You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1834 lines
59KB

  1. /*
  2. * FFV1 codec for libavcodec
  3. *
  4. * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
  5. *
  6. * This file is part of FFmpeg.
  7. *
  8. * FFmpeg is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU Lesser General Public
  10. * License as published by the Free Software Foundation; either
  11. * version 2.1 of the License, or (at your option) any later version.
  12. *
  13. * FFmpeg is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  16. * Lesser General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU Lesser General Public
  19. * License along with FFmpeg; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  21. */
  22. /**
  23. * @file
  24. * FF Video Codec 1 (a lossless codec)
  25. */
  26. #include "avcodec.h"
  27. #include "get_bits.h"
  28. #include "put_bits.h"
  29. #include "dsputil.h"
  30. #include "rangecoder.h"
  31. #include "golomb.h"
  32. #include "mathops.h"
  33. #include "libavutil/avassert.h"
  34. #define MAX_PLANES 4
  35. #define CONTEXT_SIZE 32
  36. #define MAX_QUANT_TABLES 8
  37. #define MAX_CONTEXT_INPUTS 5
  38. extern const uint8_t ff_log2_run[41];
  39. static const int8_t quant5_10bit[256]={
  40. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
  41. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  42. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
  43. 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  44. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  45. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  46. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  47. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  48. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  49. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  50. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  51. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  52. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,
  53. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  54. -1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,
  55. -1,-1,-1,-1,-1,-1,-0,-0,-0,-0,-0,-0,-0,-0,-0,-0,
  56. };
  57. static const int8_t quant5[256]={
  58. 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  59. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  60. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  61. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  62. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  63. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  64. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  65. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
  66. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  67. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  68. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  69. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  70. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  71. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  72. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  73. -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-1,-1,-1,
  74. };
  75. static const int8_t quant9_10bit[256]={
  76. 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2,
  77. 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
  78. 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
  79. 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4,
  80. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  81. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  82. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  83. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  84. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  85. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  86. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  87. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  88. -4,-4,-4,-4,-4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,
  89. -3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,-3,
  90. -3,-3,-3,-3,-3,-3,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,
  91. -2,-2,-2,-2,-1,-1,-1,-1,-1,-1,-1,-1,-0,-0,-0,-0,
  92. };
  93. static const int8_t quant11[256]={
  94. 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,
  95. 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
  96. 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  97. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  98. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  99. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  100. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  101. 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
  102. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  103. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  104. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  105. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  106. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,
  107. -5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-5,-4,-4,
  108. -4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,-4,
  109. -4,-4,-4,-4,-4,-3,-3,-3,-3,-3,-3,-3,-2,-2,-2,-1,
  110. };
  111. static const uint8_t ver2_state[256]= {
  112. 0, 10, 10, 10, 10, 16, 16, 16, 28, 16, 16, 29, 42, 49, 20, 49,
  113. 59, 25, 26, 26, 27, 31, 33, 33, 33, 34, 34, 37, 67, 38, 39, 39,
  114. 40, 40, 41, 79, 43, 44, 45, 45, 48, 48, 64, 50, 51, 52, 88, 52,
  115. 53, 74, 55, 57, 58, 58, 74, 60, 101, 61, 62, 84, 66, 66, 68, 69,
  116. 87, 82, 71, 97, 73, 73, 82, 75, 111, 77, 94, 78, 87, 81, 83, 97,
  117. 85, 83, 94, 86, 99, 89, 90, 99, 111, 92, 93, 134, 95, 98, 105, 98,
  118. 105, 110, 102, 108, 102, 118, 103, 106, 106, 113, 109, 112, 114, 112, 116, 125,
  119. 115, 116, 117, 117, 126, 119, 125, 121, 121, 123, 145, 124, 126, 131, 127, 129,
  120. 165, 130, 132, 138, 133, 135, 145, 136, 137, 139, 146, 141, 143, 142, 144, 148,
  121. 147, 155, 151, 149, 151, 150, 152, 157, 153, 154, 156, 168, 158, 162, 161, 160,
  122. 172, 163, 169, 164, 166, 184, 167, 170, 177, 174, 171, 173, 182, 176, 180, 178,
  123. 175, 189, 179, 181, 186, 183, 192, 185, 200, 187, 191, 188, 190, 197, 193, 196,
  124. 197, 194, 195, 196, 198, 202, 199, 201, 210, 203, 207, 204, 205, 206, 208, 214,
  125. 209, 211, 221, 212, 213, 215, 224, 216, 217, 218, 219, 220, 222, 228, 223, 225,
  126. 226, 224, 227, 229, 240, 230, 231, 232, 233, 234, 235, 236, 238, 239, 237, 242,
  127. 241, 243, 242, 244, 245, 246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 255,
  128. };
  129. typedef struct VlcState{
  130. int16_t drift;
  131. uint16_t error_sum;
  132. int8_t bias;
  133. uint8_t count;
  134. } VlcState;
  135. typedef struct PlaneContext{
  136. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  137. int quant_table_index;
  138. int context_count;
  139. uint8_t (*state)[CONTEXT_SIZE];
  140. VlcState *vlc_state;
  141. uint8_t interlace_bit_state[2];
  142. } PlaneContext;
  143. #define MAX_SLICES 256
  144. typedef struct FFV1Context{
  145. AVCodecContext *avctx;
  146. RangeCoder c;
  147. GetBitContext gb;
  148. PutBitContext pb;
  149. uint64_t rc_stat[256][2];
  150. uint64_t (*rc_stat2[MAX_QUANT_TABLES])[32][2];
  151. int version;
  152. int width, height;
  153. int chroma_h_shift, chroma_v_shift;
  154. int chroma_planes;
  155. int transparency;
  156. int flags;
  157. int picture_number;
  158. AVFrame picture;
  159. int plane_count;
  160. int ac; ///< 1=range coder <-> 0=golomb rice
  161. PlaneContext plane[MAX_PLANES];
  162. int16_t quant_table[MAX_CONTEXT_INPUTS][256];
  163. int16_t quant_tables[MAX_QUANT_TABLES][MAX_CONTEXT_INPUTS][256];
  164. int context_count[MAX_QUANT_TABLES];
  165. uint8_t state_transition[256];
  166. uint8_t (*initial_states[MAX_QUANT_TABLES])[32];
  167. int run_index;
  168. int colorspace;
  169. int16_t *sample_buffer;
  170. int gob_count;
  171. int packed_at_lsb;
  172. int quant_table_count;
  173. DSPContext dsp;
  174. struct FFV1Context *slice_context[MAX_SLICES];
  175. int slice_count;
  176. int num_v_slices;
  177. int num_h_slices;
  178. int slice_width;
  179. int slice_height;
  180. int slice_x;
  181. int slice_y;
  182. }FFV1Context;
  183. static av_always_inline int fold(int diff, int bits){
  184. if(bits==8)
  185. diff= (int8_t)diff;
  186. else{
  187. diff+= 1<<(bits-1);
  188. diff&=(1<<bits)-1;
  189. diff-= 1<<(bits-1);
  190. }
  191. return diff;
  192. }
  193. static inline int predict(int16_t *src, int16_t *last)
  194. {
  195. const int LT= last[-1];
  196. const int T= last[ 0];
  197. const int L = src[-1];
  198. return mid_pred(L, L + T - LT, T);
  199. }
  200. static inline int get_context(PlaneContext *p, int16_t *src,
  201. int16_t *last, int16_t *last2)
  202. {
  203. const int LT= last[-1];
  204. const int T= last[ 0];
  205. const int RT= last[ 1];
  206. const int L = src[-1];
  207. if(p->quant_table[3][127]){
  208. const int TT= last2[0];
  209. const int LL= src[-2];
  210. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF]
  211. +p->quant_table[3][(LL-L) & 0xFF] + p->quant_table[4][(TT-T) & 0xFF];
  212. }else
  213. return p->quant_table[0][(L-LT) & 0xFF] + p->quant_table[1][(LT-T) & 0xFF] + p->quant_table[2][(T-RT) & 0xFF];
  214. }
  215. static void find_best_state(uint8_t best_state[256][256], const uint8_t one_state[256]){
  216. int i,j,k,m;
  217. double l2tab[256];
  218. for(i=1; i<256; i++)
  219. l2tab[i]= log2(i/256.0);
  220. for(i=0; i<256; i++){
  221. double best_len[256];
  222. double p= i/256.0;
  223. for(j=0; j<256; j++)
  224. best_len[j]= 1<<30;
  225. for(j=FFMAX(i-10,1); j<FFMIN(i+11,256); j++){
  226. double occ[256]={0};
  227. double len=0;
  228. occ[j]=1.0;
  229. for(k=0; k<256; k++){
  230. double newocc[256]={0};
  231. for(m=0; m<256; m++){
  232. if(occ[m]){
  233. len -=occ[m]*( p *l2tab[ m]
  234. + (1-p)*l2tab[256-m]);
  235. }
  236. }
  237. if(len < best_len[k]){
  238. best_len[k]= len;
  239. best_state[i][k]= j;
  240. }
  241. for(m=0; m<256; m++){
  242. if(occ[m]){
  243. newocc[ one_state[ m]] += occ[m]* p ;
  244. newocc[256-one_state[256-m]] += occ[m]*(1-p);
  245. }
  246. }
  247. memcpy(occ, newocc, sizeof(occ));
  248. }
  249. }
  250. }
  251. }
  252. static av_always_inline av_flatten void put_symbol_inline(RangeCoder *c, uint8_t *state, int v, int is_signed, uint64_t rc_stat[256][2], uint64_t rc_stat2[32][2]){
  253. int i;
  254. #define put_rac(C,S,B) \
  255. do{\
  256. if(rc_stat){\
  257. rc_stat[*(S)][B]++;\
  258. rc_stat2[(S)-state][B]++;\
  259. }\
  260. put_rac(C,S,B);\
  261. }while(0)
  262. if(v){
  263. const int a= FFABS(v);
  264. const int e= av_log2(a);
  265. put_rac(c, state+0, 0);
  266. if(e<=9){
  267. for(i=0; i<e; i++){
  268. put_rac(c, state+1+i, 1); //1..10
  269. }
  270. put_rac(c, state+1+i, 0);
  271. for(i=e-1; i>=0; i--){
  272. put_rac(c, state+22+i, (a>>i)&1); //22..31
  273. }
  274. if(is_signed)
  275. put_rac(c, state+11 + e, v < 0); //11..21
  276. }else{
  277. for(i=0; i<e; i++){
  278. put_rac(c, state+1+FFMIN(i,9), 1); //1..10
  279. }
  280. put_rac(c, state+1+9, 0);
  281. for(i=e-1; i>=0; i--){
  282. put_rac(c, state+22+FFMIN(i,9), (a>>i)&1); //22..31
  283. }
  284. if(is_signed)
  285. put_rac(c, state+11 + 10, v < 0); //11..21
  286. }
  287. }else{
  288. put_rac(c, state+0, 1);
  289. }
  290. #undef put_rac
  291. }
  292. static void av_noinline put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed){
  293. put_symbol_inline(c, state, v, is_signed, NULL, NULL);
  294. }
  295. static inline av_flatten int get_symbol_inline(RangeCoder *c, uint8_t *state, int is_signed){
  296. if(get_rac(c, state+0))
  297. return 0;
  298. else{
  299. int i, e, a;
  300. e= 0;
  301. while(get_rac(c, state+1 + FFMIN(e,9))){ //1..10
  302. e++;
  303. }
  304. a= 1;
  305. for(i=e-1; i>=0; i--){
  306. a += a + get_rac(c, state+22 + FFMIN(i,9)); //22..31
  307. }
  308. e= -(is_signed && get_rac(c, state+11 + FFMIN(e, 10))); //11..21
  309. return (a^e)-e;
  310. }
  311. }
  312. static int av_noinline get_symbol(RangeCoder *c, uint8_t *state, int is_signed){
  313. return get_symbol_inline(c, state, is_signed);
  314. }
  315. static inline void update_vlc_state(VlcState * const state, const int v){
  316. int drift= state->drift;
  317. int count= state->count;
  318. state->error_sum += FFABS(v);
  319. drift += v;
  320. if(count == 128){ //FIXME variable
  321. count >>= 1;
  322. drift >>= 1;
  323. state->error_sum >>= 1;
  324. }
  325. count++;
  326. if(drift <= -count){
  327. if(state->bias > -128) state->bias--;
  328. drift += count;
  329. if(drift <= -count)
  330. drift= -count + 1;
  331. }else if(drift > 0){
  332. if(state->bias < 127) state->bias++;
  333. drift -= count;
  334. if(drift > 0)
  335. drift= 0;
  336. }
  337. state->drift= drift;
  338. state->count= count;
  339. }
  340. static inline void put_vlc_symbol(PutBitContext *pb, VlcState * const state, int v, int bits){
  341. int i, k, code;
  342. //printf("final: %d ", v);
  343. v = fold(v - state->bias, bits);
  344. i= state->count;
  345. k=0;
  346. while(i < state->error_sum){ //FIXME optimize
  347. k++;
  348. i += i;
  349. }
  350. assert(k<=8);
  351. #if 0 // JPEG LS
  352. if(k==0 && 2*state->drift <= - state->count) code= v ^ (-1);
  353. else code= v;
  354. #else
  355. code= v ^ ((2*state->drift + state->count)>>31);
  356. #endif
  357. //printf("v:%d/%d bias:%d error:%d drift:%d count:%d k:%d\n", v, code, state->bias, state->error_sum, state->drift, state->count, k);
  358. set_sr_golomb(pb, code, k, 12, bits);
  359. update_vlc_state(state, v);
  360. }
  361. static inline int get_vlc_symbol(GetBitContext *gb, VlcState * const state, int bits){
  362. int k, i, v, ret;
  363. i= state->count;
  364. k=0;
  365. while(i < state->error_sum){ //FIXME optimize
  366. k++;
  367. i += i;
  368. }
  369. assert(k<=8);
  370. v= get_sr_golomb(gb, k, 12, bits);
  371. //printf("v:%d bias:%d error:%d drift:%d count:%d k:%d", v, state->bias, state->error_sum, state->drift, state->count, k);
  372. #if 0 // JPEG LS
  373. if(k==0 && 2*state->drift <= - state->count) v ^= (-1);
  374. #else
  375. v ^= ((2*state->drift + state->count)>>31);
  376. #endif
  377. ret= fold(v + state->bias, bits);
  378. update_vlc_state(state, v);
  379. //printf("final: %d\n", ret);
  380. return ret;
  381. }
  382. #if CONFIG_FFV1_ENCODER
  383. static av_always_inline int encode_line(FFV1Context *s, int w,
  384. int16_t *sample[2],
  385. int plane_index, int bits)
  386. {
  387. PlaneContext * const p= &s->plane[plane_index];
  388. RangeCoder * const c= &s->c;
  389. int x;
  390. int run_index= s->run_index;
  391. int run_count=0;
  392. int run_mode=0;
  393. if(s->ac){
  394. if(c->bytestream_end - c->bytestream < w*20){
  395. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  396. return -1;
  397. }
  398. }else{
  399. if(s->pb.buf_end - s->pb.buf - (put_bits_count(&s->pb)>>3) < w*4){
  400. av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
  401. return -1;
  402. }
  403. }
  404. for(x=0; x<w; x++){
  405. int diff, context;
  406. context= get_context(p, sample[0]+x, sample[1]+x, sample[2]+x);
  407. diff= sample[0][x] - predict(sample[0]+x, sample[1]+x);
  408. if(context < 0){
  409. context = -context;
  410. diff= -diff;
  411. }
  412. diff= fold(diff, bits);
  413. if(s->ac){
  414. if(s->flags & CODEC_FLAG_PASS1){
  415. put_symbol_inline(c, p->state[context], diff, 1, s->rc_stat, s->rc_stat2[p->quant_table_index][context]);
  416. }else{
  417. put_symbol_inline(c, p->state[context], diff, 1, NULL, NULL);
  418. }
  419. }else{
  420. if(context == 0) run_mode=1;
  421. if(run_mode){
  422. if(diff){
  423. while(run_count >= 1<<ff_log2_run[run_index]){
  424. run_count -= 1<<ff_log2_run[run_index];
  425. run_index++;
  426. put_bits(&s->pb, 1, 1);
  427. }
  428. put_bits(&s->pb, 1 + ff_log2_run[run_index], run_count);
  429. if(run_index) run_index--;
  430. run_count=0;
  431. run_mode=0;
  432. if(diff>0) diff--;
  433. }else{
  434. run_count++;
  435. }
  436. }
  437. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, (int)put_bits_count(&s->pb));
  438. if(run_mode == 0)
  439. put_vlc_symbol(&s->pb, &p->vlc_state[context], diff, bits);
  440. }
  441. }
  442. if(run_mode){
  443. while(run_count >= 1<<ff_log2_run[run_index]){
  444. run_count -= 1<<ff_log2_run[run_index];
  445. run_index++;
  446. put_bits(&s->pb, 1, 1);
  447. }
  448. if(run_count)
  449. put_bits(&s->pb, 1, 1);
  450. }
  451. s->run_index= run_index;
  452. return 0;
  453. }
  454. static void encode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  455. int x,y,i;
  456. const int ring_size= s->avctx->context_model ? 3 : 2;
  457. int16_t *sample[3];
  458. s->run_index=0;
  459. memset(s->sample_buffer, 0, ring_size*(w+6)*sizeof(*s->sample_buffer));
  460. for(y=0; y<h; y++){
  461. for(i=0; i<ring_size; i++)
  462. sample[i]= s->sample_buffer + (w+6)*((h+i-y)%ring_size) + 3;
  463. sample[0][-1]= sample[1][0 ];
  464. sample[1][ w]= sample[1][w-1];
  465. //{START_TIMER
  466. if(s->avctx->bits_per_raw_sample<=8){
  467. for(x=0; x<w; x++){
  468. sample[0][x]= src[x + stride*y];
  469. }
  470. encode_line(s, w, sample, plane_index, 8);
  471. }else{
  472. if(s->packed_at_lsb){
  473. for(x=0; x<w; x++){
  474. sample[0][x]= ((uint16_t*)(src + stride*y))[x];
  475. }
  476. }else{
  477. for(x=0; x<w; x++){
  478. sample[0][x]= ((uint16_t*)(src + stride*y))[x] >> (16 - s->avctx->bits_per_raw_sample);
  479. }
  480. }
  481. encode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  482. }
  483. //STOP_TIMER("encode line")}
  484. }
  485. }
  486. static void encode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  487. int x, y, p, i;
  488. const int ring_size= s->avctx->context_model ? 3 : 2;
  489. int16_t *sample[4][3];
  490. s->run_index=0;
  491. memset(s->sample_buffer, 0, ring_size*4*(w+6)*sizeof(*s->sample_buffer));
  492. for(y=0; y<h; y++){
  493. for(i=0; i<ring_size; i++)
  494. for(p=0; p<4; p++)
  495. sample[p][i]= s->sample_buffer + p*ring_size*(w+6) + ((h+i-y)%ring_size)*(w+6) + 3;
  496. for(x=0; x<w; x++){
  497. unsigned v= src[x + stride*y];
  498. int b= v&0xFF;
  499. int g= (v>>8)&0xFF;
  500. int r= (v>>16)&0xFF;
  501. int a= v>>24;
  502. b -= g;
  503. r -= g;
  504. g += (b + r)>>2;
  505. b += 0x100;
  506. r += 0x100;
  507. // assert(g>=0 && b>=0 && r>=0);
  508. // assert(g<256 && b<512 && r<512);
  509. sample[0][0][x]= g;
  510. sample[1][0][x]= b;
  511. sample[2][0][x]= r;
  512. sample[3][0][x]= a;
  513. }
  514. for(p=0; p<3 + s->transparency; p++){
  515. sample[p][0][-1]= sample[p][1][0 ];
  516. sample[p][1][ w]= sample[p][1][w-1];
  517. encode_line(s, w, sample[p], (p+1)/2, 9);
  518. }
  519. }
  520. }
  521. static void write_quant_table(RangeCoder *c, int16_t *quant_table){
  522. int last=0;
  523. int i;
  524. uint8_t state[CONTEXT_SIZE];
  525. memset(state, 128, sizeof(state));
  526. for(i=1; i<128 ; i++){
  527. if(quant_table[i] != quant_table[i-1]){
  528. put_symbol(c, state, i-last-1, 0);
  529. last= i;
  530. }
  531. }
  532. put_symbol(c, state, i-last-1, 0);
  533. }
  534. static void write_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  535. int i;
  536. for(i=0; i<5; i++)
  537. write_quant_table(c, quant_table[i]);
  538. }
  539. static void write_header(FFV1Context *f){
  540. uint8_t state[CONTEXT_SIZE];
  541. int i, j;
  542. RangeCoder * const c= &f->slice_context[0]->c;
  543. memset(state, 128, sizeof(state));
  544. if(f->version < 2){
  545. put_symbol(c, state, f->version, 0);
  546. put_symbol(c, state, f->ac, 0);
  547. if(f->ac>1){
  548. for(i=1; i<256; i++){
  549. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  550. }
  551. }
  552. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  553. if(f->version>0)
  554. put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
  555. put_rac(c, state, f->chroma_planes);
  556. put_symbol(c, state, f->chroma_h_shift, 0);
  557. put_symbol(c, state, f->chroma_v_shift, 0);
  558. put_rac(c, state, f->transparency);
  559. write_quant_tables(c, f->quant_table);
  560. }else{
  561. put_symbol(c, state, f->slice_count, 0);
  562. for(i=0; i<f->slice_count; i++){
  563. FFV1Context *fs= f->slice_context[i];
  564. put_symbol(c, state, (fs->slice_x +1)*f->num_h_slices / f->width , 0);
  565. put_symbol(c, state, (fs->slice_y +1)*f->num_v_slices / f->height , 0);
  566. put_symbol(c, state, (fs->slice_width +1)*f->num_h_slices / f->width -1, 0);
  567. put_symbol(c, state, (fs->slice_height+1)*f->num_v_slices / f->height-1, 0);
  568. for(j=0; j<f->plane_count; j++){
  569. put_symbol(c, state, f->plane[j].quant_table_index, 0);
  570. av_assert0(f->plane[j].quant_table_index == f->avctx->context_model);
  571. }
  572. }
  573. }
  574. }
  575. #endif /* CONFIG_FFV1_ENCODER */
  576. static av_cold int common_init(AVCodecContext *avctx){
  577. FFV1Context *s = avctx->priv_data;
  578. s->avctx= avctx;
  579. s->flags= avctx->flags;
  580. avcodec_get_frame_defaults(&s->picture);
  581. dsputil_init(&s->dsp, avctx);
  582. s->width = avctx->width;
  583. s->height= avctx->height;
  584. assert(s->width && s->height);
  585. //defaults
  586. s->num_h_slices=1;
  587. s->num_v_slices=1;
  588. return 0;
  589. }
  590. static int init_slice_state(FFV1Context *f){
  591. int i, j;
  592. for(i=0; i<f->slice_count; i++){
  593. FFV1Context *fs= f->slice_context[i];
  594. fs->plane_count= f->plane_count;
  595. fs->transparency= f->transparency;
  596. for(j=0; j<f->plane_count; j++){
  597. PlaneContext * const p= &fs->plane[j];
  598. if(fs->ac){
  599. if(!p-> state) p-> state= av_malloc(CONTEXT_SIZE*p->context_count*sizeof(uint8_t));
  600. if(!p-> state)
  601. return AVERROR(ENOMEM);
  602. }else{
  603. if(!p->vlc_state) p->vlc_state= av_malloc(p->context_count*sizeof(VlcState));
  604. if(!p->vlc_state)
  605. return AVERROR(ENOMEM);
  606. }
  607. }
  608. if (fs->ac>1){
  609. //FIXME only redo if state_transition changed
  610. for(j=1; j<256; j++){
  611. fs->c.one_state [ j]= fs->state_transition[j];
  612. fs->c.zero_state[256-j]= 256-fs->c.one_state [j];
  613. }
  614. }
  615. }
  616. return 0;
  617. }
  618. static av_cold int init_slice_contexts(FFV1Context *f){
  619. int i;
  620. f->slice_count= f->num_h_slices * f->num_v_slices;
  621. for(i=0; i<f->slice_count; i++){
  622. FFV1Context *fs= av_mallocz(sizeof(*fs));
  623. int sx= i % f->num_h_slices;
  624. int sy= i / f->num_h_slices;
  625. int sxs= f->avctx->width * sx / f->num_h_slices;
  626. int sxe= f->avctx->width *(sx+1) / f->num_h_slices;
  627. int sys= f->avctx->height* sy / f->num_v_slices;
  628. int sye= f->avctx->height*(sy+1) / f->num_v_slices;
  629. f->slice_context[i]= fs;
  630. memcpy(fs, f, sizeof(*fs));
  631. memset(fs->rc_stat2, 0, sizeof(fs->rc_stat2));
  632. fs->slice_width = sxe - sxs;
  633. fs->slice_height= sye - sys;
  634. fs->slice_x = sxs;
  635. fs->slice_y = sys;
  636. fs->sample_buffer = av_malloc(3*4 * (fs->width+6) * sizeof(*fs->sample_buffer));
  637. if (!fs->sample_buffer)
  638. return AVERROR(ENOMEM);
  639. }
  640. return 0;
  641. }
  642. static int allocate_initial_states(FFV1Context *f){
  643. int i;
  644. for(i=0; i<f->quant_table_count; i++){
  645. f->initial_states[i]= av_malloc(f->context_count[i]*sizeof(*f->initial_states[i]));
  646. if(!f->initial_states[i])
  647. return AVERROR(ENOMEM);
  648. memset(f->initial_states[i], 128, f->context_count[i]*sizeof(*f->initial_states[i]));
  649. }
  650. return 0;
  651. }
  652. #if CONFIG_FFV1_ENCODER
  653. static int write_extra_header(FFV1Context *f){
  654. RangeCoder * const c= &f->c;
  655. uint8_t state[CONTEXT_SIZE];
  656. int i, j, k;
  657. uint8_t state2[32][CONTEXT_SIZE];
  658. memset(state2, 128, sizeof(state2));
  659. memset(state, 128, sizeof(state));
  660. f->avctx->extradata= av_malloc(f->avctx->extradata_size= 10000 + (11*11*5*5*5+11*11*11)*32);
  661. ff_init_range_encoder(c, f->avctx->extradata, f->avctx->extradata_size);
  662. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  663. put_symbol(c, state, f->version, 0);
  664. put_symbol(c, state, f->ac, 0);
  665. if(f->ac>1){
  666. for(i=1; i<256; i++){
  667. put_symbol(c, state, f->state_transition[i] - c->one_state[i], 1);
  668. }
  669. }
  670. put_symbol(c, state, f->colorspace, 0); //YUV cs type
  671. put_symbol(c, state, f->avctx->bits_per_raw_sample, 0);
  672. put_rac(c, state, f->chroma_planes);
  673. put_symbol(c, state, f->chroma_h_shift, 0);
  674. put_symbol(c, state, f->chroma_v_shift, 0);
  675. put_rac(c, state, f->transparency);
  676. put_symbol(c, state, f->num_h_slices-1, 0);
  677. put_symbol(c, state, f->num_v_slices-1, 0);
  678. put_symbol(c, state, f->quant_table_count, 0);
  679. for(i=0; i<f->quant_table_count; i++)
  680. write_quant_tables(c, f->quant_tables[i]);
  681. for(i=0; i<f->quant_table_count; i++){
  682. for(j=0; j<f->context_count[i]*CONTEXT_SIZE; j++)
  683. if(f->initial_states[i] && f->initial_states[i][0][j] != 128)
  684. break;
  685. if(j<f->context_count[i]*CONTEXT_SIZE){
  686. put_rac(c, state, 1);
  687. for(j=0; j<f->context_count[i]; j++){
  688. for(k=0; k<CONTEXT_SIZE; k++){
  689. int pred= j ? f->initial_states[i][j-1][k] : 128;
  690. put_symbol(c, state2[k], (int8_t)(f->initial_states[i][j][k]-pred), 1);
  691. }
  692. }
  693. }else{
  694. put_rac(c, state, 0);
  695. }
  696. }
  697. f->avctx->extradata_size= ff_rac_terminate(c);
  698. return 0;
  699. }
  700. static int sort_stt(FFV1Context *s, uint8_t stt[256]){
  701. int i,i2,changed,print=0;
  702. do{
  703. changed=0;
  704. for(i=12; i<244; i++){
  705. for(i2=i+1; i2<245 && i2<i+4; i2++){
  706. #define COST(old, new) \
  707. s->rc_stat[old][0]*-log2((256-(new))/256.0)\
  708. +s->rc_stat[old][1]*-log2( (new) /256.0)
  709. #define COST2(old, new) \
  710. COST(old, new)\
  711. +COST(256-(old), 256-(new))
  712. double size0= COST2(i, i ) + COST2(i2, i2);
  713. double sizeX= COST2(i, i2) + COST2(i2, i );
  714. if(sizeX < size0 && i!=128 && i2!=128){
  715. int j;
  716. FFSWAP(int, stt[ i], stt[ i2]);
  717. FFSWAP(int, s->rc_stat[i ][0],s->rc_stat[ i2][0]);
  718. FFSWAP(int, s->rc_stat[i ][1],s->rc_stat[ i2][1]);
  719. if(i != 256-i2){
  720. FFSWAP(int, stt[256-i], stt[256-i2]);
  721. FFSWAP(int, s->rc_stat[256-i][0],s->rc_stat[256-i2][0]);
  722. FFSWAP(int, s->rc_stat[256-i][1],s->rc_stat[256-i2][1]);
  723. }
  724. for(j=1; j<256; j++){
  725. if (stt[j] == i ) stt[j] = i2;
  726. else if(stt[j] == i2) stt[j] = i ;
  727. if(i != 256-i2){
  728. if (stt[256-j] == 256-i ) stt[256-j] = 256-i2;
  729. else if(stt[256-j] == 256-i2) stt[256-j] = 256-i ;
  730. }
  731. }
  732. print=changed=1;
  733. }
  734. }
  735. }
  736. }while(changed);
  737. return print;
  738. }
  739. static av_cold int encode_init(AVCodecContext *avctx)
  740. {
  741. FFV1Context *s = avctx->priv_data;
  742. int i, j, k, m;
  743. common_init(avctx);
  744. s->version=0;
  745. s->ac= avctx->coder_type ? 2:0;
  746. if(s->ac>1)
  747. for(i=1; i<256; i++)
  748. s->state_transition[i]=ver2_state[i];
  749. s->plane_count=3;
  750. for(i=0; i<256; i++){
  751. s->quant_table_count=2;
  752. if(avctx->bits_per_raw_sample <=8){
  753. s->quant_tables[0][0][i]= quant11[i];
  754. s->quant_tables[0][1][i]= 11*quant11[i];
  755. s->quant_tables[0][2][i]= 11*11*quant11[i];
  756. s->quant_tables[1][0][i]= quant11[i];
  757. s->quant_tables[1][1][i]= 11*quant11[i];
  758. s->quant_tables[1][2][i]= 11*11*quant5 [i];
  759. s->quant_tables[1][3][i]= 5*11*11*quant5 [i];
  760. s->quant_tables[1][4][i]= 5*5*11*11*quant5 [i];
  761. }else{
  762. s->quant_tables[0][0][i]= quant9_10bit[i];
  763. s->quant_tables[0][1][i]= 11*quant9_10bit[i];
  764. s->quant_tables[0][2][i]= 11*11*quant9_10bit[i];
  765. s->quant_tables[1][0][i]= quant9_10bit[i];
  766. s->quant_tables[1][1][i]= 11*quant9_10bit[i];
  767. s->quant_tables[1][2][i]= 11*11*quant5_10bit[i];
  768. s->quant_tables[1][3][i]= 5*11*11*quant5_10bit[i];
  769. s->quant_tables[1][4][i]= 5*5*11*11*quant5_10bit[i];
  770. }
  771. }
  772. s->context_count[0]= (11*11*11+1)/2;
  773. s->context_count[1]= (11*11*5*5*5+1)/2;
  774. memcpy(s->quant_table, s->quant_tables[avctx->context_model], sizeof(s->quant_table));
  775. for(i=0; i<s->plane_count; i++){
  776. PlaneContext * const p= &s->plane[i];
  777. memcpy(p->quant_table, s->quant_table, sizeof(p->quant_table));
  778. p->quant_table_index= avctx->context_model;
  779. p->context_count= s->context_count[p->quant_table_index];
  780. }
  781. if(allocate_initial_states(s) < 0)
  782. return AVERROR(ENOMEM);
  783. avctx->coded_frame= &s->picture;
  784. switch(avctx->pix_fmt){
  785. case PIX_FMT_YUV420P9:
  786. case PIX_FMT_YUV420P10:
  787. case PIX_FMT_YUV422P10:
  788. s->packed_at_lsb = 1;
  789. case PIX_FMT_GRAY16:
  790. case PIX_FMT_YUV444P16:
  791. case PIX_FMT_YUV422P16:
  792. case PIX_FMT_YUV420P16:
  793. if(avctx->bits_per_raw_sample <=8){
  794. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample invalid\n");
  795. return -1;
  796. }
  797. if(!s->ac){
  798. av_log(avctx, AV_LOG_ERROR, "bits_per_raw_sample of more than 8 needs -coder 1 currently\n");
  799. return -1;
  800. }
  801. s->version= FFMAX(s->version, 1);
  802. case PIX_FMT_YUV444P:
  803. case PIX_FMT_YUV440P:
  804. case PIX_FMT_YUV422P:
  805. case PIX_FMT_YUV420P:
  806. case PIX_FMT_YUV411P:
  807. case PIX_FMT_YUV410P:
  808. s->chroma_planes= avctx->pix_fmt == PIX_FMT_GRAY16 ? 0 : 1;
  809. s->colorspace= 0;
  810. break;
  811. case PIX_FMT_YUVA444P:
  812. case PIX_FMT_YUVA420P:
  813. s->chroma_planes= 1;
  814. s->colorspace= 0;
  815. s->transparency= 1;
  816. break;
  817. case PIX_FMT_RGB32:
  818. s->colorspace= 1;
  819. s->transparency= 1;
  820. break;
  821. case PIX_FMT_0RGB32:
  822. s->colorspace= 1;
  823. break;
  824. default:
  825. av_log(avctx, AV_LOG_ERROR, "format not supported\n");
  826. return -1;
  827. }
  828. if(!s->transparency)
  829. s->plane_count= 2;
  830. avcodec_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift, &s->chroma_v_shift);
  831. s->picture_number=0;
  832. if(avctx->flags & (CODEC_FLAG_PASS1|CODEC_FLAG_PASS2)){
  833. for(i=0; i<s->quant_table_count; i++){
  834. s->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*s->rc_stat2[i]));
  835. if(!s->rc_stat2[i])
  836. return AVERROR(ENOMEM);
  837. }
  838. }
  839. if(avctx->stats_in){
  840. char *p= avctx->stats_in;
  841. uint8_t best_state[256][256];
  842. int gob_count=0;
  843. char *next;
  844. av_assert0(s->version>=2);
  845. for(;;){
  846. for(j=0; j<256; j++){
  847. for(i=0; i<2; i++){
  848. s->rc_stat[j][i]= strtol(p, &next, 0);
  849. if(next==p){
  850. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d [%s]\n", j,i,p);
  851. return -1;
  852. }
  853. p=next;
  854. }
  855. }
  856. for(i=0; i<s->quant_table_count; i++){
  857. for(j=0; j<s->context_count[i]; j++){
  858. for(k=0; k<32; k++){
  859. for(m=0; m<2; m++){
  860. s->rc_stat2[i][j][k][m]= strtol(p, &next, 0);
  861. if(next==p){
  862. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid at %d %d %d %d [%s]\n", i,j,k,m,p);
  863. return -1;
  864. }
  865. p=next;
  866. }
  867. }
  868. }
  869. }
  870. gob_count= strtol(p, &next, 0);
  871. if(next==p || gob_count <0){
  872. av_log(avctx, AV_LOG_ERROR, "2Pass file invalid\n");
  873. return -1;
  874. }
  875. p=next;
  876. while(*p=='\n' || *p==' ') p++;
  877. if(p[0]==0) break;
  878. }
  879. sort_stt(s, s->state_transition);
  880. find_best_state(best_state, s->state_transition);
  881. for(i=0; i<s->quant_table_count; i++){
  882. for(j=0; j<s->context_count[i]; j++){
  883. for(k=0; k<32; k++){
  884. double p= 128;
  885. if(s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]){
  886. p=256.0*s->rc_stat2[i][j][k][1] / (s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1]);
  887. }
  888. s->initial_states[i][j][k]= best_state[av_clip(round(p), 1, 255)][av_clip((s->rc_stat2[i][j][k][0]+s->rc_stat2[i][j][k][1])/gob_count, 0, 255)];
  889. }
  890. }
  891. }
  892. }
  893. if(s->version>1){
  894. s->num_h_slices=2;
  895. s->num_v_slices=2;
  896. write_extra_header(s);
  897. }
  898. if(init_slice_contexts(s) < 0)
  899. return -1;
  900. if(init_slice_state(s) < 0)
  901. return -1;
  902. #define STATS_OUT_SIZE 1024*1024*6
  903. if(avctx->flags & CODEC_FLAG_PASS1){
  904. avctx->stats_out= av_mallocz(STATS_OUT_SIZE);
  905. for(i=0; i<s->quant_table_count; i++){
  906. for(j=0; j<s->slice_count; j++){
  907. FFV1Context *sf= s->slice_context[j];
  908. av_assert0(!sf->rc_stat2[i]);
  909. sf->rc_stat2[i]= av_mallocz(s->context_count[i]*sizeof(*sf->rc_stat2[i]));
  910. if(!sf->rc_stat2[i])
  911. return AVERROR(ENOMEM);
  912. }
  913. }
  914. }
  915. return 0;
  916. }
  917. #endif /* CONFIG_FFV1_ENCODER */
  918. static void clear_state(FFV1Context *f){
  919. int i, si, j;
  920. for(si=0; si<f->slice_count; si++){
  921. FFV1Context *fs= f->slice_context[si];
  922. for(i=0; i<f->plane_count; i++){
  923. PlaneContext *p= &fs->plane[i];
  924. p->interlace_bit_state[0]= 128;
  925. p->interlace_bit_state[1]= 128;
  926. if(fs->ac){
  927. if(f->initial_states[p->quant_table_index]){
  928. memcpy(p->state, f->initial_states[p->quant_table_index], CONTEXT_SIZE*p->context_count);
  929. }else
  930. memset(p->state, 128, CONTEXT_SIZE*p->context_count);
  931. }else{
  932. for(j=0; j<p->context_count; j++){
  933. p->vlc_state[j].drift= 0;
  934. p->vlc_state[j].error_sum= 4; //FFMAX((RANGE + 32)/64, 2);
  935. p->vlc_state[j].bias= 0;
  936. p->vlc_state[j].count= 1;
  937. }
  938. }
  939. }
  940. }
  941. }
  942. #if CONFIG_FFV1_ENCODER
  943. static int encode_slice(AVCodecContext *c, void *arg){
  944. FFV1Context *fs= *(void**)arg;
  945. FFV1Context *f= fs->avctx->priv_data;
  946. int width = fs->slice_width;
  947. int height= fs->slice_height;
  948. int x= fs->slice_x;
  949. int y= fs->slice_y;
  950. AVFrame * const p= &f->picture;
  951. const int ps= (c->bits_per_raw_sample>8)+1;
  952. if(f->colorspace==0){
  953. const int chroma_width = -((-width )>>f->chroma_h_shift);
  954. const int chroma_height= -((-height)>>f->chroma_v_shift);
  955. const int cx= x>>f->chroma_h_shift;
  956. const int cy= y>>f->chroma_v_shift;
  957. encode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0);
  958. if (f->chroma_planes){
  959. encode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  960. encode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  961. }
  962. if (fs->transparency)
  963. encode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2);
  964. }else{
  965. encode_rgb_frame(fs, (uint32_t*)(p->data[0]) + ps*x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  966. }
  967. emms_c();
  968. return 0;
  969. }
  970. static int encode_frame(AVCodecContext *avctx, unsigned char *buf, int buf_size, void *data){
  971. FFV1Context *f = avctx->priv_data;
  972. RangeCoder * const c= &f->slice_context[0]->c;
  973. AVFrame *pict = data;
  974. AVFrame * const p= &f->picture;
  975. int used_count= 0;
  976. uint8_t keystate=128;
  977. uint8_t *buf_p;
  978. int i;
  979. ff_init_range_encoder(c, buf, buf_size);
  980. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  981. *p = *pict;
  982. p->pict_type= AV_PICTURE_TYPE_I;
  983. if(avctx->gop_size==0 || f->picture_number % avctx->gop_size == 0){
  984. put_rac(c, &keystate, 1);
  985. p->key_frame= 1;
  986. f->gob_count++;
  987. write_header(f);
  988. clear_state(f);
  989. }else{
  990. put_rac(c, &keystate, 0);
  991. p->key_frame= 0;
  992. }
  993. if(!f->ac){
  994. used_count += ff_rac_terminate(c);
  995. //printf("pos=%d\n", used_count);
  996. init_put_bits(&f->slice_context[0]->pb, buf + used_count, buf_size - used_count);
  997. }else if (f->ac>1){
  998. int i;
  999. for(i=1; i<256; i++){
  1000. c->one_state[i]= f->state_transition[i];
  1001. c->zero_state[256-i]= 256-c->one_state[i];
  1002. }
  1003. }
  1004. for(i=1; i<f->slice_count; i++){
  1005. FFV1Context *fs= f->slice_context[i];
  1006. uint8_t *start= buf + (buf_size-used_count)*i/f->slice_count;
  1007. int len= buf_size/f->slice_count;
  1008. if(fs->ac){
  1009. ff_init_range_encoder(&fs->c, start, len);
  1010. }else{
  1011. init_put_bits(&fs->pb, start, len);
  1012. }
  1013. }
  1014. avctx->execute(avctx, encode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  1015. buf_p=buf;
  1016. for(i=0; i<f->slice_count; i++){
  1017. FFV1Context *fs= f->slice_context[i];
  1018. int bytes;
  1019. if(fs->ac){
  1020. uint8_t state=128;
  1021. put_rac(&fs->c, &state, 0);
  1022. bytes= ff_rac_terminate(&fs->c);
  1023. }else{
  1024. flush_put_bits(&fs->pb); //nicer padding FIXME
  1025. bytes= used_count + (put_bits_count(&fs->pb)+7)/8;
  1026. used_count= 0;
  1027. }
  1028. if(i>0){
  1029. av_assert0(bytes < buf_size/f->slice_count);
  1030. memmove(buf_p, fs->ac ? fs->c.bytestream_start : fs->pb.buf, bytes);
  1031. av_assert0(bytes < (1<<24));
  1032. AV_WB24(buf_p+bytes, bytes);
  1033. bytes+=3;
  1034. }
  1035. buf_p += bytes;
  1036. }
  1037. if((avctx->flags&CODEC_FLAG_PASS1) && (f->picture_number&31)==0){
  1038. int j, k, m;
  1039. char *p= avctx->stats_out;
  1040. char *end= p + STATS_OUT_SIZE;
  1041. memset(f->rc_stat, 0, sizeof(f->rc_stat));
  1042. for(i=0; i<f->quant_table_count; i++)
  1043. memset(f->rc_stat2[i], 0, f->context_count[i]*sizeof(*f->rc_stat2[i]));
  1044. for(j=0; j<f->slice_count; j++){
  1045. FFV1Context *fs= f->slice_context[j];
  1046. for(i=0; i<256; i++){
  1047. f->rc_stat[i][0] += fs->rc_stat[i][0];
  1048. f->rc_stat[i][1] += fs->rc_stat[i][1];
  1049. }
  1050. for(i=0; i<f->quant_table_count; i++){
  1051. for(k=0; k<f->context_count[i]; k++){
  1052. for(m=0; m<32; m++){
  1053. f->rc_stat2[i][k][m][0] += fs->rc_stat2[i][k][m][0];
  1054. f->rc_stat2[i][k][m][1] += fs->rc_stat2[i][k][m][1];
  1055. }
  1056. }
  1057. }
  1058. }
  1059. for(j=0; j<256; j++){
  1060. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat[j][0], f->rc_stat[j][1]);
  1061. p+= strlen(p);
  1062. }
  1063. snprintf(p, end-p, "\n");
  1064. for(i=0; i<f->quant_table_count; i++){
  1065. for(j=0; j<f->context_count[i]; j++){
  1066. for(m=0; m<32; m++){
  1067. snprintf(p, end-p, "%"PRIu64" %"PRIu64" ", f->rc_stat2[i][j][m][0], f->rc_stat2[i][j][m][1]);
  1068. p+= strlen(p);
  1069. }
  1070. }
  1071. }
  1072. snprintf(p, end-p, "%d\n", f->gob_count);
  1073. } else if(avctx->flags&CODEC_FLAG_PASS1)
  1074. avctx->stats_out[0] = '\0';
  1075. f->picture_number++;
  1076. return buf_p-buf;
  1077. }
  1078. #endif /* CONFIG_FFV1_ENCODER */
  1079. static av_cold int common_end(AVCodecContext *avctx){
  1080. FFV1Context *s = avctx->priv_data;
  1081. int i, j;
  1082. if (avctx->codec->decode && s->picture.data[0])
  1083. avctx->release_buffer(avctx, &s->picture);
  1084. for(j=0; j<s->slice_count; j++){
  1085. FFV1Context *fs= s->slice_context[j];
  1086. for(i=0; i<s->plane_count; i++){
  1087. PlaneContext *p= &fs->plane[i];
  1088. av_freep(&p->state);
  1089. av_freep(&p->vlc_state);
  1090. }
  1091. av_freep(&fs->sample_buffer);
  1092. }
  1093. av_freep(&avctx->stats_out);
  1094. for(j=0; j<s->quant_table_count; j++){
  1095. av_freep(&s->initial_states[j]);
  1096. for(i=0; i<s->slice_count; i++){
  1097. FFV1Context *sf= s->slice_context[i];
  1098. av_freep(&sf->rc_stat2[j]);
  1099. }
  1100. av_freep(&s->rc_stat2[j]);
  1101. }
  1102. for(i=0; i<s->slice_count; i++){
  1103. av_freep(&s->slice_context[i]);
  1104. }
  1105. return 0;
  1106. }
  1107. static av_always_inline void decode_line(FFV1Context *s, int w,
  1108. int16_t *sample[2],
  1109. int plane_index, int bits)
  1110. {
  1111. PlaneContext * const p= &s->plane[plane_index];
  1112. RangeCoder * const c= &s->c;
  1113. int x;
  1114. int run_count=0;
  1115. int run_mode=0;
  1116. int run_index= s->run_index;
  1117. for(x=0; x<w; x++){
  1118. int diff, context, sign;
  1119. context= get_context(p, sample[1] + x, sample[0] + x, sample[1] + x);
  1120. if(context < 0){
  1121. context= -context;
  1122. sign=1;
  1123. }else
  1124. sign=0;
  1125. av_assert2(context < p->context_count);
  1126. if(s->ac){
  1127. diff= get_symbol_inline(c, p->state[context], 1);
  1128. }else{
  1129. if(context == 0 && run_mode==0) run_mode=1;
  1130. if(run_mode){
  1131. if(run_count==0 && run_mode==1){
  1132. if(get_bits1(&s->gb)){
  1133. run_count = 1<<ff_log2_run[run_index];
  1134. if(x + run_count <= w) run_index++;
  1135. }else{
  1136. if(ff_log2_run[run_index]) run_count = get_bits(&s->gb, ff_log2_run[run_index]);
  1137. else run_count=0;
  1138. if(run_index) run_index--;
  1139. run_mode=2;
  1140. }
  1141. }
  1142. run_count--;
  1143. if(run_count < 0){
  1144. run_mode=0;
  1145. run_count=0;
  1146. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1147. if(diff>=0) diff++;
  1148. }else
  1149. diff=0;
  1150. }else
  1151. diff= get_vlc_symbol(&s->gb, &p->vlc_state[context], bits);
  1152. // printf("count:%d index:%d, mode:%d, x:%d y:%d pos:%d\n", run_count, run_index, run_mode, x, y, get_bits_count(&s->gb));
  1153. }
  1154. if(sign) diff= -diff;
  1155. sample[1][x]= (predict(sample[1] + x, sample[0] + x) + diff) & ((1<<bits)-1);
  1156. }
  1157. s->run_index= run_index;
  1158. }
  1159. static void decode_plane(FFV1Context *s, uint8_t *src, int w, int h, int stride, int plane_index){
  1160. int x, y;
  1161. int16_t *sample[2];
  1162. sample[0]=s->sample_buffer +3;
  1163. sample[1]=s->sample_buffer+w+6+3;
  1164. s->run_index=0;
  1165. memset(s->sample_buffer, 0, 2*(w+6)*sizeof(*s->sample_buffer));
  1166. for(y=0; y<h; y++){
  1167. int16_t *temp = sample[0]; //FIXME try a normal buffer
  1168. sample[0]= sample[1];
  1169. sample[1]= temp;
  1170. sample[1][-1]= sample[0][0 ];
  1171. sample[0][ w]= sample[0][w-1];
  1172. //{START_TIMER
  1173. if(s->avctx->bits_per_raw_sample <= 8){
  1174. decode_line(s, w, sample, plane_index, 8);
  1175. for(x=0; x<w; x++){
  1176. src[x + stride*y]= sample[1][x];
  1177. }
  1178. }else{
  1179. decode_line(s, w, sample, plane_index, s->avctx->bits_per_raw_sample);
  1180. if(s->packed_at_lsb){
  1181. for(x=0; x<w; x++){
  1182. ((uint16_t*)(src + stride*y))[x]= sample[1][x];
  1183. }
  1184. }else{
  1185. for(x=0; x<w; x++){
  1186. ((uint16_t*)(src + stride*y))[x]= sample[1][x] << (16 - s->avctx->bits_per_raw_sample);
  1187. }
  1188. }
  1189. }
  1190. //STOP_TIMER("decode-line")}
  1191. }
  1192. }
  1193. static void decode_rgb_frame(FFV1Context *s, uint32_t *src, int w, int h, int stride){
  1194. int x, y, p;
  1195. int16_t *sample[4][2];
  1196. for(x=0; x<4; x++){
  1197. sample[x][0] = s->sample_buffer + x*2 *(w+6) + 3;
  1198. sample[x][1] = s->sample_buffer + (x*2+1)*(w+6) + 3;
  1199. }
  1200. s->run_index=0;
  1201. memset(s->sample_buffer, 0, 8*(w+6)*sizeof(*s->sample_buffer));
  1202. for(y=0; y<h; y++){
  1203. for(p=0; p<3 + s->transparency; p++){
  1204. int16_t *temp = sample[p][0]; //FIXME try a normal buffer
  1205. sample[p][0]= sample[p][1];
  1206. sample[p][1]= temp;
  1207. sample[p][1][-1]= sample[p][0][0 ];
  1208. sample[p][0][ w]= sample[p][0][w-1];
  1209. decode_line(s, w, sample[p], (p+1)/2, 9);
  1210. }
  1211. for(x=0; x<w; x++){
  1212. int g= sample[0][1][x];
  1213. int b= sample[1][1][x];
  1214. int r= sample[2][1][x];
  1215. int a= sample[3][1][x];
  1216. // assert(g>=0 && b>=0 && r>=0);
  1217. // assert(g<256 && b<512 && r<512);
  1218. b -= 0x100;
  1219. r -= 0x100;
  1220. g -= (b + r)>>2;
  1221. b += g;
  1222. r += g;
  1223. src[x + stride*y]= b + (g<<8) + (r<<16) + (a<<24);
  1224. }
  1225. }
  1226. }
  1227. static int decode_slice(AVCodecContext *c, void *arg){
  1228. FFV1Context *fs= *(void**)arg;
  1229. FFV1Context *f= fs->avctx->priv_data;
  1230. int width = fs->slice_width;
  1231. int height= fs->slice_height;
  1232. int x= fs->slice_x;
  1233. int y= fs->slice_y;
  1234. const int ps= (c->bits_per_raw_sample>8)+1;
  1235. AVFrame * const p= &f->picture;
  1236. av_assert1(width && height);
  1237. if(f->colorspace==0){
  1238. const int chroma_width = -((-width )>>f->chroma_h_shift);
  1239. const int chroma_height= -((-height)>>f->chroma_v_shift);
  1240. const int cx= x>>f->chroma_h_shift;
  1241. const int cy= y>>f->chroma_v_shift;
  1242. decode_plane(fs, p->data[0] + ps*x + y*p->linesize[0], width, height, p->linesize[0], 0);
  1243. if (f->chroma_planes){
  1244. decode_plane(fs, p->data[1] + ps*cx+cy*p->linesize[1], chroma_width, chroma_height, p->linesize[1], 1);
  1245. decode_plane(fs, p->data[2] + ps*cx+cy*p->linesize[2], chroma_width, chroma_height, p->linesize[2], 1);
  1246. }
  1247. if (fs->transparency)
  1248. decode_plane(fs, p->data[3] + ps*x + y*p->linesize[3], width, height, p->linesize[3], 2);
  1249. }else{
  1250. decode_rgb_frame(fs, (uint32_t*)p->data[0] + ps*x + y*(p->linesize[0]/4), width, height, p->linesize[0]/4);
  1251. }
  1252. emms_c();
  1253. return 0;
  1254. }
  1255. static int read_quant_table(RangeCoder *c, int16_t *quant_table, int scale){
  1256. int v;
  1257. int i=0;
  1258. uint8_t state[CONTEXT_SIZE];
  1259. memset(state, 128, sizeof(state));
  1260. for(v=0; i<128 ; v++){
  1261. int len= get_symbol(c, state, 0) + 1;
  1262. if(len + i > 128) return -1;
  1263. while(len--){
  1264. quant_table[i] = scale*v;
  1265. i++;
  1266. //printf("%2d ",v);
  1267. //if(i%16==0) printf("\n");
  1268. }
  1269. }
  1270. for(i=1; i<128; i++){
  1271. quant_table[256-i]= -quant_table[i];
  1272. }
  1273. quant_table[128]= -quant_table[127];
  1274. return 2*v - 1;
  1275. }
  1276. static int read_quant_tables(RangeCoder *c, int16_t quant_table[MAX_CONTEXT_INPUTS][256]){
  1277. int i;
  1278. int context_count=1;
  1279. for(i=0; i<5; i++){
  1280. context_count*= read_quant_table(c, quant_table[i], context_count);
  1281. if(context_count > 32768U){
  1282. return -1;
  1283. }
  1284. }
  1285. return (context_count+1)/2;
  1286. }
  1287. static int read_extra_header(FFV1Context *f){
  1288. RangeCoder * const c= &f->c;
  1289. uint8_t state[CONTEXT_SIZE];
  1290. int i, j, k;
  1291. uint8_t state2[32][CONTEXT_SIZE];
  1292. memset(state2, 128, sizeof(state2));
  1293. memset(state, 128, sizeof(state));
  1294. ff_init_range_decoder(c, f->avctx->extradata, f->avctx->extradata_size);
  1295. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1296. f->version= get_symbol(c, state, 0);
  1297. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1298. if(f->ac>1){
  1299. for(i=1; i<256; i++){
  1300. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1301. }
  1302. }
  1303. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1304. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1305. get_rac(c, state); //no chroma = false
  1306. f->chroma_h_shift= get_symbol(c, state, 0);
  1307. f->chroma_v_shift= get_symbol(c, state, 0);
  1308. f->transparency= get_rac(c, state);
  1309. f->plane_count= 2 + f->transparency;
  1310. f->num_h_slices= 1 + get_symbol(c, state, 0);
  1311. f->num_v_slices= 1 + get_symbol(c, state, 0);
  1312. if(f->num_h_slices > (unsigned)f->width || f->num_v_slices > (unsigned)f->height){
  1313. av_log(f->avctx, AV_LOG_ERROR, "too many slices\n");
  1314. return -1;
  1315. }
  1316. f->quant_table_count= get_symbol(c, state, 0);
  1317. if(f->quant_table_count > (unsigned)MAX_QUANT_TABLES)
  1318. return -1;
  1319. for(i=0; i<f->quant_table_count; i++){
  1320. if((f->context_count[i]= read_quant_tables(c, f->quant_tables[i])) < 0){
  1321. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1322. return -1;
  1323. }
  1324. }
  1325. if(allocate_initial_states(f) < 0)
  1326. return AVERROR(ENOMEM);
  1327. for(i=0; i<f->quant_table_count; i++){
  1328. if(get_rac(c, state)){
  1329. for(j=0; j<f->context_count[i]; j++){
  1330. for(k=0; k<CONTEXT_SIZE; k++){
  1331. int pred= j ? f->initial_states[i][j-1][k] : 128;
  1332. f->initial_states[i][j][k]= (pred+get_symbol(c, state2[k], 1))&0xFF;
  1333. }
  1334. }
  1335. }
  1336. }
  1337. return 0;
  1338. }
  1339. static int read_header(FFV1Context *f){
  1340. uint8_t state[CONTEXT_SIZE];
  1341. int i, j, context_count;
  1342. RangeCoder * const c= &f->slice_context[0]->c;
  1343. memset(state, 128, sizeof(state));
  1344. if(f->version < 2){
  1345. f->version= get_symbol(c, state, 0);
  1346. f->ac= f->avctx->coder_type= get_symbol(c, state, 0);
  1347. if(f->ac>1){
  1348. for(i=1; i<256; i++){
  1349. f->state_transition[i]= get_symbol(c, state, 1) + c->one_state[i];
  1350. }
  1351. }
  1352. f->colorspace= get_symbol(c, state, 0); //YUV cs type
  1353. if(f->version>0)
  1354. f->avctx->bits_per_raw_sample= get_symbol(c, state, 0);
  1355. f->chroma_planes= get_rac(c, state);
  1356. f->chroma_h_shift= get_symbol(c, state, 0);
  1357. f->chroma_v_shift= get_symbol(c, state, 0);
  1358. f->transparency= get_rac(c, state);
  1359. f->plane_count= 2 + f->transparency;
  1360. }
  1361. if(f->colorspace==0){
  1362. if(f->avctx->bits_per_raw_sample>8 && !f->transparency && !f->chroma_planes){
  1363. f->avctx->pix_fmt= PIX_FMT_GRAY16;
  1364. }else if(f->avctx->bits_per_raw_sample<=8 && !f->transparency){
  1365. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1366. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P; break;
  1367. case 0x01: f->avctx->pix_fmt= PIX_FMT_YUV440P; break;
  1368. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P; break;
  1369. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P; break;
  1370. case 0x20: f->avctx->pix_fmt= PIX_FMT_YUV411P; break;
  1371. case 0x22: f->avctx->pix_fmt= PIX_FMT_YUV410P; break;
  1372. default:
  1373. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1374. return -1;
  1375. }
  1376. }else if(f->avctx->bits_per_raw_sample<=8 && f->transparency){
  1377. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1378. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUVA444P; break;
  1379. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUVA420P; break;
  1380. default:
  1381. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1382. return -1;
  1383. }
  1384. }else if(f->avctx->bits_per_raw_sample==9) {
  1385. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1386. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
  1387. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P16; break;
  1388. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P9 ; f->packed_at_lsb=1; break;
  1389. default:
  1390. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1391. return -1;
  1392. }
  1393. }else if(f->avctx->bits_per_raw_sample==10) {
  1394. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1395. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
  1396. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P10; f->packed_at_lsb=1; break;
  1397. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P10; f->packed_at_lsb=1; break;
  1398. default:
  1399. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1400. return -1;
  1401. }
  1402. }else {
  1403. switch(16*f->chroma_h_shift + f->chroma_v_shift){
  1404. case 0x00: f->avctx->pix_fmt= PIX_FMT_YUV444P16; break;
  1405. case 0x10: f->avctx->pix_fmt= PIX_FMT_YUV422P16; break;
  1406. case 0x11: f->avctx->pix_fmt= PIX_FMT_YUV420P16; break;
  1407. default:
  1408. av_log(f->avctx, AV_LOG_ERROR, "format not supported\n");
  1409. return -1;
  1410. }
  1411. }
  1412. }else if(f->colorspace==1){
  1413. if(f->chroma_h_shift || f->chroma_v_shift){
  1414. av_log(f->avctx, AV_LOG_ERROR, "chroma subsampling not supported in this colorspace\n");
  1415. return -1;
  1416. }
  1417. if(f->transparency) f->avctx->pix_fmt= PIX_FMT_RGB32;
  1418. else f->avctx->pix_fmt= PIX_FMT_0RGB32;
  1419. }else{
  1420. av_log(f->avctx, AV_LOG_ERROR, "colorspace not supported\n");
  1421. return -1;
  1422. }
  1423. //printf("%d %d %d\n", f->chroma_h_shift, f->chroma_v_shift,f->avctx->pix_fmt);
  1424. if(f->version < 2){
  1425. context_count= read_quant_tables(c, f->quant_table);
  1426. if(context_count < 0){
  1427. av_log(f->avctx, AV_LOG_ERROR, "read_quant_table error\n");
  1428. return -1;
  1429. }
  1430. }else{
  1431. f->slice_count= get_symbol(c, state, 0);
  1432. if(f->slice_count > (unsigned)MAX_SLICES)
  1433. return -1;
  1434. }
  1435. for(j=0; j<f->slice_count; j++){
  1436. FFV1Context *fs= f->slice_context[j];
  1437. fs->ac= f->ac;
  1438. fs->packed_at_lsb= f->packed_at_lsb;
  1439. if(f->version >= 2){
  1440. fs->slice_x = get_symbol(c, state, 0) *f->width ;
  1441. fs->slice_y = get_symbol(c, state, 0) *f->height;
  1442. fs->slice_width =(get_symbol(c, state, 0)+1)*f->width + fs->slice_x;
  1443. fs->slice_height=(get_symbol(c, state, 0)+1)*f->height + fs->slice_y;
  1444. fs->slice_x /= f->num_h_slices;
  1445. fs->slice_y /= f->num_v_slices;
  1446. fs->slice_width = fs->slice_width /f->num_h_slices - fs->slice_x;
  1447. fs->slice_height = fs->slice_height/f->num_v_slices - fs->slice_y;
  1448. if((unsigned)fs->slice_width > f->width || (unsigned)fs->slice_height > f->height)
  1449. return -1;
  1450. if( (unsigned)fs->slice_x + (uint64_t)fs->slice_width > f->width
  1451. || (unsigned)fs->slice_y + (uint64_t)fs->slice_height > f->height)
  1452. return -1;
  1453. }
  1454. for(i=0; i<f->plane_count; i++){
  1455. PlaneContext * const p= &fs->plane[i];
  1456. if(f->version >= 2){
  1457. int idx=get_symbol(c, state, 0);
  1458. if(idx > (unsigned)f->quant_table_count){
  1459. av_log(f->avctx, AV_LOG_ERROR, "quant_table_index out of range\n");
  1460. return -1;
  1461. }
  1462. p->quant_table_index= idx;
  1463. memcpy(p->quant_table, f->quant_tables[idx], sizeof(p->quant_table));
  1464. context_count= f->context_count[idx];
  1465. }else{
  1466. memcpy(p->quant_table, f->quant_table, sizeof(p->quant_table));
  1467. }
  1468. if(p->context_count < context_count){
  1469. av_freep(&p->state);
  1470. av_freep(&p->vlc_state);
  1471. }
  1472. p->context_count= context_count;
  1473. }
  1474. }
  1475. return 0;
  1476. }
  1477. static av_cold int decode_init(AVCodecContext *avctx)
  1478. {
  1479. FFV1Context *f = avctx->priv_data;
  1480. common_init(avctx);
  1481. if(avctx->extradata && read_extra_header(f) < 0)
  1482. return -1;
  1483. if(init_slice_contexts(f) < 0)
  1484. return -1;
  1485. return 0;
  1486. }
  1487. static int decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt){
  1488. const uint8_t *buf = avpkt->data;
  1489. int buf_size = avpkt->size;
  1490. FFV1Context *f = avctx->priv_data;
  1491. RangeCoder * const c= &f->slice_context[0]->c;
  1492. AVFrame * const p= &f->picture;
  1493. int bytes_read, i;
  1494. uint8_t keystate= 128;
  1495. const uint8_t *buf_p;
  1496. AVFrame *picture = data;
  1497. /* release previously stored data */
  1498. if (p->data[0])
  1499. avctx->release_buffer(avctx, p);
  1500. ff_init_range_decoder(c, buf, buf_size);
  1501. ff_build_rac_states(c, 0.05*(1LL<<32), 256-8);
  1502. p->pict_type= AV_PICTURE_TYPE_I; //FIXME I vs. P
  1503. if(get_rac(c, &keystate)){
  1504. p->key_frame= 1;
  1505. if(read_header(f) < 0)
  1506. return -1;
  1507. if(init_slice_state(f) < 0)
  1508. return -1;
  1509. clear_state(f);
  1510. }else{
  1511. p->key_frame= 0;
  1512. }
  1513. if(f->ac>1){
  1514. int i;
  1515. for(i=1; i<256; i++){
  1516. c->one_state[i]= f->state_transition[i];
  1517. c->zero_state[256-i]= 256-c->one_state[i];
  1518. }
  1519. }
  1520. p->reference= 0;
  1521. if(avctx->get_buffer(avctx, p) < 0){
  1522. av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
  1523. return -1;
  1524. }
  1525. if(avctx->debug&FF_DEBUG_PICT_INFO)
  1526. av_log(avctx, AV_LOG_ERROR, "keyframe:%d coder:%d\n", p->key_frame, f->ac);
  1527. if(!f->ac){
  1528. bytes_read = c->bytestream - c->bytestream_start - 1;
  1529. if(bytes_read ==0) av_log(avctx, AV_LOG_ERROR, "error at end of AC stream\n"); //FIXME
  1530. //printf("pos=%d\n", bytes_read);
  1531. init_get_bits(&f->slice_context[0]->gb, buf + bytes_read, (buf_size - bytes_read) * 8);
  1532. } else {
  1533. bytes_read = 0; /* avoid warning */
  1534. }
  1535. buf_p= buf + buf_size;
  1536. for(i=f->slice_count-1; i>0; i--){
  1537. FFV1Context *fs= f->slice_context[i];
  1538. int v= AV_RB24(buf_p-3)+3;
  1539. if(buf_p - buf <= v){
  1540. av_log(avctx, AV_LOG_ERROR, "Slice pointer chain broken\n");
  1541. return -1;
  1542. }
  1543. buf_p -= v;
  1544. if(fs->ac){
  1545. ff_init_range_decoder(&fs->c, buf_p, v);
  1546. }else{
  1547. init_get_bits(&fs->gb, buf_p, v * 8);
  1548. }
  1549. }
  1550. avctx->execute(avctx, decode_slice, &f->slice_context[0], NULL, f->slice_count, sizeof(void*));
  1551. f->picture_number++;
  1552. *picture= *p;
  1553. *data_size = sizeof(AVFrame);
  1554. return buf_size;
  1555. }
  1556. AVCodec ff_ffv1_decoder = {
  1557. .name = "ffv1",
  1558. .type = AVMEDIA_TYPE_VIDEO,
  1559. .id = CODEC_ID_FFV1,
  1560. .priv_data_size = sizeof(FFV1Context),
  1561. .init = decode_init,
  1562. .close = common_end,
  1563. .decode = decode_frame,
  1564. .capabilities = CODEC_CAP_DR1 /*| CODEC_CAP_DRAW_HORIZ_BAND*/ | CODEC_CAP_SLICE_THREADS,
  1565. .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1566. };
  1567. #if CONFIG_FFV1_ENCODER
  1568. AVCodec ff_ffv1_encoder = {
  1569. .name = "ffv1",
  1570. .type = AVMEDIA_TYPE_VIDEO,
  1571. .id = CODEC_ID_FFV1,
  1572. .priv_data_size = sizeof(FFV1Context),
  1573. .init = encode_init,
  1574. .encode = encode_frame,
  1575. .close = common_end,
  1576. .capabilities = CODEC_CAP_SLICE_THREADS,
  1577. .pix_fmts= (const enum PixelFormat[]){PIX_FMT_YUV420P, PIX_FMT_YUVA420P, PIX_FMT_YUV444P, PIX_FMT_YUVA444P, PIX_FMT_YUV440P, PIX_FMT_YUV422P, PIX_FMT_YUV411P, PIX_FMT_YUV410P, PIX_FMT_0RGB32, PIX_FMT_RGB32, PIX_FMT_YUV420P16, PIX_FMT_YUV422P16, PIX_FMT_YUV444P16, PIX_FMT_YUV420P9, PIX_FMT_YUV420P10, PIX_FMT_YUV422P10, PIX_FMT_GRAY16, PIX_FMT_NONE},
  1578. .long_name= NULL_IF_CONFIG_SMALL("FFmpeg video codec #1"),
  1579. };
  1580. #endif