nblocks = np >> 3;
  141. np2 = np >> 1;
  142. s->exptab1 = av_malloc(np * 2 * sizeof(FFTComplex));
  143. if (!s->exptab1)
  144. goto fail;
  145. q = s->exptab1;
  146. do {
  147. for(l = 0; l < np2; l += 2 * nblocks) {
  148. *q++ = s->exptab[l];
  149. *q++ = s->exptab[l + nblocks];
  150. q->re = -s->exptab[l].im;
  151. q->im = s->exptab[l].re;
  152. q++;
  153. q->re = -s->exptab[l + nblocks].im;
  154. q->im = s->exptab[l + nblocks].re;
  155. q++;
  156. }
  157. nblocks = nblocks >> 1;
  158. } while (nblocks != 0);
  159. av_freep(&s->exptab);
  160. /* compute bit reverse table */
  161. for(i=0;i<n;i++) {
  162. m=0;
  163. for(j=0;j<nbits;j++) {
  164. m |= ((i >> j) & 1) << (nbits-j-1);
  165. }
  166. s->revtab[i]=m;
  167. }
  168. }
  169. return 0;
  170. fail:
  171. av_freep(&s->revtab);
  172. av_freep(&s->exptab);
  173. av_freep(&s->exptab1);
  174. av_freep(&s->tmp_buf);
  175. return -1;
  176. }
  177. void ff_fft_permute_c(FFTContext *s, FFTComplex *z)
  178. {
  179. int j, k, np;
  180. FFTComplex tmp;
  181. const uint16_t *revtab = s->revtab;
  182. np = 1 << s->nbits;
  183. if (s->tmp_buf) {
  184. /* TODO: handle split-radix permute in a more optimal way, probably in-place */
  185. for(j=0;j<np;j++) s->tmp_buf[revtab[j]] = z[j];
  186. memcpy(z, s->tmp_buf, np * sizeof(FFTComplex));
  187. return;
  188. }
  189. /* reverse */
  190. for(j=0;j<np;j++) {
  191. k = revtab[j];
  192. if (k < j) {
  193. tmp = z[k];
  194. z[k] = z[j];
  195. z[j] = tmp;
  196. }
  197. }
  198. }
  199. av_cold void ff_fft_end(FFTContext *s)
  200. {
  201. av_freep(&s->revtab);
  202. av_freep(&s->exptab);
  203. av_freep(&s->exptab1);
  204. av_freep(&s->tmp_buf);
  205. }
  206. #define sqrthalf (float)M_SQRT1_2
  207. #define BF(x,y,a,b) {\
  208. x = a - b;\
  209. y = a + b;\
  210. }
  211. #define BUTTERFLIES(a0,a1,a2,a3) {\
  212. BF(t3, t5, t5, t1);\
  213. BF(a2.re, a0.re, a0.re, t5);\
  214. BF(a3.im, a1.im, a1.im, t3);\
  215. BF(t4, t6, t2, t6);\
  216. BF(a3.re, a1.re, a1.re, t4);\
  217. BF(a2.im, a0.im, a0.im, t6);\
  218. }
  219. // force loading all the inputs before storing any.
  220. // this is slightly slower for small data, but avoids store->load aliasing
  221. // for addresses separated by large powers of 2.
  222. #define BUTTERFLIES_BIG(a0,a1,a2,a3) {\
  223. FFTSample r0=a0.re, i0=a0.im, r1=a1.re, i1=a1.im;\
  224. BF(t3, t5, t5, t1);\
  225. BF(a2.re, a0.re, r0, t5);\
  226. BF(a3.im, a1.im, i1, t3);\
  227. BF(t4, t6, t2, t6);\
  228. BF(a3.re, a1.re, r1, t4);\
  229. BF(a2.im, a0.im, i0, t6);\
  230. }
  231. #define TRANSFORM(a0,a1,a2,a3,wre,wim) {\
  232. t1 = a2.re * wre + a2.im * wim;\
  233. t2 = a2.im * wre - a2.re * wim;\
  234. t5 = a3.re * wre - a3.im * wim;\
  235. t6 = a3.im * wre + a3.re * wim;\
  236. BUTTERFLIES(a0,a1,a2,a3)\
  237. }
  238. #define TRANSFORM_ZERO(a0,a1,a2,a3) {\
  239. t1 = a2.re;\
  240. t2 = a2.im;\
  241. t5 = a3.re;\
  242. t6 = a3.im;\
  243. BUTTERFLIES(a0,a1,a2,a3)\
  244. }
  245. /* z[0...8n-1], w[1...2n-1] */
  246. #define PASS(name)\
  247. static void name(FFTComplex *z, const FFTSample *wre, unsigned int n)\
  248. {\
  249. FFTSample t1, t2, t3, t4, t5, t6;\
  250. int o1 = 2*n;\
  251. int o2 = 4*n;\
  252. int o3 = 6*n;\
  253. const FFTSample *wim = wre+o1;\
  254. n--;\
  255. \
  256. TRANSFORM_ZERO(z[0],z[o1],z[o2],z[o3]);\
  257. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  258. do {\
  259. z += 2;\
  260. wre += 2;\
  261. wim -= 2;\
  262. TRANSFORM(z[0],z[o1],z[o2],z[o3],wre[0],wim[0]);\
  263. TRANSFORM(z[1],z[o1+1],z[o2+1],z[o3+1],wre[1],wim[-1]);\
  264. } while(--n);\
  265. }
  266. PASS(pass)
  267. #undef BUTTERFLIES
  268. #define BUTTERFLIES BUTTERFLIES_BIG
  269. PASS(pass_big)
  270. #define DECL_FFT(n,n2,n4)\
  271. static void fft##n(FFTComplex *z)\
  272. {\
  273. fft##n2(z);\
  274. fft##n4(z+n4*2);\
  275. fft##n4(z+n4*3);\
  276. pass(z,ff_cos_##n,n4/2);\
  277. }
  278. static void fft4(FFTComplex *z)
  279. {
  280. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  281. BF(t3, t1, z[0].re, z[1].re);
  282. BF(t8, t6, z[3].re, z[2].re);
  283. BF(z[2].re, z[0].re, t1, t6);
  284. BF(t4, t2, z[0].im, z[1].im);
  285. BF(t7, t5, z[2].im, z[3].im);
  286. BF(z[3].im, z[1].im, t4, t8);
  287. BF(z[3].re, z[1].re, t3, t7);
  288. BF(z[2].im, z[0].im, t2, t5);
  289. }
  290. static void fft8(FFTComplex *z)
  291. {
  292. FFTSample t1, t2, t3, t4, t5, t6, t7, t8;
  293. fft4(z);
  294. BF(t1, z[5].re, z[4].re, -z[5].re);
  295. BF(t2, z[5].im, z[4].im, -z[5].im);
  296. BF(t3, z[7].re, z[6].re, -z[7].re);
  297. BF(t4, z[7].im, z[6].im, -z[7].im);
  298. BF(t8, t1, t3, t1);
  299. BF(t7, t2, t2, t4);
  300. BF(z[4].re, z[0].re, z[0].re, t1);
  301. BF(z[4].im, z[0].im, z[0].im, t2);
  302. BF(z[6].re, z[2].re, z[2].re, t7);
  303. BF(z[6].im, z[2].im, z[2].im, t8);
  304. TRANSFORM(z[1],z[3],z[5],z[7],sqrthalf,sqrthalf);
  305. }
  306. #if !CONFIG_SMALL
  307. static void fft16(FFTComplex *z)
  308. {
  309. FFTSample t1, t2, t3, t4, t5, t6;
  310. fft8(z);
  311. fft4(z+8);
  312. fft4(z+12);
  313. TRANSFORM_ZERO(z[0],z[4],z[8],z[12]);
  314. TRANSFORM(z[2],z[6],z[10],z[14],sqrthalf,sqrthalf);
  315. TRANSFORM(z[1],z[5],z[9],z[13],ff_cos_16[1],ff_cos_16[3]);
  316. TRANSFORM(z[3],z[7],z[11],z[15],ff_cos_16[3],ff_cos_16[1]);
  317. }
  318. #else
  319. DECL_FFT(16,8,4)
  320. #endif
  321. DECL_FFT(32,16,8)
  322. DECL_FFT(64,32,16)
  323. DECL_FFT(128,64,32)
  324. DECL_FFT(256,128,64)
  325. DECL_FFT(512,256,128)
  326. #if !CONFIG_SMALL
  327. #define pass pass_big
  328. #endif
  329. DECL_FFT(1024,512,256)
  330. DECL_FFT(2048,1024,512)
  331. DECL_FFT(4096,2048,1024)
  332. DECL_FFT(8192,4096,2048)
  333. DECL_FFT(16384,8192,4096)
  334. DECL_FFT(32768,16384,8192)
  335. DECL_FFT(65536,32768,16384)
  336. static void (*fft_dispatch[])(FFTComplex*) = {
  337. fft4, fft8, fft16, fft32, fft64, fft128, fft256, fft512, fft1024,
  338. fft2048, fft4096, fft8192, fft16384, fft32768, fft65536,
  339. };
  340. void ff_fft_calc_c(FFTContext *s, FFTComplex *z)
  341. {
  342. fft_dispatch[s->nbits-2](z);
  343. }