You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1768 lines
66KB

  1. /*
  2. * AAC Spectral Band Replication decoding functions
  3. * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
  4. * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * AAC Spectral Band Replication decoding functions
  25. * @author Robert Swain ( rob opendot cl )
  26. */
  27. #include "aac.h"
  28. #include "sbr.h"
  29. #include "aacsbr.h"
  30. #include "aacsbrdata.h"
  31. #include "fft.h"
  32. #include "aacps.h"
  33. #include "libavutil/libm.h"
  34. #include <stdint.h>
  35. #include <float.h>
  36. #include <math.h>
  37. #define ENVELOPE_ADJUSTMENT_OFFSET 2
  38. #define NOISE_FLOOR_OFFSET 6.0f
  39. /**
  40. * SBR VLC tables
  41. */
  42. enum {
  43. T_HUFFMAN_ENV_1_5DB,
  44. F_HUFFMAN_ENV_1_5DB,
  45. T_HUFFMAN_ENV_BAL_1_5DB,
  46. F_HUFFMAN_ENV_BAL_1_5DB,
  47. T_HUFFMAN_ENV_3_0DB,
  48. F_HUFFMAN_ENV_3_0DB,
  49. T_HUFFMAN_ENV_BAL_3_0DB,
  50. F_HUFFMAN_ENV_BAL_3_0DB,
  51. T_HUFFMAN_NOISE_3_0DB,
  52. T_HUFFMAN_NOISE_BAL_3_0DB,
  53. };
  54. /**
  55. * bs_frame_class - frame class of current SBR frame (14496-3 sp04 p98)
  56. */
  57. enum {
  58. FIXFIX,
  59. FIXVAR,
  60. VARFIX,
  61. VARVAR,
  62. };
  63. enum {
  64. EXTENSION_ID_PS = 2,
  65. };
  66. static VLC vlc_sbr[10];
  67. static const int8_t vlc_sbr_lav[10] =
  68. { 60, 60, 24, 24, 31, 31, 12, 12, 31, 12 };
  69. static const DECLARE_ALIGNED(16, float, zero64)[64];
  70. #define SBR_INIT_VLC_STATIC(num, size) \
  71. INIT_VLC_STATIC(&vlc_sbr[num], 9, sbr_tmp[num].table_size / sbr_tmp[num].elem_size, \
  72. sbr_tmp[num].sbr_bits , 1, 1, \
  73. sbr_tmp[num].sbr_codes, sbr_tmp[num].elem_size, sbr_tmp[num].elem_size, \
  74. size)
  75. #define SBR_VLC_ROW(name) \
  76. { name ## _codes, name ## _bits, sizeof(name ## _codes), sizeof(name ## _codes[0]) }
  77. av_cold void ff_aac_sbr_init(void)
  78. {
  79. int n;
  80. static const struct {
  81. const void *sbr_codes, *sbr_bits;
  82. const unsigned int table_size, elem_size;
  83. } sbr_tmp[] = {
  84. SBR_VLC_ROW(t_huffman_env_1_5dB),
  85. SBR_VLC_ROW(f_huffman_env_1_5dB),
  86. SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
  87. SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
  88. SBR_VLC_ROW(t_huffman_env_3_0dB),
  89. SBR_VLC_ROW(f_huffman_env_3_0dB),
  90. SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
  91. SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
  92. SBR_VLC_ROW(t_huffman_noise_3_0dB),
  93. SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
  94. };
  95. // SBR VLC table initialization
  96. SBR_INIT_VLC_STATIC(0, 1098);
  97. SBR_INIT_VLC_STATIC(1, 1092);
  98. SBR_INIT_VLC_STATIC(2, 768);
  99. SBR_INIT_VLC_STATIC(3, 1026);
  100. SBR_INIT_VLC_STATIC(4, 1058);
  101. SBR_INIT_VLC_STATIC(5, 1052);
  102. SBR_INIT_VLC_STATIC(6, 544);
  103. SBR_INIT_VLC_STATIC(7, 544);
  104. SBR_INIT_VLC_STATIC(8, 592);
  105. SBR_INIT_VLC_STATIC(9, 512);
  106. for (n = 1; n < 320; n++)
  107. sbr_qmf_window_us[320 + n] = sbr_qmf_window_us[320 - n];
  108. sbr_qmf_window_us[384] = -sbr_qmf_window_us[384];
  109. sbr_qmf_window_us[512] = -sbr_qmf_window_us[512];
  110. for (n = 0; n < 320; n++)
  111. sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
  112. ff_ps_init();
  113. }
  114. av_cold void ff_aac_sbr_ctx_init(AACContext *ac, SpectralBandReplication *sbr)
  115. {
  116. float mdct_scale;
  117. sbr->kx[0] = sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
  118. sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
  119. sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  120. sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
  121. /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
  122. * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
  123. * and scale back down at synthesis. */
  124. mdct_scale = ac->avctx->sample_fmt == AV_SAMPLE_FMT_FLT ? 32768.0f : 1.0f;
  125. ff_mdct_init(&sbr->mdct, 7, 1, 1.0 / (64 * mdct_scale));
  126. ff_mdct_init(&sbr->mdct_ana, 7, 1, -2.0 * mdct_scale);
  127. ff_ps_ctx_init(&sbr->ps);
  128. }
  129. av_cold void ff_aac_sbr_ctx_close(SpectralBandReplication *sbr)
  130. {
  131. ff_mdct_end(&sbr->mdct);
  132. ff_mdct_end(&sbr->mdct_ana);
  133. }
  134. static int qsort_comparison_function_int16(const void *a, const void *b)
  135. {
  136. return *(const int16_t *)a - *(const int16_t *)b;
  137. }
  138. static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
  139. {
  140. int i;
  141. for (i = 0; i <= last_el; i++)
  142. if (table[i] == needle)
  143. return 1;
  144. return 0;
  145. }
  146. /// Limiter Frequency Band Table (14496-3 sp04 p198)
  147. static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
  148. {
  149. int k;
  150. if (sbr->bs_limiter_bands > 0) {
  151. static const float bands_warped[3] = { 1.32715174233856803909f, //2^(0.49/1.2)
  152. 1.18509277094158210129f, //2^(0.49/2)
  153. 1.11987160404675912501f }; //2^(0.49/3)
  154. const float lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
  155. int16_t patch_borders[7];
  156. uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
  157. patch_borders[0] = sbr->kx[1];
  158. for (k = 1; k <= sbr->num_patches; k++)
  159. patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
  160. memcpy(sbr->f_tablelim, sbr->f_tablelow,
  161. (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
  162. if (sbr->num_patches > 1)
  163. memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
  164. (sbr->num_patches - 1) * sizeof(patch_borders[0]));
  165. qsort(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
  166. sizeof(sbr->f_tablelim[0]),
  167. qsort_comparison_function_int16);
  168. sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
  169. while (out < sbr->f_tablelim + sbr->n_lim) {
  170. if (*in >= *out * lim_bands_per_octave_warped) {
  171. *++out = *in++;
  172. } else if (*in == *out ||
  173. !in_table_int16(patch_borders, sbr->num_patches, *in)) {
  174. in++;
  175. sbr->n_lim--;
  176. } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
  177. *out = *in++;
  178. sbr->n_lim--;
  179. } else {
  180. *++out = *in++;
  181. }
  182. }
  183. } else {
  184. sbr->f_tablelim[0] = sbr->f_tablelow[0];
  185. sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
  186. sbr->n_lim = 1;
  187. }
  188. }
  189. static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
  190. {
  191. unsigned int cnt = get_bits_count(gb);
  192. uint8_t bs_header_extra_1;
  193. uint8_t bs_header_extra_2;
  194. int old_bs_limiter_bands = sbr->bs_limiter_bands;
  195. SpectrumParameters old_spectrum_params;
  196. sbr->start = 1;
  197. // Save last spectrum parameters variables to compare to new ones
  198. memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
  199. sbr->bs_amp_res_header = get_bits1(gb);
  200. sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
  201. sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
  202. sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
  203. skip_bits(gb, 2); // bs_reserved
  204. bs_header_extra_1 = get_bits1(gb);
  205. bs_header_extra_2 = get_bits1(gb);
  206. if (bs_header_extra_1) {
  207. sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
  208. sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
  209. sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
  210. } else {
  211. sbr->spectrum_params.bs_freq_scale = 2;
  212. sbr->spectrum_params.bs_alter_scale = 1;
  213. sbr->spectrum_params.bs_noise_bands = 2;
  214. }
  215. // Check if spectrum parameters changed
  216. if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
  217. sbr->reset = 1;
  218. if (bs_header_extra_2) {
  219. sbr->bs_limiter_bands = get_bits(gb, 2);
  220. sbr->bs_limiter_gains = get_bits(gb, 2);
  221. sbr->bs_interpol_freq = get_bits1(gb);
  222. sbr->bs_smoothing_mode = get_bits1(gb);
  223. } else {
  224. sbr->bs_limiter_bands = 2;
  225. sbr->bs_limiter_gains = 2;
  226. sbr->bs_interpol_freq = 1;
  227. sbr->bs_smoothing_mode = 1;
  228. }
  229. if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
  230. sbr_make_f_tablelim(sbr);
  231. return get_bits_count(gb) - cnt;
  232. }
  233. static int array_min_int16(const int16_t *array, int nel)
  234. {
  235. int i, min = array[0];
  236. for (i = 1; i < nel; i++)
  237. min = FFMIN(array[i], min);
  238. return min;
  239. }
  240. static void make_bands(int16_t* bands, int start, int stop, int num_bands)
  241. {
  242. int k, previous, present;
  243. float base, prod;
  244. base = powf((float)stop / start, 1.0f / num_bands);
  245. prod = start;
  246. previous = start;
  247. for (k = 0; k < num_bands-1; k++) {
  248. prod *= base;
  249. present = lrintf(prod);
  250. bands[k] = present - previous;
  251. previous = present;
  252. }
  253. bands[num_bands-1] = stop - previous;
  254. }
  255. static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
  256. {
  257. // Requirements (14496-3 sp04 p205)
  258. if (n_master <= 0) {
  259. av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
  260. return -1;
  261. }
  262. if (bs_xover_band >= n_master) {
  263. av_log(avctx, AV_LOG_ERROR,
  264. "Invalid bitstream, crossover band index beyond array bounds: %d\n",
  265. bs_xover_band);
  266. return -1;
  267. }
  268. return 0;
  269. }
  270. /// Master Frequency Band Table (14496-3 sp04 p194)
  271. static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
  272. SpectrumParameters *spectrum)
  273. {
  274. unsigned int temp, max_qmf_subbands;
  275. unsigned int start_min, stop_min;
  276. int k;
  277. const int8_t *sbr_offset_ptr;
  278. int16_t stop_dk[13];
  279. if (sbr->sample_rate < 32000) {
  280. temp = 3000;
  281. } else if (sbr->sample_rate < 64000) {
  282. temp = 4000;
  283. } else
  284. temp = 5000;
  285. start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  286. stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  287. switch (sbr->sample_rate) {
  288. case 16000:
  289. sbr_offset_ptr = sbr_offset[0];
  290. break;
  291. case 22050:
  292. sbr_offset_ptr = sbr_offset[1];
  293. break;
  294. case 24000:
  295. sbr_offset_ptr = sbr_offset[2];
  296. break;
  297. case 32000:
  298. sbr_offset_ptr = sbr_offset[3];
  299. break;
  300. case 44100: case 48000: case 64000:
  301. sbr_offset_ptr = sbr_offset[4];
  302. break;
  303. case 88200: case 96000: case 128000: case 176400: case 192000:
  304. sbr_offset_ptr = sbr_offset[5];
  305. break;
  306. default:
  307. av_log(ac->avctx, AV_LOG_ERROR,
  308. "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
  309. return -1;
  310. }
  311. sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
  312. if (spectrum->bs_stop_freq < 14) {
  313. sbr->k[2] = stop_min;
  314. make_bands(stop_dk, stop_min, 64, 13);
  315. qsort(stop_dk, 13, sizeof(stop_dk[0]), qsort_comparison_function_int16);
  316. for (k = 0; k < spectrum->bs_stop_freq; k++)
  317. sbr->k[2] += stop_dk[k];
  318. } else if (spectrum->bs_stop_freq == 14) {
  319. sbr->k[2] = 2*sbr->k[0];
  320. } else if (spectrum->bs_stop_freq == 15) {
  321. sbr->k[2] = 3*sbr->k[0];
  322. } else {
  323. av_log(ac->avctx, AV_LOG_ERROR,
  324. "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
  325. return -1;
  326. }
  327. sbr->k[2] = FFMIN(64, sbr->k[2]);
  328. // Requirements (14496-3 sp04 p205)
  329. if (sbr->sample_rate <= 32000) {
  330. max_qmf_subbands = 48;
  331. } else if (sbr->sample_rate == 44100) {
  332. max_qmf_subbands = 35;
  333. } else if (sbr->sample_rate >= 48000)
  334. max_qmf_subbands = 32;
  335. if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
  336. av_log(ac->avctx, AV_LOG_ERROR,
  337. "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
  338. return -1;
  339. }
  340. if (!spectrum->bs_freq_scale) {
  341. int dk, k2diff;
  342. dk = spectrum->bs_alter_scale + 1;
  343. sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
  344. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  345. return -1;
  346. for (k = 1; k <= sbr->n_master; k++)
  347. sbr->f_master[k] = dk;
  348. k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
  349. if (k2diff < 0) {
  350. sbr->f_master[1]--;
  351. sbr->f_master[2]-= (k2diff < -1);
  352. } else if (k2diff) {
  353. sbr->f_master[sbr->n_master]++;
  354. }
  355. sbr->f_master[0] = sbr->k[0];
  356. for (k = 1; k <= sbr->n_master; k++)
  357. sbr->f_master[k] += sbr->f_master[k - 1];
  358. } else {
  359. int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
  360. int two_regions, num_bands_0;
  361. int vdk0_max, vdk1_min;
  362. int16_t vk0[49];
  363. if (49 * sbr->k[2] > 110 * sbr->k[0]) {
  364. two_regions = 1;
  365. sbr->k[1] = 2 * sbr->k[0];
  366. } else {
  367. two_regions = 0;
  368. sbr->k[1] = sbr->k[2];
  369. }
  370. num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
  371. if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
  372. av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
  373. return -1;
  374. }
  375. vk0[0] = 0;
  376. make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
  377. qsort(vk0 + 1, num_bands_0, sizeof(vk0[1]), qsort_comparison_function_int16);
  378. vdk0_max = vk0[num_bands_0];
  379. vk0[0] = sbr->k[0];
  380. for (k = 1; k <= num_bands_0; k++) {
  381. if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
  382. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
  383. return -1;
  384. }
  385. vk0[k] += vk0[k-1];
  386. }
  387. if (two_regions) {
  388. int16_t vk1[49];
  389. float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
  390. : 1.0f; // bs_alter_scale = {0,1}
  391. int num_bands_1 = lrintf(half_bands * invwarp *
  392. log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
  393. make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
  394. vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
  395. if (vdk1_min < vdk0_max) {
  396. int change;
  397. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  398. change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
  399. vk1[1] += change;
  400. vk1[num_bands_1] -= change;
  401. }
  402. qsort(vk1 + 1, num_bands_1, sizeof(vk1[1]), qsort_comparison_function_int16);
  403. vk1[0] = sbr->k[1];
  404. for (k = 1; k <= num_bands_1; k++) {
  405. if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
  406. av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
  407. return -1;
  408. }
  409. vk1[k] += vk1[k-1];
  410. }
  411. sbr->n_master = num_bands_0 + num_bands_1;
  412. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  413. return -1;
  414. memcpy(&sbr->f_master[0], vk0,
  415. (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  416. memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
  417. num_bands_1 * sizeof(sbr->f_master[0]));
  418. } else {
  419. sbr->n_master = num_bands_0;
  420. if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
  421. return -1;
  422. memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
  423. }
  424. }
  425. return 0;
  426. }
  427. /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
  428. static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
  429. {
  430. int i, k, sb = 0;
  431. int msb = sbr->k[0];
  432. int usb = sbr->kx[1];
  433. int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
  434. sbr->num_patches = 0;
  435. if (goal_sb < sbr->kx[1] + sbr->m[1]) {
  436. for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
  437. } else
  438. k = sbr->n_master;
  439. do {
  440. int odd = 0;
  441. for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
  442. sb = sbr->f_master[i];
  443. odd = (sb + sbr->k[0]) & 1;
  444. }
  445. // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
  446. // After this check the final number of patches can still be six which is
  447. // illegal however the Coding Technologies decoder check stream has a final
  448. // count of 6 patches
  449. if (sbr->num_patches > 5) {
  450. av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
  451. return -1;
  452. }
  453. sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
  454. sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
  455. if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
  456. usb = sb;
  457. msb = sb;
  458. sbr->num_patches++;
  459. } else
  460. msb = sbr->kx[1];
  461. if (sbr->f_master[k] - sb < 3)
  462. k = sbr->n_master;
  463. } while (sb != sbr->kx[1] + sbr->m[1]);
  464. if (sbr->patch_num_subbands[sbr->num_patches-1] < 3 && sbr->num_patches > 1)
  465. sbr->num_patches--;
  466. return 0;
  467. }
  468. /// Derived Frequency Band Tables (14496-3 sp04 p197)
  469. static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
  470. {
  471. int k, temp;
  472. sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
  473. sbr->n[0] = (sbr->n[1] + 1) >> 1;
  474. memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
  475. (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
  476. sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
  477. sbr->kx[1] = sbr->f_tablehigh[0];
  478. // Requirements (14496-3 sp04 p205)
  479. if (sbr->kx[1] + sbr->m[1] > 64) {
  480. av_log(ac->avctx, AV_LOG_ERROR,
  481. "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
  482. return -1;
  483. }
  484. if (sbr->kx[1] > 32) {
  485. av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
  486. return -1;
  487. }
  488. sbr->f_tablelow[0] = sbr->f_tablehigh[0];
  489. temp = sbr->n[1] & 1;
  490. for (k = 1; k <= sbr->n[0]; k++)
  491. sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
  492. sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
  493. log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
  494. if (sbr->n_q > 5) {
  495. av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
  496. return -1;
  497. }
  498. sbr->f_tablenoise[0] = sbr->f_tablelow[0];
  499. temp = 0;
  500. for (k = 1; k <= sbr->n_q; k++) {
  501. temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
  502. sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
  503. }
  504. if (sbr_hf_calc_npatches(ac, sbr) < 0)
  505. return -1;
  506. sbr_make_f_tablelim(sbr);
  507. sbr->data[0].f_indexnoise = 0;
  508. sbr->data[1].f_indexnoise = 0;
  509. return 0;
  510. }
  511. static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
  512. int elements)
  513. {
  514. int i;
  515. for (i = 0; i < elements; i++) {
  516. vec[i] = get_bits1(gb);
  517. }
  518. }
  519. /** ceil(log2(index+1)) */
  520. static const int8_t ceil_log2[] = {
  521. 0, 1, 2, 2, 3, 3,
  522. };
  523. static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
  524. GetBitContext *gb, SBRData *ch_data)
  525. {
  526. int i;
  527. unsigned bs_pointer = 0;
  528. // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
  529. int abs_bord_trail = 16;
  530. int num_rel_lead, num_rel_trail;
  531. unsigned bs_num_env_old = ch_data->bs_num_env;
  532. ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
  533. ch_data->bs_amp_res = sbr->bs_amp_res_header;
  534. ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
  535. switch (ch_data->bs_frame_class = get_bits(gb, 2)) {
  536. case FIXFIX:
  537. ch_data->bs_num_env = 1 << get_bits(gb, 2);
  538. num_rel_lead = ch_data->bs_num_env - 1;
  539. if (ch_data->bs_num_env == 1)
  540. ch_data->bs_amp_res = 0;
  541. if (ch_data->bs_num_env > 4) {
  542. av_log(ac->avctx, AV_LOG_ERROR,
  543. "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
  544. ch_data->bs_num_env);
  545. return -1;
  546. }
  547. ch_data->t_env[0] = 0;
  548. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  549. abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
  550. ch_data->bs_num_env;
  551. for (i = 0; i < num_rel_lead; i++)
  552. ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
  553. ch_data->bs_freq_res[1] = get_bits1(gb);
  554. for (i = 1; i < ch_data->bs_num_env; i++)
  555. ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
  556. break;
  557. case FIXVAR:
  558. abs_bord_trail += get_bits(gb, 2);
  559. num_rel_trail = get_bits(gb, 2);
  560. ch_data->bs_num_env = num_rel_trail + 1;
  561. ch_data->t_env[0] = 0;
  562. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  563. for (i = 0; i < num_rel_trail; i++)
  564. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  565. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  566. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  567. for (i = 0; i < ch_data->bs_num_env; i++)
  568. ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
  569. break;
  570. case VARFIX:
  571. ch_data->t_env[0] = get_bits(gb, 2);
  572. num_rel_lead = get_bits(gb, 2);
  573. ch_data->bs_num_env = num_rel_lead + 1;
  574. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  575. for (i = 0; i < num_rel_lead; i++)
  576. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  577. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  578. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  579. break;
  580. case VARVAR:
  581. ch_data->t_env[0] = get_bits(gb, 2);
  582. abs_bord_trail += get_bits(gb, 2);
  583. num_rel_lead = get_bits(gb, 2);
  584. num_rel_trail = get_bits(gb, 2);
  585. ch_data->bs_num_env = num_rel_lead + num_rel_trail + 1;
  586. if (ch_data->bs_num_env > 5) {
  587. av_log(ac->avctx, AV_LOG_ERROR,
  588. "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
  589. ch_data->bs_num_env);
  590. return -1;
  591. }
  592. ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
  593. for (i = 0; i < num_rel_lead; i++)
  594. ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
  595. for (i = 0; i < num_rel_trail; i++)
  596. ch_data->t_env[ch_data->bs_num_env - 1 - i] =
  597. ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
  598. bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
  599. get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
  600. break;
  601. }
  602. if (bs_pointer > ch_data->bs_num_env + 1) {
  603. av_log(ac->avctx, AV_LOG_ERROR,
  604. "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
  605. bs_pointer);
  606. return -1;
  607. }
  608. for (i = 1; i <= ch_data->bs_num_env; i++) {
  609. if (ch_data->t_env[i-1] > ch_data->t_env[i]) {
  610. av_log(ac->avctx, AV_LOG_ERROR, "Non monotone time borders\n");
  611. return -1;
  612. }
  613. }
  614. ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
  615. ch_data->t_q[0] = ch_data->t_env[0];
  616. ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
  617. if (ch_data->bs_num_noise > 1) {
  618. unsigned int idx;
  619. if (ch_data->bs_frame_class == FIXFIX) {
  620. idx = ch_data->bs_num_env >> 1;
  621. } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
  622. idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
  623. } else { // VARFIX
  624. if (!bs_pointer)
  625. idx = 1;
  626. else if (bs_pointer == 1)
  627. idx = ch_data->bs_num_env - 1;
  628. else // bs_pointer > 1
  629. idx = bs_pointer - 1;
  630. }
  631. ch_data->t_q[1] = ch_data->t_env[idx];
  632. }
  633. ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
  634. ch_data->e_a[1] = -1;
  635. if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
  636. ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
  637. } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
  638. ch_data->e_a[1] = bs_pointer - 1;
  639. return 0;
  640. }
  641. static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
  642. //These variables are saved from the previous frame rather than copied
  643. dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
  644. dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
  645. dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
  646. //These variables are read from the bitstream and therefore copied
  647. memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
  648. memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
  649. memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
  650. dst->bs_num_env = src->bs_num_env;
  651. dst->bs_amp_res = src->bs_amp_res;
  652. dst->bs_num_noise = src->bs_num_noise;
  653. dst->bs_frame_class = src->bs_frame_class;
  654. dst->e_a[1] = src->e_a[1];
  655. }
  656. /// Read how the envelope and noise floor data is delta coded
  657. static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
  658. SBRData *ch_data)
  659. {
  660. get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
  661. get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
  662. }
  663. /// Read inverse filtering data
  664. static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
  665. SBRData *ch_data)
  666. {
  667. int i;
  668. memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
  669. for (i = 0; i < sbr->n_q; i++)
  670. ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
  671. }
  672. static void read_sbr_envelope(SpectralBandReplication *sbr, GetBitContext *gb,
  673. SBRData *ch_data, int ch)
  674. {
  675. int bits;
  676. int i, j, k;
  677. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  678. int t_lav, f_lav;
  679. const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  680. const int odd = sbr->n[1] & 1;
  681. if (sbr->bs_coupling && ch) {
  682. if (ch_data->bs_amp_res) {
  683. bits = 5;
  684. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
  685. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
  686. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  687. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  688. } else {
  689. bits = 6;
  690. t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
  691. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
  692. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
  693. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
  694. }
  695. } else {
  696. if (ch_data->bs_amp_res) {
  697. bits = 6;
  698. t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
  699. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
  700. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  701. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  702. } else {
  703. bits = 7;
  704. t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
  705. t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
  706. f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
  707. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
  708. }
  709. }
  710. for (i = 0; i < ch_data->bs_num_env; i++) {
  711. if (ch_data->bs_df_env[i]) {
  712. // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
  713. if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
  714. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  715. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  716. } else if (ch_data->bs_freq_res[i + 1]) {
  717. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  718. k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
  719. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  720. }
  721. } else {
  722. for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
  723. k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
  724. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
  725. }
  726. }
  727. } else {
  728. ch_data->env_facs[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
  729. for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++)
  730. ch_data->env_facs[i + 1][j] = ch_data->env_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  731. }
  732. }
  733. //assign 0th elements of env_facs from last elements
  734. memcpy(ch_data->env_facs[0], ch_data->env_facs[ch_data->bs_num_env],
  735. sizeof(ch_data->env_facs[0]));
  736. }
  737. static void read_sbr_noise(SpectralBandReplication *sbr, GetBitContext *gb,
  738. SBRData *ch_data, int ch)
  739. {
  740. int i, j;
  741. VLC_TYPE (*t_huff)[2], (*f_huff)[2];
  742. int t_lav, f_lav;
  743. int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
  744. if (sbr->bs_coupling && ch) {
  745. t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
  746. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
  747. f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
  748. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
  749. } else {
  750. t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
  751. t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
  752. f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
  753. f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
  754. }
  755. for (i = 0; i < ch_data->bs_num_noise; i++) {
  756. if (ch_data->bs_df_noise[i]) {
  757. for (j = 0; j < sbr->n_q; j++)
  758. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
  759. } else {
  760. ch_data->noise_facs[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
  761. for (j = 1; j < sbr->n_q; j++)
  762. ch_data->noise_facs[i + 1][j] = ch_data->noise_facs[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
  763. }
  764. }
  765. //assign 0th elements of noise_facs from last elements
  766. memcpy(ch_data->noise_facs[0], ch_data->noise_facs[ch_data->bs_num_noise],
  767. sizeof(ch_data->noise_facs[0]));
  768. }
  769. static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  770. GetBitContext *gb,
  771. int bs_extension_id, int *num_bits_left)
  772. {
  773. switch (bs_extension_id) {
  774. case EXTENSION_ID_PS:
  775. if (!ac->m4ac.ps) {
  776. av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
  777. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  778. *num_bits_left = 0;
  779. } else {
  780. #if 1
  781. *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps, *num_bits_left);
  782. #else
  783. av_log_missing_feature(ac->avctx, "Parametric Stereo is", 0);
  784. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  785. *num_bits_left = 0;
  786. #endif
  787. }
  788. break;
  789. default:
  790. av_log_missing_feature(ac->avctx, "Reserved SBR extensions are", 1);
  791. skip_bits_long(gb, *num_bits_left); // bs_fill_bits
  792. *num_bits_left = 0;
  793. break;
  794. }
  795. }
  796. static int read_sbr_single_channel_element(AACContext *ac,
  797. SpectralBandReplication *sbr,
  798. GetBitContext *gb)
  799. {
  800. if (get_bits1(gb)) // bs_data_extra
  801. skip_bits(gb, 4); // bs_reserved
  802. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  803. return -1;
  804. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  805. read_sbr_invf(sbr, gb, &sbr->data[0]);
  806. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  807. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  808. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  809. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  810. return 0;
  811. }
  812. static int read_sbr_channel_pair_element(AACContext *ac,
  813. SpectralBandReplication *sbr,
  814. GetBitContext *gb)
  815. {
  816. if (get_bits1(gb)) // bs_data_extra
  817. skip_bits(gb, 8); // bs_reserved
  818. if ((sbr->bs_coupling = get_bits1(gb))) {
  819. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
  820. return -1;
  821. copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
  822. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  823. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  824. read_sbr_invf(sbr, gb, &sbr->data[0]);
  825. memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  826. memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
  827. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  828. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  829. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  830. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  831. } else {
  832. if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
  833. read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
  834. return -1;
  835. read_sbr_dtdf(sbr, gb, &sbr->data[0]);
  836. read_sbr_dtdf(sbr, gb, &sbr->data[1]);
  837. read_sbr_invf(sbr, gb, &sbr->data[0]);
  838. read_sbr_invf(sbr, gb, &sbr->data[1]);
  839. read_sbr_envelope(sbr, gb, &sbr->data[0], 0);
  840. read_sbr_envelope(sbr, gb, &sbr->data[1], 1);
  841. read_sbr_noise(sbr, gb, &sbr->data[0], 0);
  842. read_sbr_noise(sbr, gb, &sbr->data[1], 1);
  843. }
  844. if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
  845. get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
  846. if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
  847. get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
  848. return 0;
  849. }
  850. static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
  851. GetBitContext *gb, int id_aac)
  852. {
  853. unsigned int cnt = get_bits_count(gb);
  854. if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
  855. if (read_sbr_single_channel_element(ac, sbr, gb)) {
  856. sbr->start = 0;
  857. return get_bits_count(gb) - cnt;
  858. }
  859. } else if (id_aac == TYPE_CPE) {
  860. if (read_sbr_channel_pair_element(ac, sbr, gb)) {
  861. sbr->start = 0;
  862. return get_bits_count(gb) - cnt;
  863. }
  864. } else {
  865. av_log(ac->avctx, AV_LOG_ERROR,
  866. "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
  867. sbr->start = 0;
  868. return get_bits_count(gb) - cnt;
  869. }
  870. if (get_bits1(gb)) { // bs_extended_data
  871. int num_bits_left = get_bits(gb, 4); // bs_extension_size
  872. if (num_bits_left == 15)
  873. num_bits_left += get_bits(gb, 8); // bs_esc_count
  874. num_bits_left <<= 3;
  875. while (num_bits_left > 7) {
  876. num_bits_left -= 2;
  877. read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
  878. }
  879. if (num_bits_left < 0) {
  880. av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
  881. }
  882. if (num_bits_left > 0)
  883. skip_bits(gb, num_bits_left);
  884. }
  885. return get_bits_count(gb) - cnt;
  886. }
  887. static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
  888. {
  889. int err;
  890. err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
  891. if (err >= 0)
  892. err = sbr_make_f_derived(ac, sbr);
  893. if (err < 0) {
  894. av_log(ac->avctx, AV_LOG_ERROR,
  895. "SBR reset failed. Switching SBR to pure upsampling mode.\n");
  896. sbr->start = 0;
  897. }
  898. }
  899. /**
  900. * Decode Spectral Band Replication extension data; reference: table 4.55.
  901. *
  902. * @param crc flag indicating the presence of CRC checksum
  903. * @param cnt length of TYPE_FIL syntactic element in bytes
  904. *
  905. * @return Returns number of bytes consumed from the TYPE_FIL element.
  906. */
  907. int ff_decode_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
  908. GetBitContext *gb_host, int crc, int cnt, int id_aac)
  909. {
  910. unsigned int num_sbr_bits = 0, num_align_bits;
  911. unsigned bytes_read;
  912. GetBitContext gbc = *gb_host, *gb = &gbc;
  913. skip_bits_long(gb_host, cnt*8 - 4);
  914. sbr->reset = 0;
  915. if (!sbr->sample_rate)
  916. sbr->sample_rate = 2 * ac->m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
  917. if (!ac->m4ac.ext_sample_rate)
  918. ac->m4ac.ext_sample_rate = 2 * ac->m4ac.sample_rate;
  919. if (crc) {
  920. skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
  921. num_sbr_bits += 10;
  922. }
  923. //Save some state from the previous frame.
  924. sbr->kx[0] = sbr->kx[1];
  925. sbr->m[0] = sbr->m[1];
  926. num_sbr_bits++;
  927. if (get_bits1(gb)) // bs_header_flag
  928. num_sbr_bits += read_sbr_header(sbr, gb);
  929. if (sbr->reset)
  930. sbr_reset(ac, sbr);
  931. if (sbr->start)
  932. num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
  933. num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
  934. bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
  935. if (bytes_read > cnt) {
  936. av_log(ac->avctx, AV_LOG_ERROR,
  937. "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
  938. }
  939. return cnt;
  940. }
  941. /// Dequantization and stereo decoding (14496-3 sp04 p203)
  942. static void sbr_dequant(SpectralBandReplication *sbr, int id_aac)
  943. {
  944. int k, e;
  945. int ch;
  946. if (id_aac == TYPE_CPE && sbr->bs_coupling) {
  947. float alpha = sbr->data[0].bs_amp_res ? 1.0f : 0.5f;
  948. float pan_offset = sbr->data[0].bs_amp_res ? 12.0f : 24.0f;
  949. for (e = 1; e <= sbr->data[0].bs_num_env; e++) {
  950. for (k = 0; k < sbr->n[sbr->data[0].bs_freq_res[e]]; k++) {
  951. float temp1 = exp2f(sbr->data[0].env_facs[e][k] * alpha + 7.0f);
  952. float temp2 = exp2f((pan_offset - sbr->data[1].env_facs[e][k]) * alpha);
  953. float fac = temp1 / (1.0f + temp2);
  954. sbr->data[0].env_facs[e][k] = fac;
  955. sbr->data[1].env_facs[e][k] = fac * temp2;
  956. }
  957. }
  958. for (e = 1; e <= sbr->data[0].bs_num_noise; e++) {
  959. for (k = 0; k < sbr->n_q; k++) {
  960. float temp1 = exp2f(NOISE_FLOOR_OFFSET - sbr->data[0].noise_facs[e][k] + 1);
  961. float temp2 = exp2f(12 - sbr->data[1].noise_facs[e][k]);
  962. float fac = temp1 / (1.0f + temp2);
  963. sbr->data[0].noise_facs[e][k] = fac;
  964. sbr->data[1].noise_facs[e][k] = fac * temp2;
  965. }
  966. }
  967. } else { // SCE or one non-coupled CPE
  968. for (ch = 0; ch < (id_aac == TYPE_CPE) + 1; ch++) {
  969. float alpha = sbr->data[ch].bs_amp_res ? 1.0f : 0.5f;
  970. for (e = 1; e <= sbr->data[ch].bs_num_env; e++)
  971. for (k = 0; k < sbr->n[sbr->data[ch].bs_freq_res[e]]; k++)
  972. sbr->data[ch].env_facs[e][k] =
  973. exp2f(alpha * sbr->data[ch].env_facs[e][k] + 6.0f);
  974. for (e = 1; e <= sbr->data[ch].bs_num_noise; e++)
  975. for (k = 0; k < sbr->n_q; k++)
  976. sbr->data[ch].noise_facs[e][k] =
  977. exp2f(NOISE_FLOOR_OFFSET - sbr->data[ch].noise_facs[e][k]);
  978. }
  979. }
  980. }
  981. /**
  982. * Analysis QMF Bank (14496-3 sp04 p206)
  983. *
  984. * @param x pointer to the beginning of the first sample window
  985. * @param W array of complex-valued samples split into subbands
  986. */
  987. static void sbr_qmf_analysis(DSPContext *dsp, FFTContext *mdct, const float *in, float *x,
  988. float z[320], float W[2][32][32][2])
  989. {
  990. int i, k;
  991. memcpy(W[0], W[1], sizeof(W[0]));
  992. memcpy(x , x+1024, (320-32)*sizeof(x[0]));
  993. memcpy(x+288, in, 1024*sizeof(x[0]));
  994. for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
  995. // are not supported
  996. dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
  997. for (k = 0; k < 64; k++) {
  998. float f = z[k] + z[k + 64] + z[k + 128] + z[k + 192] + z[k + 256];
  999. z[k] = f;
  1000. }
  1001. //Shuffle to IMDCT
  1002. z[64] = z[0];
  1003. for (k = 1; k < 32; k++) {
  1004. z[64+2*k-1] = z[ k];
  1005. z[64+2*k ] = -z[64-k];
  1006. }
  1007. z[64+63] = z[32];
  1008. mdct->imdct_half(mdct, z, z+64);
  1009. for (k = 0; k < 32; k++) {
  1010. W[1][i][k][0] = -z[63-k];
  1011. W[1][i][k][1] = z[k];
  1012. }
  1013. x += 32;
  1014. }
  1015. }
  1016. /**
  1017. * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
  1018. * (14496-3 sp04 p206)
  1019. */
  1020. static void sbr_qmf_synthesis(DSPContext *dsp, FFTContext *mdct,
  1021. float *out, float X[2][38][64],
  1022. float mdct_buf[2][64],
  1023. float *v0, int *v_off, const unsigned int div)
  1024. {
  1025. int i, n;
  1026. const float *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
  1027. float *v;
  1028. for (i = 0; i < 32; i++) {
  1029. if (*v_off == 0) {
  1030. int saved_samples = (1280 - 128) >> div;
  1031. memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(float));
  1032. *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - (128 >> div);
  1033. } else {
  1034. *v_off -= 128 >> div;
  1035. }
  1036. v = v0 + *v_off;
  1037. if (div) {
  1038. for (n = 0; n < 32; n++) {
  1039. X[0][i][ n] = -X[0][i][n];
  1040. X[0][i][32+n] = X[1][i][31-n];
  1041. }
  1042. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1043. for (n = 0; n < 32; n++) {
  1044. v[ n] = mdct_buf[0][63 - 2*n];
  1045. v[63 - n] = -mdct_buf[0][62 - 2*n];
  1046. }
  1047. } else {
  1048. for (n = 1; n < 64; n+=2) {
  1049. X[1][i][n] = -X[1][i][n];
  1050. }
  1051. mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
  1052. mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
  1053. for (n = 0; n < 64; n++) {
  1054. v[ n] = -mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1055. v[127 - n] = mdct_buf[0][63 - n] + mdct_buf[1][ n ];
  1056. }
  1057. }
  1058. dsp->vector_fmul_add(out, v , sbr_qmf_window , zero64, 64 >> div);
  1059. dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
  1060. dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
  1061. dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
  1062. dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
  1063. dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
  1064. dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
  1065. dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
  1066. dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
  1067. dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
  1068. out += 64 >> div;
  1069. }
  1070. }
  1071. static void autocorrelate(const float x[40][2], float phi[3][2][2], int lag)
  1072. {
  1073. int i;
  1074. float real_sum = 0.0f;
  1075. float imag_sum = 0.0f;
  1076. if (lag) {
  1077. for (i = 1; i < 38; i++) {
  1078. real_sum += x[i][0] * x[i+lag][0] + x[i][1] * x[i+lag][1];
  1079. imag_sum += x[i][0] * x[i+lag][1] - x[i][1] * x[i+lag][0];
  1080. }
  1081. phi[2-lag][1][0] = real_sum + x[ 0][0] * x[lag][0] + x[ 0][1] * x[lag][1];
  1082. phi[2-lag][1][1] = imag_sum + x[ 0][0] * x[lag][1] - x[ 0][1] * x[lag][0];
  1083. if (lag == 1) {
  1084. phi[0][0][0] = real_sum + x[38][0] * x[39][0] + x[38][1] * x[39][1];
  1085. phi[0][0][1] = imag_sum + x[38][0] * x[39][1] - x[38][1] * x[39][0];
  1086. }
  1087. } else {
  1088. for (i = 1; i < 38; i++) {
  1089. real_sum += x[i][0] * x[i][0] + x[i][1] * x[i][1];
  1090. }
  1091. phi[2][1][0] = real_sum + x[ 0][0] * x[ 0][0] + x[ 0][1] * x[ 0][1];
  1092. phi[1][0][0] = real_sum + x[38][0] * x[38][0] + x[38][1] * x[38][1];
  1093. }
  1094. }
  1095. /** High Frequency Generation (14496-3 sp04 p214+) and Inverse Filtering
  1096. * (14496-3 sp04 p214)
  1097. * Warning: This routine does not seem numerically stable.
  1098. */
  1099. static void sbr_hf_inverse_filter(float (*alpha0)[2], float (*alpha1)[2],
  1100. const float X_low[32][40][2], int k0)
  1101. {
  1102. int k;
  1103. for (k = 0; k < k0; k++) {
  1104. float phi[3][2][2], dk;
  1105. autocorrelate(X_low[k], phi, 0);
  1106. autocorrelate(X_low[k], phi, 1);
  1107. autocorrelate(X_low[k], phi, 2);
  1108. dk = phi[2][1][0] * phi[1][0][0] -
  1109. (phi[1][1][0] * phi[1][1][0] + phi[1][1][1] * phi[1][1][1]) / 1.000001f;
  1110. if (!dk) {
  1111. alpha1[k][0] = 0;
  1112. alpha1[k][1] = 0;
  1113. } else {
  1114. float temp_real, temp_im;
  1115. temp_real = phi[0][0][0] * phi[1][1][0] -
  1116. phi[0][0][1] * phi[1][1][1] -
  1117. phi[0][1][0] * phi[1][0][0];
  1118. temp_im = phi[0][0][0] * phi[1][1][1] +
  1119. phi[0][0][1] * phi[1][1][0] -
  1120. phi[0][1][1] * phi[1][0][0];
  1121. alpha1[k][0] = temp_real / dk;
  1122. alpha1[k][1] = temp_im / dk;
  1123. }
  1124. if (!phi[1][0][0]) {
  1125. alpha0[k][0] = 0;
  1126. alpha0[k][1] = 0;
  1127. } else {
  1128. float temp_real, temp_im;
  1129. temp_real = phi[0][0][0] + alpha1[k][0] * phi[1][1][0] +
  1130. alpha1[k][1] * phi[1][1][1];
  1131. temp_im = phi[0][0][1] + alpha1[k][1] * phi[1][1][0] -
  1132. alpha1[k][0] * phi[1][1][1];
  1133. alpha0[k][0] = -temp_real / phi[1][0][0];
  1134. alpha0[k][1] = -temp_im / phi[1][0][0];
  1135. }
  1136. if (alpha1[k][0] * alpha1[k][0] + alpha1[k][1] * alpha1[k][1] >= 16.0f ||
  1137. alpha0[k][0] * alpha0[k][0] + alpha0[k][1] * alpha0[k][1] >= 16.0f) {
  1138. alpha1[k][0] = 0;
  1139. alpha1[k][1] = 0;
  1140. alpha0[k][0] = 0;
  1141. alpha0[k][1] = 0;
  1142. }
  1143. }
  1144. }
  1145. /// Chirp Factors (14496-3 sp04 p214)
  1146. static void sbr_chirp(SpectralBandReplication *sbr, SBRData *ch_data)
  1147. {
  1148. int i;
  1149. float new_bw;
  1150. static const float bw_tab[] = { 0.0f, 0.75f, 0.9f, 0.98f };
  1151. for (i = 0; i < sbr->n_q; i++) {
  1152. if (ch_data->bs_invf_mode[0][i] + ch_data->bs_invf_mode[1][i] == 1) {
  1153. new_bw = 0.6f;
  1154. } else
  1155. new_bw = bw_tab[ch_data->bs_invf_mode[0][i]];
  1156. if (new_bw < ch_data->bw_array[i]) {
  1157. new_bw = 0.75f * new_bw + 0.25f * ch_data->bw_array[i];
  1158. } else
  1159. new_bw = 0.90625f * new_bw + 0.09375f * ch_data->bw_array[i];
  1160. ch_data->bw_array[i] = new_bw < 0.015625f ? 0.0f : new_bw;
  1161. }
  1162. }
  1163. /// Generate the subband filtered lowband
  1164. static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1165. float X_low[32][40][2], const float W[2][32][32][2])
  1166. {
  1167. int i, k;
  1168. const int t_HFGen = 8;
  1169. const int i_f = 32;
  1170. memset(X_low, 0, 32*sizeof(*X_low));
  1171. for (k = 0; k < sbr->kx[1]; k++) {
  1172. for (i = t_HFGen; i < i_f + t_HFGen; i++) {
  1173. X_low[k][i][0] = W[1][i - t_HFGen][k][0];
  1174. X_low[k][i][1] = W[1][i - t_HFGen][k][1];
  1175. }
  1176. }
  1177. for (k = 0; k < sbr->kx[0]; k++) {
  1178. for (i = 0; i < t_HFGen; i++) {
  1179. X_low[k][i][0] = W[0][i + i_f - t_HFGen][k][0];
  1180. X_low[k][i][1] = W[0][i + i_f - t_HFGen][k][1];
  1181. }
  1182. }
  1183. return 0;
  1184. }
  1185. /// High Frequency Generator (14496-3 sp04 p215)
  1186. static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
  1187. float X_high[64][40][2], const float X_low[32][40][2],
  1188. const float (*alpha0)[2], const float (*alpha1)[2],
  1189. const float bw_array[5], const uint8_t *t_env,
  1190. int bs_num_env)
  1191. {
  1192. int i, j, x;
  1193. int g = 0;
  1194. int k = sbr->kx[1];
  1195. for (j = 0; j < sbr->num_patches; j++) {
  1196. for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
  1197. float alpha[4];
  1198. const int p = sbr->patch_start_subband[j] + x;
  1199. while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
  1200. g++;
  1201. g--;
  1202. if (g < 0) {
  1203. av_log(ac->avctx, AV_LOG_ERROR,
  1204. "ERROR : no subband found for frequency %d\n", k);
  1205. return -1;
  1206. }
  1207. alpha[0] = alpha1[p][0] * bw_array[g] * bw_array[g];
  1208. alpha[1] = alpha1[p][1] * bw_array[g] * bw_array[g];
  1209. alpha[2] = alpha0[p][0] * bw_array[g];
  1210. alpha[3] = alpha0[p][1] * bw_array[g];
  1211. for (i = 2 * t_env[0]; i < 2 * t_env[bs_num_env]; i++) {
  1212. const int idx = i + ENVELOPE_ADJUSTMENT_OFFSET;
  1213. X_high[k][idx][0] =
  1214. X_low[p][idx - 2][0] * alpha[0] -
  1215. X_low[p][idx - 2][1] * alpha[1] +
  1216. X_low[p][idx - 1][0] * alpha[2] -
  1217. X_low[p][idx - 1][1] * alpha[3] +
  1218. X_low[p][idx][0];
  1219. X_high[k][idx][1] =
  1220. X_low[p][idx - 2][1] * alpha[0] +
  1221. X_low[p][idx - 2][0] * alpha[1] +
  1222. X_low[p][idx - 1][1] * alpha[2] +
  1223. X_low[p][idx - 1][0] * alpha[3] +
  1224. X_low[p][idx][1];
  1225. }
  1226. }
  1227. }
  1228. if (k < sbr->m[1] + sbr->kx[1])
  1229. memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
  1230. return 0;
  1231. }
  1232. /// Generate the subband filtered lowband
  1233. static int sbr_x_gen(SpectralBandReplication *sbr, float X[2][38][64],
  1234. const float X_low[32][40][2], const float Y[2][38][64][2],
  1235. int ch)
  1236. {
  1237. int k, i;
  1238. const int i_f = 32;
  1239. const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
  1240. memset(X, 0, 2*sizeof(*X));
  1241. for (k = 0; k < sbr->kx[0]; k++) {
  1242. for (i = 0; i < i_Temp; i++) {
  1243. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1244. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1245. }
  1246. }
  1247. for (; k < sbr->kx[0] + sbr->m[0]; k++) {
  1248. for (i = 0; i < i_Temp; i++) {
  1249. X[0][i][k] = Y[0][i + i_f][k][0];
  1250. X[1][i][k] = Y[0][i + i_f][k][1];
  1251. }
  1252. }
  1253. for (k = 0; k < sbr->kx[1]; k++) {
  1254. for (i = i_Temp; i < 38; i++) {
  1255. X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
  1256. X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
  1257. }
  1258. }
  1259. for (; k < sbr->kx[1] + sbr->m[1]; k++) {
  1260. for (i = i_Temp; i < i_f; i++) {
  1261. X[0][i][k] = Y[1][i][k][0];
  1262. X[1][i][k] = Y[1][i][k][1];
  1263. }
  1264. }
  1265. return 0;
  1266. }
  1267. /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
  1268. * (14496-3 sp04 p217)
  1269. */
  1270. static void sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
  1271. SBRData *ch_data, int e_a[2])
  1272. {
  1273. int e, i, m;
  1274. memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
  1275. for (e = 0; e < ch_data->bs_num_env; e++) {
  1276. const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
  1277. uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1278. int k;
  1279. for (i = 0; i < ilim; i++)
  1280. for (m = table[i]; m < table[i + 1]; m++)
  1281. sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
  1282. // ch_data->bs_num_noise > 1 => 2 noise floors
  1283. k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
  1284. for (i = 0; i < sbr->n_q; i++)
  1285. for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
  1286. sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
  1287. for (i = 0; i < sbr->n[1]; i++) {
  1288. if (ch_data->bs_add_harmonic_flag) {
  1289. const unsigned int m_midpoint =
  1290. (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
  1291. ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
  1292. (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
  1293. }
  1294. }
  1295. for (i = 0; i < ilim; i++) {
  1296. int additional_sinusoid_present = 0;
  1297. for (m = table[i]; m < table[i + 1]; m++) {
  1298. if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
  1299. additional_sinusoid_present = 1;
  1300. break;
  1301. }
  1302. }
  1303. memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
  1304. (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
  1305. }
  1306. }
  1307. memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
  1308. }
  1309. /// Estimation of current envelope (14496-3 sp04 p218)
  1310. static void sbr_env_estimate(float (*e_curr)[48], float X_high[64][40][2],
  1311. SpectralBandReplication *sbr, SBRData *ch_data)
  1312. {
  1313. int e, i, m;
  1314. if (sbr->bs_interpol_freq) {
  1315. for (e = 0; e < ch_data->bs_num_env; e++) {
  1316. const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1317. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1318. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1319. for (m = 0; m < sbr->m[1]; m++) {
  1320. float sum = 0.0f;
  1321. for (i = ilb; i < iub; i++) {
  1322. sum += X_high[m + sbr->kx[1]][i][0] * X_high[m + sbr->kx[1]][i][0] +
  1323. X_high[m + sbr->kx[1]][i][1] * X_high[m + sbr->kx[1]][i][1];
  1324. }
  1325. e_curr[e][m] = sum * recip_env_size;
  1326. }
  1327. }
  1328. } else {
  1329. int k, p;
  1330. for (e = 0; e < ch_data->bs_num_env; e++) {
  1331. const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
  1332. int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1333. int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
  1334. const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
  1335. for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
  1336. float sum = 0.0f;
  1337. const int den = env_size * (table[p + 1] - table[p]);
  1338. for (k = table[p]; k < table[p + 1]; k++) {
  1339. for (i = ilb; i < iub; i++) {
  1340. sum += X_high[k][i][0] * X_high[k][i][0] +
  1341. X_high[k][i][1] * X_high[k][i][1];
  1342. }
  1343. }
  1344. sum /= den;
  1345. for (k = table[p]; k < table[p + 1]; k++) {
  1346. e_curr[e][k - sbr->kx[1]] = sum;
  1347. }
  1348. }
  1349. }
  1350. }
  1351. }
  1352. /**
  1353. * Calculation of levels of additional HF signal components (14496-3 sp04 p219)
  1354. * and Calculation of gain (14496-3 sp04 p219)
  1355. */
  1356. static void sbr_gain_calc(AACContext *ac, SpectralBandReplication *sbr,
  1357. SBRData *ch_data, const int e_a[2])
  1358. {
  1359. int e, k, m;
  1360. // max gain limits : -3dB, 0dB, 3dB, inf dB (limiter off)
  1361. static const float limgain[4] = { 0.70795, 1.0, 1.41254, 10000000000 };
  1362. for (e = 0; e < ch_data->bs_num_env; e++) {
  1363. int delta = !((e == e_a[1]) || (e == e_a[0]));
  1364. for (k = 0; k < sbr->n_lim; k++) {
  1365. float gain_boost, gain_max;
  1366. float sum[2] = { 0.0f, 0.0f };
  1367. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1368. const float temp = sbr->e_origmapped[e][m] / (1.0f + sbr->q_mapped[e][m]);
  1369. sbr->q_m[e][m] = sqrtf(temp * sbr->q_mapped[e][m]);
  1370. sbr->s_m[e][m] = sqrtf(temp * ch_data->s_indexmapped[e + 1][m]);
  1371. if (!sbr->s_mapped[e][m]) {
  1372. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] /
  1373. ((1.0f + sbr->e_curr[e][m]) *
  1374. (1.0f + sbr->q_mapped[e][m] * delta)));
  1375. } else {
  1376. sbr->gain[e][m] = sqrtf(sbr->e_origmapped[e][m] * sbr->q_mapped[e][m] /
  1377. ((1.0f + sbr->e_curr[e][m]) *
  1378. (1.0f + sbr->q_mapped[e][m])));
  1379. }
  1380. }
  1381. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1382. sum[0] += sbr->e_origmapped[e][m];
  1383. sum[1] += sbr->e_curr[e][m];
  1384. }
  1385. gain_max = limgain[sbr->bs_limiter_gains] * sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1386. gain_max = FFMIN(100000.f, gain_max);
  1387. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1388. float q_m_max = sbr->q_m[e][m] * gain_max / sbr->gain[e][m];
  1389. sbr->q_m[e][m] = FFMIN(sbr->q_m[e][m], q_m_max);
  1390. sbr->gain[e][m] = FFMIN(sbr->gain[e][m], gain_max);
  1391. }
  1392. sum[0] = sum[1] = 0.0f;
  1393. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1394. sum[0] += sbr->e_origmapped[e][m];
  1395. sum[1] += sbr->e_curr[e][m] * sbr->gain[e][m] * sbr->gain[e][m]
  1396. + sbr->s_m[e][m] * sbr->s_m[e][m]
  1397. + (delta && !sbr->s_m[e][m]) * sbr->q_m[e][m] * sbr->q_m[e][m];
  1398. }
  1399. gain_boost = sqrtf((FLT_EPSILON + sum[0]) / (FLT_EPSILON + sum[1]));
  1400. gain_boost = FFMIN(1.584893192f, gain_boost);
  1401. for (m = sbr->f_tablelim[k] - sbr->kx[1]; m < sbr->f_tablelim[k + 1] - sbr->kx[1]; m++) {
  1402. sbr->gain[e][m] *= gain_boost;
  1403. sbr->q_m[e][m] *= gain_boost;
  1404. sbr->s_m[e][m] *= gain_boost;
  1405. }
  1406. }
  1407. }
  1408. }
  1409. /// Assembling HF Signals (14496-3 sp04 p220)
  1410. static void sbr_hf_assemble(float Y[2][38][64][2], const float X_high[64][40][2],
  1411. SpectralBandReplication *sbr, SBRData *ch_data,
  1412. const int e_a[2])
  1413. {
  1414. int e, i, j, m;
  1415. const int h_SL = 4 * !sbr->bs_smoothing_mode;
  1416. const int kx = sbr->kx[1];
  1417. const int m_max = sbr->m[1];
  1418. static const float h_smooth[5] = {
  1419. 0.33333333333333,
  1420. 0.30150283239582,
  1421. 0.21816949906249,
  1422. 0.11516383427084,
  1423. 0.03183050093751,
  1424. };
  1425. static const int8_t phi[2][4] = {
  1426. { 1, 0, -1, 0}, // real
  1427. { 0, 1, 0, -1}, // imaginary
  1428. };
  1429. float (*g_temp)[48] = ch_data->g_temp, (*q_temp)[48] = ch_data->q_temp;
  1430. int indexnoise = ch_data->f_indexnoise;
  1431. int indexsine = ch_data->f_indexsine;
  1432. memcpy(Y[0], Y[1], sizeof(Y[0]));
  1433. if (sbr->reset) {
  1434. for (i = 0; i < h_SL; i++) {
  1435. memcpy(g_temp[i + 2*ch_data->t_env[0]], sbr->gain[0], m_max * sizeof(sbr->gain[0][0]));
  1436. memcpy(q_temp[i + 2*ch_data->t_env[0]], sbr->q_m[0], m_max * sizeof(sbr->q_m[0][0]));
  1437. }
  1438. } else if (h_SL) {
  1439. memcpy(g_temp[2*ch_data->t_env[0]], g_temp[2*ch_data->t_env_num_env_old], 4*sizeof(g_temp[0]));
  1440. memcpy(q_temp[2*ch_data->t_env[0]], q_temp[2*ch_data->t_env_num_env_old], 4*sizeof(q_temp[0]));
  1441. }
  1442. for (e = 0; e < ch_data->bs_num_env; e++) {
  1443. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1444. memcpy(g_temp[h_SL + i], sbr->gain[e], m_max * sizeof(sbr->gain[0][0]));
  1445. memcpy(q_temp[h_SL + i], sbr->q_m[e], m_max * sizeof(sbr->q_m[0][0]));
  1446. }
  1447. }
  1448. for (e = 0; e < ch_data->bs_num_env; e++) {
  1449. for (i = 2 * ch_data->t_env[e]; i < 2 * ch_data->t_env[e + 1]; i++) {
  1450. int phi_sign = (1 - 2*(kx & 1));
  1451. if (h_SL && e != e_a[0] && e != e_a[1]) {
  1452. for (m = 0; m < m_max; m++) {
  1453. const int idx1 = i + h_SL;
  1454. float g_filt = 0.0f;
  1455. for (j = 0; j <= h_SL; j++)
  1456. g_filt += g_temp[idx1 - j][m] * h_smooth[j];
  1457. Y[1][i][m + kx][0] =
  1458. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1459. Y[1][i][m + kx][1] =
  1460. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1461. }
  1462. } else {
  1463. for (m = 0; m < m_max; m++) {
  1464. const float g_filt = g_temp[i + h_SL][m];
  1465. Y[1][i][m + kx][0] =
  1466. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][0] * g_filt;
  1467. Y[1][i][m + kx][1] =
  1468. X_high[m + kx][i + ENVELOPE_ADJUSTMENT_OFFSET][1] * g_filt;
  1469. }
  1470. }
  1471. if (e != e_a[0] && e != e_a[1]) {
  1472. for (m = 0; m < m_max; m++) {
  1473. indexnoise = (indexnoise + 1) & 0x1ff;
  1474. if (sbr->s_m[e][m]) {
  1475. Y[1][i][m + kx][0] +=
  1476. sbr->s_m[e][m] * phi[0][indexsine];
  1477. Y[1][i][m + kx][1] +=
  1478. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1479. } else {
  1480. float q_filt;
  1481. if (h_SL) {
  1482. const int idx1 = i + h_SL;
  1483. q_filt = 0.0f;
  1484. for (j = 0; j <= h_SL; j++)
  1485. q_filt += q_temp[idx1 - j][m] * h_smooth[j];
  1486. } else {
  1487. q_filt = q_temp[i][m];
  1488. }
  1489. Y[1][i][m + kx][0] +=
  1490. q_filt * sbr_noise_table[indexnoise][0];
  1491. Y[1][i][m + kx][1] +=
  1492. q_filt * sbr_noise_table[indexnoise][1];
  1493. }
  1494. phi_sign = -phi_sign;
  1495. }
  1496. } else {
  1497. indexnoise = (indexnoise + m_max) & 0x1ff;
  1498. for (m = 0; m < m_max; m++) {
  1499. Y[1][i][m + kx][0] +=
  1500. sbr->s_m[e][m] * phi[0][indexsine];
  1501. Y[1][i][m + kx][1] +=
  1502. sbr->s_m[e][m] * (phi[1][indexsine] * phi_sign);
  1503. phi_sign = -phi_sign;
  1504. }
  1505. }
  1506. indexsine = (indexsine + 1) & 3;
  1507. }
  1508. }
  1509. ch_data->f_indexnoise = indexnoise;
  1510. ch_data->f_indexsine = indexsine;
  1511. }
  1512. void ff_sbr_apply(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
  1513. float* L, float* R)
  1514. {
  1515. int downsampled = ac->m4ac.ext_sample_rate < sbr->sample_rate;
  1516. int ch;
  1517. int nch = (id_aac == TYPE_CPE) ? 2 : 1;
  1518. if (sbr->start) {
  1519. sbr_dequant(sbr, id_aac);
  1520. }
  1521. for (ch = 0; ch < nch; ch++) {
  1522. /* decode channel */
  1523. sbr_qmf_analysis(&ac->dsp, &sbr->mdct_ana, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
  1524. (float*)sbr->qmf_filter_scratch,
  1525. sbr->data[ch].W);
  1526. sbr_lf_gen(ac, sbr, sbr->X_low, sbr->data[ch].W);
  1527. if (sbr->start) {
  1528. sbr_hf_inverse_filter(sbr->alpha0, sbr->alpha1, sbr->X_low, sbr->k[0]);
  1529. sbr_chirp(sbr, &sbr->data[ch]);
  1530. sbr_hf_gen(ac, sbr, sbr->X_high, sbr->X_low, sbr->alpha0, sbr->alpha1,
  1531. sbr->data[ch].bw_array, sbr->data[ch].t_env,
  1532. sbr->data[ch].bs_num_env);
  1533. // hf_adj
  1534. sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1535. sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
  1536. sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
  1537. sbr_hf_assemble(sbr->data[ch].Y, sbr->X_high, sbr, &sbr->data[ch],
  1538. sbr->data[ch].e_a);
  1539. }
  1540. /* synthesis */
  1541. sbr_x_gen(sbr, sbr->X[ch], sbr->X_low, sbr->data[ch].Y, ch);
  1542. }
  1543. if (ac->m4ac.ps == 1) {
  1544. if (sbr->ps.start) {
  1545. ff_ps_apply(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
  1546. } else {
  1547. memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
  1548. }
  1549. nch = 2;
  1550. }
  1551. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, L, sbr->X[0], sbr->qmf_filter_scratch,
  1552. sbr->data[0].synthesis_filterbank_samples,
  1553. &sbr->data[0].synthesis_filterbank_samples_offset,
  1554. downsampled);
  1555. if (nch == 2)
  1556. sbr_qmf_synthesis(&ac->dsp, &sbr->mdct, R, sbr->X[1], sbr->qmf_filter_scratch,
  1557. sbr->data[1].synthesis_filterbank_samples,
  1558. &sbr->data[1].synthesis_filterbank_samples_offset,
  1559. downsampled);
  1560. }