You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

514 lines
19KB

  1. ;******************************************************************************
  2. ;* x86-optimized input routines; does shuffling of packed
  3. ;* YUV formats into individual planes, and converts RGB
  4. ;* into YUV planes also.
  5. ;* Copyright (c) 2012 Ronald S. Bultje <rsbultje@gmail.com>
  6. ;*
  7. ;* This file is part of Libav.
  8. ;*
  9. ;* Libav is free software; you can redistribute it and/or
  10. ;* modify it under the terms of the GNU Lesser General Public
  11. ;* License as published by the Free Software Foundation; either
  12. ;* version 2.1 of the License, or (at your option) any later version.
  13. ;*
  14. ;* Libav is distributed in the hope that it will be useful,
  15. ;* but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. ;* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  17. ;* Lesser General Public License for more details.
  18. ;*
  19. ;* You should have received a copy of the GNU Lesser General Public
  20. ;* License along with Libav; if not, write to the Free Software
  21. ;* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  22. ;******************************************************************************
  23. %include "x86inc.asm"
  24. %include "x86util.asm"
  25. SECTION_RODATA
  26. %define RY 0x20DE
  27. %define GY 0x4087
  28. %define BY 0x0C88
  29. %define RU 0xECFF
  30. %define GU 0xDAC8
  31. %define BU 0x3838
  32. %define RV 0x3838
  33. %define GV 0xD0E3
  34. %define BV 0xF6E4
  35. rgb_Yrnd: times 4 dd 0x84000 ; 16.5 << 15
  36. rgb_UVrnd: times 4 dd 0x404000 ; 128.5 << 15
  37. bgr_Ycoeff_12x4: times 2 dw BY, GY, 0, BY
  38. bgr_Ycoeff_3x56: times 2 dw RY, 0, GY, RY
  39. rgb_Ycoeff_12x4: times 2 dw RY, GY, 0, RY
  40. rgb_Ycoeff_3x56: times 2 dw BY, 0, GY, BY
  41. bgr_Ucoeff_12x4: times 2 dw BU, GU, 0, BU
  42. bgr_Ucoeff_3x56: times 2 dw RU, 0, GU, RU
  43. rgb_Ucoeff_12x4: times 2 dw RU, GU, 0, RU
  44. rgb_Ucoeff_3x56: times 2 dw BU, 0, GU, BU
  45. bgr_Vcoeff_12x4: times 2 dw BV, GV, 0, BV
  46. bgr_Vcoeff_3x56: times 2 dw RV, 0, GV, RV
  47. rgb_Vcoeff_12x4: times 2 dw RV, GV, 0, RV
  48. rgb_Vcoeff_3x56: times 2 dw BV, 0, GV, BV
  49. shuf_rgb_12x4: db 0, 0x80, 1, 0x80, 2, 0x80, 3, 0x80, \
  50. 6, 0x80, 7, 0x80, 8, 0x80, 9, 0x80
  51. shuf_rgb_3x56: db 2, 0x80, 3, 0x80, 4, 0x80, 5, 0x80, \
  52. 8, 0x80, 9, 0x80, 10, 0x80, 11, 0x80
  53. SECTION .text
  54. ;-----------------------------------------------------------------------------
  55. ; RGB to Y/UV.
  56. ;
  57. ; void <fmt>ToY_<opt>(uint8_t *dst, const uint8_t *src, int w);
  58. ; and
  59. ; void <fmt>toUV_<opt>(uint8_t *dstU, uint8_t *dstV, const uint8_t *src,
  60. ; const uint8_t *unused, int w);
  61. ;-----------------------------------------------------------------------------
  62. ; %1 = nr. of XMM registers
  63. ; %2 = rgb or bgr
  64. %macro RGB24_TO_Y_FN 2-3
  65. cglobal %2 %+ 24ToY, 3, 3, %1, dst, src, w
  66. %if mmsize == 8
  67. mova m5, [%2_Ycoeff_12x4]
  68. mova m6, [%2_Ycoeff_3x56]
  69. %define coeff1 m5
  70. %define coeff2 m6
  71. %elif ARCH_X86_64
  72. mova m8, [%2_Ycoeff_12x4]
  73. mova m9, [%2_Ycoeff_3x56]
  74. %define coeff1 m8
  75. %define coeff2 m9
  76. %else ; x86-32 && mmsize == 16
  77. %define coeff1 [%2_Ycoeff_12x4]
  78. %define coeff2 [%2_Ycoeff_3x56]
  79. %endif ; x86-32/64 && mmsize == 8/16
  80. %if (ARCH_X86_64 || mmsize == 8) && %0 == 3
  81. jmp mangle(program_name %+ _ %+ %3 %+ 24ToY %+ SUFFIX).body
  82. %else ; (ARCH_X86_64 && %0 == 3) || mmsize == 8
  83. .body:
  84. %if cpuflag(ssse3)
  85. mova m7, [shuf_rgb_12x4]
  86. %define shuf_rgb1 m7
  87. %if ARCH_X86_64
  88. mova m10, [shuf_rgb_3x56]
  89. %define shuf_rgb2 m10
  90. %else ; x86-32
  91. %define shuf_rgb2 [shuf_rgb_3x56]
  92. %endif ; x86-32/64
  93. %endif ; cpuflag(ssse3)
  94. %if ARCH_X86_64
  95. movsxd wq, wd
  96. %endif
  97. add dstq, wq
  98. neg wq
  99. %if notcpuflag(ssse3)
  100. pxor m7, m7
  101. %endif ; !cpuflag(ssse3)
  102. mova m4, [rgb_Yrnd]
  103. .loop:
  104. %if cpuflag(ssse3)
  105. movu m0, [srcq+0] ; (byte) { Bx, Gx, Rx }[0-3]
  106. movu m2, [srcq+12] ; (byte) { Bx, Gx, Rx }[4-7]
  107. pshufb m1, m0, shuf_rgb2 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
  108. pshufb m0, shuf_rgb1 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
  109. pshufb m3, m2, shuf_rgb2 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
  110. pshufb m2, shuf_rgb1 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
  111. %else ; !cpuflag(ssse3)
  112. movd m0, [srcq+0] ; (byte) { B0, G0, R0, B1 }
  113. movd m1, [srcq+2] ; (byte) { R0, B1, G1, R1 }
  114. movd m2, [srcq+6] ; (byte) { B2, G2, R2, B3 }
  115. movd m3, [srcq+8] ; (byte) { R2, B3, G3, R3 }
  116. %if mmsize == 16 ; i.e. sse2
  117. punpckldq m0, m2 ; (byte) { B0, G0, R0, B1, B2, G2, R2, B3 }
  118. punpckldq m1, m3 ; (byte) { R0, B1, G1, R1, R2, B3, G3, R3 }
  119. movd m2, [srcq+12] ; (byte) { B4, G4, R4, B5 }
  120. movd m3, [srcq+14] ; (byte) { R4, B5, G5, R5 }
  121. movd m5, [srcq+18] ; (byte) { B6, G6, R6, B7 }
  122. movd m6, [srcq+20] ; (byte) { R6, B7, G7, R7 }
  123. punpckldq m2, m5 ; (byte) { B4, G4, R4, B5, B6, G6, R6, B7 }
  124. punpckldq m3, m6 ; (byte) { R4, B5, G5, R5, R6, B7, G7, R7 }
  125. %endif ; mmsize == 16
  126. punpcklbw m0, m7 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
  127. punpcklbw m1, m7 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
  128. punpcklbw m2, m7 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
  129. punpcklbw m3, m7 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
  130. %endif ; cpuflag(ssse3)
  131. add srcq, 3 * mmsize / 2
  132. pmaddwd m0, coeff1 ; (dword) { B0*BY + G0*GY, B1*BY, B2*BY + G2*GY, B3*BY }
  133. pmaddwd m1, coeff2 ; (dword) { R0*RY, G1+GY + R1*RY, R2*RY, G3+GY + R3*RY }
  134. pmaddwd m2, coeff1 ; (dword) { B4*BY + G4*GY, B5*BY, B6*BY + G6*GY, B7*BY }
  135. pmaddwd m3, coeff2 ; (dword) { R4*RY, G5+GY + R5*RY, R6*RY, G7+GY + R7*RY }
  136. paddd m0, m1 ; (dword) { Bx*BY + Gx*GY + Rx*RY }[0-3]
  137. paddd m2, m3 ; (dword) { Bx*BY + Gx*GY + Rx*RY }[4-7]
  138. paddd m0, m4 ; += rgb_Yrnd, i.e. (dword) { Y[0-3] }
  139. paddd m2, m4 ; += rgb_Yrnd, i.e. (dword) { Y[4-7] }
  140. psrad m0, 15
  141. psrad m2, 15
  142. packssdw m0, m2 ; (word) { Y[0-7] }
  143. packuswb m0, m0 ; (byte) { Y[0-7] }
  144. movh [dstq+wq], m0
  145. add wq, mmsize / 2
  146. jl .loop
  147. REP_RET
  148. %endif ; (ARCH_X86_64 && %0 == 3) || mmsize == 8
  149. %endmacro
  150. ; %1 = nr. of XMM registers
  151. ; %2 = rgb or bgr
  152. %macro RGB24_TO_UV_FN 2-3
  153. cglobal %2 %+ 24ToUV, 3, 4, %1, dstU, dstV, src, w
  154. %if ARCH_X86_64
  155. mova m8, [%2_Ucoeff_12x4]
  156. mova m9, [%2_Ucoeff_3x56]
  157. mova m10, [%2_Vcoeff_12x4]
  158. mova m11, [%2_Vcoeff_3x56]
  159. %define coeffU1 m8
  160. %define coeffU2 m9
  161. %define coeffV1 m10
  162. %define coeffV2 m11
  163. %else ; x86-32
  164. %define coeffU1 [%2_Ucoeff_12x4]
  165. %define coeffU2 [%2_Ucoeff_3x56]
  166. %define coeffV1 [%2_Vcoeff_12x4]
  167. %define coeffV2 [%2_Vcoeff_3x56]
  168. %endif ; x86-32/64
  169. %if ARCH_X86_64 && %0 == 3
  170. jmp mangle(program_name %+ _ %+ %3 %+ 24ToUV %+ SUFFIX).body
  171. %else ; ARCH_X86_64 && %0 == 3
  172. .body:
  173. %if cpuflag(ssse3)
  174. mova m7, [shuf_rgb_12x4]
  175. %define shuf_rgb1 m7
  176. %if ARCH_X86_64
  177. mova m12, [shuf_rgb_3x56]
  178. %define shuf_rgb2 m12
  179. %else ; x86-32
  180. %define shuf_rgb2 [shuf_rgb_3x56]
  181. %endif ; x86-32/64
  182. %endif ; cpuflag(ssse3)
  183. %if ARCH_X86_64
  184. movsxd wq, dword r4m
  185. %else ; x86-32
  186. mov wq, r4m
  187. %endif
  188. add dstUq, wq
  189. add dstVq, wq
  190. neg wq
  191. mova m6, [rgb_UVrnd]
  192. %if notcpuflag(ssse3)
  193. pxor m7, m7
  194. %endif
  195. .loop:
  196. %if cpuflag(ssse3)
  197. movu m0, [srcq+0] ; (byte) { Bx, Gx, Rx }[0-3]
  198. movu m4, [srcq+12] ; (byte) { Bx, Gx, Rx }[4-7]
  199. pshufb m1, m0, shuf_rgb2 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
  200. pshufb m0, shuf_rgb1 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
  201. %else ; !cpuflag(ssse3)
  202. movd m0, [srcq+0] ; (byte) { B0, G0, R0, B1 }
  203. movd m1, [srcq+2] ; (byte) { R0, B1, G1, R1 }
  204. movd m4, [srcq+6] ; (byte) { B2, G2, R2, B3 }
  205. movd m5, [srcq+8] ; (byte) { R2, B3, G3, R3 }
  206. %if mmsize == 16
  207. punpckldq m0, m4 ; (byte) { B0, G0, R0, B1, B2, G2, R2, B3 }
  208. punpckldq m1, m5 ; (byte) { R0, B1, G1, R1, R2, B3, G3, R3 }
  209. movd m4, [srcq+12] ; (byte) { B4, G4, R4, B5 }
  210. movd m5, [srcq+14] ; (byte) { R4, B5, G5, R5 }
  211. %endif ; mmsize == 16
  212. punpcklbw m0, m7 ; (word) { B0, G0, R0, B1, B2, G2, R2, B3 }
  213. punpcklbw m1, m7 ; (word) { R0, B1, G1, R1, R2, B3, G3, R3 }
  214. %endif ; cpuflag(ssse3)
  215. pmaddwd m2, m0, coeffV1 ; (dword) { B0*BV + G0*GV, B1*BV, B2*BV + G2*GV, B3*BV }
  216. pmaddwd m3, m1, coeffV2 ; (dword) { R0*BV, G1*GV + R1*BV, R2*BV, G3*GV + R3*BV }
  217. pmaddwd m0, coeffU1 ; (dword) { B0*BU + G0*GU, B1*BU, B2*BU + G2*GU, B3*BU }
  218. pmaddwd m1, coeffU2 ; (dword) { R0*BU, G1*GU + R1*BU, R2*BU, G3*GU + R3*BU }
  219. paddd m0, m1 ; (dword) { Bx*BU + Gx*GU + Rx*RU }[0-3]
  220. paddd m2, m3 ; (dword) { Bx*BV + Gx*GV + Rx*RV }[0-3]
  221. %if cpuflag(ssse3)
  222. pshufb m5, m4, shuf_rgb2 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
  223. pshufb m4, shuf_rgb1 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
  224. %else ; !cpuflag(ssse3)
  225. %if mmsize == 16
  226. movd m1, [srcq+18] ; (byte) { B6, G6, R6, B7 }
  227. movd m3, [srcq+20] ; (byte) { R6, B7, G7, R7 }
  228. punpckldq m4, m1 ; (byte) { B4, G4, R4, B5, B6, G6, R6, B7 }
  229. punpckldq m5, m3 ; (byte) { R4, B5, G5, R5, R6, B7, G7, R7 }
  230. %endif ; mmsize == 16 && !cpuflag(ssse3)
  231. punpcklbw m4, m7 ; (word) { B4, G4, R4, B5, B6, G6, R6, B7 }
  232. punpcklbw m5, m7 ; (word) { R4, B5, G5, R5, R6, B7, G7, R7 }
  233. %endif ; cpuflag(ssse3)
  234. add srcq, 3 * mmsize / 2
  235. pmaddwd m1, m4, coeffU1 ; (dword) { B4*BU + G4*GU, B5*BU, B6*BU + G6*GU, B7*BU }
  236. pmaddwd m3, m5, coeffU2 ; (dword) { R4*BU, G5*GU + R5*BU, R6*BU, G7*GU + R7*BU }
  237. pmaddwd m4, coeffV1 ; (dword) { B4*BV + G4*GV, B5*BV, B6*BV + G6*GV, B7*BV }
  238. pmaddwd m5, coeffV2 ; (dword) { R4*BV, G5*GV + R5*BV, R6*BV, G7*GV + R7*BV }
  239. paddd m1, m3 ; (dword) { Bx*BU + Gx*GU + Rx*RU }[4-7]
  240. paddd m4, m5 ; (dword) { Bx*BV + Gx*GV + Rx*RV }[4-7]
  241. paddd m0, m6 ; += rgb_UVrnd, i.e. (dword) { U[0-3] }
  242. paddd m2, m6 ; += rgb_UVrnd, i.e. (dword) { V[0-3] }
  243. paddd m1, m6 ; += rgb_UVrnd, i.e. (dword) { U[4-7] }
  244. paddd m4, m6 ; += rgb_UVrnd, i.e. (dword) { V[4-7] }
  245. psrad m0, 15
  246. psrad m2, 15
  247. psrad m1, 15
  248. psrad m4, 15
  249. packssdw m0, m1 ; (word) { U[0-7] }
  250. packssdw m2, m4 ; (word) { V[0-7] }
  251. %if mmsize == 8
  252. packuswb m0, m0 ; (byte) { U[0-3] }
  253. packuswb m2, m2 ; (byte) { V[0-3] }
  254. movh [dstUq+wq], m0
  255. movh [dstVq+wq], m2
  256. %else ; mmsize == 16
  257. packuswb m0, m2 ; (byte) { U[0-7], V[0-7] }
  258. movh [dstUq+wq], m0
  259. movhps [dstVq+wq], m0
  260. %endif ; mmsize == 8/16
  261. add wq, mmsize / 2
  262. jl .loop
  263. REP_RET
  264. %endif ; ARCH_X86_64 && %0 == 3
  265. %endmacro
  266. %if ARCH_X86_32
  267. INIT_MMX mmx
  268. RGB24_TO_Y_FN 0, rgb
  269. RGB24_TO_Y_FN 0, bgr, rgb
  270. RGB24_TO_UV_FN 0, rgb
  271. RGB24_TO_UV_FN 0, bgr, rgb
  272. %endif
  273. INIT_XMM sse2
  274. RGB24_TO_Y_FN 10, rgb
  275. RGB24_TO_Y_FN 10, bgr, rgb
  276. RGB24_TO_UV_FN 12, rgb
  277. RGB24_TO_UV_FN 12, bgr, rgb
  278. INIT_XMM ssse3
  279. RGB24_TO_Y_FN 11, rgb
  280. RGB24_TO_Y_FN 11, bgr, rgb
  281. RGB24_TO_UV_FN 13, rgb
  282. RGB24_TO_UV_FN 13, bgr, rgb
  283. INIT_XMM avx
  284. RGB24_TO_Y_FN 11, rgb
  285. RGB24_TO_Y_FN 11, bgr, rgb
  286. RGB24_TO_UV_FN 13, rgb
  287. RGB24_TO_UV_FN 13, bgr, rgb
  288. ;-----------------------------------------------------------------------------
  289. ; YUYV/UYVY/NV12/NV21 packed pixel shuffling.
  290. ;
  291. ; void <fmt>ToY_<opt>(uint8_t *dst, const uint8_t *src, int w);
  292. ; and
  293. ; void <fmt>toUV_<opt>(uint8_t *dstU, uint8_t *dstV, const uint8_t *src,
  294. ; const uint8_t *unused, int w);
  295. ;-----------------------------------------------------------------------------
  296. ; %1 = a (aligned) or u (unaligned)
  297. ; %2 = yuyv or uyvy
  298. %macro LOOP_YUYV_TO_Y 2
  299. .loop_%1:
  300. mov%1 m0, [srcq+wq*2] ; (byte) { Y0, U0, Y1, V0, ... }
  301. mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
  302. %ifidn %2, yuyv
  303. pand m0, m2 ; (word) { Y0, Y1, ..., Y7 }
  304. pand m1, m2 ; (word) { Y8, Y9, ..., Y15 }
  305. %else ; uyvy
  306. psrlw m0, 8 ; (word) { Y0, Y1, ..., Y7 }
  307. psrlw m1, 8 ; (word) { Y8, Y9, ..., Y15 }
  308. %endif ; yuyv/uyvy
  309. packuswb m0, m1 ; (byte) { Y0, ..., Y15 }
  310. mova [dstq+wq], m0
  311. add wq, mmsize
  312. jl .loop_%1
  313. REP_RET
  314. %endmacro
  315. ; %1 = nr. of XMM registers
  316. ; %2 = yuyv or uyvy
  317. ; %3 = if specified, it means that unaligned and aligned code in loop
  318. ; will be the same (i.e. YUYV+AVX), and thus we don't need to
  319. ; split the loop in an aligned and unaligned case
  320. %macro YUYV_TO_Y_FN 2-3
  321. cglobal %2ToY, 3, 3, %1, dst, src, w
  322. %if ARCH_X86_64
  323. movsxd wq, wd
  324. %endif
  325. add dstq, wq
  326. %if mmsize == 16
  327. test srcq, 15
  328. %endif
  329. lea srcq, [srcq+wq*2]
  330. %ifidn %2, yuyv
  331. pcmpeqb m2, m2 ; (byte) { 0xff } x 16
  332. psrlw m2, 8 ; (word) { 0x00ff } x 8
  333. %endif ; yuyv
  334. %if mmsize == 16
  335. jnz .loop_u_start
  336. neg wq
  337. LOOP_YUYV_TO_Y a, %2
  338. .loop_u_start:
  339. neg wq
  340. LOOP_YUYV_TO_Y u, %2
  341. %else ; mmsize == 8
  342. neg wq
  343. LOOP_YUYV_TO_Y a, %2
  344. %endif ; mmsize == 8/16
  345. %endmacro
  346. ; %1 = a (aligned) or u (unaligned)
  347. ; %2 = yuyv or uyvy
  348. %macro LOOP_YUYV_TO_UV 2
  349. .loop_%1:
  350. %ifidn %2, yuyv
  351. mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... }
  352. mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
  353. psrlw m0, 8 ; (word) { U0, V0, ..., U3, V3 }
  354. psrlw m1, 8 ; (word) { U4, V4, ..., U7, V7 }
  355. %else ; uyvy
  356. %if cpuflag(avx)
  357. vpand m0, m2, [srcq+wq*4] ; (word) { U0, V0, ..., U3, V3 }
  358. vpand m1, m2, [srcq+wq*4+mmsize] ; (word) { U4, V4, ..., U7, V7 }
  359. %else
  360. mov%1 m0, [srcq+wq*4] ; (byte) { Y0, U0, Y1, V0, ... }
  361. mov%1 m1, [srcq+wq*4+mmsize] ; (byte) { Y8, U4, Y9, V4, ... }
  362. pand m0, m2 ; (word) { U0, V0, ..., U3, V3 }
  363. pand m1, m2 ; (word) { U4, V4, ..., U7, V7 }
  364. %endif
  365. %endif ; yuyv/uyvy
  366. packuswb m0, m1 ; (byte) { U0, V0, ..., U7, V7 }
  367. pand m1, m0, m2 ; (word) { U0, U1, ..., U7 }
  368. psrlw m0, 8 ; (word) { V0, V1, ..., V7 }
  369. %if mmsize == 16
  370. packuswb m1, m0 ; (byte) { U0, ... U7, V1, ... V7 }
  371. movh [dstUq+wq], m1
  372. movhps [dstVq+wq], m1
  373. %else ; mmsize == 8
  374. packuswb m1, m1 ; (byte) { U0, ... U3 }
  375. packuswb m0, m0 ; (byte) { V0, ... V3 }
  376. movh [dstUq+wq], m1
  377. movh [dstVq+wq], m0
  378. %endif ; mmsize == 8/16
  379. add wq, mmsize / 2
  380. jl .loop_%1
  381. REP_RET
  382. %endmacro
  383. ; %1 = nr. of XMM registers
  384. ; %2 = yuyv or uyvy
  385. ; %3 = if specified, it means that unaligned and aligned code in loop
  386. ; will be the same (i.e. UYVY+AVX), and thus we don't need to
  387. ; split the loop in an aligned and unaligned case
  388. %macro YUYV_TO_UV_FN 2-3
  389. cglobal %2ToUV, 3, 4, %1, dstU, dstV, src, w
  390. %if ARCH_X86_64
  391. movsxd wq, dword r4m
  392. %else ; x86-32
  393. mov wq, r4m
  394. %endif
  395. add dstUq, wq
  396. add dstVq, wq
  397. %if mmsize == 16 && %0 == 2
  398. test srcq, 15
  399. %endif
  400. lea srcq, [srcq+wq*4]
  401. pcmpeqb m2, m2 ; (byte) { 0xff } x 16
  402. psrlw m2, 8 ; (word) { 0x00ff } x 8
  403. ; NOTE: if uyvy+avx, u/a are identical
  404. %if mmsize == 16 && %0 == 2
  405. jnz .loop_u_start
  406. neg wq
  407. LOOP_YUYV_TO_UV a, %2
  408. .loop_u_start:
  409. neg wq
  410. LOOP_YUYV_TO_UV u, %2
  411. %else ; mmsize == 8
  412. neg wq
  413. LOOP_YUYV_TO_UV a, %2
  414. %endif ; mmsize == 8/16
  415. %endmacro
  416. ; %1 = a (aligned) or u (unaligned)
  417. ; %2 = nv12 or nv21
  418. %macro LOOP_NVXX_TO_UV 2
  419. .loop_%1:
  420. mov%1 m0, [srcq+wq*2] ; (byte) { U0, V0, U1, V1, ... }
  421. mov%1 m1, [srcq+wq*2+mmsize] ; (byte) { U8, V8, U9, V9, ... }
  422. pand m2, m0, m4 ; (word) { U0, U1, ..., U7 }
  423. pand m3, m1, m4 ; (word) { U8, U9, ..., U15 }
  424. psrlw m0, 8 ; (word) { V0, V1, ..., V7 }
  425. psrlw m1, 8 ; (word) { V8, V9, ..., V15 }
  426. packuswb m2, m3 ; (byte) { U0, ..., U15 }
  427. packuswb m0, m1 ; (byte) { V0, ..., V15 }
  428. %ifidn %2, nv12
  429. mova [dstUq+wq], m2
  430. mova [dstVq+wq], m0
  431. %else ; nv21
  432. mova [dstVq+wq], m2
  433. mova [dstUq+wq], m0
  434. %endif ; nv12/21
  435. add wq, mmsize
  436. jl .loop_%1
  437. REP_RET
  438. %endmacro
  439. ; %1 = nr. of XMM registers
  440. ; %2 = nv12 or nv21
  441. %macro NVXX_TO_UV_FN 2
  442. cglobal %2ToUV, 3, 4, %1, dstU, dstV, src, w
  443. %if ARCH_X86_64
  444. movsxd wq, dword r4m
  445. %else ; x86-32
  446. mov wq, r4m
  447. %endif
  448. add dstUq, wq
  449. add dstVq, wq
  450. %if mmsize == 16
  451. test srcq, 15
  452. %endif
  453. lea srcq, [srcq+wq*2]
  454. pcmpeqb m4, m4 ; (byte) { 0xff } x 16
  455. psrlw m4, 8 ; (word) { 0x00ff } x 8
  456. %if mmsize == 16
  457. jnz .loop_u_start
  458. neg wq
  459. LOOP_NVXX_TO_UV a, %2
  460. .loop_u_start:
  461. neg wq
  462. LOOP_NVXX_TO_UV u, %2
  463. %else ; mmsize == 8
  464. neg wq
  465. LOOP_NVXX_TO_UV a, %2
  466. %endif ; mmsize == 8/16
  467. %endmacro
  468. %if ARCH_X86_32
  469. INIT_MMX mmx
  470. YUYV_TO_Y_FN 0, yuyv
  471. YUYV_TO_Y_FN 0, uyvy
  472. YUYV_TO_UV_FN 0, yuyv
  473. YUYV_TO_UV_FN 0, uyvy
  474. NVXX_TO_UV_FN 0, nv12
  475. NVXX_TO_UV_FN 0, nv21
  476. %endif
  477. INIT_XMM sse2
  478. YUYV_TO_Y_FN 3, yuyv
  479. YUYV_TO_Y_FN 2, uyvy
  480. YUYV_TO_UV_FN 3, yuyv
  481. YUYV_TO_UV_FN 3, uyvy
  482. NVXX_TO_UV_FN 5, nv12
  483. NVXX_TO_UV_FN 5, nv21
  484. INIT_XMM avx
  485. ; in theory, we could write a yuy2-to-y using vpand (i.e. AVX), but
  486. ; that's not faster in practice
  487. YUYV_TO_UV_FN 3, yuyv
  488. YUYV_TO_UV_FN 3, uyvy, 1
  489. NVXX_TO_UV_FN 5, nv12
  490. NVXX_TO_UV_FN 5, nv21