You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

575 lines
18KB

  1. /*
  2. * Ut Video decoder
  3. * Copyright (c) 2011 Konstantin Shishkov
  4. *
  5. * This file is part of Libav.
  6. *
  7. * Libav is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU Lesser General Public
  9. * License as published by the Free Software Foundation; either
  10. * version 2.1 of the License, or (at your option) any later version.
  11. *
  12. * Libav is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  15. * Lesser General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU Lesser General Public
  18. * License along with Libav; if not, write to the Free Software
  19. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  20. */
  21. /**
  22. * @file
  23. * Ut Video decoder
  24. */
  25. #include <stdlib.h>
  26. #include "libavutil/intreadwrite.h"
  27. #include "avcodec.h"
  28. #include "bytestream.h"
  29. #include "get_bits.h"
  30. #include "dsputil.h"
  31. #include "thread.h"
  32. enum {
  33. PRED_NONE = 0,
  34. PRED_LEFT,
  35. PRED_GRADIENT,
  36. PRED_MEDIAN,
  37. };
  38. typedef struct UtvideoContext {
  39. AVCodecContext *avctx;
  40. AVFrame pic;
  41. DSPContext dsp;
  42. uint32_t frame_info_size, flags, frame_info;
  43. int planes;
  44. int slices;
  45. int compression;
  46. int interlaced;
  47. int frame_pred;
  48. uint8_t *slice_bits;
  49. int slice_bits_size;
  50. } UtvideoContext;
  51. typedef struct HuffEntry {
  52. uint8_t sym;
  53. uint8_t len;
  54. } HuffEntry;
  55. static int huff_cmp(const void *a, const void *b)
  56. {
  57. const HuffEntry *aa = a, *bb = b;
  58. return (aa->len - bb->len)*256 + aa->sym - bb->sym;
  59. }
  60. static int build_huff(const uint8_t *src, VLC *vlc, int *fsym)
  61. {
  62. int i;
  63. HuffEntry he[256];
  64. int last;
  65. uint32_t codes[256];
  66. uint8_t bits[256];
  67. uint8_t syms[256];
  68. uint32_t code;
  69. *fsym = -1;
  70. for (i = 0; i < 256; i++) {
  71. he[i].sym = i;
  72. he[i].len = *src++;
  73. }
  74. qsort(he, 256, sizeof(*he), huff_cmp);
  75. if (!he[0].len) {
  76. *fsym = he[0].sym;
  77. return 0;
  78. }
  79. if (he[0].len > 32)
  80. return -1;
  81. last = 255;
  82. while (he[last].len == 255 && last)
  83. last--;
  84. code = 1;
  85. for (i = last; i >= 0; i--) {
  86. codes[i] = code >> (32 - he[i].len);
  87. bits[i] = he[i].len;
  88. syms[i] = he[i].sym;
  89. code += 0x80000000u >> (he[i].len - 1);
  90. }
  91. return ff_init_vlc_sparse(vlc, FFMIN(he[last].len, 9), last + 1,
  92. bits, sizeof(*bits), sizeof(*bits),
  93. codes, sizeof(*codes), sizeof(*codes),
  94. syms, sizeof(*syms), sizeof(*syms), 0);
  95. }
  96. static int decode_plane(UtvideoContext *c, int plane_no,
  97. uint8_t *dst, int step, int stride,
  98. int width, int height,
  99. const uint8_t *src, int use_pred)
  100. {
  101. int i, j, slice, pix;
  102. int sstart, send;
  103. VLC vlc;
  104. GetBitContext gb;
  105. int prev, fsym;
  106. const int cmask = ~(!plane_no && c->avctx->pix_fmt == PIX_FMT_YUV420P);
  107. if (build_huff(src, &vlc, &fsym)) {
  108. av_log(c->avctx, AV_LOG_ERROR, "Cannot build Huffman codes\n");
  109. return AVERROR_INVALIDDATA;
  110. }
  111. if (fsym >= 0) { // build_huff reported a symbol to fill slices with
  112. send = 0;
  113. for (slice = 0; slice < c->slices; slice++) {
  114. uint8_t *dest;
  115. sstart = send;
  116. send = (height * (slice + 1) / c->slices) & cmask;
  117. dest = dst + sstart * stride;
  118. prev = 0x80;
  119. for (j = sstart; j < send; j++) {
  120. for (i = 0; i < width * step; i += step) {
  121. pix = fsym;
  122. if (use_pred) {
  123. prev += pix;
  124. pix = prev;
  125. }
  126. dest[i] = pix;
  127. }
  128. dest += stride;
  129. }
  130. }
  131. return 0;
  132. }
  133. src += 256;
  134. send = 0;
  135. for (slice = 0; slice < c->slices; slice++) {
  136. uint8_t *dest;
  137. int slice_data_start, slice_data_end, slice_size;
  138. sstart = send;
  139. send = (height * (slice + 1) / c->slices) & cmask;
  140. dest = dst + sstart * stride;
  141. // slice offset and size validation was done earlier
  142. slice_data_start = slice ? AV_RL32(src + slice * 4 - 4) : 0;
  143. slice_data_end = AV_RL32(src + slice * 4);
  144. slice_size = slice_data_end - slice_data_start;
  145. if (!slice_size) {
  146. for (j = sstart; j < send; j++) {
  147. for (i = 0; i < width * step; i += step)
  148. dest[i] = 0x80;
  149. dest += stride;
  150. }
  151. continue;
  152. }
  153. memcpy(c->slice_bits, src + slice_data_start + c->slices * 4, slice_size);
  154. memset(c->slice_bits + slice_size, 0, FF_INPUT_BUFFER_PADDING_SIZE);
  155. c->dsp.bswap_buf((uint32_t*)c->slice_bits, (uint32_t*)c->slice_bits,
  156. (slice_data_end - slice_data_start + 3) >> 2);
  157. init_get_bits(&gb, c->slice_bits, slice_size * 8);
  158. prev = 0x80;
  159. for (j = sstart; j < send; j++) {
  160. for (i = 0; i < width * step; i += step) {
  161. if (get_bits_left(&gb) <= 0) {
  162. av_log(c->avctx, AV_LOG_ERROR, "Slice decoding ran out of bits\n");
  163. goto fail;
  164. }
  165. pix = get_vlc2(&gb, vlc.table, vlc.bits, 4);
  166. if (pix < 0) {
  167. av_log(c->avctx, AV_LOG_ERROR, "Decoding error\n");
  168. goto fail;
  169. }
  170. if (use_pred) {
  171. prev += pix;
  172. pix = prev;
  173. }
  174. dest[i] = pix;
  175. }
  176. dest += stride;
  177. }
  178. if (get_bits_left(&gb) > 32)
  179. av_log(c->avctx, AV_LOG_WARNING, "%d bits left after decoding slice\n",
  180. get_bits_left(&gb));
  181. }
  182. ff_free_vlc(&vlc);
  183. return 0;
  184. fail:
  185. ff_free_vlc(&vlc);
  186. return AVERROR_INVALIDDATA;
  187. }
  188. static const int rgb_order[4] = { 1, 2, 0, 3 };
  189. static void restore_rgb_planes(uint8_t *src, int step, int stride, int width, int height)
  190. {
  191. int i, j;
  192. uint8_t r, g, b;
  193. for (j = 0; j < height; j++) {
  194. for (i = 0; i < width * step; i += step) {
  195. r = src[i];
  196. g = src[i + 1];
  197. b = src[i + 2];
  198. src[i] = r + g - 0x80;
  199. src[i + 2] = b + g - 0x80;
  200. }
  201. src += stride;
  202. }
  203. }
  204. static void restore_median(uint8_t *src, int step, int stride,
  205. int width, int height, int slices, int rmode)
  206. {
  207. int i, j, slice;
  208. int A, B, C;
  209. uint8_t *bsrc;
  210. int slice_start, slice_height;
  211. const int cmask = ~rmode;
  212. for (slice = 0; slice < slices; slice++) {
  213. slice_start = ((slice * height) / slices) & cmask;
  214. slice_height = ((((slice + 1) * height) / slices) & cmask) - slice_start;
  215. bsrc = src + slice_start * stride;
  216. // first line - left neighbour prediction
  217. bsrc[0] += 0x80;
  218. A = bsrc[0];
  219. for (i = step; i < width * step; i += step) {
  220. bsrc[i] += A;
  221. A = bsrc[i];
  222. }
  223. bsrc += stride;
  224. if (slice_height == 1)
  225. continue;
  226. // second line - first element has top predition, the rest uses median
  227. C = bsrc[-stride];
  228. bsrc[0] += C;
  229. A = bsrc[0];
  230. for (i = step; i < width * step; i += step) {
  231. B = bsrc[i - stride];
  232. bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
  233. C = B;
  234. A = bsrc[i];
  235. }
  236. bsrc += stride;
  237. // the rest of lines use continuous median prediction
  238. for (j = 2; j < slice_height; j++) {
  239. for (i = 0; i < width * step; i += step) {
  240. B = bsrc[i - stride];
  241. bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
  242. C = B;
  243. A = bsrc[i];
  244. }
  245. bsrc += stride;
  246. }
  247. }
  248. }
  249. /* UtVideo interlaced mode treats every two lines as a single one,
  250. * so restoring function should take care of possible padding between
  251. * two parts of the same "line".
  252. */
  253. static void restore_median_il(uint8_t *src, int step, int stride,
  254. int width, int height, int slices, int rmode)
  255. {
  256. int i, j, slice;
  257. int A, B, C;
  258. uint8_t *bsrc;
  259. int slice_start, slice_height;
  260. const int cmask = ~(rmode ? 3 : 1);
  261. const int stride2 = stride << 1;
  262. for (slice = 0; slice < slices; slice++) {
  263. slice_start = ((slice * height) / slices) & cmask;
  264. slice_height = ((((slice + 1) * height) / slices) & cmask) - slice_start;
  265. slice_height >>= 1;
  266. bsrc = src + slice_start * stride;
  267. // first line - left neighbour prediction
  268. bsrc[0] += 0x80;
  269. A = bsrc[0];
  270. for (i = step; i < width * step; i += step) {
  271. bsrc[i] += A;
  272. A = bsrc[i];
  273. }
  274. for (i = 0; i < width * step; i += step) {
  275. bsrc[stride + i] += A;
  276. A = bsrc[stride + i];
  277. }
  278. bsrc += stride2;
  279. if (slice_height == 1)
  280. continue;
  281. // second line - first element has top predition, the rest uses median
  282. C = bsrc[-stride2];
  283. bsrc[0] += C;
  284. A = bsrc[0];
  285. for (i = step; i < width * step; i += step) {
  286. B = bsrc[i - stride2];
  287. bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
  288. C = B;
  289. A = bsrc[i];
  290. }
  291. for (i = 0; i < width * step; i += step) {
  292. B = bsrc[i - stride];
  293. bsrc[stride + i] += mid_pred(A, B, (uint8_t)(A + B - C));
  294. C = B;
  295. A = bsrc[stride + i];
  296. }
  297. bsrc += stride2;
  298. // the rest of lines use continuous median prediction
  299. for (j = 2; j < slice_height; j++) {
  300. for (i = 0; i < width * step; i += step) {
  301. B = bsrc[i - stride2];
  302. bsrc[i] += mid_pred(A, B, (uint8_t)(A + B - C));
  303. C = B;
  304. A = bsrc[i];
  305. }
  306. for (i = 0; i < width * step; i += step) {
  307. B = bsrc[i - stride];
  308. bsrc[i + stride] += mid_pred(A, B, (uint8_t)(A + B - C));
  309. C = B;
  310. A = bsrc[i + stride];
  311. }
  312. bsrc += stride2;
  313. }
  314. }
  315. }
  316. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt)
  317. {
  318. const uint8_t *buf = avpkt->data;
  319. int buf_size = avpkt->size;
  320. UtvideoContext *c = avctx->priv_data;
  321. int i, j;
  322. const uint8_t *plane_start[5];
  323. int plane_size, max_slice_size = 0, slice_start, slice_end, slice_size;
  324. int ret;
  325. GetByteContext gb;
  326. if (c->pic.data[0])
  327. ff_thread_release_buffer(avctx, &c->pic);
  328. c->pic.reference = 1;
  329. c->pic.buffer_hints = FF_BUFFER_HINTS_VALID;
  330. if ((ret = ff_thread_get_buffer(avctx, &c->pic)) < 0) {
  331. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  332. return ret;
  333. }
  334. ff_thread_finish_setup(avctx);
  335. /* parse plane structure to retrieve frame flags and validate slice offsets */
  336. bytestream2_init(&gb, buf, buf_size);
  337. for (i = 0; i < c->planes; i++) {
  338. plane_start[i] = gb.buffer;
  339. if (bytestream2_get_bytes_left(&gb) < 256 + 4 * c->slices) {
  340. av_log(avctx, AV_LOG_ERROR, "Insufficient data for a plane\n");
  341. return AVERROR_INVALIDDATA;
  342. }
  343. bytestream2_skipu(&gb, 256);
  344. slice_start = 0;
  345. slice_end = 0;
  346. for (j = 0; j < c->slices; j++) {
  347. slice_end = bytestream2_get_le32u(&gb);
  348. slice_size = slice_end - slice_start;
  349. if (slice_end <= 0 || slice_size <= 0 ||
  350. bytestream2_get_bytes_left(&gb) < slice_end) {
  351. av_log(avctx, AV_LOG_ERROR, "Incorrect slice size\n");
  352. return AVERROR_INVALIDDATA;
  353. }
  354. slice_start = slice_end;
  355. max_slice_size = FFMAX(max_slice_size, slice_size);
  356. }
  357. plane_size = slice_end;
  358. bytestream2_skipu(&gb, plane_size);
  359. }
  360. plane_start[c->planes] = gb.buffer;
  361. if (bytestream2_get_bytes_left(&gb) < c->frame_info_size) {
  362. av_log(avctx, AV_LOG_ERROR, "Not enough data for frame information\n");
  363. return AVERROR_INVALIDDATA;
  364. }
  365. c->frame_info = bytestream2_get_le32u(&gb);
  366. av_log(avctx, AV_LOG_DEBUG, "frame information flags %X\n", c->frame_info);
  367. c->frame_pred = (c->frame_info >> 8) & 3;
  368. if (c->frame_pred == PRED_GRADIENT) {
  369. av_log_ask_for_sample(avctx, "Frame uses gradient prediction\n");
  370. return AVERROR_PATCHWELCOME;
  371. }
  372. av_fast_malloc(&c->slice_bits, &c->slice_bits_size,
  373. max_slice_size + FF_INPUT_BUFFER_PADDING_SIZE);
  374. if (!c->slice_bits) {
  375. av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer\n");
  376. return AVERROR(ENOMEM);
  377. }
  378. switch (c->avctx->pix_fmt) {
  379. case PIX_FMT_RGB24:
  380. case PIX_FMT_RGBA:
  381. for (i = 0; i < c->planes; i++) {
  382. ret = decode_plane(c, i, c->pic.data[0] + rgb_order[i], c->planes,
  383. c->pic.linesize[0], avctx->width, avctx->height,
  384. plane_start[i], c->frame_pred == PRED_LEFT);
  385. if (ret)
  386. return ret;
  387. if (c->frame_pred == PRED_MEDIAN)
  388. restore_median(c->pic.data[0] + rgb_order[i], c->planes,
  389. c->pic.linesize[0], avctx->width, avctx->height,
  390. c->slices, 0);
  391. }
  392. restore_rgb_planes(c->pic.data[0], c->planes, c->pic.linesize[0],
  393. avctx->width, avctx->height);
  394. break;
  395. case PIX_FMT_YUV420P:
  396. for (i = 0; i < 3; i++) {
  397. ret = decode_plane(c, i, c->pic.data[i], 1,
  398. c->pic.linesize[i], avctx->width >> !!i, avctx->height >> !!i,
  399. plane_start[i], c->frame_pred == PRED_LEFT);
  400. if (ret)
  401. return ret;
  402. if (c->frame_pred == PRED_MEDIAN) {
  403. if (!c->interlaced) {
  404. restore_median(c->pic.data[i], 1, c->pic.linesize[i],
  405. avctx->width >> !!i, avctx->height >> !!i,
  406. c->slices, !i);
  407. } else {
  408. restore_median_il(c->pic.data[i], 1, c->pic.linesize[i],
  409. avctx->width >> !!i,
  410. avctx->height >> !!i,
  411. c->slices, !i);
  412. }
  413. }
  414. }
  415. break;
  416. case PIX_FMT_YUV422P:
  417. for (i = 0; i < 3; i++) {
  418. ret = decode_plane(c, i, c->pic.data[i], 1,
  419. c->pic.linesize[i], avctx->width >> !!i, avctx->height,
  420. plane_start[i], c->frame_pred == PRED_LEFT);
  421. if (ret)
  422. return ret;
  423. if (c->frame_pred == PRED_MEDIAN) {
  424. if (!c->interlaced) {
  425. restore_median(c->pic.data[i], 1, c->pic.linesize[i],
  426. avctx->width >> !!i, avctx->height,
  427. c->slices, 0);
  428. } else {
  429. restore_median_il(c->pic.data[i], 1, c->pic.linesize[i],
  430. avctx->width >> !!i, avctx->height,
  431. c->slices, 0);
  432. }
  433. }
  434. }
  435. break;
  436. }
  437. c->pic.key_frame = 1;
  438. c->pic.pict_type = AV_PICTURE_TYPE_I;
  439. *data_size = sizeof(AVFrame);
  440. *(AVFrame*)data = c->pic;
  441. /* always report that the buffer was completely consumed */
  442. return buf_size;
  443. }
  444. static av_cold int decode_init(AVCodecContext *avctx)
  445. {
  446. UtvideoContext * const c = avctx->priv_data;
  447. c->avctx = avctx;
  448. ff_dsputil_init(&c->dsp, avctx);
  449. if (avctx->extradata_size < 16) {
  450. av_log(avctx, AV_LOG_ERROR, "Insufficient extradata size %d, should be at least 16\n",
  451. avctx->extradata_size);
  452. return AVERROR_INVALIDDATA;
  453. }
  454. av_log(avctx, AV_LOG_DEBUG, "Encoder version %d.%d.%d.%d\n",
  455. avctx->extradata[3], avctx->extradata[2],
  456. avctx->extradata[1], avctx->extradata[0]);
  457. av_log(avctx, AV_LOG_DEBUG, "Original format %X\n", AV_RB32(avctx->extradata + 4));
  458. c->frame_info_size = AV_RL32(avctx->extradata + 8);
  459. c->flags = AV_RL32(avctx->extradata + 12);
  460. if (c->frame_info_size != 4)
  461. av_log_ask_for_sample(avctx, "Frame info is not 4 bytes\n");
  462. av_log(avctx, AV_LOG_DEBUG, "Encoding parameters %08X\n", c->flags);
  463. c->slices = (c->flags >> 24) + 1;
  464. c->compression = c->flags & 1;
  465. c->interlaced = c->flags & 0x800;
  466. c->slice_bits_size = 0;
  467. switch (avctx->codec_tag) {
  468. case MKTAG('U', 'L', 'R', 'G'):
  469. c->planes = 3;
  470. avctx->pix_fmt = PIX_FMT_RGB24;
  471. break;
  472. case MKTAG('U', 'L', 'R', 'A'):
  473. c->planes = 4;
  474. avctx->pix_fmt = PIX_FMT_RGBA;
  475. break;
  476. case MKTAG('U', 'L', 'Y', '0'):
  477. c->planes = 3;
  478. avctx->pix_fmt = PIX_FMT_YUV420P;
  479. break;
  480. case MKTAG('U', 'L', 'Y', '2'):
  481. c->planes = 3;
  482. avctx->pix_fmt = PIX_FMT_YUV422P;
  483. break;
  484. default:
  485. av_log(avctx, AV_LOG_ERROR, "Unknown Ut Video FOURCC provided (%08X)\n",
  486. avctx->codec_tag);
  487. return AVERROR_INVALIDDATA;
  488. }
  489. return 0;
  490. }
  491. static av_cold int decode_end(AVCodecContext *avctx)
  492. {
  493. UtvideoContext * const c = avctx->priv_data;
  494. if (c->pic.data[0])
  495. ff_thread_release_buffer(avctx, &c->pic);
  496. av_freep(&c->slice_bits);
  497. return 0;
  498. }
  499. AVCodec ff_utvideo_decoder = {
  500. .name = "utvideo",
  501. .type = AVMEDIA_TYPE_VIDEO,
  502. .id = CODEC_ID_UTVIDEO,
  503. .priv_data_size = sizeof(UtvideoContext),
  504. .init = decode_init,
  505. .close = decode_end,
  506. .decode = decode_frame,
  507. .capabilities = CODEC_CAP_DR1 | CODEC_CAP_FRAME_THREADS,
  508. .long_name = NULL_IF_CONFIG_SMALL("Ut Video"),
  509. };