You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

646 lines
24KB

  1. /*
  2. * Copyright (c) 2002 Dieter Shirley
  3. *
  4. * This library is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU Lesser General Public
  6. * License as published by the Free Software Foundation; either
  7. * version 2 of the License, or (at your option) any later version.
  8. *
  9. * This library is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * Lesser General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU Lesser General Public
  15. * License along with this library; if not, write to the Free Software
  16. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17. */
  18. #include <stdlib.h>
  19. #include <stdio.h>
  20. #include "../dsputil.h"
  21. #include "../mpegvideo.h"
  22. #include "gcc_fixes.h"
  23. #include "dsputil_altivec.h"
  24. // Swaps two variables (used for altivec registers)
  25. #define SWAP(a,b) \
  26. do { \
  27. __typeof__(a) swap_temp=a; \
  28. a=b; \
  29. b=swap_temp; \
  30. } while (0)
  31. // transposes a matrix consisting of four vectors with four elements each
  32. #define TRANSPOSE4(a,b,c,d) \
  33. do { \
  34. __typeof__(a) _trans_ach = vec_mergeh(a, c); \
  35. __typeof__(a) _trans_acl = vec_mergel(a, c); \
  36. __typeof__(a) _trans_bdh = vec_mergeh(b, d); \
  37. __typeof__(a) _trans_bdl = vec_mergel(b, d); \
  38. \
  39. a = vec_mergeh(_trans_ach, _trans_bdh); \
  40. b = vec_mergel(_trans_ach, _trans_bdh); \
  41. c = vec_mergeh(_trans_acl, _trans_bdl); \
  42. d = vec_mergel(_trans_acl, _trans_bdl); \
  43. } while (0)
  44. #define TRANSPOSE8(a,b,c,d,e,f,g,h) \
  45. do { \
  46. __typeof__(a) _A1, _B1, _C1, _D1, _E1, _F1, _G1, _H1; \
  47. __typeof__(a) _A2, _B2, _C2, _D2, _E2, _F2, _G2, _H2; \
  48. \
  49. _A1 = vec_mergeh (a, e); \
  50. _B1 = vec_mergel (a, e); \
  51. _C1 = vec_mergeh (b, f); \
  52. _D1 = vec_mergel (b, f); \
  53. _E1 = vec_mergeh (c, g); \
  54. _F1 = vec_mergel (c, g); \
  55. _G1 = vec_mergeh (d, h); \
  56. _H1 = vec_mergel (d, h); \
  57. \
  58. _A2 = vec_mergeh (_A1, _E1); \
  59. _B2 = vec_mergel (_A1, _E1); \
  60. _C2 = vec_mergeh (_B1, _F1); \
  61. _D2 = vec_mergel (_B1, _F1); \
  62. _E2 = vec_mergeh (_C1, _G1); \
  63. _F2 = vec_mergel (_C1, _G1); \
  64. _G2 = vec_mergeh (_D1, _H1); \
  65. _H2 = vec_mergel (_D1, _H1); \
  66. \
  67. a = vec_mergeh (_A2, _E2); \
  68. b = vec_mergel (_A2, _E2); \
  69. c = vec_mergeh (_B2, _F2); \
  70. d = vec_mergel (_B2, _F2); \
  71. e = vec_mergeh (_C2, _G2); \
  72. f = vec_mergel (_C2, _G2); \
  73. g = vec_mergeh (_D2, _H2); \
  74. h = vec_mergel (_D2, _H2); \
  75. } while (0)
  76. // Loads a four-byte value (int or float) from the target address
  77. // into every element in the target vector. Only works if the
  78. // target address is four-byte aligned (which should be always).
  79. #define LOAD4(vec, address) \
  80. { \
  81. __typeof__(vec)* _load_addr = (__typeof__(vec)*)(address); \
  82. vector unsigned char _perm_vec = vec_lvsl(0,(address)); \
  83. vec = vec_ld(0, _load_addr); \
  84. vec = vec_perm(vec, vec, _perm_vec); \
  85. vec = vec_splat(vec, 0); \
  86. }
  87. #ifdef CONFIG_DARWIN
  88. #define FOUROF(a) (a)
  89. #else
  90. // slower, for dumb non-apple GCC
  91. #define FOUROF(a) {a,a,a,a}
  92. #endif
  93. int dct_quantize_altivec(MpegEncContext* s,
  94. DCTELEM* data, int n,
  95. int qscale, int* overflow)
  96. {
  97. int lastNonZero;
  98. vector float row0, row1, row2, row3, row4, row5, row6, row7;
  99. vector float alt0, alt1, alt2, alt3, alt4, alt5, alt6, alt7;
  100. const vector float zero = (const vector float)FOUROF(0.);
  101. // Load the data into the row/alt vectors
  102. {
  103. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  104. data0 = vec_ld(0, data);
  105. data1 = vec_ld(16, data);
  106. data2 = vec_ld(32, data);
  107. data3 = vec_ld(48, data);
  108. data4 = vec_ld(64, data);
  109. data5 = vec_ld(80, data);
  110. data6 = vec_ld(96, data);
  111. data7 = vec_ld(112, data);
  112. // Transpose the data before we start
  113. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  114. // load the data into floating point vectors. We load
  115. // the high half of each row into the main row vectors
  116. // and the low half into the alt vectors.
  117. row0 = vec_ctf(vec_unpackh(data0), 0);
  118. alt0 = vec_ctf(vec_unpackl(data0), 0);
  119. row1 = vec_ctf(vec_unpackh(data1), 0);
  120. alt1 = vec_ctf(vec_unpackl(data1), 0);
  121. row2 = vec_ctf(vec_unpackh(data2), 0);
  122. alt2 = vec_ctf(vec_unpackl(data2), 0);
  123. row3 = vec_ctf(vec_unpackh(data3), 0);
  124. alt3 = vec_ctf(vec_unpackl(data3), 0);
  125. row4 = vec_ctf(vec_unpackh(data4), 0);
  126. alt4 = vec_ctf(vec_unpackl(data4), 0);
  127. row5 = vec_ctf(vec_unpackh(data5), 0);
  128. alt5 = vec_ctf(vec_unpackl(data5), 0);
  129. row6 = vec_ctf(vec_unpackh(data6), 0);
  130. alt6 = vec_ctf(vec_unpackl(data6), 0);
  131. row7 = vec_ctf(vec_unpackh(data7), 0);
  132. alt7 = vec_ctf(vec_unpackl(data7), 0);
  133. }
  134. // The following block could exist as a separate an altivec dct
  135. // function. However, if we put it inline, the DCT data can remain
  136. // in the vector local variables, as floats, which we'll use during the
  137. // quantize step...
  138. {
  139. const vector float vec_0_298631336 = (vector float)FOUROF(0.298631336f);
  140. const vector float vec_0_390180644 = (vector float)FOUROF(-0.390180644f);
  141. const vector float vec_0_541196100 = (vector float)FOUROF(0.541196100f);
  142. const vector float vec_0_765366865 = (vector float)FOUROF(0.765366865f);
  143. const vector float vec_0_899976223 = (vector float)FOUROF(-0.899976223f);
  144. const vector float vec_1_175875602 = (vector float)FOUROF(1.175875602f);
  145. const vector float vec_1_501321110 = (vector float)FOUROF(1.501321110f);
  146. const vector float vec_1_847759065 = (vector float)FOUROF(-1.847759065f);
  147. const vector float vec_1_961570560 = (vector float)FOUROF(-1.961570560f);
  148. const vector float vec_2_053119869 = (vector float)FOUROF(2.053119869f);
  149. const vector float vec_2_562915447 = (vector float)FOUROF(-2.562915447f);
  150. const vector float vec_3_072711026 = (vector float)FOUROF(3.072711026f);
  151. int whichPass, whichHalf;
  152. for(whichPass = 1; whichPass<=2; whichPass++)
  153. {
  154. for(whichHalf = 1; whichHalf<=2; whichHalf++)
  155. {
  156. vector float tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
  157. vector float tmp10, tmp11, tmp12, tmp13;
  158. vector float z1, z2, z3, z4, z5;
  159. tmp0 = vec_add(row0, row7); // tmp0 = dataptr[0] + dataptr[7];
  160. tmp7 = vec_sub(row0, row7); // tmp7 = dataptr[0] - dataptr[7];
  161. tmp3 = vec_add(row3, row4); // tmp3 = dataptr[3] + dataptr[4];
  162. tmp4 = vec_sub(row3, row4); // tmp4 = dataptr[3] - dataptr[4];
  163. tmp1 = vec_add(row1, row6); // tmp1 = dataptr[1] + dataptr[6];
  164. tmp6 = vec_sub(row1, row6); // tmp6 = dataptr[1] - dataptr[6];
  165. tmp2 = vec_add(row2, row5); // tmp2 = dataptr[2] + dataptr[5];
  166. tmp5 = vec_sub(row2, row5); // tmp5 = dataptr[2] - dataptr[5];
  167. tmp10 = vec_add(tmp0, tmp3); // tmp10 = tmp0 + tmp3;
  168. tmp13 = vec_sub(tmp0, tmp3); // tmp13 = tmp0 - tmp3;
  169. tmp11 = vec_add(tmp1, tmp2); // tmp11 = tmp1 + tmp2;
  170. tmp12 = vec_sub(tmp1, tmp2); // tmp12 = tmp1 - tmp2;
  171. // dataptr[0] = (DCTELEM) ((tmp10 + tmp11) << PASS1_BITS);
  172. row0 = vec_add(tmp10, tmp11);
  173. // dataptr[4] = (DCTELEM) ((tmp10 - tmp11) << PASS1_BITS);
  174. row4 = vec_sub(tmp10, tmp11);
  175. // z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100);
  176. z1 = vec_madd(vec_add(tmp12, tmp13), vec_0_541196100, (vector float)zero);
  177. // dataptr[2] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865),
  178. // CONST_BITS-PASS1_BITS);
  179. row2 = vec_madd(tmp13, vec_0_765366865, z1);
  180. // dataptr[6] = (DCTELEM) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065),
  181. // CONST_BITS-PASS1_BITS);
  182. row6 = vec_madd(tmp12, vec_1_847759065, z1);
  183. z1 = vec_add(tmp4, tmp7); // z1 = tmp4 + tmp7;
  184. z2 = vec_add(tmp5, tmp6); // z2 = tmp5 + tmp6;
  185. z3 = vec_add(tmp4, tmp6); // z3 = tmp4 + tmp6;
  186. z4 = vec_add(tmp5, tmp7); // z4 = tmp5 + tmp7;
  187. // z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */
  188. z5 = vec_madd(vec_add(z3, z4), vec_1_175875602, (vector float)zero);
  189. // z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */
  190. z3 = vec_madd(z3, vec_1_961570560, z5);
  191. // z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */
  192. z4 = vec_madd(z4, vec_0_390180644, z5);
  193. // The following adds are rolled into the multiplies above
  194. // z3 = vec_add(z3, z5); // z3 += z5;
  195. // z4 = vec_add(z4, z5); // z4 += z5;
  196. // z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */
  197. // Wow! It's actually more effecient to roll this multiply
  198. // into the adds below, even thought the multiply gets done twice!
  199. // z2 = vec_madd(z2, vec_2_562915447, (vector float)zero);
  200. // z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */
  201. // Same with this one...
  202. // z1 = vec_madd(z1, vec_0_899976223, (vector float)zero);
  203. // tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */
  204. // dataptr[7] = (DCTELEM) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS);
  205. row7 = vec_madd(tmp4, vec_0_298631336, vec_madd(z1, vec_0_899976223, z3));
  206. // tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */
  207. // dataptr[5] = (DCTELEM) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS);
  208. row5 = vec_madd(tmp5, vec_2_053119869, vec_madd(z2, vec_2_562915447, z4));
  209. // tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */
  210. // dataptr[3] = (DCTELEM) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS);
  211. row3 = vec_madd(tmp6, vec_3_072711026, vec_madd(z2, vec_2_562915447, z3));
  212. // tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */
  213. // dataptr[1] = (DCTELEM) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS);
  214. row1 = vec_madd(z1, vec_0_899976223, vec_madd(tmp7, vec_1_501321110, z4));
  215. // Swap the row values with the alts. If this is the first half,
  216. // this sets up the low values to be acted on in the second half.
  217. // If this is the second half, it puts the high values back in
  218. // the row values where they are expected to be when we're done.
  219. SWAP(row0, alt0);
  220. SWAP(row1, alt1);
  221. SWAP(row2, alt2);
  222. SWAP(row3, alt3);
  223. SWAP(row4, alt4);
  224. SWAP(row5, alt5);
  225. SWAP(row6, alt6);
  226. SWAP(row7, alt7);
  227. }
  228. if (whichPass == 1)
  229. {
  230. // transpose the data for the second pass
  231. // First, block transpose the upper right with lower left.
  232. SWAP(row4, alt0);
  233. SWAP(row5, alt1);
  234. SWAP(row6, alt2);
  235. SWAP(row7, alt3);
  236. // Now, transpose each block of four
  237. TRANSPOSE4(row0, row1, row2, row3);
  238. TRANSPOSE4(row4, row5, row6, row7);
  239. TRANSPOSE4(alt0, alt1, alt2, alt3);
  240. TRANSPOSE4(alt4, alt5, alt6, alt7);
  241. }
  242. }
  243. }
  244. // used after quantise step
  245. int oldBaseValue = 0;
  246. // perform the quantise step, using the floating point data
  247. // still in the row/alt registers
  248. {
  249. const int* biasAddr;
  250. const vector signed int* qmat;
  251. vector float bias, negBias;
  252. if (s->mb_intra)
  253. {
  254. vector signed int baseVector;
  255. // We must cache element 0 in the intra case
  256. // (it needs special handling).
  257. baseVector = vec_cts(vec_splat(row0, 0), 0);
  258. vec_ste(baseVector, 0, &oldBaseValue);
  259. qmat = (vector signed int*)s->q_intra_matrix[qscale];
  260. biasAddr = &(s->intra_quant_bias);
  261. }
  262. else
  263. {
  264. qmat = (vector signed int*)s->q_inter_matrix[qscale];
  265. biasAddr = &(s->inter_quant_bias);
  266. }
  267. // Load the bias vector (We add 0.5 to the bias so that we're
  268. // rounding when we convert to int, instead of flooring.)
  269. {
  270. vector signed int biasInt;
  271. const vector float negOneFloat = (vector float)FOUROF(-1.0f);
  272. LOAD4(biasInt, biasAddr);
  273. bias = vec_ctf(biasInt, QUANT_BIAS_SHIFT);
  274. negBias = vec_madd(bias, negOneFloat, zero);
  275. }
  276. {
  277. vector float q0, q1, q2, q3, q4, q5, q6, q7;
  278. q0 = vec_ctf(qmat[0], QMAT_SHIFT);
  279. q1 = vec_ctf(qmat[2], QMAT_SHIFT);
  280. q2 = vec_ctf(qmat[4], QMAT_SHIFT);
  281. q3 = vec_ctf(qmat[6], QMAT_SHIFT);
  282. q4 = vec_ctf(qmat[8], QMAT_SHIFT);
  283. q5 = vec_ctf(qmat[10], QMAT_SHIFT);
  284. q6 = vec_ctf(qmat[12], QMAT_SHIFT);
  285. q7 = vec_ctf(qmat[14], QMAT_SHIFT);
  286. row0 = vec_sel(vec_madd(row0, q0, negBias), vec_madd(row0, q0, bias),
  287. vec_cmpgt(row0, zero));
  288. row1 = vec_sel(vec_madd(row1, q1, negBias), vec_madd(row1, q1, bias),
  289. vec_cmpgt(row1, zero));
  290. row2 = vec_sel(vec_madd(row2, q2, negBias), vec_madd(row2, q2, bias),
  291. vec_cmpgt(row2, zero));
  292. row3 = vec_sel(vec_madd(row3, q3, negBias), vec_madd(row3, q3, bias),
  293. vec_cmpgt(row3, zero));
  294. row4 = vec_sel(vec_madd(row4, q4, negBias), vec_madd(row4, q4, bias),
  295. vec_cmpgt(row4, zero));
  296. row5 = vec_sel(vec_madd(row5, q5, negBias), vec_madd(row5, q5, bias),
  297. vec_cmpgt(row5, zero));
  298. row6 = vec_sel(vec_madd(row6, q6, negBias), vec_madd(row6, q6, bias),
  299. vec_cmpgt(row6, zero));
  300. row7 = vec_sel(vec_madd(row7, q7, negBias), vec_madd(row7, q7, bias),
  301. vec_cmpgt(row7, zero));
  302. q0 = vec_ctf(qmat[1], QMAT_SHIFT);
  303. q1 = vec_ctf(qmat[3], QMAT_SHIFT);
  304. q2 = vec_ctf(qmat[5], QMAT_SHIFT);
  305. q3 = vec_ctf(qmat[7], QMAT_SHIFT);
  306. q4 = vec_ctf(qmat[9], QMAT_SHIFT);
  307. q5 = vec_ctf(qmat[11], QMAT_SHIFT);
  308. q6 = vec_ctf(qmat[13], QMAT_SHIFT);
  309. q7 = vec_ctf(qmat[15], QMAT_SHIFT);
  310. alt0 = vec_sel(vec_madd(alt0, q0, negBias), vec_madd(alt0, q0, bias),
  311. vec_cmpgt(alt0, zero));
  312. alt1 = vec_sel(vec_madd(alt1, q1, negBias), vec_madd(alt1, q1, bias),
  313. vec_cmpgt(alt1, zero));
  314. alt2 = vec_sel(vec_madd(alt2, q2, negBias), vec_madd(alt2, q2, bias),
  315. vec_cmpgt(alt2, zero));
  316. alt3 = vec_sel(vec_madd(alt3, q3, negBias), vec_madd(alt3, q3, bias),
  317. vec_cmpgt(alt3, zero));
  318. alt4 = vec_sel(vec_madd(alt4, q4, negBias), vec_madd(alt4, q4, bias),
  319. vec_cmpgt(alt4, zero));
  320. alt5 = vec_sel(vec_madd(alt5, q5, negBias), vec_madd(alt5, q5, bias),
  321. vec_cmpgt(alt5, zero));
  322. alt6 = vec_sel(vec_madd(alt6, q6, negBias), vec_madd(alt6, q6, bias),
  323. vec_cmpgt(alt6, zero));
  324. alt7 = vec_sel(vec_madd(alt7, q7, negBias), vec_madd(alt7, q7, bias),
  325. vec_cmpgt(alt7, zero));
  326. }
  327. }
  328. // Store the data back into the original block
  329. {
  330. vector signed short data0, data1, data2, data3, data4, data5, data6, data7;
  331. data0 = vec_pack(vec_cts(row0, 0), vec_cts(alt0, 0));
  332. data1 = vec_pack(vec_cts(row1, 0), vec_cts(alt1, 0));
  333. data2 = vec_pack(vec_cts(row2, 0), vec_cts(alt2, 0));
  334. data3 = vec_pack(vec_cts(row3, 0), vec_cts(alt3, 0));
  335. data4 = vec_pack(vec_cts(row4, 0), vec_cts(alt4, 0));
  336. data5 = vec_pack(vec_cts(row5, 0), vec_cts(alt5, 0));
  337. data6 = vec_pack(vec_cts(row6, 0), vec_cts(alt6, 0));
  338. data7 = vec_pack(vec_cts(row7, 0), vec_cts(alt7, 0));
  339. {
  340. // Clamp for overflow
  341. vector signed int max_q_int, min_q_int;
  342. vector signed short max_q, min_q;
  343. LOAD4(max_q_int, &(s->max_qcoeff));
  344. LOAD4(min_q_int, &(s->min_qcoeff));
  345. max_q = vec_pack(max_q_int, max_q_int);
  346. min_q = vec_pack(min_q_int, min_q_int);
  347. data0 = vec_max(vec_min(data0, max_q), min_q);
  348. data1 = vec_max(vec_min(data1, max_q), min_q);
  349. data2 = vec_max(vec_min(data2, max_q), min_q);
  350. data4 = vec_max(vec_min(data4, max_q), min_q);
  351. data5 = vec_max(vec_min(data5, max_q), min_q);
  352. data6 = vec_max(vec_min(data6, max_q), min_q);
  353. data7 = vec_max(vec_min(data7, max_q), min_q);
  354. }
  355. vector bool char zero_01, zero_23, zero_45, zero_67;
  356. vector signed char scanIndices_01, scanIndices_23, scanIndices_45, scanIndices_67;
  357. vector signed char negOne = vec_splat_s8(-1);
  358. vector signed char* scanPtr =
  359. (vector signed char*)(s->intra_scantable.inverse);
  360. // Determine the largest non-zero index.
  361. zero_01 = vec_pack(vec_cmpeq(data0, (vector short)zero),
  362. vec_cmpeq(data1, (vector short)zero));
  363. zero_23 = vec_pack(vec_cmpeq(data2, (vector short)zero),
  364. vec_cmpeq(data3, (vector short)zero));
  365. zero_45 = vec_pack(vec_cmpeq(data4, (vector short)zero),
  366. vec_cmpeq(data5, (vector short)zero));
  367. zero_67 = vec_pack(vec_cmpeq(data6, (vector short)zero),
  368. vec_cmpeq(data7, (vector short)zero));
  369. // 64 biggest values
  370. scanIndices_01 = vec_sel(scanPtr[0], negOne, zero_01);
  371. scanIndices_23 = vec_sel(scanPtr[1], negOne, zero_23);
  372. scanIndices_45 = vec_sel(scanPtr[2], negOne, zero_45);
  373. scanIndices_67 = vec_sel(scanPtr[3], negOne, zero_67);
  374. // 32 largest values
  375. scanIndices_01 = vec_max(scanIndices_01, scanIndices_23);
  376. scanIndices_45 = vec_max(scanIndices_45, scanIndices_67);
  377. // 16 largest values
  378. scanIndices_01 = vec_max(scanIndices_01, scanIndices_45);
  379. // 8 largest values
  380. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  381. vec_mergel(scanIndices_01, negOne));
  382. // 4 largest values
  383. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  384. vec_mergel(scanIndices_01, negOne));
  385. // 2 largest values
  386. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  387. vec_mergel(scanIndices_01, negOne));
  388. // largest value
  389. scanIndices_01 = vec_max(vec_mergeh(scanIndices_01, negOne),
  390. vec_mergel(scanIndices_01, negOne));
  391. scanIndices_01 = vec_splat(scanIndices_01, 0);
  392. signed char lastNonZeroChar;
  393. vec_ste(scanIndices_01, 0, &lastNonZeroChar);
  394. lastNonZero = lastNonZeroChar;
  395. // While the data is still in vectors we check for the transpose IDCT permute
  396. // and handle it using the vector unit if we can. This is the permute used
  397. // by the altivec idct, so it is common when using the altivec dct.
  398. if ((lastNonZero > 0) && (s->dsp.idct_permutation_type == FF_TRANSPOSE_IDCT_PERM))
  399. {
  400. TRANSPOSE8(data0, data1, data2, data3, data4, data5, data6, data7);
  401. }
  402. vec_st(data0, 0, data);
  403. vec_st(data1, 16, data);
  404. vec_st(data2, 32, data);
  405. vec_st(data3, 48, data);
  406. vec_st(data4, 64, data);
  407. vec_st(data5, 80, data);
  408. vec_st(data6, 96, data);
  409. vec_st(data7, 112, data);
  410. }
  411. // special handling of block[0]
  412. if (s->mb_intra)
  413. {
  414. if (!s->h263_aic)
  415. {
  416. if (n < 4)
  417. oldBaseValue /= s->y_dc_scale;
  418. else
  419. oldBaseValue /= s->c_dc_scale;
  420. }
  421. // Divide by 8, rounding the result
  422. data[0] = (oldBaseValue + 4) >> 3;
  423. }
  424. // We handled the tranpose permutation above and we don't
  425. // need to permute the "no" permutation case.
  426. if ((lastNonZero > 0) &&
  427. (s->dsp.idct_permutation_type != FF_TRANSPOSE_IDCT_PERM) &&
  428. (s->dsp.idct_permutation_type != FF_NO_IDCT_PERM))
  429. {
  430. ff_block_permute(data, s->dsp.idct_permutation,
  431. s->intra_scantable.scantable, lastNonZero);
  432. }
  433. return lastNonZero;
  434. }
  435. #undef FOUROF
  436. /*
  437. AltiVec version of dct_unquantize_h263
  438. this code assumes `block' is 16 bytes-aligned
  439. */
  440. void dct_unquantize_h263_altivec(MpegEncContext *s,
  441. DCTELEM *block, int n, int qscale)
  442. {
  443. POWERPC_PERF_DECLARE(altivec_dct_unquantize_h263_num, 1);
  444. int i, level, qmul, qadd;
  445. int nCoeffs;
  446. assert(s->block_last_index[n]>=0);
  447. POWERPC_PERF_START_COUNT(altivec_dct_unquantize_h263_num, 1);
  448. qadd = (qscale - 1) | 1;
  449. qmul = qscale << 1;
  450. if (s->mb_intra) {
  451. if (!s->h263_aic) {
  452. if (n < 4)
  453. block[0] = block[0] * s->y_dc_scale;
  454. else
  455. block[0] = block[0] * s->c_dc_scale;
  456. }else
  457. qadd = 0;
  458. i = 1;
  459. nCoeffs= 63; //does not allways use zigzag table
  460. } else {
  461. i = 0;
  462. nCoeffs= s->intra_scantable.raster_end[ s->block_last_index[n] ];
  463. }
  464. #ifdef ALTIVEC_USE_REFERENCE_C_CODE
  465. for(;i<=nCoeffs;i++) {
  466. level = block[i];
  467. if (level) {
  468. if (level < 0) {
  469. level = level * qmul - qadd;
  470. } else {
  471. level = level * qmul + qadd;
  472. }
  473. block[i] = level;
  474. }
  475. }
  476. #else /* ALTIVEC_USE_REFERENCE_C_CODE */
  477. {
  478. register const vector short vczero = (const vector short)vec_splat_s16(0);
  479. short __attribute__ ((aligned(16))) qmul8[] =
  480. {
  481. qmul, qmul, qmul, qmul,
  482. qmul, qmul, qmul, qmul
  483. };
  484. short __attribute__ ((aligned(16))) qadd8[] =
  485. {
  486. qadd, qadd, qadd, qadd,
  487. qadd, qadd, qadd, qadd
  488. };
  489. short __attribute__ ((aligned(16))) nqadd8[] =
  490. {
  491. -qadd, -qadd, -qadd, -qadd,
  492. -qadd, -qadd, -qadd, -qadd
  493. };
  494. register vector short blockv, qmulv, qaddv, nqaddv, temp1;
  495. register vector bool short blockv_null, blockv_neg;
  496. register short backup_0 = block[0];
  497. register int j = 0;
  498. qmulv = vec_ld(0, qmul8);
  499. qaddv = vec_ld(0, qadd8);
  500. nqaddv = vec_ld(0, nqadd8);
  501. #if 0 // block *is* 16 bytes-aligned, it seems.
  502. // first make sure block[j] is 16 bytes-aligned
  503. for(j = 0; (j <= nCoeffs) && ((((unsigned long)block) + (j << 1)) & 0x0000000F) ; j++) {
  504. level = block[j];
  505. if (level) {
  506. if (level < 0) {
  507. level = level * qmul - qadd;
  508. } else {
  509. level = level * qmul + qadd;
  510. }
  511. block[j] = level;
  512. }
  513. }
  514. #endif
  515. // vectorize all the 16 bytes-aligned blocks
  516. // of 8 elements
  517. for(; (j + 7) <= nCoeffs ; j+=8)
  518. {
  519. blockv = vec_ld(j << 1, block);
  520. blockv_neg = vec_cmplt(blockv, vczero);
  521. blockv_null = vec_cmpeq(blockv, vczero);
  522. // choose between +qadd or -qadd as the third operand
  523. temp1 = vec_sel(qaddv, nqaddv, blockv_neg);
  524. // multiply & add (block{i,i+7} * qmul [+-] qadd)
  525. temp1 = vec_mladd(blockv, qmulv, temp1);
  526. // put 0 where block[{i,i+7} used to have 0
  527. blockv = vec_sel(temp1, blockv, blockv_null);
  528. vec_st(blockv, j << 1, block);
  529. }
  530. // if nCoeffs isn't a multiple of 8, finish the job
  531. // using good old scalar units.
  532. // (we could do it using a truncated vector,
  533. // but I'm not sure it's worth the hassle)
  534. for(; j <= nCoeffs ; j++) {
  535. level = block[j];
  536. if (level) {
  537. if (level < 0) {
  538. level = level * qmul - qadd;
  539. } else {
  540. level = level * qmul + qadd;
  541. }
  542. block[j] = level;
  543. }
  544. }
  545. if (i == 1)
  546. { // cheat. this avoid special-casing the first iteration
  547. block[0] = backup_0;
  548. }
  549. }
  550. #endif /* ALTIVEC_USE_REFERENCE_C_CODE */
  551. POWERPC_PERF_STOP_COUNT(altivec_dct_unquantize_h263_num, nCoeffs == 63);
  552. }